]> git.proxmox.com Git - rustc.git/blob - src/compiler-rt/lib/sanitizer_common/sanitizer_allocator.h
Imported Upstream version 1.6.0+dfsg1
[rustc.git] / src / compiler-rt / lib / sanitizer_common / sanitizer_allocator.h
1 //===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef SANITIZER_ALLOCATOR_H
15 #define SANITIZER_ALLOCATOR_H
16
17 #include "sanitizer_internal_defs.h"
18 #include "sanitizer_common.h"
19 #include "sanitizer_libc.h"
20 #include "sanitizer_list.h"
21 #include "sanitizer_mutex.h"
22 #include "sanitizer_lfstack.h"
23
24 namespace __sanitizer {
25
26 // Prints error message and kills the program.
27 void NORETURN ReportAllocatorCannotReturnNull();
28
29 // SizeClassMap maps allocation sizes into size classes and back.
30 // Class 0 corresponds to size 0.
31 // Classes 1 - 16 correspond to sizes 16 to 256 (size = class_id * 16).
32 // Next 4 classes: 256 + i * 64 (i = 1 to 4).
33 // Next 4 classes: 512 + i * 128 (i = 1 to 4).
34 // ...
35 // Next 4 classes: 2^k + i * 2^(k-2) (i = 1 to 4).
36 // Last class corresponds to kMaxSize = 1 << kMaxSizeLog.
37 //
38 // This structure of the size class map gives us:
39 // - Efficient table-free class-to-size and size-to-class functions.
40 // - Difference between two consequent size classes is betweed 14% and 25%
41 //
42 // This class also gives a hint to a thread-caching allocator about the amount
43 // of chunks that need to be cached per-thread:
44 // - kMaxNumCached is the maximal number of chunks per size class.
45 // - (1 << kMaxBytesCachedLog) is the maximal number of bytes per size class.
46 //
47 // Part of output of SizeClassMap::Print():
48 // c00 => s: 0 diff: +0 00% l 0 cached: 0 0; id 0
49 // c01 => s: 16 diff: +16 00% l 4 cached: 256 4096; id 1
50 // c02 => s: 32 diff: +16 100% l 5 cached: 256 8192; id 2
51 // c03 => s: 48 diff: +16 50% l 5 cached: 256 12288; id 3
52 // c04 => s: 64 diff: +16 33% l 6 cached: 256 16384; id 4
53 // c05 => s: 80 diff: +16 25% l 6 cached: 256 20480; id 5
54 // c06 => s: 96 diff: +16 20% l 6 cached: 256 24576; id 6
55 // c07 => s: 112 diff: +16 16% l 6 cached: 256 28672; id 7
56 //
57 // c08 => s: 128 diff: +16 14% l 7 cached: 256 32768; id 8
58 // c09 => s: 144 diff: +16 12% l 7 cached: 256 36864; id 9
59 // c10 => s: 160 diff: +16 11% l 7 cached: 256 40960; id 10
60 // c11 => s: 176 diff: +16 10% l 7 cached: 256 45056; id 11
61 // c12 => s: 192 diff: +16 09% l 7 cached: 256 49152; id 12
62 // c13 => s: 208 diff: +16 08% l 7 cached: 256 53248; id 13
63 // c14 => s: 224 diff: +16 07% l 7 cached: 256 57344; id 14
64 // c15 => s: 240 diff: +16 07% l 7 cached: 256 61440; id 15
65 //
66 // c16 => s: 256 diff: +16 06% l 8 cached: 256 65536; id 16
67 // c17 => s: 320 diff: +64 25% l 8 cached: 204 65280; id 17
68 // c18 => s: 384 diff: +64 20% l 8 cached: 170 65280; id 18
69 // c19 => s: 448 diff: +64 16% l 8 cached: 146 65408; id 19
70 //
71 // c20 => s: 512 diff: +64 14% l 9 cached: 128 65536; id 20
72 // c21 => s: 640 diff: +128 25% l 9 cached: 102 65280; id 21
73 // c22 => s: 768 diff: +128 20% l 9 cached: 85 65280; id 22
74 // c23 => s: 896 diff: +128 16% l 9 cached: 73 65408; id 23
75 //
76 // c24 => s: 1024 diff: +128 14% l 10 cached: 64 65536; id 24
77 // c25 => s: 1280 diff: +256 25% l 10 cached: 51 65280; id 25
78 // c26 => s: 1536 diff: +256 20% l 10 cached: 42 64512; id 26
79 // c27 => s: 1792 diff: +256 16% l 10 cached: 36 64512; id 27
80 //
81 // ...
82 //
83 // c48 => s: 65536 diff: +8192 14% l 16 cached: 1 65536; id 48
84 // c49 => s: 81920 diff: +16384 25% l 16 cached: 1 81920; id 49
85 // c50 => s: 98304 diff: +16384 20% l 16 cached: 1 98304; id 50
86 // c51 => s: 114688 diff: +16384 16% l 16 cached: 1 114688; id 51
87 //
88 // c52 => s: 131072 diff: +16384 14% l 17 cached: 1 131072; id 52
89
90 template <uptr kMaxSizeLog, uptr kMaxNumCachedT, uptr kMaxBytesCachedLog>
91 class SizeClassMap {
92 static const uptr kMinSizeLog = 4;
93 static const uptr kMidSizeLog = kMinSizeLog + 4;
94 static const uptr kMinSize = 1 << kMinSizeLog;
95 static const uptr kMidSize = 1 << kMidSizeLog;
96 static const uptr kMidClass = kMidSize / kMinSize;
97 static const uptr S = 2;
98 static const uptr M = (1 << S) - 1;
99
100 public:
101 static const uptr kMaxNumCached = kMaxNumCachedT;
102 // We transfer chunks between central and thread-local free lists in batches.
103 // For small size classes we allocate batches separately.
104 // For large size classes we use one of the chunks to store the batch.
105 struct TransferBatch {
106 TransferBatch *next;
107 uptr count;
108 void *batch[kMaxNumCached];
109 };
110
111 static const uptr kMaxSize = 1UL << kMaxSizeLog;
112 static const uptr kNumClasses =
113 kMidClass + ((kMaxSizeLog - kMidSizeLog) << S) + 1;
114 COMPILER_CHECK(kNumClasses >= 32 && kNumClasses <= 256);
115 static const uptr kNumClassesRounded =
116 kNumClasses == 32 ? 32 :
117 kNumClasses <= 64 ? 64 :
118 kNumClasses <= 128 ? 128 : 256;
119
120 static uptr Size(uptr class_id) {
121 if (class_id <= kMidClass)
122 return kMinSize * class_id;
123 class_id -= kMidClass;
124 uptr t = kMidSize << (class_id >> S);
125 return t + (t >> S) * (class_id & M);
126 }
127
128 static uptr ClassID(uptr size) {
129 if (size <= kMidSize)
130 return (size + kMinSize - 1) >> kMinSizeLog;
131 if (size > kMaxSize) return 0;
132 uptr l = MostSignificantSetBitIndex(size);
133 uptr hbits = (size >> (l - S)) & M;
134 uptr lbits = size & ((1 << (l - S)) - 1);
135 uptr l1 = l - kMidSizeLog;
136 return kMidClass + (l1 << S) + hbits + (lbits > 0);
137 }
138
139 static uptr MaxCached(uptr class_id) {
140 if (class_id == 0) return 0;
141 uptr n = (1UL << kMaxBytesCachedLog) / Size(class_id);
142 return Max<uptr>(1, Min(kMaxNumCached, n));
143 }
144
145 static void Print() {
146 uptr prev_s = 0;
147 uptr total_cached = 0;
148 for (uptr i = 0; i < kNumClasses; i++) {
149 uptr s = Size(i);
150 if (s >= kMidSize / 2 && (s & (s - 1)) == 0)
151 Printf("\n");
152 uptr d = s - prev_s;
153 uptr p = prev_s ? (d * 100 / prev_s) : 0;
154 uptr l = s ? MostSignificantSetBitIndex(s) : 0;
155 uptr cached = MaxCached(i) * s;
156 Printf("c%02zd => s: %zd diff: +%zd %02zd%% l %zd "
157 "cached: %zd %zd; id %zd\n",
158 i, Size(i), d, p, l, MaxCached(i), cached, ClassID(s));
159 total_cached += cached;
160 prev_s = s;
161 }
162 Printf("Total cached: %zd\n", total_cached);
163 }
164
165 static bool SizeClassRequiresSeparateTransferBatch(uptr class_id) {
166 return Size(class_id) < sizeof(TransferBatch) -
167 sizeof(uptr) * (kMaxNumCached - MaxCached(class_id));
168 }
169
170 static void Validate() {
171 for (uptr c = 1; c < kNumClasses; c++) {
172 // Printf("Validate: c%zd\n", c);
173 uptr s = Size(c);
174 CHECK_NE(s, 0U);
175 CHECK_EQ(ClassID(s), c);
176 if (c != kNumClasses - 1)
177 CHECK_EQ(ClassID(s + 1), c + 1);
178 CHECK_EQ(ClassID(s - 1), c);
179 if (c)
180 CHECK_GT(Size(c), Size(c-1));
181 }
182 CHECK_EQ(ClassID(kMaxSize + 1), 0);
183
184 for (uptr s = 1; s <= kMaxSize; s++) {
185 uptr c = ClassID(s);
186 // Printf("s%zd => c%zd\n", s, c);
187 CHECK_LT(c, kNumClasses);
188 CHECK_GE(Size(c), s);
189 if (c > 0)
190 CHECK_LT(Size(c-1), s);
191 }
192 }
193 };
194
195 typedef SizeClassMap<17, 128, 16> DefaultSizeClassMap;
196 typedef SizeClassMap<17, 64, 14> CompactSizeClassMap;
197 template<class SizeClassAllocator> struct SizeClassAllocatorLocalCache;
198
199 // Memory allocator statistics
200 enum AllocatorStat {
201 AllocatorStatAllocated,
202 AllocatorStatMapped,
203 AllocatorStatCount
204 };
205
206 typedef uptr AllocatorStatCounters[AllocatorStatCount];
207
208 // Per-thread stats, live in per-thread cache.
209 class AllocatorStats {
210 public:
211 void Init() {
212 internal_memset(this, 0, sizeof(*this));
213 }
214 void InitLinkerInitialized() {}
215
216 void Add(AllocatorStat i, uptr v) {
217 v += atomic_load(&stats_[i], memory_order_relaxed);
218 atomic_store(&stats_[i], v, memory_order_relaxed);
219 }
220
221 void Sub(AllocatorStat i, uptr v) {
222 v = atomic_load(&stats_[i], memory_order_relaxed) - v;
223 atomic_store(&stats_[i], v, memory_order_relaxed);
224 }
225
226 void Set(AllocatorStat i, uptr v) {
227 atomic_store(&stats_[i], v, memory_order_relaxed);
228 }
229
230 uptr Get(AllocatorStat i) const {
231 return atomic_load(&stats_[i], memory_order_relaxed);
232 }
233
234 private:
235 friend class AllocatorGlobalStats;
236 AllocatorStats *next_;
237 AllocatorStats *prev_;
238 atomic_uintptr_t stats_[AllocatorStatCount];
239 };
240
241 // Global stats, used for aggregation and querying.
242 class AllocatorGlobalStats : public AllocatorStats {
243 public:
244 void InitLinkerInitialized() {
245 next_ = this;
246 prev_ = this;
247 }
248 void Init() {
249 internal_memset(this, 0, sizeof(*this));
250 InitLinkerInitialized();
251 }
252
253 void Register(AllocatorStats *s) {
254 SpinMutexLock l(&mu_);
255 s->next_ = next_;
256 s->prev_ = this;
257 next_->prev_ = s;
258 next_ = s;
259 }
260
261 void Unregister(AllocatorStats *s) {
262 SpinMutexLock l(&mu_);
263 s->prev_->next_ = s->next_;
264 s->next_->prev_ = s->prev_;
265 for (int i = 0; i < AllocatorStatCount; i++)
266 Add(AllocatorStat(i), s->Get(AllocatorStat(i)));
267 }
268
269 void Get(AllocatorStatCounters s) const {
270 internal_memset(s, 0, AllocatorStatCount * sizeof(uptr));
271 SpinMutexLock l(&mu_);
272 const AllocatorStats *stats = this;
273 for (;;) {
274 for (int i = 0; i < AllocatorStatCount; i++)
275 s[i] += stats->Get(AllocatorStat(i));
276 stats = stats->next_;
277 if (stats == this)
278 break;
279 }
280 // All stats must be non-negative.
281 for (int i = 0; i < AllocatorStatCount; i++)
282 s[i] = ((sptr)s[i]) >= 0 ? s[i] : 0;
283 }
284
285 private:
286 mutable SpinMutex mu_;
287 };
288
289 // Allocators call these callbacks on mmap/munmap.
290 struct NoOpMapUnmapCallback {
291 void OnMap(uptr p, uptr size) const { }
292 void OnUnmap(uptr p, uptr size) const { }
293 };
294
295 // Callback type for iterating over chunks.
296 typedef void (*ForEachChunkCallback)(uptr chunk, void *arg);
297
298 // SizeClassAllocator64 -- allocator for 64-bit address space.
299 //
300 // Space: a portion of address space of kSpaceSize bytes starting at
301 // a fixed address (kSpaceBeg). Both constants are powers of two and
302 // kSpaceBeg is kSpaceSize-aligned.
303 // At the beginning the entire space is mprotect-ed, then small parts of it
304 // are mapped on demand.
305 //
306 // Region: a part of Space dedicated to a single size class.
307 // There are kNumClasses Regions of equal size.
308 //
309 // UserChunk: a piece of memory returned to user.
310 // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
311 //
312 // A Region looks like this:
313 // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1
314 template <const uptr kSpaceBeg, const uptr kSpaceSize,
315 const uptr kMetadataSize, class SizeClassMap,
316 class MapUnmapCallback = NoOpMapUnmapCallback>
317 class SizeClassAllocator64 {
318 public:
319 typedef typename SizeClassMap::TransferBatch Batch;
320 typedef SizeClassAllocator64<kSpaceBeg, kSpaceSize, kMetadataSize,
321 SizeClassMap, MapUnmapCallback> ThisT;
322 typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
323
324 void Init() {
325 CHECK_EQ(kSpaceBeg,
326 reinterpret_cast<uptr>(MmapNoAccess(kSpaceBeg, kSpaceSize)));
327 MapWithCallback(kSpaceEnd, AdditionalSize());
328 }
329
330 void MapWithCallback(uptr beg, uptr size) {
331 CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
332 MapUnmapCallback().OnMap(beg, size);
333 }
334
335 void UnmapWithCallback(uptr beg, uptr size) {
336 MapUnmapCallback().OnUnmap(beg, size);
337 UnmapOrDie(reinterpret_cast<void *>(beg), size);
338 }
339
340 static bool CanAllocate(uptr size, uptr alignment) {
341 return size <= SizeClassMap::kMaxSize &&
342 alignment <= SizeClassMap::kMaxSize;
343 }
344
345 NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
346 uptr class_id) {
347 CHECK_LT(class_id, kNumClasses);
348 RegionInfo *region = GetRegionInfo(class_id);
349 Batch *b = region->free_list.Pop();
350 if (!b)
351 b = PopulateFreeList(stat, c, class_id, region);
352 region->n_allocated += b->count;
353 return b;
354 }
355
356 NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
357 RegionInfo *region = GetRegionInfo(class_id);
358 CHECK_GT(b->count, 0);
359 region->free_list.Push(b);
360 region->n_freed += b->count;
361 }
362
363 static bool PointerIsMine(const void *p) {
364 return reinterpret_cast<uptr>(p) / kSpaceSize == kSpaceBeg / kSpaceSize;
365 }
366
367 static uptr GetSizeClass(const void *p) {
368 return (reinterpret_cast<uptr>(p) / kRegionSize) % kNumClassesRounded;
369 }
370
371 void *GetBlockBegin(const void *p) {
372 uptr class_id = GetSizeClass(p);
373 uptr size = SizeClassMap::Size(class_id);
374 if (!size) return nullptr;
375 uptr chunk_idx = GetChunkIdx((uptr)p, size);
376 uptr reg_beg = (uptr)p & ~(kRegionSize - 1);
377 uptr beg = chunk_idx * size;
378 uptr next_beg = beg + size;
379 if (class_id >= kNumClasses) return nullptr;
380 RegionInfo *region = GetRegionInfo(class_id);
381 if (region->mapped_user >= next_beg)
382 return reinterpret_cast<void*>(reg_beg + beg);
383 return nullptr;
384 }
385
386 static uptr GetActuallyAllocatedSize(void *p) {
387 CHECK(PointerIsMine(p));
388 return SizeClassMap::Size(GetSizeClass(p));
389 }
390
391 uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
392
393 void *GetMetaData(const void *p) {
394 uptr class_id = GetSizeClass(p);
395 uptr size = SizeClassMap::Size(class_id);
396 uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
397 return reinterpret_cast<void*>(kSpaceBeg + (kRegionSize * (class_id + 1)) -
398 (1 + chunk_idx) * kMetadataSize);
399 }
400
401 uptr TotalMemoryUsed() {
402 uptr res = 0;
403 for (uptr i = 0; i < kNumClasses; i++)
404 res += GetRegionInfo(i)->allocated_user;
405 return res;
406 }
407
408 // Test-only.
409 void TestOnlyUnmap() {
410 UnmapWithCallback(kSpaceBeg, kSpaceSize + AdditionalSize());
411 }
412
413 void PrintStats() {
414 uptr total_mapped = 0;
415 uptr n_allocated = 0;
416 uptr n_freed = 0;
417 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
418 RegionInfo *region = GetRegionInfo(class_id);
419 total_mapped += region->mapped_user;
420 n_allocated += region->n_allocated;
421 n_freed += region->n_freed;
422 }
423 Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
424 "remains %zd\n",
425 total_mapped >> 20, n_allocated, n_allocated - n_freed);
426 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
427 RegionInfo *region = GetRegionInfo(class_id);
428 if (region->mapped_user == 0) continue;
429 Printf(" %02zd (%zd): total: %zd K allocs: %zd remains: %zd\n",
430 class_id,
431 SizeClassMap::Size(class_id),
432 region->mapped_user >> 10,
433 region->n_allocated,
434 region->n_allocated - region->n_freed);
435 }
436 }
437
438 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
439 // introspection API.
440 void ForceLock() {
441 for (uptr i = 0; i < kNumClasses; i++) {
442 GetRegionInfo(i)->mutex.Lock();
443 }
444 }
445
446 void ForceUnlock() {
447 for (int i = (int)kNumClasses - 1; i >= 0; i--) {
448 GetRegionInfo(i)->mutex.Unlock();
449 }
450 }
451
452 // Iterate over all existing chunks.
453 // The allocator must be locked when calling this function.
454 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
455 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
456 RegionInfo *region = GetRegionInfo(class_id);
457 uptr chunk_size = SizeClassMap::Size(class_id);
458 uptr region_beg = kSpaceBeg + class_id * kRegionSize;
459 for (uptr chunk = region_beg;
460 chunk < region_beg + region->allocated_user;
461 chunk += chunk_size) {
462 // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
463 callback(chunk, arg);
464 }
465 }
466 }
467
468 static uptr AdditionalSize() {
469 return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
470 GetPageSizeCached());
471 }
472
473 typedef SizeClassMap SizeClassMapT;
474 static const uptr kNumClasses = SizeClassMap::kNumClasses;
475 static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
476
477 private:
478 static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
479 static const uptr kSpaceEnd = kSpaceBeg + kSpaceSize;
480 COMPILER_CHECK(kSpaceBeg % kSpaceSize == 0);
481 // kRegionSize must be >= 2^32.
482 COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
483 // Populate the free list with at most this number of bytes at once
484 // or with one element if its size is greater.
485 static const uptr kPopulateSize = 1 << 14;
486 // Call mmap for user memory with at least this size.
487 static const uptr kUserMapSize = 1 << 16;
488 // Call mmap for metadata memory with at least this size.
489 static const uptr kMetaMapSize = 1 << 16;
490
491 struct RegionInfo {
492 BlockingMutex mutex;
493 LFStack<Batch> free_list;
494 uptr allocated_user; // Bytes allocated for user memory.
495 uptr allocated_meta; // Bytes allocated for metadata.
496 uptr mapped_user; // Bytes mapped for user memory.
497 uptr mapped_meta; // Bytes mapped for metadata.
498 uptr n_allocated, n_freed; // Just stats.
499 };
500 COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);
501
502 RegionInfo *GetRegionInfo(uptr class_id) {
503 CHECK_LT(class_id, kNumClasses);
504 RegionInfo *regions = reinterpret_cast<RegionInfo*>(kSpaceBeg + kSpaceSize);
505 return &regions[class_id];
506 }
507
508 static uptr GetChunkIdx(uptr chunk, uptr size) {
509 uptr offset = chunk % kRegionSize;
510 // Here we divide by a non-constant. This is costly.
511 // size always fits into 32-bits. If the offset fits too, use 32-bit div.
512 if (offset >> (SANITIZER_WORDSIZE / 2))
513 return offset / size;
514 return (u32)offset / (u32)size;
515 }
516
517 NOINLINE Batch* PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
518 uptr class_id, RegionInfo *region) {
519 BlockingMutexLock l(&region->mutex);
520 Batch *b = region->free_list.Pop();
521 if (b)
522 return b;
523 uptr size = SizeClassMap::Size(class_id);
524 uptr count = size < kPopulateSize ? SizeClassMap::MaxCached(class_id) : 1;
525 uptr beg_idx = region->allocated_user;
526 uptr end_idx = beg_idx + count * size;
527 uptr region_beg = kSpaceBeg + kRegionSize * class_id;
528 if (end_idx + size > region->mapped_user) {
529 // Do the mmap for the user memory.
530 uptr map_size = kUserMapSize;
531 while (end_idx + size > region->mapped_user + map_size)
532 map_size += kUserMapSize;
533 CHECK_GE(region->mapped_user + map_size, end_idx);
534 MapWithCallback(region_beg + region->mapped_user, map_size);
535 stat->Add(AllocatorStatMapped, map_size);
536 region->mapped_user += map_size;
537 }
538 uptr total_count = (region->mapped_user - beg_idx - size)
539 / size / count * count;
540 region->allocated_meta += total_count * kMetadataSize;
541 if (region->allocated_meta > region->mapped_meta) {
542 uptr map_size = kMetaMapSize;
543 while (region->allocated_meta > region->mapped_meta + map_size)
544 map_size += kMetaMapSize;
545 // Do the mmap for the metadata.
546 CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
547 MapWithCallback(region_beg + kRegionSize -
548 region->mapped_meta - map_size, map_size);
549 region->mapped_meta += map_size;
550 }
551 CHECK_LE(region->allocated_meta, region->mapped_meta);
552 if (region->mapped_user + region->mapped_meta > kRegionSize) {
553 Printf("%s: Out of memory. Dying. ", SanitizerToolName);
554 Printf("The process has exhausted %zuMB for size class %zu.\n",
555 kRegionSize / 1024 / 1024, size);
556 Die();
557 }
558 for (;;) {
559 if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
560 b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
561 else
562 b = (Batch*)(region_beg + beg_idx);
563 b->count = count;
564 for (uptr i = 0; i < count; i++)
565 b->batch[i] = (void*)(region_beg + beg_idx + i * size);
566 region->allocated_user += count * size;
567 CHECK_LE(region->allocated_user, region->mapped_user);
568 beg_idx += count * size;
569 if (beg_idx + count * size + size > region->mapped_user)
570 break;
571 CHECK_GT(b->count, 0);
572 region->free_list.Push(b);
573 }
574 return b;
575 }
576 };
577
578 // Maps integers in rage [0, kSize) to u8 values.
579 template<u64 kSize>
580 class FlatByteMap {
581 public:
582 void TestOnlyInit() {
583 internal_memset(map_, 0, sizeof(map_));
584 }
585
586 void set(uptr idx, u8 val) {
587 CHECK_LT(idx, kSize);
588 CHECK_EQ(0U, map_[idx]);
589 map_[idx] = val;
590 }
591 u8 operator[] (uptr idx) {
592 CHECK_LT(idx, kSize);
593 // FIXME: CHECK may be too expensive here.
594 return map_[idx];
595 }
596 private:
597 u8 map_[kSize];
598 };
599
600 // TwoLevelByteMap maps integers in range [0, kSize1*kSize2) to u8 values.
601 // It is implemented as a two-dimensional array: array of kSize1 pointers
602 // to kSize2-byte arrays. The secondary arrays are mmaped on demand.
603 // Each value is initially zero and can be set to something else only once.
604 // Setting and getting values from multiple threads is safe w/o extra locking.
605 template <u64 kSize1, u64 kSize2, class MapUnmapCallback = NoOpMapUnmapCallback>
606 class TwoLevelByteMap {
607 public:
608 void TestOnlyInit() {
609 internal_memset(map1_, 0, sizeof(map1_));
610 mu_.Init();
611 }
612
613 void TestOnlyUnmap() {
614 for (uptr i = 0; i < kSize1; i++) {
615 u8 *p = Get(i);
616 if (!p) continue;
617 MapUnmapCallback().OnUnmap(reinterpret_cast<uptr>(p), kSize2);
618 UnmapOrDie(p, kSize2);
619 }
620 }
621
622 uptr size() const { return kSize1 * kSize2; }
623 uptr size1() const { return kSize1; }
624 uptr size2() const { return kSize2; }
625
626 void set(uptr idx, u8 val) {
627 CHECK_LT(idx, kSize1 * kSize2);
628 u8 *map2 = GetOrCreate(idx / kSize2);
629 CHECK_EQ(0U, map2[idx % kSize2]);
630 map2[idx % kSize2] = val;
631 }
632
633 u8 operator[] (uptr idx) const {
634 CHECK_LT(idx, kSize1 * kSize2);
635 u8 *map2 = Get(idx / kSize2);
636 if (!map2) return 0;
637 return map2[idx % kSize2];
638 }
639
640 private:
641 u8 *Get(uptr idx) const {
642 CHECK_LT(idx, kSize1);
643 return reinterpret_cast<u8 *>(
644 atomic_load(&map1_[idx], memory_order_acquire));
645 }
646
647 u8 *GetOrCreate(uptr idx) {
648 u8 *res = Get(idx);
649 if (!res) {
650 SpinMutexLock l(&mu_);
651 if (!(res = Get(idx))) {
652 res = (u8*)MmapOrDie(kSize2, "TwoLevelByteMap");
653 MapUnmapCallback().OnMap(reinterpret_cast<uptr>(res), kSize2);
654 atomic_store(&map1_[idx], reinterpret_cast<uptr>(res),
655 memory_order_release);
656 }
657 }
658 return res;
659 }
660
661 atomic_uintptr_t map1_[kSize1];
662 StaticSpinMutex mu_;
663 };
664
665 // SizeClassAllocator32 -- allocator for 32-bit address space.
666 // This allocator can theoretically be used on 64-bit arch, but there it is less
667 // efficient than SizeClassAllocator64.
668 //
669 // [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
670 // be returned by MmapOrDie().
671 //
672 // Region:
673 // a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize).
674 // Since the regions are aligned by kRegionSize, there are exactly
675 // kNumPossibleRegions possible regions in the address space and so we keep
676 // a ByteMap possible_regions to store the size classes of each Region.
677 // 0 size class means the region is not used by the allocator.
678 //
679 // One Region is used to allocate chunks of a single size class.
680 // A Region looks like this:
681 // UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
682 //
683 // In order to avoid false sharing the objects of this class should be
684 // chache-line aligned.
685 template <const uptr kSpaceBeg, const u64 kSpaceSize,
686 const uptr kMetadataSize, class SizeClassMap,
687 const uptr kRegionSizeLog,
688 class ByteMap,
689 class MapUnmapCallback = NoOpMapUnmapCallback>
690 class SizeClassAllocator32 {
691 public:
692 typedef typename SizeClassMap::TransferBatch Batch;
693 typedef SizeClassAllocator32<kSpaceBeg, kSpaceSize, kMetadataSize,
694 SizeClassMap, kRegionSizeLog, ByteMap, MapUnmapCallback> ThisT;
695 typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
696
697 void Init() {
698 possible_regions.TestOnlyInit();
699 internal_memset(size_class_info_array, 0, sizeof(size_class_info_array));
700 }
701
702 void *MapWithCallback(uptr size) {
703 size = RoundUpTo(size, GetPageSizeCached());
704 void *res = MmapOrDie(size, "SizeClassAllocator32");
705 MapUnmapCallback().OnMap((uptr)res, size);
706 return res;
707 }
708
709 void UnmapWithCallback(uptr beg, uptr size) {
710 MapUnmapCallback().OnUnmap(beg, size);
711 UnmapOrDie(reinterpret_cast<void *>(beg), size);
712 }
713
714 static bool CanAllocate(uptr size, uptr alignment) {
715 return size <= SizeClassMap::kMaxSize &&
716 alignment <= SizeClassMap::kMaxSize;
717 }
718
719 void *GetMetaData(const void *p) {
720 CHECK(PointerIsMine(p));
721 uptr mem = reinterpret_cast<uptr>(p);
722 uptr beg = ComputeRegionBeg(mem);
723 uptr size = SizeClassMap::Size(GetSizeClass(p));
724 u32 offset = mem - beg;
725 uptr n = offset / (u32)size; // 32-bit division
726 uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
727 return reinterpret_cast<void*>(meta);
728 }
729
730 NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
731 uptr class_id) {
732 CHECK_LT(class_id, kNumClasses);
733 SizeClassInfo *sci = GetSizeClassInfo(class_id);
734 SpinMutexLock l(&sci->mutex);
735 if (sci->free_list.empty())
736 PopulateFreeList(stat, c, sci, class_id);
737 CHECK(!sci->free_list.empty());
738 Batch *b = sci->free_list.front();
739 sci->free_list.pop_front();
740 return b;
741 }
742
743 NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
744 CHECK_LT(class_id, kNumClasses);
745 SizeClassInfo *sci = GetSizeClassInfo(class_id);
746 SpinMutexLock l(&sci->mutex);
747 CHECK_GT(b->count, 0);
748 sci->free_list.push_front(b);
749 }
750
751 bool PointerIsMine(const void *p) {
752 return GetSizeClass(p) != 0;
753 }
754
755 uptr GetSizeClass(const void *p) {
756 return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))];
757 }
758
759 void *GetBlockBegin(const void *p) {
760 CHECK(PointerIsMine(p));
761 uptr mem = reinterpret_cast<uptr>(p);
762 uptr beg = ComputeRegionBeg(mem);
763 uptr size = SizeClassMap::Size(GetSizeClass(p));
764 u32 offset = mem - beg;
765 u32 n = offset / (u32)size; // 32-bit division
766 uptr res = beg + (n * (u32)size);
767 return reinterpret_cast<void*>(res);
768 }
769
770 uptr GetActuallyAllocatedSize(void *p) {
771 CHECK(PointerIsMine(p));
772 return SizeClassMap::Size(GetSizeClass(p));
773 }
774
775 uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
776
777 uptr TotalMemoryUsed() {
778 // No need to lock here.
779 uptr res = 0;
780 for (uptr i = 0; i < kNumPossibleRegions; i++)
781 if (possible_regions[i])
782 res += kRegionSize;
783 return res;
784 }
785
786 void TestOnlyUnmap() {
787 for (uptr i = 0; i < kNumPossibleRegions; i++)
788 if (possible_regions[i])
789 UnmapWithCallback((i * kRegionSize), kRegionSize);
790 }
791
792 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
793 // introspection API.
794 void ForceLock() {
795 for (uptr i = 0; i < kNumClasses; i++) {
796 GetSizeClassInfo(i)->mutex.Lock();
797 }
798 }
799
800 void ForceUnlock() {
801 for (int i = kNumClasses - 1; i >= 0; i--) {
802 GetSizeClassInfo(i)->mutex.Unlock();
803 }
804 }
805
806 // Iterate over all existing chunks.
807 // The allocator must be locked when calling this function.
808 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
809 for (uptr region = 0; region < kNumPossibleRegions; region++)
810 if (possible_regions[region]) {
811 uptr chunk_size = SizeClassMap::Size(possible_regions[region]);
812 uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
813 uptr region_beg = region * kRegionSize;
814 for (uptr chunk = region_beg;
815 chunk < region_beg + max_chunks_in_region * chunk_size;
816 chunk += chunk_size) {
817 // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
818 callback(chunk, arg);
819 }
820 }
821 }
822
823 void PrintStats() {
824 }
825
826 static uptr AdditionalSize() {
827 return 0;
828 }
829
830 typedef SizeClassMap SizeClassMapT;
831 static const uptr kNumClasses = SizeClassMap::kNumClasses;
832
833 private:
834 static const uptr kRegionSize = 1 << kRegionSizeLog;
835 static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
836
837 struct SizeClassInfo {
838 SpinMutex mutex;
839 IntrusiveList<Batch> free_list;
840 char padding[kCacheLineSize - sizeof(uptr) - sizeof(IntrusiveList<Batch>)];
841 };
842 COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize);
843
844 uptr ComputeRegionId(uptr mem) {
845 uptr res = mem >> kRegionSizeLog;
846 CHECK_LT(res, kNumPossibleRegions);
847 return res;
848 }
849
850 uptr ComputeRegionBeg(uptr mem) {
851 return mem & ~(kRegionSize - 1);
852 }
853
854 uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
855 CHECK_LT(class_id, kNumClasses);
856 uptr res = reinterpret_cast<uptr>(MmapAlignedOrDie(kRegionSize, kRegionSize,
857 "SizeClassAllocator32"));
858 MapUnmapCallback().OnMap(res, kRegionSize);
859 stat->Add(AllocatorStatMapped, kRegionSize);
860 CHECK_EQ(0U, (res & (kRegionSize - 1)));
861 possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id));
862 return res;
863 }
864
865 SizeClassInfo *GetSizeClassInfo(uptr class_id) {
866 CHECK_LT(class_id, kNumClasses);
867 return &size_class_info_array[class_id];
868 }
869
870 void PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
871 SizeClassInfo *sci, uptr class_id) {
872 uptr size = SizeClassMap::Size(class_id);
873 uptr reg = AllocateRegion(stat, class_id);
874 uptr n_chunks = kRegionSize / (size + kMetadataSize);
875 uptr max_count = SizeClassMap::MaxCached(class_id);
876 Batch *b = nullptr;
877 for (uptr i = reg; i < reg + n_chunks * size; i += size) {
878 if (!b) {
879 if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
880 b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
881 else
882 b = (Batch*)i;
883 b->count = 0;
884 }
885 b->batch[b->count++] = (void*)i;
886 if (b->count == max_count) {
887 CHECK_GT(b->count, 0);
888 sci->free_list.push_back(b);
889 b = nullptr;
890 }
891 }
892 if (b) {
893 CHECK_GT(b->count, 0);
894 sci->free_list.push_back(b);
895 }
896 }
897
898 ByteMap possible_regions;
899 SizeClassInfo size_class_info_array[kNumClasses];
900 };
901
902 // Objects of this type should be used as local caches for SizeClassAllocator64
903 // or SizeClassAllocator32. Since the typical use of this class is to have one
904 // object per thread in TLS, is has to be POD.
905 template<class SizeClassAllocator>
906 struct SizeClassAllocatorLocalCache {
907 typedef SizeClassAllocator Allocator;
908 static const uptr kNumClasses = SizeClassAllocator::kNumClasses;
909
910 void Init(AllocatorGlobalStats *s) {
911 stats_.Init();
912 if (s)
913 s->Register(&stats_);
914 }
915
916 void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
917 Drain(allocator);
918 if (s)
919 s->Unregister(&stats_);
920 }
921
922 void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
923 CHECK_NE(class_id, 0UL);
924 CHECK_LT(class_id, kNumClasses);
925 stats_.Add(AllocatorStatAllocated, SizeClassMap::Size(class_id));
926 PerClass *c = &per_class_[class_id];
927 if (UNLIKELY(c->count == 0))
928 Refill(allocator, class_id);
929 void *res = c->batch[--c->count];
930 PREFETCH(c->batch[c->count - 1]);
931 return res;
932 }
933
934 void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
935 CHECK_NE(class_id, 0UL);
936 CHECK_LT(class_id, kNumClasses);
937 // If the first allocator call on a new thread is a deallocation, then
938 // max_count will be zero, leading to check failure.
939 InitCache();
940 stats_.Sub(AllocatorStatAllocated, SizeClassMap::Size(class_id));
941 PerClass *c = &per_class_[class_id];
942 CHECK_NE(c->max_count, 0UL);
943 if (UNLIKELY(c->count == c->max_count))
944 Drain(allocator, class_id);
945 c->batch[c->count++] = p;
946 }
947
948 void Drain(SizeClassAllocator *allocator) {
949 for (uptr class_id = 0; class_id < kNumClasses; class_id++) {
950 PerClass *c = &per_class_[class_id];
951 while (c->count > 0)
952 Drain(allocator, class_id);
953 }
954 }
955
956 // private:
957 typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
958 typedef typename SizeClassMap::TransferBatch Batch;
959 struct PerClass {
960 uptr count;
961 uptr max_count;
962 void *batch[2 * SizeClassMap::kMaxNumCached];
963 };
964 PerClass per_class_[kNumClasses];
965 AllocatorStats stats_;
966
967 void InitCache() {
968 if (per_class_[1].max_count)
969 return;
970 for (uptr i = 0; i < kNumClasses; i++) {
971 PerClass *c = &per_class_[i];
972 c->max_count = 2 * SizeClassMap::MaxCached(i);
973 }
974 }
975
976 NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) {
977 InitCache();
978 PerClass *c = &per_class_[class_id];
979 Batch *b = allocator->AllocateBatch(&stats_, this, class_id);
980 CHECK_GT(b->count, 0);
981 for (uptr i = 0; i < b->count; i++)
982 c->batch[i] = b->batch[i];
983 c->count = b->count;
984 if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
985 Deallocate(allocator, SizeClassMap::ClassID(sizeof(Batch)), b);
986 }
987
988 NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) {
989 InitCache();
990 PerClass *c = &per_class_[class_id];
991 Batch *b;
992 if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
993 b = (Batch*)Allocate(allocator, SizeClassMap::ClassID(sizeof(Batch)));
994 else
995 b = (Batch*)c->batch[0];
996 uptr cnt = Min(c->max_count / 2, c->count);
997 for (uptr i = 0; i < cnt; i++) {
998 b->batch[i] = c->batch[i];
999 c->batch[i] = c->batch[i + c->max_count / 2];
1000 }
1001 b->count = cnt;
1002 c->count -= cnt;
1003 CHECK_GT(b->count, 0);
1004 allocator->DeallocateBatch(&stats_, class_id, b);
1005 }
1006 };
1007
1008 // This class can (de)allocate only large chunks of memory using mmap/unmap.
1009 // The main purpose of this allocator is to cover large and rare allocation
1010 // sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
1011 template <class MapUnmapCallback = NoOpMapUnmapCallback>
1012 class LargeMmapAllocator {
1013 public:
1014 void InitLinkerInitialized(bool may_return_null) {
1015 page_size_ = GetPageSizeCached();
1016 atomic_store(&may_return_null_, may_return_null, memory_order_relaxed);
1017 }
1018
1019 void Init(bool may_return_null) {
1020 internal_memset(this, 0, sizeof(*this));
1021 InitLinkerInitialized(may_return_null);
1022 }
1023
1024 void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) {
1025 CHECK(IsPowerOfTwo(alignment));
1026 uptr map_size = RoundUpMapSize(size);
1027 if (alignment > page_size_)
1028 map_size += alignment;
1029 // Overflow.
1030 if (map_size < size)
1031 return ReturnNullOrDie();
1032 uptr map_beg = reinterpret_cast<uptr>(
1033 MmapOrDie(map_size, "LargeMmapAllocator"));
1034 CHECK(IsAligned(map_beg, page_size_));
1035 MapUnmapCallback().OnMap(map_beg, map_size);
1036 uptr map_end = map_beg + map_size;
1037 uptr res = map_beg + page_size_;
1038 if (res & (alignment - 1)) // Align.
1039 res += alignment - (res & (alignment - 1));
1040 CHECK(IsAligned(res, alignment));
1041 CHECK(IsAligned(res, page_size_));
1042 CHECK_GE(res + size, map_beg);
1043 CHECK_LE(res + size, map_end);
1044 Header *h = GetHeader(res);
1045 h->size = size;
1046 h->map_beg = map_beg;
1047 h->map_size = map_size;
1048 uptr size_log = MostSignificantSetBitIndex(map_size);
1049 CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log));
1050 {
1051 SpinMutexLock l(&mutex_);
1052 uptr idx = n_chunks_++;
1053 chunks_sorted_ = false;
1054 CHECK_LT(idx, kMaxNumChunks);
1055 h->chunk_idx = idx;
1056 chunks_[idx] = h;
1057 stats.n_allocs++;
1058 stats.currently_allocated += map_size;
1059 stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated);
1060 stats.by_size_log[size_log]++;
1061 stat->Add(AllocatorStatAllocated, map_size);
1062 stat->Add(AllocatorStatMapped, map_size);
1063 }
1064 return reinterpret_cast<void*>(res);
1065 }
1066
1067 void *ReturnNullOrDie() {
1068 if (atomic_load(&may_return_null_, memory_order_acquire))
1069 return nullptr;
1070 ReportAllocatorCannotReturnNull();
1071 }
1072
1073 void SetMayReturnNull(bool may_return_null) {
1074 atomic_store(&may_return_null_, may_return_null, memory_order_release);
1075 }
1076
1077 void Deallocate(AllocatorStats *stat, void *p) {
1078 Header *h = GetHeader(p);
1079 {
1080 SpinMutexLock l(&mutex_);
1081 uptr idx = h->chunk_idx;
1082 CHECK_EQ(chunks_[idx], h);
1083 CHECK_LT(idx, n_chunks_);
1084 chunks_[idx] = chunks_[n_chunks_ - 1];
1085 chunks_[idx]->chunk_idx = idx;
1086 n_chunks_--;
1087 chunks_sorted_ = false;
1088 stats.n_frees++;
1089 stats.currently_allocated -= h->map_size;
1090 stat->Sub(AllocatorStatAllocated, h->map_size);
1091 stat->Sub(AllocatorStatMapped, h->map_size);
1092 }
1093 MapUnmapCallback().OnUnmap(h->map_beg, h->map_size);
1094 UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
1095 }
1096
1097 uptr TotalMemoryUsed() {
1098 SpinMutexLock l(&mutex_);
1099 uptr res = 0;
1100 for (uptr i = 0; i < n_chunks_; i++) {
1101 Header *h = chunks_[i];
1102 CHECK_EQ(h->chunk_idx, i);
1103 res += RoundUpMapSize(h->size);
1104 }
1105 return res;
1106 }
1107
1108 bool PointerIsMine(const void *p) {
1109 return GetBlockBegin(p) != nullptr;
1110 }
1111
1112 uptr GetActuallyAllocatedSize(void *p) {
1113 return RoundUpTo(GetHeader(p)->size, page_size_);
1114 }
1115
1116 // At least page_size_/2 metadata bytes is available.
1117 void *GetMetaData(const void *p) {
1118 // Too slow: CHECK_EQ(p, GetBlockBegin(p));
1119 if (!IsAligned(reinterpret_cast<uptr>(p), page_size_)) {
1120 Printf("%s: bad pointer %p\n", SanitizerToolName, p);
1121 CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_));
1122 }
1123 return GetHeader(p) + 1;
1124 }
1125
1126 void *GetBlockBegin(const void *ptr) {
1127 uptr p = reinterpret_cast<uptr>(ptr);
1128 SpinMutexLock l(&mutex_);
1129 uptr nearest_chunk = 0;
1130 // Cache-friendly linear search.
1131 for (uptr i = 0; i < n_chunks_; i++) {
1132 uptr ch = reinterpret_cast<uptr>(chunks_[i]);
1133 if (p < ch) continue; // p is at left to this chunk, skip it.
1134 if (p - ch < p - nearest_chunk)
1135 nearest_chunk = ch;
1136 }
1137 if (!nearest_chunk)
1138 return nullptr;
1139 Header *h = reinterpret_cast<Header *>(nearest_chunk);
1140 CHECK_GE(nearest_chunk, h->map_beg);
1141 CHECK_LT(nearest_chunk, h->map_beg + h->map_size);
1142 CHECK_LE(nearest_chunk, p);
1143 if (h->map_beg + h->map_size <= p)
1144 return nullptr;
1145 return GetUser(h);
1146 }
1147
1148 // This function does the same as GetBlockBegin, but is much faster.
1149 // Must be called with the allocator locked.
1150 void *GetBlockBeginFastLocked(void *ptr) {
1151 mutex_.CheckLocked();
1152 uptr p = reinterpret_cast<uptr>(ptr);
1153 uptr n = n_chunks_;
1154 if (!n) return nullptr;
1155 if (!chunks_sorted_) {
1156 // Do one-time sort. chunks_sorted_ is reset in Allocate/Deallocate.
1157 SortArray(reinterpret_cast<uptr*>(chunks_), n);
1158 for (uptr i = 0; i < n; i++)
1159 chunks_[i]->chunk_idx = i;
1160 chunks_sorted_ = true;
1161 min_mmap_ = reinterpret_cast<uptr>(chunks_[0]);
1162 max_mmap_ = reinterpret_cast<uptr>(chunks_[n - 1]) +
1163 chunks_[n - 1]->map_size;
1164 }
1165 if (p < min_mmap_ || p >= max_mmap_)
1166 return nullptr;
1167 uptr beg = 0, end = n - 1;
1168 // This loop is a log(n) lower_bound. It does not check for the exact match
1169 // to avoid expensive cache-thrashing loads.
1170 while (end - beg >= 2) {
1171 uptr mid = (beg + end) / 2; // Invariant: mid >= beg + 1
1172 if (p < reinterpret_cast<uptr>(chunks_[mid]))
1173 end = mid - 1; // We are not interested in chunks_[mid].
1174 else
1175 beg = mid; // chunks_[mid] may still be what we want.
1176 }
1177
1178 if (beg < end) {
1179 CHECK_EQ(beg + 1, end);
1180 // There are 2 chunks left, choose one.
1181 if (p >= reinterpret_cast<uptr>(chunks_[end]))
1182 beg = end;
1183 }
1184
1185 Header *h = chunks_[beg];
1186 if (h->map_beg + h->map_size <= p || p < h->map_beg)
1187 return nullptr;
1188 return GetUser(h);
1189 }
1190
1191 void PrintStats() {
1192 Printf("Stats: LargeMmapAllocator: allocated %zd times, "
1193 "remains %zd (%zd K) max %zd M; by size logs: ",
1194 stats.n_allocs, stats.n_allocs - stats.n_frees,
1195 stats.currently_allocated >> 10, stats.max_allocated >> 20);
1196 for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) {
1197 uptr c = stats.by_size_log[i];
1198 if (!c) continue;
1199 Printf("%zd:%zd; ", i, c);
1200 }
1201 Printf("\n");
1202 }
1203
1204 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1205 // introspection API.
1206 void ForceLock() {
1207 mutex_.Lock();
1208 }
1209
1210 void ForceUnlock() {
1211 mutex_.Unlock();
1212 }
1213
1214 // Iterate over all existing chunks.
1215 // The allocator must be locked when calling this function.
1216 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1217 for (uptr i = 0; i < n_chunks_; i++)
1218 callback(reinterpret_cast<uptr>(GetUser(chunks_[i])), arg);
1219 }
1220
1221 private:
1222 static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18);
1223 struct Header {
1224 uptr map_beg;
1225 uptr map_size;
1226 uptr size;
1227 uptr chunk_idx;
1228 };
1229
1230 Header *GetHeader(uptr p) {
1231 CHECK(IsAligned(p, page_size_));
1232 return reinterpret_cast<Header*>(p - page_size_);
1233 }
1234 Header *GetHeader(const void *p) {
1235 return GetHeader(reinterpret_cast<uptr>(p));
1236 }
1237
1238 void *GetUser(Header *h) {
1239 CHECK(IsAligned((uptr)h, page_size_));
1240 return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
1241 }
1242
1243 uptr RoundUpMapSize(uptr size) {
1244 return RoundUpTo(size, page_size_) + page_size_;
1245 }
1246
1247 uptr page_size_;
1248 Header *chunks_[kMaxNumChunks];
1249 uptr n_chunks_;
1250 uptr min_mmap_, max_mmap_;
1251 bool chunks_sorted_;
1252 struct Stats {
1253 uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64];
1254 } stats;
1255 atomic_uint8_t may_return_null_;
1256 SpinMutex mutex_;
1257 };
1258
1259 // This class implements a complete memory allocator by using two
1260 // internal allocators:
1261 // PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
1262 // When allocating 2^x bytes it should return 2^x aligned chunk.
1263 // PrimaryAllocator is used via a local AllocatorCache.
1264 // SecondaryAllocator can allocate anything, but is not efficient.
1265 template <class PrimaryAllocator, class AllocatorCache,
1266 class SecondaryAllocator> // NOLINT
1267 class CombinedAllocator {
1268 public:
1269 void InitCommon(bool may_return_null) {
1270 primary_.Init();
1271 atomic_store(&may_return_null_, may_return_null, memory_order_relaxed);
1272 }
1273
1274 void InitLinkerInitialized(bool may_return_null) {
1275 secondary_.InitLinkerInitialized(may_return_null);
1276 stats_.InitLinkerInitialized();
1277 InitCommon(may_return_null);
1278 }
1279
1280 void Init(bool may_return_null) {
1281 secondary_.Init(may_return_null);
1282 stats_.Init();
1283 InitCommon(may_return_null);
1284 }
1285
1286 void *Allocate(AllocatorCache *cache, uptr size, uptr alignment,
1287 bool cleared = false, bool check_rss_limit = false) {
1288 // Returning 0 on malloc(0) may break a lot of code.
1289 if (size == 0)
1290 size = 1;
1291 if (size + alignment < size)
1292 return ReturnNullOrDie();
1293 if (check_rss_limit && RssLimitIsExceeded())
1294 return ReturnNullOrDie();
1295 if (alignment > 8)
1296 size = RoundUpTo(size, alignment);
1297 void *res;
1298 bool from_primary = primary_.CanAllocate(size, alignment);
1299 if (from_primary)
1300 res = cache->Allocate(&primary_, primary_.ClassID(size));
1301 else
1302 res = secondary_.Allocate(&stats_, size, alignment);
1303 if (alignment > 8)
1304 CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
1305 if (cleared && res && from_primary)
1306 internal_bzero_aligned16(res, RoundUpTo(size, 16));
1307 return res;
1308 }
1309
1310 bool MayReturnNull() const {
1311 return atomic_load(&may_return_null_, memory_order_acquire);
1312 }
1313
1314 void *ReturnNullOrDie() {
1315 if (MayReturnNull())
1316 return nullptr;
1317 ReportAllocatorCannotReturnNull();
1318 }
1319
1320 void SetMayReturnNull(bool may_return_null) {
1321 secondary_.SetMayReturnNull(may_return_null);
1322 atomic_store(&may_return_null_, may_return_null, memory_order_release);
1323 }
1324
1325 bool RssLimitIsExceeded() {
1326 return atomic_load(&rss_limit_is_exceeded_, memory_order_acquire);
1327 }
1328
1329 void SetRssLimitIsExceeded(bool rss_limit_is_exceeded) {
1330 atomic_store(&rss_limit_is_exceeded_, rss_limit_is_exceeded,
1331 memory_order_release);
1332 }
1333
1334 void Deallocate(AllocatorCache *cache, void *p) {
1335 if (!p) return;
1336 if (primary_.PointerIsMine(p))
1337 cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
1338 else
1339 secondary_.Deallocate(&stats_, p);
1340 }
1341
1342 void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
1343 uptr alignment) {
1344 if (!p)
1345 return Allocate(cache, new_size, alignment);
1346 if (!new_size) {
1347 Deallocate(cache, p);
1348 return nullptr;
1349 }
1350 CHECK(PointerIsMine(p));
1351 uptr old_size = GetActuallyAllocatedSize(p);
1352 uptr memcpy_size = Min(new_size, old_size);
1353 void *new_p = Allocate(cache, new_size, alignment);
1354 if (new_p)
1355 internal_memcpy(new_p, p, memcpy_size);
1356 Deallocate(cache, p);
1357 return new_p;
1358 }
1359
1360 bool PointerIsMine(void *p) {
1361 if (primary_.PointerIsMine(p))
1362 return true;
1363 return secondary_.PointerIsMine(p);
1364 }
1365
1366 bool FromPrimary(void *p) {
1367 return primary_.PointerIsMine(p);
1368 }
1369
1370 void *GetMetaData(const void *p) {
1371 if (primary_.PointerIsMine(p))
1372 return primary_.GetMetaData(p);
1373 return secondary_.GetMetaData(p);
1374 }
1375
1376 void *GetBlockBegin(const void *p) {
1377 if (primary_.PointerIsMine(p))
1378 return primary_.GetBlockBegin(p);
1379 return secondary_.GetBlockBegin(p);
1380 }
1381
1382 // This function does the same as GetBlockBegin, but is much faster.
1383 // Must be called with the allocator locked.
1384 void *GetBlockBeginFastLocked(void *p) {
1385 if (primary_.PointerIsMine(p))
1386 return primary_.GetBlockBegin(p);
1387 return secondary_.GetBlockBeginFastLocked(p);
1388 }
1389
1390 uptr GetActuallyAllocatedSize(void *p) {
1391 if (primary_.PointerIsMine(p))
1392 return primary_.GetActuallyAllocatedSize(p);
1393 return secondary_.GetActuallyAllocatedSize(p);
1394 }
1395
1396 uptr TotalMemoryUsed() {
1397 return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
1398 }
1399
1400 void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
1401
1402 void InitCache(AllocatorCache *cache) {
1403 cache->Init(&stats_);
1404 }
1405
1406 void DestroyCache(AllocatorCache *cache) {
1407 cache->Destroy(&primary_, &stats_);
1408 }
1409
1410 void SwallowCache(AllocatorCache *cache) {
1411 cache->Drain(&primary_);
1412 }
1413
1414 void GetStats(AllocatorStatCounters s) const {
1415 stats_.Get(s);
1416 }
1417
1418 void PrintStats() {
1419 primary_.PrintStats();
1420 secondary_.PrintStats();
1421 }
1422
1423 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1424 // introspection API.
1425 void ForceLock() {
1426 primary_.ForceLock();
1427 secondary_.ForceLock();
1428 }
1429
1430 void ForceUnlock() {
1431 secondary_.ForceUnlock();
1432 primary_.ForceUnlock();
1433 }
1434
1435 // Iterate over all existing chunks.
1436 // The allocator must be locked when calling this function.
1437 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1438 primary_.ForEachChunk(callback, arg);
1439 secondary_.ForEachChunk(callback, arg);
1440 }
1441
1442 private:
1443 PrimaryAllocator primary_;
1444 SecondaryAllocator secondary_;
1445 AllocatorGlobalStats stats_;
1446 atomic_uint8_t may_return_null_;
1447 atomic_uint8_t rss_limit_is_exceeded_;
1448 };
1449
1450 // Returns true if calloc(size, n) should return 0 due to overflow in size*n.
1451 bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n);
1452
1453 } // namespace __sanitizer
1454
1455 #endif // SANITIZER_ALLOCATOR_H