]> git.proxmox.com Git - rustc.git/blob - src/compiler-rt/lib/safestack/safestack.cc
Imported Upstream version 1.6.0+dfsg1
[rustc.git] / src / compiler-rt / lib / safestack / safestack.cc
1 //===-- safestack.cc ------------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the runtime support for the safe stack protection
11 // mechanism. The runtime manages allocation/deallocation of the unsafe stack
12 // for the main thread, as well as all pthreads that are created/destroyed
13 // during program execution.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include <limits.h>
18 #include <pthread.h>
19 #include <stddef.h>
20 #include <stdint.h>
21 #include <sys/resource.h>
22 #include <sys/types.h>
23 #include <sys/user.h>
24
25 #include "interception/interception.h"
26 #include "sanitizer_common/sanitizer_common.h"
27
28 // TODO: The runtime library does not currently protect the safe stack beyond
29 // relying on the system-enforced ASLR. The protection of the (safe) stack can
30 // be provided by three alternative features:
31 //
32 // 1) Protection via hardware segmentation on x86-32 and some x86-64
33 // architectures: the (safe) stack segment (implicitly accessed via the %ss
34 // segment register) can be separated from the data segment (implicitly
35 // accessed via the %ds segment register). Dereferencing a pointer to the safe
36 // segment would result in a segmentation fault.
37 //
38 // 2) Protection via software fault isolation: memory writes that are not meant
39 // to access the safe stack can be prevented from doing so through runtime
40 // instrumentation. One way to do it is to allocate the safe stack(s) in the
41 // upper half of the userspace and bitmask the corresponding upper bit of the
42 // memory addresses of memory writes that are not meant to access the safe
43 // stack.
44 //
45 // 3) Protection via information hiding on 64 bit architectures: the location
46 // of the safe stack(s) can be randomized through secure mechanisms, and the
47 // leakage of the stack pointer can be prevented. Currently, libc can leak the
48 // stack pointer in several ways (e.g. in longjmp, signal handling, user-level
49 // context switching related functions, etc.). These can be fixed in libc and
50 // in other low-level libraries, by either eliminating the escaping/dumping of
51 // the stack pointer (i.e., %rsp) when that's possible, or by using
52 // encryption/PTR_MANGLE (XOR-ing the dumped stack pointer with another secret
53 // we control and protect better, as is already done for setjmp in glibc.)
54 // Furthermore, a static machine code level verifier can be ran after code
55 // generation to make sure that the stack pointer is never written to memory,
56 // or if it is, its written on the safe stack.
57 //
58 // Finally, while the Unsafe Stack pointer is currently stored in a thread
59 // local variable, with libc support it could be stored in the TCB (thread
60 // control block) as well, eliminating another level of indirection and making
61 // such accesses faster. Alternatively, dedicating a separate register for
62 // storing it would also be possible.
63
64 /// Minimum stack alignment for the unsafe stack.
65 const unsigned kStackAlign = 16;
66
67 /// Default size of the unsafe stack. This value is only used if the stack
68 /// size rlimit is set to infinity.
69 const unsigned kDefaultUnsafeStackSize = 0x2800000;
70
71 // TODO: To make accessing the unsafe stack pointer faster, we plan to
72 // eventually store it directly in the thread control block data structure on
73 // platforms where this structure is pointed to by %fs or %gs. This is exactly
74 // the same mechanism as currently being used by the traditional stack
75 // protector pass to store the stack guard (see getStackCookieLocation()
76 // function above). Doing so requires changing the tcbhead_t struct in glibc
77 // on Linux and tcb struct in libc on FreeBSD.
78 //
79 // For now, store it in a thread-local variable.
80 extern "C" {
81 __attribute__((visibility(
82 "default"))) __thread void *__safestack_unsafe_stack_ptr = nullptr;
83 }
84
85 // Per-thread unsafe stack information. It's not frequently accessed, so there
86 // it can be kept out of the tcb in normal thread-local variables.
87 static __thread void *unsafe_stack_start = nullptr;
88 static __thread size_t unsafe_stack_size = 0;
89 static __thread size_t unsafe_stack_guard = 0;
90
91 static inline void *unsafe_stack_alloc(size_t size, size_t guard) {
92 CHECK_GE(size + guard, size);
93 void *addr = MmapOrDie(size + guard, "unsafe_stack_alloc");
94 MprotectNoAccess((uptr)addr, (uptr)guard);
95 return (char *)addr + guard;
96 }
97
98 static inline void unsafe_stack_setup(void *start, size_t size, size_t guard) {
99 CHECK_GE((char *)start + size, (char *)start);
100 CHECK_GE((char *)start + guard, (char *)start);
101 void *stack_ptr = (char *)start + size;
102 CHECK_EQ((((size_t)stack_ptr) & (kStackAlign - 1)), 0);
103
104 __safestack_unsafe_stack_ptr = stack_ptr;
105 unsafe_stack_start = start;
106 unsafe_stack_size = size;
107 unsafe_stack_guard = guard;
108 }
109
110 static void unsafe_stack_free() {
111 if (unsafe_stack_start) {
112 UnmapOrDie((char *)unsafe_stack_start - unsafe_stack_guard,
113 unsafe_stack_size + unsafe_stack_guard);
114 }
115 unsafe_stack_start = nullptr;
116 }
117
118 /// Thread data for the cleanup handler
119 static pthread_key_t thread_cleanup_key;
120
121 /// Safe stack per-thread information passed to the thread_start function
122 struct tinfo {
123 void *(*start_routine)(void *);
124 void *start_routine_arg;
125
126 void *unsafe_stack_start;
127 size_t unsafe_stack_size;
128 size_t unsafe_stack_guard;
129 };
130
131 /// Wrap the thread function in order to deallocate the unsafe stack when the
132 /// thread terminates by returning from its main function.
133 static void *thread_start(void *arg) {
134 struct tinfo *tinfo = (struct tinfo *)arg;
135
136 void *(*start_routine)(void *) = tinfo->start_routine;
137 void *start_routine_arg = tinfo->start_routine_arg;
138
139 // Setup the unsafe stack; this will destroy tinfo content
140 unsafe_stack_setup(tinfo->unsafe_stack_start, tinfo->unsafe_stack_size,
141 tinfo->unsafe_stack_guard);
142
143 // Make sure out thread-specific destructor will be called
144 // FIXME: we can do this only any other specific key is set by
145 // intercepting the pthread_setspecific function itself
146 pthread_setspecific(thread_cleanup_key, (void *)1);
147
148 return start_routine(start_routine_arg);
149 }
150
151 /// Thread-specific data destructor
152 static void thread_cleanup_handler(void *_iter) {
153 // We want to free the unsafe stack only after all other destructors
154 // have already run. We force this function to be called multiple times.
155 // User destructors that might run more then PTHREAD_DESTRUCTOR_ITERATIONS-1
156 // times might still end up executing after the unsafe stack is deallocated.
157 size_t iter = (size_t)_iter;
158 if (iter < PTHREAD_DESTRUCTOR_ITERATIONS) {
159 pthread_setspecific(thread_cleanup_key, (void *)(iter + 1));
160 } else {
161 // This is the last iteration
162 unsafe_stack_free();
163 }
164 }
165
166 /// Intercept thread creation operation to allocate and setup the unsafe stack
167 INTERCEPTOR(int, pthread_create, pthread_t *thread,
168 const pthread_attr_t *attr,
169 void *(*start_routine)(void*), void *arg) {
170
171 size_t size = 0;
172 size_t guard = 0;
173
174 if (attr) {
175 pthread_attr_getstacksize(attr, &size);
176 pthread_attr_getguardsize(attr, &guard);
177 } else {
178 // get pthread default stack size
179 pthread_attr_t tmpattr;
180 pthread_attr_init(&tmpattr);
181 pthread_attr_getstacksize(&tmpattr, &size);
182 pthread_attr_getguardsize(&tmpattr, &guard);
183 pthread_attr_destroy(&tmpattr);
184 }
185
186 CHECK_NE(size, 0);
187 CHECK_EQ((size & (kStackAlign - 1)), 0);
188 CHECK_EQ((guard & (PAGE_SIZE - 1)), 0);
189
190 void *addr = unsafe_stack_alloc(size, guard);
191 struct tinfo *tinfo =
192 (struct tinfo *)(((char *)addr) + size - sizeof(struct tinfo));
193 tinfo->start_routine = start_routine;
194 tinfo->start_routine_arg = arg;
195 tinfo->unsafe_stack_start = addr;
196 tinfo->unsafe_stack_size = size;
197 tinfo->unsafe_stack_guard = guard;
198
199 return REAL(pthread_create)(thread, attr, thread_start, tinfo);
200 }
201
202 extern "C" __attribute__((visibility("default")))
203 #if !SANITIZER_CAN_USE_PREINIT_ARRAY
204 // On ELF platforms, the constructor is invoked using .preinit_array (see below)
205 __attribute__((constructor(0)))
206 #endif
207 void __safestack_init() {
208 // Determine the stack size for the main thread.
209 size_t size = kDefaultUnsafeStackSize;
210 size_t guard = 4096;
211
212 struct rlimit limit;
213 if (getrlimit(RLIMIT_STACK, &limit) == 0 && limit.rlim_cur != RLIM_INFINITY)
214 size = limit.rlim_cur;
215
216 // Allocate unsafe stack for main thread
217 void *addr = unsafe_stack_alloc(size, guard);
218
219 unsafe_stack_setup(addr, size, guard);
220
221 // Initialize pthread interceptors for thread allocation
222 INTERCEPT_FUNCTION(pthread_create);
223
224 // Setup the cleanup handler
225 pthread_key_create(&thread_cleanup_key, thread_cleanup_handler);
226 }
227
228 #if SANITIZER_CAN_USE_PREINIT_ARRAY
229 // On ELF platforms, run safestack initialization before any other constructors.
230 // On other platforms we use the constructor attribute to arrange to run our
231 // initialization early.
232 extern "C" {
233 __attribute__((section(".preinit_array"),
234 used)) void (*__safestack_preinit)(void) = __safestack_init;
235 }
236 #endif
237
238 extern "C"
239 __attribute__((visibility("default"))) void *__get_unsafe_stack_start() {
240 return unsafe_stack_start;
241 }
242
243 extern "C"
244 __attribute__((visibility("default"))) void *__get_unsafe_stack_ptr() {
245 return __safestack_unsafe_stack_ptr;
246 }