]> git.proxmox.com Git - rustc.git/blob - src/compiler-rt/lib/lsan/lsan_common.cc
New upstream version 1.19.0+dfsg1
[rustc.git] / src / compiler-rt / lib / lsan / lsan_common.cc
1 //=-- lsan_common.cc ------------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of LeakSanitizer.
11 // Implementation of common leak checking functionality.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "lsan_common.h"
16
17 #include "sanitizer_common/sanitizer_common.h"
18 #include "sanitizer_common/sanitizer_flags.h"
19 #include "sanitizer_common/sanitizer_flag_parser.h"
20 #include "sanitizer_common/sanitizer_placement_new.h"
21 #include "sanitizer_common/sanitizer_procmaps.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_suppressions.h"
25 #include "sanitizer_common/sanitizer_report_decorator.h"
26 #include "sanitizer_common/sanitizer_tls_get_addr.h"
27
28 #if CAN_SANITIZE_LEAKS
29 namespace __lsan {
30
31 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
32 // also to protect the global list of root regions.
33 BlockingMutex global_mutex(LINKER_INITIALIZED);
34
35 __attribute__((tls_model("initial-exec")))
36 THREADLOCAL int disable_counter;
37 bool DisabledInThisThread() { return disable_counter > 0; }
38 void DisableInThisThread() { disable_counter++; }
39 void EnableInThisThread() {
40 if (!disable_counter && common_flags()->detect_leaks) {
41 Report("Unmatched call to __lsan_enable().\n");
42 Die();
43 }
44 disable_counter--;
45 }
46
47 Flags lsan_flags;
48
49 void Flags::SetDefaults() {
50 #define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
51 #include "lsan_flags.inc"
52 #undef LSAN_FLAG
53 }
54
55 void RegisterLsanFlags(FlagParser *parser, Flags *f) {
56 #define LSAN_FLAG(Type, Name, DefaultValue, Description) \
57 RegisterFlag(parser, #Name, Description, &f->Name);
58 #include "lsan_flags.inc"
59 #undef LSAN_FLAG
60 }
61
62 #define LOG_POINTERS(...) \
63 do { \
64 if (flags()->log_pointers) Report(__VA_ARGS__); \
65 } while (0);
66
67 #define LOG_THREADS(...) \
68 do { \
69 if (flags()->log_threads) Report(__VA_ARGS__); \
70 } while (0);
71
72 ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)];
73 static SuppressionContext *suppression_ctx = nullptr;
74 static const char kSuppressionLeak[] = "leak";
75 static const char *kSuppressionTypes[] = { kSuppressionLeak };
76
77 void InitializeSuppressions() {
78 CHECK_EQ(nullptr, suppression_ctx);
79 suppression_ctx = new (suppression_placeholder) // NOLINT
80 SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
81 suppression_ctx->ParseFromFile(flags()->suppressions);
82 if (&__lsan_default_suppressions)
83 suppression_ctx->Parse(__lsan_default_suppressions());
84 }
85
86 static SuppressionContext *GetSuppressionContext() {
87 CHECK(suppression_ctx);
88 return suppression_ctx;
89 }
90
91 struct RootRegion {
92 const void *begin;
93 uptr size;
94 };
95
96 InternalMmapVector<RootRegion> *root_regions;
97
98 void InitializeRootRegions() {
99 CHECK(!root_regions);
100 ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
101 root_regions = new(placeholder) InternalMmapVector<RootRegion>(1);
102 }
103
104 void InitCommonLsan() {
105 InitializeRootRegions();
106 if (common_flags()->detect_leaks) {
107 // Initialization which can fail or print warnings should only be done if
108 // LSan is actually enabled.
109 InitializeSuppressions();
110 InitializePlatformSpecificModules();
111 }
112 }
113
114 class Decorator: public __sanitizer::SanitizerCommonDecorator {
115 public:
116 Decorator() : SanitizerCommonDecorator() { }
117 const char *Error() { return Red(); }
118 const char *Leak() { return Blue(); }
119 const char *End() { return Default(); }
120 };
121
122 static inline bool CanBeAHeapPointer(uptr p) {
123 // Since our heap is located in mmap-ed memory, we can assume a sensible lower
124 // bound on heap addresses.
125 const uptr kMinAddress = 4 * 4096;
126 if (p < kMinAddress) return false;
127 #if defined(__x86_64__)
128 // Accept only canonical form user-space addresses.
129 return ((p >> 47) == 0);
130 #elif defined(__mips64)
131 return ((p >> 40) == 0);
132 #elif defined(__aarch64__)
133 unsigned runtimeVMA =
134 (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
135 return ((p >> runtimeVMA) == 0);
136 #else
137 return true;
138 #endif
139 }
140
141 // Scans the memory range, looking for byte patterns that point into allocator
142 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
143 // There are two usage modes for this function: finding reachable chunks
144 // (|tag| = kReachable) and finding indirectly leaked chunks
145 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
146 // so |frontier| = 0.
147 void ScanRangeForPointers(uptr begin, uptr end,
148 Frontier *frontier,
149 const char *region_type, ChunkTag tag) {
150 CHECK(tag == kReachable || tag == kIndirectlyLeaked);
151 const uptr alignment = flags()->pointer_alignment();
152 LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
153 uptr pp = begin;
154 if (pp % alignment)
155 pp = pp + alignment - pp % alignment;
156 for (; pp + sizeof(void *) <= end; pp += alignment) { // NOLINT
157 void *p = *reinterpret_cast<void **>(pp);
158 if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
159 uptr chunk = PointsIntoChunk(p);
160 if (!chunk) continue;
161 // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
162 if (chunk == begin) continue;
163 LsanMetadata m(chunk);
164 if (m.tag() == kReachable || m.tag() == kIgnored) continue;
165
166 // Do this check relatively late so we can log only the interesting cases.
167 if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
168 LOG_POINTERS(
169 "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
170 "%zu.\n",
171 pp, p, chunk, chunk + m.requested_size(), m.requested_size());
172 continue;
173 }
174
175 m.set_tag(tag);
176 LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
177 chunk, chunk + m.requested_size(), m.requested_size());
178 if (frontier)
179 frontier->push_back(chunk);
180 }
181 }
182
183 void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
184 Frontier *frontier = reinterpret_cast<Frontier *>(arg);
185 ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
186 }
187
188 // Scans thread data (stacks and TLS) for heap pointers.
189 static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
190 Frontier *frontier) {
191 InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
192 uptr registers_begin = reinterpret_cast<uptr>(registers.data());
193 uptr registers_end = registers_begin + registers.size();
194 for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
195 uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
196 LOG_THREADS("Processing thread %d.\n", os_id);
197 uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
198 DTLS *dtls;
199 bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
200 &tls_begin, &tls_end,
201 &cache_begin, &cache_end, &dtls);
202 if (!thread_found) {
203 // If a thread can't be found in the thread registry, it's probably in the
204 // process of destruction. Log this event and move on.
205 LOG_THREADS("Thread %d not found in registry.\n", os_id);
206 continue;
207 }
208 uptr sp;
209 bool have_registers =
210 (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
211 if (!have_registers) {
212 Report("Unable to get registers from thread %d.\n");
213 // If unable to get SP, consider the entire stack to be reachable.
214 sp = stack_begin;
215 }
216
217 if (flags()->use_registers && have_registers)
218 ScanRangeForPointers(registers_begin, registers_end, frontier,
219 "REGISTERS", kReachable);
220
221 if (flags()->use_stacks) {
222 LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
223 if (sp < stack_begin || sp >= stack_end) {
224 // SP is outside the recorded stack range (e.g. the thread is running a
225 // signal handler on alternate stack, or swapcontext was used).
226 // Again, consider the entire stack range to be reachable.
227 LOG_THREADS("WARNING: stack pointer not in stack range.\n");
228 uptr page_size = GetPageSizeCached();
229 int skipped = 0;
230 while (stack_begin < stack_end &&
231 !IsAccessibleMemoryRange(stack_begin, 1)) {
232 skipped++;
233 stack_begin += page_size;
234 }
235 LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
236 skipped, stack_begin, stack_end);
237 } else {
238 // Shrink the stack range to ignore out-of-scope values.
239 stack_begin = sp;
240 }
241 ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
242 kReachable);
243 ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
244 }
245
246 if (flags()->use_tls) {
247 LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
248 if (cache_begin == cache_end) {
249 ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
250 } else {
251 // Because LSan should not be loaded with dlopen(), we can assume
252 // that allocator cache will be part of static TLS image.
253 CHECK_LE(tls_begin, cache_begin);
254 CHECK_GE(tls_end, cache_end);
255 if (tls_begin < cache_begin)
256 ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
257 kReachable);
258 if (tls_end > cache_end)
259 ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
260 }
261 if (dtls) {
262 for (uptr j = 0; j < dtls->dtv_size; ++j) {
263 uptr dtls_beg = dtls->dtv[j].beg;
264 uptr dtls_end = dtls_beg + dtls->dtv[j].size;
265 if (dtls_beg < dtls_end) {
266 LOG_THREADS("DTLS %zu at %p-%p.\n", j, dtls_beg, dtls_end);
267 ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
268 kReachable);
269 }
270 }
271 }
272 }
273 }
274 }
275
276 static void ProcessRootRegion(Frontier *frontier, uptr root_begin,
277 uptr root_end) {
278 MemoryMappingLayout proc_maps(/*cache_enabled*/true);
279 uptr begin, end, prot;
280 while (proc_maps.Next(&begin, &end,
281 /*offset*/ nullptr, /*filename*/ nullptr,
282 /*filename_size*/ 0, &prot)) {
283 uptr intersection_begin = Max(root_begin, begin);
284 uptr intersection_end = Min(end, root_end);
285 if (intersection_begin >= intersection_end) continue;
286 bool is_readable = prot & MemoryMappingLayout::kProtectionRead;
287 LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
288 root_begin, root_end, begin, end,
289 is_readable ? "readable" : "unreadable");
290 if (is_readable)
291 ScanRangeForPointers(intersection_begin, intersection_end, frontier,
292 "ROOT", kReachable);
293 }
294 }
295
296 // Scans root regions for heap pointers.
297 static void ProcessRootRegions(Frontier *frontier) {
298 if (!flags()->use_root_regions) return;
299 CHECK(root_regions);
300 for (uptr i = 0; i < root_regions->size(); i++) {
301 RootRegion region = (*root_regions)[i];
302 uptr begin_addr = reinterpret_cast<uptr>(region.begin);
303 ProcessRootRegion(frontier, begin_addr, begin_addr + region.size);
304 }
305 }
306
307 static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
308 while (frontier->size()) {
309 uptr next_chunk = frontier->back();
310 frontier->pop_back();
311 LsanMetadata m(next_chunk);
312 ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
313 "HEAP", tag);
314 }
315 }
316
317 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
318 // which are reachable from it as indirectly leaked.
319 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
320 chunk = GetUserBegin(chunk);
321 LsanMetadata m(chunk);
322 if (m.allocated() && m.tag() != kReachable) {
323 ScanRangeForPointers(chunk, chunk + m.requested_size(),
324 /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
325 }
326 }
327
328 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
329 // frontier.
330 static void CollectIgnoredCb(uptr chunk, void *arg) {
331 CHECK(arg);
332 chunk = GetUserBegin(chunk);
333 LsanMetadata m(chunk);
334 if (m.allocated() && m.tag() == kIgnored) {
335 LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n",
336 chunk, chunk + m.requested_size(), m.requested_size());
337 reinterpret_cast<Frontier *>(arg)->push_back(chunk);
338 }
339 }
340
341 // Sets the appropriate tag on each chunk.
342 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
343 // Holds the flood fill frontier.
344 Frontier frontier(1);
345
346 ForEachChunk(CollectIgnoredCb, &frontier);
347 ProcessGlobalRegions(&frontier);
348 ProcessThreads(suspended_threads, &frontier);
349 ProcessRootRegions(&frontier);
350 FloodFillTag(&frontier, kReachable);
351
352 // The check here is relatively expensive, so we do this in a separate flood
353 // fill. That way we can skip the check for chunks that are reachable
354 // otherwise.
355 LOG_POINTERS("Processing platform-specific allocations.\n");
356 CHECK_EQ(0, frontier.size());
357 ProcessPlatformSpecificAllocations(&frontier);
358 FloodFillTag(&frontier, kReachable);
359
360 // Iterate over leaked chunks and mark those that are reachable from other
361 // leaked chunks.
362 LOG_POINTERS("Scanning leaked chunks.\n");
363 ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
364 }
365
366 // ForEachChunk callback. Resets the tags to pre-leak-check state.
367 static void ResetTagsCb(uptr chunk, void *arg) {
368 (void)arg;
369 chunk = GetUserBegin(chunk);
370 LsanMetadata m(chunk);
371 if (m.allocated() && m.tag() != kIgnored)
372 m.set_tag(kDirectlyLeaked);
373 }
374
375 static void PrintStackTraceById(u32 stack_trace_id) {
376 CHECK(stack_trace_id);
377 StackDepotGet(stack_trace_id).Print();
378 }
379
380 // ForEachChunk callback. Aggregates information about unreachable chunks into
381 // a LeakReport.
382 static void CollectLeaksCb(uptr chunk, void *arg) {
383 CHECK(arg);
384 LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
385 chunk = GetUserBegin(chunk);
386 LsanMetadata m(chunk);
387 if (!m.allocated()) return;
388 if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
389 u32 resolution = flags()->resolution;
390 u32 stack_trace_id = 0;
391 if (resolution > 0) {
392 StackTrace stack = StackDepotGet(m.stack_trace_id());
393 stack.size = Min(stack.size, resolution);
394 stack_trace_id = StackDepotPut(stack);
395 } else {
396 stack_trace_id = m.stack_trace_id();
397 }
398 leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
399 m.tag());
400 }
401 }
402
403 static void PrintMatchedSuppressions() {
404 InternalMmapVector<Suppression *> matched(1);
405 GetSuppressionContext()->GetMatched(&matched);
406 if (!matched.size())
407 return;
408 const char *line = "-----------------------------------------------------";
409 Printf("%s\n", line);
410 Printf("Suppressions used:\n");
411 Printf(" count bytes template\n");
412 for (uptr i = 0; i < matched.size(); i++)
413 Printf("%7zu %10zu %s\n", static_cast<uptr>(atomic_load_relaxed(
414 &matched[i]->hit_count)), matched[i]->weight, matched[i]->templ);
415 Printf("%s\n\n", line);
416 }
417
418 struct CheckForLeaksParam {
419 bool success;
420 LeakReport leak_report;
421 };
422
423 static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
424 void *arg) {
425 CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
426 CHECK(param);
427 CHECK(!param->success);
428 ClassifyAllChunks(suspended_threads);
429 ForEachChunk(CollectLeaksCb, &param->leak_report);
430 // Clean up for subsequent leak checks. This assumes we did not overwrite any
431 // kIgnored tags.
432 ForEachChunk(ResetTagsCb, nullptr);
433 param->success = true;
434 }
435
436 static bool CheckForLeaks() {
437 if (&__lsan_is_turned_off && __lsan_is_turned_off())
438 return false;
439 EnsureMainThreadIDIsCorrect();
440 CheckForLeaksParam param;
441 param.success = false;
442 LockThreadRegistry();
443 LockAllocator();
444 DoStopTheWorld(CheckForLeaksCallback, &param);
445 UnlockAllocator();
446 UnlockThreadRegistry();
447
448 if (!param.success) {
449 Report("LeakSanitizer has encountered a fatal error.\n");
450 Report(
451 "HINT: For debugging, try setting environment variable "
452 "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
453 Report(
454 "HINT: LeakSanitizer does not work under ptrace (strace, gdb, etc)\n");
455 Die();
456 }
457 param.leak_report.ApplySuppressions();
458 uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
459 if (unsuppressed_count > 0) {
460 Decorator d;
461 Printf("\n"
462 "================================================================="
463 "\n");
464 Printf("%s", d.Error());
465 Report("ERROR: LeakSanitizer: detected memory leaks\n");
466 Printf("%s", d.End());
467 param.leak_report.ReportTopLeaks(flags()->max_leaks);
468 }
469 if (common_flags()->print_suppressions)
470 PrintMatchedSuppressions();
471 if (unsuppressed_count > 0) {
472 param.leak_report.PrintSummary();
473 return true;
474 }
475 return false;
476 }
477
478 void DoLeakCheck() {
479 BlockingMutexLock l(&global_mutex);
480 static bool already_done;
481 if (already_done) return;
482 already_done = true;
483 bool have_leaks = CheckForLeaks();
484 if (!have_leaks) {
485 return;
486 }
487 if (common_flags()->exitcode) {
488 Die();
489 }
490 }
491
492 static int DoRecoverableLeakCheck() {
493 BlockingMutexLock l(&global_mutex);
494 bool have_leaks = CheckForLeaks();
495 return have_leaks ? 1 : 0;
496 }
497
498 static Suppression *GetSuppressionForAddr(uptr addr) {
499 Suppression *s = nullptr;
500
501 // Suppress by module name.
502 SuppressionContext *suppressions = GetSuppressionContext();
503 if (const char *module_name =
504 Symbolizer::GetOrInit()->GetModuleNameForPc(addr))
505 if (suppressions->Match(module_name, kSuppressionLeak, &s))
506 return s;
507
508 // Suppress by file or function name.
509 SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
510 for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
511 if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) ||
512 suppressions->Match(cur->info.file, kSuppressionLeak, &s)) {
513 break;
514 }
515 }
516 frames->ClearAll();
517 return s;
518 }
519
520 static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
521 StackTrace stack = StackDepotGet(stack_trace_id);
522 for (uptr i = 0; i < stack.size; i++) {
523 Suppression *s = GetSuppressionForAddr(
524 StackTrace::GetPreviousInstructionPc(stack.trace[i]));
525 if (s) return s;
526 }
527 return nullptr;
528 }
529
530 ///// LeakReport implementation. /////
531
532 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
533 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
534 // in real-world applications.
535 // FIXME: Get rid of this limit by changing the implementation of LeakReport to
536 // use a hash table.
537 const uptr kMaxLeaksConsidered = 5000;
538
539 void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
540 uptr leaked_size, ChunkTag tag) {
541 CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
542 bool is_directly_leaked = (tag == kDirectlyLeaked);
543 uptr i;
544 for (i = 0; i < leaks_.size(); i++) {
545 if (leaks_[i].stack_trace_id == stack_trace_id &&
546 leaks_[i].is_directly_leaked == is_directly_leaked) {
547 leaks_[i].hit_count++;
548 leaks_[i].total_size += leaked_size;
549 break;
550 }
551 }
552 if (i == leaks_.size()) {
553 if (leaks_.size() == kMaxLeaksConsidered) return;
554 Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
555 is_directly_leaked, /* is_suppressed */ false };
556 leaks_.push_back(leak);
557 }
558 if (flags()->report_objects) {
559 LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
560 leaked_objects_.push_back(obj);
561 }
562 }
563
564 static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
565 if (leak1.is_directly_leaked == leak2.is_directly_leaked)
566 return leak1.total_size > leak2.total_size;
567 else
568 return leak1.is_directly_leaked;
569 }
570
571 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
572 CHECK(leaks_.size() <= kMaxLeaksConsidered);
573 Printf("\n");
574 if (leaks_.size() == kMaxLeaksConsidered)
575 Printf("Too many leaks! Only the first %zu leaks encountered will be "
576 "reported.\n",
577 kMaxLeaksConsidered);
578
579 uptr unsuppressed_count = UnsuppressedLeakCount();
580 if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
581 Printf("The %zu top leak(s):\n", num_leaks_to_report);
582 InternalSort(&leaks_, leaks_.size(), LeakComparator);
583 uptr leaks_reported = 0;
584 for (uptr i = 0; i < leaks_.size(); i++) {
585 if (leaks_[i].is_suppressed) continue;
586 PrintReportForLeak(i);
587 leaks_reported++;
588 if (leaks_reported == num_leaks_to_report) break;
589 }
590 if (leaks_reported < unsuppressed_count) {
591 uptr remaining = unsuppressed_count - leaks_reported;
592 Printf("Omitting %zu more leak(s).\n", remaining);
593 }
594 }
595
596 void LeakReport::PrintReportForLeak(uptr index) {
597 Decorator d;
598 Printf("%s", d.Leak());
599 Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
600 leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
601 leaks_[index].total_size, leaks_[index].hit_count);
602 Printf("%s", d.End());
603
604 PrintStackTraceById(leaks_[index].stack_trace_id);
605
606 if (flags()->report_objects) {
607 Printf("Objects leaked above:\n");
608 PrintLeakedObjectsForLeak(index);
609 Printf("\n");
610 }
611 }
612
613 void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
614 u32 leak_id = leaks_[index].id;
615 for (uptr j = 0; j < leaked_objects_.size(); j++) {
616 if (leaked_objects_[j].leak_id == leak_id)
617 Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
618 leaked_objects_[j].size);
619 }
620 }
621
622 void LeakReport::PrintSummary() {
623 CHECK(leaks_.size() <= kMaxLeaksConsidered);
624 uptr bytes = 0, allocations = 0;
625 for (uptr i = 0; i < leaks_.size(); i++) {
626 if (leaks_[i].is_suppressed) continue;
627 bytes += leaks_[i].total_size;
628 allocations += leaks_[i].hit_count;
629 }
630 InternalScopedString summary(kMaxSummaryLength);
631 summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
632 allocations);
633 ReportErrorSummary(summary.data());
634 }
635
636 void LeakReport::ApplySuppressions() {
637 for (uptr i = 0; i < leaks_.size(); i++) {
638 Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
639 if (s) {
640 s->weight += leaks_[i].total_size;
641 atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) +
642 leaks_[i].hit_count);
643 leaks_[i].is_suppressed = true;
644 }
645 }
646 }
647
648 uptr LeakReport::UnsuppressedLeakCount() {
649 uptr result = 0;
650 for (uptr i = 0; i < leaks_.size(); i++)
651 if (!leaks_[i].is_suppressed) result++;
652 return result;
653 }
654
655 } // namespace __lsan
656 #else // CAN_SANITIZE_LEAKS
657 namespace __lsan {
658 void InitCommonLsan() { }
659 void DoLeakCheck() { }
660 void DisableInThisThread() { }
661 void EnableInThisThread() { }
662 }
663 #endif // CAN_SANITIZE_LEAKS
664
665 using namespace __lsan; // NOLINT
666
667 extern "C" {
668 SANITIZER_INTERFACE_ATTRIBUTE
669 void __lsan_ignore_object(const void *p) {
670 #if CAN_SANITIZE_LEAKS
671 if (!common_flags()->detect_leaks)
672 return;
673 // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
674 // locked.
675 BlockingMutexLock l(&global_mutex);
676 IgnoreObjectResult res = IgnoreObjectLocked(p);
677 if (res == kIgnoreObjectInvalid)
678 VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
679 if (res == kIgnoreObjectAlreadyIgnored)
680 VReport(1, "__lsan_ignore_object(): "
681 "heap object at %p is already being ignored\n", p);
682 if (res == kIgnoreObjectSuccess)
683 VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
684 #endif // CAN_SANITIZE_LEAKS
685 }
686
687 SANITIZER_INTERFACE_ATTRIBUTE
688 void __lsan_register_root_region(const void *begin, uptr size) {
689 #if CAN_SANITIZE_LEAKS
690 BlockingMutexLock l(&global_mutex);
691 CHECK(root_regions);
692 RootRegion region = {begin, size};
693 root_regions->push_back(region);
694 VReport(1, "Registered root region at %p of size %llu\n", begin, size);
695 #endif // CAN_SANITIZE_LEAKS
696 }
697
698 SANITIZER_INTERFACE_ATTRIBUTE
699 void __lsan_unregister_root_region(const void *begin, uptr size) {
700 #if CAN_SANITIZE_LEAKS
701 BlockingMutexLock l(&global_mutex);
702 CHECK(root_regions);
703 bool removed = false;
704 for (uptr i = 0; i < root_regions->size(); i++) {
705 RootRegion region = (*root_regions)[i];
706 if (region.begin == begin && region.size == size) {
707 removed = true;
708 uptr last_index = root_regions->size() - 1;
709 (*root_regions)[i] = (*root_regions)[last_index];
710 root_regions->pop_back();
711 VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
712 break;
713 }
714 }
715 if (!removed) {
716 Report(
717 "__lsan_unregister_root_region(): region at %p of size %llu has not "
718 "been registered.\n",
719 begin, size);
720 Die();
721 }
722 #endif // CAN_SANITIZE_LEAKS
723 }
724
725 SANITIZER_INTERFACE_ATTRIBUTE
726 void __lsan_disable() {
727 #if CAN_SANITIZE_LEAKS
728 __lsan::DisableInThisThread();
729 #endif
730 }
731
732 SANITIZER_INTERFACE_ATTRIBUTE
733 void __lsan_enable() {
734 #if CAN_SANITIZE_LEAKS
735 __lsan::EnableInThisThread();
736 #endif
737 }
738
739 SANITIZER_INTERFACE_ATTRIBUTE
740 void __lsan_do_leak_check() {
741 #if CAN_SANITIZE_LEAKS
742 if (common_flags()->detect_leaks)
743 __lsan::DoLeakCheck();
744 #endif // CAN_SANITIZE_LEAKS
745 }
746
747 SANITIZER_INTERFACE_ATTRIBUTE
748 int __lsan_do_recoverable_leak_check() {
749 #if CAN_SANITIZE_LEAKS
750 if (common_flags()->detect_leaks)
751 return __lsan::DoRecoverableLeakCheck();
752 #endif // CAN_SANITIZE_LEAKS
753 return 0;
754 }
755
756 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
757 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
758 int __lsan_is_turned_off() {
759 return 0;
760 }
761
762 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
763 const char *__lsan_default_suppressions() {
764 return "";
765 }
766 #endif
767 } // extern "C"