]> git.proxmox.com Git - rustc.git/blob - src/compiler-rt/lib/esan/esan.cpp
New upstream version 1.19.0+dfsg1
[rustc.git] / src / compiler-rt / lib / esan / esan.cpp
1 //===-- esan.cpp ----------------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of EfficiencySanitizer, a family of performance tuners.
11 //
12 // Main file (entry points) for the Esan run-time.
13 //===----------------------------------------------------------------------===//
14
15 #include "esan.h"
16 #include "esan_flags.h"
17 #include "esan_interface_internal.h"
18 #include "esan_shadow.h"
19 #include "cache_frag.h"
20 #include "sanitizer_common/sanitizer_common.h"
21 #include "sanitizer_common/sanitizer_flag_parser.h"
22 #include "sanitizer_common/sanitizer_flags.h"
23 #include "working_set.h"
24
25 // See comment below.
26 extern "C" {
27 extern void __cxa_atexit(void (*function)(void));
28 }
29
30 namespace __esan {
31
32 bool EsanIsInitialized;
33 bool EsanDuringInit;
34 ShadowMapping Mapping;
35
36 // Different tools use different scales within the same shadow mapping scheme.
37 // The scale used here must match that used by the compiler instrumentation.
38 // This array is indexed by the ToolType enum.
39 static const uptr ShadowScale[] = {
40 0, // ESAN_None.
41 2, // ESAN_CacheFrag: 4B:1B, so 4 to 1 == >>2.
42 6, // ESAN_WorkingSet: 64B:1B, so 64 to 1 == >>6.
43 };
44
45 // We are combining multiple performance tuning tools under the umbrella of
46 // one EfficiencySanitizer super-tool. Most of our tools have very similar
47 // memory access instrumentation, shadow memory mapping, libc interception,
48 // etc., and there is typically more shared code than distinct code.
49 //
50 // We are not willing to dispatch on tool dynamically in our fastpath
51 // instrumentation: thus, which tool to use is a static option selected
52 // at compile time and passed to __esan_init().
53 //
54 // We are willing to pay the overhead of tool dispatch in the slowpath to more
55 // easily share code. We expect to only come here rarely.
56 // If this becomes a performance hit, we can add separate interface
57 // routines for each subtool (e.g., __esan_cache_frag_aligned_load_4).
58 // But for libc interceptors, we'll have to do one of the following:
59 // A) Add multiple-include support to sanitizer_common_interceptors.inc,
60 // instantiate it separately for each tool, and call the selected
61 // tool's intercept setup code.
62 // B) Build separate static runtime libraries, one for each tool.
63 // C) Completely split the tools into separate sanitizers.
64
65 void processRangeAccess(uptr PC, uptr Addr, int Size, bool IsWrite) {
66 VPrintf(3, "in esan::%s %p: %c %p %d\n", __FUNCTION__, PC,
67 IsWrite ? 'w' : 'r', Addr, Size);
68 if (__esan_which_tool == ESAN_CacheFrag) {
69 // TODO(bruening): add shadow mapping and update shadow bits here.
70 // We'll move this to cache_frag.cpp once we have something.
71 } else if (__esan_which_tool == ESAN_WorkingSet) {
72 processRangeAccessWorkingSet(PC, Addr, Size, IsWrite);
73 }
74 }
75
76 bool processSignal(int SigNum, void (*Handler)(int), void (**Result)(int)) {
77 if (__esan_which_tool == ESAN_WorkingSet)
78 return processWorkingSetSignal(SigNum, Handler, Result);
79 return true;
80 }
81
82 bool processSigaction(int SigNum, const void *Act, void *OldAct) {
83 if (__esan_which_tool == ESAN_WorkingSet)
84 return processWorkingSetSigaction(SigNum, Act, OldAct);
85 return true;
86 }
87
88 bool processSigprocmask(int How, void *Set, void *OldSet) {
89 if (__esan_which_tool == ESAN_WorkingSet)
90 return processWorkingSetSigprocmask(How, Set, OldSet);
91 return true;
92 }
93
94 #if SANITIZER_DEBUG
95 static bool verifyShadowScheme() {
96 // Sanity checks for our shadow mapping scheme.
97 uptr AppStart, AppEnd;
98 if (Verbosity() >= 3) {
99 for (int i = 0; getAppRegion(i, &AppStart, &AppEnd); ++i) {
100 VPrintf(3, "App #%d: [%zx-%zx) (%zuGB)\n", i, AppStart, AppEnd,
101 (AppEnd - AppStart) >> 30);
102 }
103 }
104 for (int Scale = 0; Scale < 8; ++Scale) {
105 Mapping.initialize(Scale);
106 if (Verbosity() >= 3) {
107 VPrintf(3, "\nChecking scale %d\n", Scale);
108 uptr ShadowStart, ShadowEnd;
109 for (int i = 0; getShadowRegion(i, &ShadowStart, &ShadowEnd); ++i) {
110 VPrintf(3, "Shadow #%d: [%zx-%zx) (%zuGB)\n", i, ShadowStart,
111 ShadowEnd, (ShadowEnd - ShadowStart) >> 30);
112 }
113 for (int i = 0; getShadowRegion(i, &ShadowStart, &ShadowEnd); ++i) {
114 VPrintf(3, "Shadow(Shadow) #%d: [%zx-%zx)\n", i,
115 appToShadow(ShadowStart), appToShadow(ShadowEnd - 1)+1);
116 }
117 }
118 for (int i = 0; getAppRegion(i, &AppStart, &AppEnd); ++i) {
119 DCHECK(isAppMem(AppStart));
120 DCHECK(!isAppMem(AppStart - 1));
121 DCHECK(isAppMem(AppEnd - 1));
122 DCHECK(!isAppMem(AppEnd));
123 DCHECK(!isShadowMem(AppStart));
124 DCHECK(!isShadowMem(AppEnd - 1));
125 DCHECK(isShadowMem(appToShadow(AppStart)));
126 DCHECK(isShadowMem(appToShadow(AppEnd - 1)));
127 // Double-shadow checks.
128 DCHECK(!isShadowMem(appToShadow(appToShadow(AppStart))));
129 DCHECK(!isShadowMem(appToShadow(appToShadow(AppEnd - 1))));
130 }
131 // Ensure no shadow regions overlap each other.
132 uptr ShadowAStart, ShadowBStart, ShadowAEnd, ShadowBEnd;
133 for (int i = 0; getShadowRegion(i, &ShadowAStart, &ShadowAEnd); ++i) {
134 for (int j = 0; getShadowRegion(j, &ShadowBStart, &ShadowBEnd); ++j) {
135 DCHECK(i == j || ShadowAStart >= ShadowBEnd ||
136 ShadowAEnd <= ShadowBStart);
137 }
138 }
139 }
140 return true;
141 }
142 #endif
143
144 uptr VmaSize;
145
146 static void initializeShadow() {
147 verifyAddressSpace();
148
149 // This is based on the assumption that the intial stack is always allocated
150 // in the topmost segment of the user address space and the assumption
151 // holds true on all the platforms currently supported.
152 VmaSize =
153 (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
154
155 DCHECK(verifyShadowScheme());
156
157 Mapping.initialize(ShadowScale[__esan_which_tool]);
158
159 VPrintf(1, "Shadow scale=%d offset=%p\n", Mapping.Scale, Mapping.Offset);
160
161 uptr ShadowStart, ShadowEnd;
162 for (int i = 0; getShadowRegion(i, &ShadowStart, &ShadowEnd); ++i) {
163 VPrintf(1, "Shadow #%d: [%zx-%zx) (%zuGB)\n", i, ShadowStart, ShadowEnd,
164 (ShadowEnd - ShadowStart) >> 30);
165
166 uptr Map;
167 if (__esan_which_tool == ESAN_WorkingSet) {
168 // We want to identify all shadow pages that are touched so we start
169 // out inaccessible.
170 Map = (uptr)MmapFixedNoAccess(ShadowStart, ShadowEnd- ShadowStart,
171 "shadow");
172 } else {
173 Map = (uptr)MmapFixedNoReserve(ShadowStart, ShadowEnd - ShadowStart,
174 "shadow");
175 }
176 if (Map != ShadowStart) {
177 Printf("FATAL: EfficiencySanitizer failed to map its shadow memory.\n");
178 Die();
179 }
180
181 if (common_flags()->no_huge_pages_for_shadow)
182 NoHugePagesInRegion(ShadowStart, ShadowEnd - ShadowStart);
183 if (common_flags()->use_madv_dontdump)
184 DontDumpShadowMemory(ShadowStart, ShadowEnd - ShadowStart);
185
186 // TODO: Call MmapNoAccess() on in-between regions.
187 }
188 }
189
190 void initializeLibrary(ToolType Tool) {
191 // We assume there is only one thread during init, but we need to
192 // guard against double-init when we're (re-)called from an
193 // early interceptor.
194 if (EsanIsInitialized || EsanDuringInit)
195 return;
196 EsanDuringInit = true;
197 CHECK(Tool == __esan_which_tool);
198 SanitizerToolName = "EfficiencySanitizer";
199 CacheBinaryName();
200 initializeFlags();
201
202 // Intercepting libc _exit or exit via COMMON_INTERCEPTOR_ON_EXIT only
203 // finalizes on an explicit exit call by the app. To handle a normal
204 // exit we register an atexit handler.
205 ::__cxa_atexit((void (*)())finalizeLibrary);
206
207 VPrintf(1, "in esan::%s\n", __FUNCTION__);
208 if (__esan_which_tool <= ESAN_None || __esan_which_tool >= ESAN_Max) {
209 Printf("ERROR: unknown tool %d requested\n", __esan_which_tool);
210 Die();
211 }
212
213 initializeShadow();
214 if (__esan_which_tool == ESAN_WorkingSet)
215 initializeShadowWorkingSet();
216
217 initializeInterceptors();
218
219 if (__esan_which_tool == ESAN_CacheFrag) {
220 initializeCacheFrag();
221 } else if (__esan_which_tool == ESAN_WorkingSet) {
222 initializeWorkingSet();
223 }
224
225 EsanIsInitialized = true;
226 EsanDuringInit = false;
227 }
228
229 int finalizeLibrary() {
230 VPrintf(1, "in esan::%s\n", __FUNCTION__);
231 if (__esan_which_tool == ESAN_CacheFrag) {
232 return finalizeCacheFrag();
233 } else if (__esan_which_tool == ESAN_WorkingSet) {
234 return finalizeWorkingSet();
235 }
236 return 0;
237 }
238
239 void reportResults() {
240 VPrintf(1, "in esan::%s\n", __FUNCTION__);
241 if (__esan_which_tool == ESAN_CacheFrag) {
242 return reportCacheFrag();
243 } else if (__esan_which_tool == ESAN_WorkingSet) {
244 return reportWorkingSet();
245 }
246 }
247
248 void processCompilationUnitInit(void *Ptr) {
249 VPrintf(2, "in esan::%s\n", __FUNCTION__);
250 if (__esan_which_tool == ESAN_CacheFrag) {
251 DCHECK(Ptr != nullptr);
252 processCacheFragCompilationUnitInit(Ptr);
253 } else {
254 DCHECK(Ptr == nullptr);
255 }
256 }
257
258 // This is called when the containing module is unloaded.
259 // For the main executable module, this is called after finalizeLibrary.
260 void processCompilationUnitExit(void *Ptr) {
261 VPrintf(2, "in esan::%s\n", __FUNCTION__);
262 if (__esan_which_tool == ESAN_CacheFrag) {
263 DCHECK(Ptr != nullptr);
264 processCacheFragCompilationUnitExit(Ptr);
265 } else {
266 DCHECK(Ptr == nullptr);
267 }
268 }
269
270 unsigned int getSampleCount() {
271 VPrintf(1, "in esan::%s\n", __FUNCTION__);
272 if (__esan_which_tool == ESAN_WorkingSet) {
273 return getSampleCountWorkingSet();
274 }
275 return 0;
276 }
277
278 } // namespace __esan