]> git.proxmox.com Git - systemd.git/blob - src/core/execute.c
New upstream version 247~rc2
[systemd.git] / src / core / execute.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <poll.h>
6 #include <sys/eventfd.h>
7 #include <sys/ioctl.h>
8 #include <sys/mman.h>
9 #include <sys/mount.h>
10 #include <sys/personality.h>
11 #include <sys/prctl.h>
12 #include <sys/shm.h>
13 #include <sys/types.h>
14 #include <sys/un.h>
15 #include <unistd.h>
16 #include <utmpx.h>
17
18 #if HAVE_PAM
19 #include <security/pam_appl.h>
20 #endif
21
22 #if HAVE_SELINUX
23 #include <selinux/selinux.h>
24 #endif
25
26 #if HAVE_SECCOMP
27 #include <seccomp.h>
28 #endif
29
30 #if HAVE_APPARMOR
31 #include <sys/apparmor.h>
32 #endif
33
34 #include "sd-messages.h"
35
36 #include "acl-util.h"
37 #include "af-list.h"
38 #include "alloc-util.h"
39 #if HAVE_APPARMOR
40 #include "apparmor-util.h"
41 #endif
42 #include "async.h"
43 #include "barrier.h"
44 #include "cap-list.h"
45 #include "capability-util.h"
46 #include "cgroup-setup.h"
47 #include "chown-recursive.h"
48 #include "cpu-set-util.h"
49 #include "def.h"
50 #include "env-file.h"
51 #include "env-util.h"
52 #include "errno-list.h"
53 #include "execute.h"
54 #include "exit-status.h"
55 #include "fd-util.h"
56 #include "fileio.h"
57 #include "format-util.h"
58 #include "fs-util.h"
59 #include "glob-util.h"
60 #include "hexdecoct.h"
61 #include "io-util.h"
62 #include "ioprio.h"
63 #include "label.h"
64 #include "log.h"
65 #include "macro.h"
66 #include "manager.h"
67 #include "memory-util.h"
68 #include "missing_fs.h"
69 #include "mkdir.h"
70 #include "mount-util.h"
71 #include "mountpoint-util.h"
72 #include "namespace.h"
73 #include "parse-util.h"
74 #include "path-util.h"
75 #include "process-util.h"
76 #include "random-util.h"
77 #include "rlimit-util.h"
78 #include "rm-rf.h"
79 #if HAVE_SECCOMP
80 #include "seccomp-util.h"
81 #endif
82 #include "securebits-util.h"
83 #include "selinux-util.h"
84 #include "signal-util.h"
85 #include "smack-util.h"
86 #include "socket-util.h"
87 #include "special.h"
88 #include "stat-util.h"
89 #include "string-table.h"
90 #include "string-util.h"
91 #include "strv.h"
92 #include "syslog-util.h"
93 #include "terminal-util.h"
94 #include "tmpfile-util.h"
95 #include "umask-util.h"
96 #include "unit.h"
97 #include "user-util.h"
98 #include "utmp-wtmp.h"
99
100 #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
101 #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
102
103 #define SNDBUF_SIZE (8*1024*1024)
104
105 static int shift_fds(int fds[], size_t n_fds) {
106 if (n_fds <= 0)
107 return 0;
108
109 /* Modifies the fds array! (sorts it) */
110
111 assert(fds);
112
113 for (int start = 0;;) {
114 int restart_from = -1;
115
116 for (int i = start; i < (int) n_fds; i++) {
117 int nfd;
118
119 /* Already at right index? */
120 if (fds[i] == i+3)
121 continue;
122
123 nfd = fcntl(fds[i], F_DUPFD, i + 3);
124 if (nfd < 0)
125 return -errno;
126
127 safe_close(fds[i]);
128 fds[i] = nfd;
129
130 /* Hmm, the fd we wanted isn't free? Then
131 * let's remember that and try again from here */
132 if (nfd != i+3 && restart_from < 0)
133 restart_from = i;
134 }
135
136 if (restart_from < 0)
137 break;
138
139 start = restart_from;
140 }
141
142 return 0;
143 }
144
145 static int flags_fds(const int fds[], size_t n_socket_fds, size_t n_storage_fds, bool nonblock) {
146 size_t n_fds;
147 int r;
148
149 n_fds = n_socket_fds + n_storage_fds;
150 if (n_fds <= 0)
151 return 0;
152
153 assert(fds);
154
155 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
156 * O_NONBLOCK only applies to socket activation though. */
157
158 for (size_t i = 0; i < n_fds; i++) {
159
160 if (i < n_socket_fds) {
161 r = fd_nonblock(fds[i], nonblock);
162 if (r < 0)
163 return r;
164 }
165
166 /* We unconditionally drop FD_CLOEXEC from the fds,
167 * since after all we want to pass these fds to our
168 * children */
169
170 r = fd_cloexec(fds[i], false);
171 if (r < 0)
172 return r;
173 }
174
175 return 0;
176 }
177
178 static const char *exec_context_tty_path(const ExecContext *context) {
179 assert(context);
180
181 if (context->stdio_as_fds)
182 return NULL;
183
184 if (context->tty_path)
185 return context->tty_path;
186
187 return "/dev/console";
188 }
189
190 static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
191 const char *path;
192
193 assert(context);
194
195 path = exec_context_tty_path(context);
196
197 if (context->tty_vhangup) {
198 if (p && p->stdin_fd >= 0)
199 (void) terminal_vhangup_fd(p->stdin_fd);
200 else if (path)
201 (void) terminal_vhangup(path);
202 }
203
204 if (context->tty_reset) {
205 if (p && p->stdin_fd >= 0)
206 (void) reset_terminal_fd(p->stdin_fd, true);
207 else if (path)
208 (void) reset_terminal(path);
209 }
210
211 if (context->tty_vt_disallocate && path)
212 (void) vt_disallocate(path);
213 }
214
215 static bool is_terminal_input(ExecInput i) {
216 return IN_SET(i,
217 EXEC_INPUT_TTY,
218 EXEC_INPUT_TTY_FORCE,
219 EXEC_INPUT_TTY_FAIL);
220 }
221
222 static bool is_terminal_output(ExecOutput o) {
223 return IN_SET(o,
224 EXEC_OUTPUT_TTY,
225 EXEC_OUTPUT_KMSG_AND_CONSOLE,
226 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
227 }
228
229 static bool is_kmsg_output(ExecOutput o) {
230 return IN_SET(o,
231 EXEC_OUTPUT_KMSG,
232 EXEC_OUTPUT_KMSG_AND_CONSOLE);
233 }
234
235 static bool exec_context_needs_term(const ExecContext *c) {
236 assert(c);
237
238 /* Return true if the execution context suggests we should set $TERM to something useful. */
239
240 if (is_terminal_input(c->std_input))
241 return true;
242
243 if (is_terminal_output(c->std_output))
244 return true;
245
246 if (is_terminal_output(c->std_error))
247 return true;
248
249 return !!c->tty_path;
250 }
251
252 static int open_null_as(int flags, int nfd) {
253 int fd;
254
255 assert(nfd >= 0);
256
257 fd = open("/dev/null", flags|O_NOCTTY);
258 if (fd < 0)
259 return -errno;
260
261 return move_fd(fd, nfd, false);
262 }
263
264 static int connect_journal_socket(
265 int fd,
266 const char *log_namespace,
267 uid_t uid,
268 gid_t gid) {
269
270 union sockaddr_union sa;
271 socklen_t sa_len;
272 uid_t olduid = UID_INVALID;
273 gid_t oldgid = GID_INVALID;
274 const char *j;
275 int r;
276
277 j = log_namespace ?
278 strjoina("/run/systemd/journal.", log_namespace, "/stdout") :
279 "/run/systemd/journal/stdout";
280 r = sockaddr_un_set_path(&sa.un, j);
281 if (r < 0)
282 return r;
283 sa_len = r;
284
285 if (gid_is_valid(gid)) {
286 oldgid = getgid();
287
288 if (setegid(gid) < 0)
289 return -errno;
290 }
291
292 if (uid_is_valid(uid)) {
293 olduid = getuid();
294
295 if (seteuid(uid) < 0) {
296 r = -errno;
297 goto restore_gid;
298 }
299 }
300
301 r = connect(fd, &sa.sa, sa_len) < 0 ? -errno : 0;
302
303 /* If we fail to restore the uid or gid, things will likely
304 fail later on. This should only happen if an LSM interferes. */
305
306 if (uid_is_valid(uid))
307 (void) seteuid(olduid);
308
309 restore_gid:
310 if (gid_is_valid(gid))
311 (void) setegid(oldgid);
312
313 return r;
314 }
315
316 static int connect_logger_as(
317 const Unit *unit,
318 const ExecContext *context,
319 const ExecParameters *params,
320 ExecOutput output,
321 const char *ident,
322 int nfd,
323 uid_t uid,
324 gid_t gid) {
325
326 _cleanup_close_ int fd = -1;
327 int r;
328
329 assert(context);
330 assert(params);
331 assert(output < _EXEC_OUTPUT_MAX);
332 assert(ident);
333 assert(nfd >= 0);
334
335 fd = socket(AF_UNIX, SOCK_STREAM, 0);
336 if (fd < 0)
337 return -errno;
338
339 r = connect_journal_socket(fd, context->log_namespace, uid, gid);
340 if (r < 0)
341 return r;
342
343 if (shutdown(fd, SHUT_RD) < 0)
344 return -errno;
345
346 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
347
348 if (dprintf(fd,
349 "%s\n"
350 "%s\n"
351 "%i\n"
352 "%i\n"
353 "%i\n"
354 "%i\n"
355 "%i\n",
356 context->syslog_identifier ?: ident,
357 params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
358 context->syslog_priority,
359 !!context->syslog_level_prefix,
360 false,
361 is_kmsg_output(output),
362 is_terminal_output(output)) < 0)
363 return -errno;
364
365 return move_fd(TAKE_FD(fd), nfd, false);
366 }
367
368 static int open_terminal_as(const char *path, int flags, int nfd) {
369 int fd;
370
371 assert(path);
372 assert(nfd >= 0);
373
374 fd = open_terminal(path, flags | O_NOCTTY);
375 if (fd < 0)
376 return fd;
377
378 return move_fd(fd, nfd, false);
379 }
380
381 static int acquire_path(const char *path, int flags, mode_t mode) {
382 union sockaddr_union sa;
383 socklen_t sa_len;
384 _cleanup_close_ int fd = -1;
385 int r;
386
387 assert(path);
388
389 if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
390 flags |= O_CREAT;
391
392 fd = open(path, flags|O_NOCTTY, mode);
393 if (fd >= 0)
394 return TAKE_FD(fd);
395
396 if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
397 return -errno;
398
399 /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
400
401 r = sockaddr_un_set_path(&sa.un, path);
402 if (r < 0)
403 return r == -EINVAL ? -ENXIO : r;
404 sa_len = r;
405
406 fd = socket(AF_UNIX, SOCK_STREAM, 0);
407 if (fd < 0)
408 return -errno;
409
410 if (connect(fd, &sa.sa, sa_len) < 0)
411 return errno == EINVAL ? -ENXIO : -errno; /* Propagate initial error if we get EINVAL, i.e. we have
412 * indication that this wasn't an AF_UNIX socket after all */
413
414 if ((flags & O_ACCMODE) == O_RDONLY)
415 r = shutdown(fd, SHUT_WR);
416 else if ((flags & O_ACCMODE) == O_WRONLY)
417 r = shutdown(fd, SHUT_RD);
418 else
419 r = 0;
420 if (r < 0)
421 return -errno;
422
423 return TAKE_FD(fd);
424 }
425
426 static int fixup_input(
427 const ExecContext *context,
428 int socket_fd,
429 bool apply_tty_stdin) {
430
431 ExecInput std_input;
432
433 assert(context);
434
435 std_input = context->std_input;
436
437 if (is_terminal_input(std_input) && !apply_tty_stdin)
438 return EXEC_INPUT_NULL;
439
440 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
441 return EXEC_INPUT_NULL;
442
443 if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
444 return EXEC_INPUT_NULL;
445
446 return std_input;
447 }
448
449 static int fixup_output(ExecOutput std_output, int socket_fd) {
450
451 if (std_output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
452 return EXEC_OUTPUT_INHERIT;
453
454 return std_output;
455 }
456
457 static int setup_input(
458 const ExecContext *context,
459 const ExecParameters *params,
460 int socket_fd,
461 const int named_iofds[static 3]) {
462
463 ExecInput i;
464
465 assert(context);
466 assert(params);
467 assert(named_iofds);
468
469 if (params->stdin_fd >= 0) {
470 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
471 return -errno;
472
473 /* Try to make this the controlling tty, if it is a tty, and reset it */
474 if (isatty(STDIN_FILENO)) {
475 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
476 (void) reset_terminal_fd(STDIN_FILENO, true);
477 }
478
479 return STDIN_FILENO;
480 }
481
482 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
483
484 switch (i) {
485
486 case EXEC_INPUT_NULL:
487 return open_null_as(O_RDONLY, STDIN_FILENO);
488
489 case EXEC_INPUT_TTY:
490 case EXEC_INPUT_TTY_FORCE:
491 case EXEC_INPUT_TTY_FAIL: {
492 int fd;
493
494 fd = acquire_terminal(exec_context_tty_path(context),
495 i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
496 i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
497 ACQUIRE_TERMINAL_WAIT,
498 USEC_INFINITY);
499 if (fd < 0)
500 return fd;
501
502 return move_fd(fd, STDIN_FILENO, false);
503 }
504
505 case EXEC_INPUT_SOCKET:
506 assert(socket_fd >= 0);
507
508 return dup2(socket_fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
509
510 case EXEC_INPUT_NAMED_FD:
511 assert(named_iofds[STDIN_FILENO] >= 0);
512
513 (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
514 return dup2(named_iofds[STDIN_FILENO], STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
515
516 case EXEC_INPUT_DATA: {
517 int fd;
518
519 fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
520 if (fd < 0)
521 return fd;
522
523 return move_fd(fd, STDIN_FILENO, false);
524 }
525
526 case EXEC_INPUT_FILE: {
527 bool rw;
528 int fd;
529
530 assert(context->stdio_file[STDIN_FILENO]);
531
532 rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
533 (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
534
535 fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
536 if (fd < 0)
537 return fd;
538
539 return move_fd(fd, STDIN_FILENO, false);
540 }
541
542 default:
543 assert_not_reached("Unknown input type");
544 }
545 }
546
547 static bool can_inherit_stderr_from_stdout(
548 const ExecContext *context,
549 ExecOutput o,
550 ExecOutput e) {
551
552 assert(context);
553
554 /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
555 * stderr fd */
556
557 if (e == EXEC_OUTPUT_INHERIT)
558 return true;
559 if (e != o)
560 return false;
561
562 if (e == EXEC_OUTPUT_NAMED_FD)
563 return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
564
565 if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND))
566 return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
567
568 return true;
569 }
570
571 static int setup_output(
572 const Unit *unit,
573 const ExecContext *context,
574 const ExecParameters *params,
575 int fileno,
576 int socket_fd,
577 const int named_iofds[static 3],
578 const char *ident,
579 uid_t uid,
580 gid_t gid,
581 dev_t *journal_stream_dev,
582 ino_t *journal_stream_ino) {
583
584 ExecOutput o;
585 ExecInput i;
586 int r;
587
588 assert(unit);
589 assert(context);
590 assert(params);
591 assert(ident);
592 assert(journal_stream_dev);
593 assert(journal_stream_ino);
594
595 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
596
597 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
598 return -errno;
599
600 return STDOUT_FILENO;
601 }
602
603 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
604 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
605 return -errno;
606
607 return STDERR_FILENO;
608 }
609
610 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
611 o = fixup_output(context->std_output, socket_fd);
612
613 if (fileno == STDERR_FILENO) {
614 ExecOutput e;
615 e = fixup_output(context->std_error, socket_fd);
616
617 /* This expects the input and output are already set up */
618
619 /* Don't change the stderr file descriptor if we inherit all
620 * the way and are not on a tty */
621 if (e == EXEC_OUTPUT_INHERIT &&
622 o == EXEC_OUTPUT_INHERIT &&
623 i == EXEC_INPUT_NULL &&
624 !is_terminal_input(context->std_input) &&
625 getppid () != 1)
626 return fileno;
627
628 /* Duplicate from stdout if possible */
629 if (can_inherit_stderr_from_stdout(context, o, e))
630 return dup2(STDOUT_FILENO, fileno) < 0 ? -errno : fileno;
631
632 o = e;
633
634 } else if (o == EXEC_OUTPUT_INHERIT) {
635 /* If input got downgraded, inherit the original value */
636 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
637 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
638
639 /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
640 if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
641 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
642
643 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
644 if (getppid() != 1)
645 return fileno;
646
647 /* We need to open /dev/null here anew, to get the right access mode. */
648 return open_null_as(O_WRONLY, fileno);
649 }
650
651 switch (o) {
652
653 case EXEC_OUTPUT_NULL:
654 return open_null_as(O_WRONLY, fileno);
655
656 case EXEC_OUTPUT_TTY:
657 if (is_terminal_input(i))
658 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
659
660 /* We don't reset the terminal if this is just about output */
661 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
662
663 case EXEC_OUTPUT_KMSG:
664 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
665 case EXEC_OUTPUT_JOURNAL:
666 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
667 r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
668 if (r < 0) {
669 log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m", fileno == STDOUT_FILENO ? "stdout" : "stderr");
670 r = open_null_as(O_WRONLY, fileno);
671 } else {
672 struct stat st;
673
674 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
675 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
676 * services to detect whether they are connected to the journal or not.
677 *
678 * If both stdout and stderr are connected to a stream then let's make sure to store the data
679 * about STDERR as that's usually the best way to do logging. */
680
681 if (fstat(fileno, &st) >= 0 &&
682 (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
683 *journal_stream_dev = st.st_dev;
684 *journal_stream_ino = st.st_ino;
685 }
686 }
687 return r;
688
689 case EXEC_OUTPUT_SOCKET:
690 assert(socket_fd >= 0);
691
692 return dup2(socket_fd, fileno) < 0 ? -errno : fileno;
693
694 case EXEC_OUTPUT_NAMED_FD:
695 assert(named_iofds[fileno] >= 0);
696
697 (void) fd_nonblock(named_iofds[fileno], false);
698 return dup2(named_iofds[fileno], fileno) < 0 ? -errno : fileno;
699
700 case EXEC_OUTPUT_FILE:
701 case EXEC_OUTPUT_FILE_APPEND: {
702 bool rw;
703 int fd, flags;
704
705 assert(context->stdio_file[fileno]);
706
707 rw = context->std_input == EXEC_INPUT_FILE &&
708 streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
709
710 if (rw)
711 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
712
713 flags = O_WRONLY;
714 if (o == EXEC_OUTPUT_FILE_APPEND)
715 flags |= O_APPEND;
716
717 fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
718 if (fd < 0)
719 return fd;
720
721 return move_fd(fd, fileno, 0);
722 }
723
724 default:
725 assert_not_reached("Unknown error type");
726 }
727 }
728
729 static int chown_terminal(int fd, uid_t uid) {
730 int r;
731
732 assert(fd >= 0);
733
734 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
735 if (isatty(fd) < 1) {
736 if (IN_SET(errno, EINVAL, ENOTTY))
737 return 0; /* not a tty */
738
739 return -errno;
740 }
741
742 /* This might fail. What matters are the results. */
743 r = fchmod_and_chown(fd, TTY_MODE, uid, -1);
744 if (r < 0)
745 return r;
746
747 return 1;
748 }
749
750 static int setup_confirm_stdio(const char *vc, int *_saved_stdin, int *_saved_stdout) {
751 _cleanup_close_ int fd = -1, saved_stdin = -1, saved_stdout = -1;
752 int r;
753
754 assert(_saved_stdin);
755 assert(_saved_stdout);
756
757 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
758 if (saved_stdin < 0)
759 return -errno;
760
761 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
762 if (saved_stdout < 0)
763 return -errno;
764
765 fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
766 if (fd < 0)
767 return fd;
768
769 r = chown_terminal(fd, getuid());
770 if (r < 0)
771 return r;
772
773 r = reset_terminal_fd(fd, true);
774 if (r < 0)
775 return r;
776
777 r = rearrange_stdio(fd, fd, STDERR_FILENO);
778 fd = -1;
779 if (r < 0)
780 return r;
781
782 *_saved_stdin = saved_stdin;
783 *_saved_stdout = saved_stdout;
784
785 saved_stdin = saved_stdout = -1;
786
787 return 0;
788 }
789
790 static void write_confirm_error_fd(int err, int fd, const Unit *u) {
791 assert(err < 0);
792
793 if (err == -ETIMEDOUT)
794 dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
795 else {
796 errno = -err;
797 dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
798 }
799 }
800
801 static void write_confirm_error(int err, const char *vc, const Unit *u) {
802 _cleanup_close_ int fd = -1;
803
804 assert(vc);
805
806 fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
807 if (fd < 0)
808 return;
809
810 write_confirm_error_fd(err, fd, u);
811 }
812
813 static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
814 int r = 0;
815
816 assert(saved_stdin);
817 assert(saved_stdout);
818
819 release_terminal();
820
821 if (*saved_stdin >= 0)
822 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
823 r = -errno;
824
825 if (*saved_stdout >= 0)
826 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
827 r = -errno;
828
829 *saved_stdin = safe_close(*saved_stdin);
830 *saved_stdout = safe_close(*saved_stdout);
831
832 return r;
833 }
834
835 enum {
836 CONFIRM_PRETEND_FAILURE = -1,
837 CONFIRM_PRETEND_SUCCESS = 0,
838 CONFIRM_EXECUTE = 1,
839 };
840
841 static int ask_for_confirmation(const char *vc, Unit *u, const char *cmdline) {
842 int saved_stdout = -1, saved_stdin = -1, r;
843 _cleanup_free_ char *e = NULL;
844 char c;
845
846 /* For any internal errors, assume a positive response. */
847 r = setup_confirm_stdio(vc, &saved_stdin, &saved_stdout);
848 if (r < 0) {
849 write_confirm_error(r, vc, u);
850 return CONFIRM_EXECUTE;
851 }
852
853 /* confirm_spawn might have been disabled while we were sleeping. */
854 if (manager_is_confirm_spawn_disabled(u->manager)) {
855 r = 1;
856 goto restore_stdio;
857 }
858
859 e = ellipsize(cmdline, 60, 100);
860 if (!e) {
861 log_oom();
862 r = CONFIRM_EXECUTE;
863 goto restore_stdio;
864 }
865
866 for (;;) {
867 r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
868 if (r < 0) {
869 write_confirm_error_fd(r, STDOUT_FILENO, u);
870 r = CONFIRM_EXECUTE;
871 goto restore_stdio;
872 }
873
874 switch (c) {
875 case 'c':
876 printf("Resuming normal execution.\n");
877 manager_disable_confirm_spawn();
878 r = 1;
879 break;
880 case 'D':
881 unit_dump(u, stdout, " ");
882 continue; /* ask again */
883 case 'f':
884 printf("Failing execution.\n");
885 r = CONFIRM_PRETEND_FAILURE;
886 break;
887 case 'h':
888 printf(" c - continue, proceed without asking anymore\n"
889 " D - dump, show the state of the unit\n"
890 " f - fail, don't execute the command and pretend it failed\n"
891 " h - help\n"
892 " i - info, show a short summary of the unit\n"
893 " j - jobs, show jobs that are in progress\n"
894 " s - skip, don't execute the command and pretend it succeeded\n"
895 " y - yes, execute the command\n");
896 continue; /* ask again */
897 case 'i':
898 printf(" Description: %s\n"
899 " Unit: %s\n"
900 " Command: %s\n",
901 u->id, u->description, cmdline);
902 continue; /* ask again */
903 case 'j':
904 manager_dump_jobs(u->manager, stdout, " ");
905 continue; /* ask again */
906 case 'n':
907 /* 'n' was removed in favor of 'f'. */
908 printf("Didn't understand 'n', did you mean 'f'?\n");
909 continue; /* ask again */
910 case 's':
911 printf("Skipping execution.\n");
912 r = CONFIRM_PRETEND_SUCCESS;
913 break;
914 case 'y':
915 r = CONFIRM_EXECUTE;
916 break;
917 default:
918 assert_not_reached("Unhandled choice");
919 }
920 break;
921 }
922
923 restore_stdio:
924 restore_confirm_stdio(&saved_stdin, &saved_stdout);
925 return r;
926 }
927
928 static int get_fixed_user(const ExecContext *c, const char **user,
929 uid_t *uid, gid_t *gid,
930 const char **home, const char **shell) {
931 int r;
932 const char *name;
933
934 assert(c);
935
936 if (!c->user)
937 return 0;
938
939 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
940 * (i.e. are "/" or "/bin/nologin"). */
941
942 name = c->user;
943 r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
944 if (r < 0)
945 return r;
946
947 *user = name;
948 return 0;
949 }
950
951 static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
952 int r;
953 const char *name;
954
955 assert(c);
956
957 if (!c->group)
958 return 0;
959
960 name = c->group;
961 r = get_group_creds(&name, gid, 0);
962 if (r < 0)
963 return r;
964
965 *group = name;
966 return 0;
967 }
968
969 static int get_supplementary_groups(const ExecContext *c, const char *user,
970 const char *group, gid_t gid,
971 gid_t **supplementary_gids, int *ngids) {
972 char **i;
973 int r, k = 0;
974 int ngroups_max;
975 bool keep_groups = false;
976 gid_t *groups = NULL;
977 _cleanup_free_ gid_t *l_gids = NULL;
978
979 assert(c);
980
981 /*
982 * If user is given, then lookup GID and supplementary groups list.
983 * We avoid NSS lookups for gid=0. Also we have to initialize groups
984 * here and as early as possible so we keep the list of supplementary
985 * groups of the caller.
986 */
987 if (user && gid_is_valid(gid) && gid != 0) {
988 /* First step, initialize groups from /etc/groups */
989 if (initgroups(user, gid) < 0)
990 return -errno;
991
992 keep_groups = true;
993 }
994
995 if (strv_isempty(c->supplementary_groups))
996 return 0;
997
998 /*
999 * If SupplementaryGroups= was passed then NGROUPS_MAX has to
1000 * be positive, otherwise fail.
1001 */
1002 errno = 0;
1003 ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1004 if (ngroups_max <= 0)
1005 return errno_or_else(EOPNOTSUPP);
1006
1007 l_gids = new(gid_t, ngroups_max);
1008 if (!l_gids)
1009 return -ENOMEM;
1010
1011 if (keep_groups) {
1012 /*
1013 * Lookup the list of groups that the user belongs to, we
1014 * avoid NSS lookups here too for gid=0.
1015 */
1016 k = ngroups_max;
1017 if (getgrouplist(user, gid, l_gids, &k) < 0)
1018 return -EINVAL;
1019 } else
1020 k = 0;
1021
1022 STRV_FOREACH(i, c->supplementary_groups) {
1023 const char *g;
1024
1025 if (k >= ngroups_max)
1026 return -E2BIG;
1027
1028 g = *i;
1029 r = get_group_creds(&g, l_gids+k, 0);
1030 if (r < 0)
1031 return r;
1032
1033 k++;
1034 }
1035
1036 /*
1037 * Sets ngids to zero to drop all supplementary groups, happens
1038 * when we are under root and SupplementaryGroups= is empty.
1039 */
1040 if (k == 0) {
1041 *ngids = 0;
1042 return 0;
1043 }
1044
1045 /* Otherwise get the final list of supplementary groups */
1046 groups = memdup(l_gids, sizeof(gid_t) * k);
1047 if (!groups)
1048 return -ENOMEM;
1049
1050 *supplementary_gids = groups;
1051 *ngids = k;
1052
1053 groups = NULL;
1054
1055 return 0;
1056 }
1057
1058 static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1059 int r;
1060
1061 /* Handle SupplementaryGroups= if it is not empty */
1062 if (ngids > 0) {
1063 r = maybe_setgroups(ngids, supplementary_gids);
1064 if (r < 0)
1065 return r;
1066 }
1067
1068 if (gid_is_valid(gid)) {
1069 /* Then set our gids */
1070 if (setresgid(gid, gid, gid) < 0)
1071 return -errno;
1072 }
1073
1074 return 0;
1075 }
1076
1077 static int set_securebits(int bits, int mask) {
1078 int current, applied;
1079 current = prctl(PR_GET_SECUREBITS);
1080 if (current < 0)
1081 return -errno;
1082 /* Clear all securebits defined in mask and set bits */
1083 applied = (current & ~mask) | bits;
1084 if (current == applied)
1085 return 0;
1086 if (prctl(PR_SET_SECUREBITS, applied) < 0)
1087 return -errno;
1088 return 1;
1089 }
1090
1091 static int enforce_user(const ExecContext *context, uid_t uid) {
1092 assert(context);
1093 int r;
1094
1095 if (!uid_is_valid(uid))
1096 return 0;
1097
1098 /* Sets (but doesn't look up) the uid and make sure we keep the
1099 * capabilities while doing so. For setting secure bits the capability CAP_SETPCAP is
1100 * required, so we also need keep-caps in this case.
1101 */
1102
1103 if (context->capability_ambient_set != 0 || context->secure_bits != 0) {
1104
1105 /* First step: If we need to keep capabilities but
1106 * drop privileges we need to make sure we keep our
1107 * caps, while we drop privileges. */
1108 if (uid != 0) {
1109 /* Add KEEP_CAPS to the securebits */
1110 r = set_securebits(1<<SECURE_KEEP_CAPS, 0);
1111 if (r < 0)
1112 return r;
1113 }
1114 }
1115
1116 /* Second step: actually set the uids */
1117 if (setresuid(uid, uid, uid) < 0)
1118 return -errno;
1119
1120 /* At this point we should have all necessary capabilities but
1121 are otherwise a normal user. However, the caps might got
1122 corrupted due to the setresuid() so we need clean them up
1123 later. This is done outside of this call. */
1124
1125 return 0;
1126 }
1127
1128 #if HAVE_PAM
1129
1130 static int null_conv(
1131 int num_msg,
1132 const struct pam_message **msg,
1133 struct pam_response **resp,
1134 void *appdata_ptr) {
1135
1136 /* We don't support conversations */
1137
1138 return PAM_CONV_ERR;
1139 }
1140
1141 #endif
1142
1143 static int setup_pam(
1144 const char *name,
1145 const char *user,
1146 uid_t uid,
1147 gid_t gid,
1148 const char *tty,
1149 char ***env,
1150 const int fds[], size_t n_fds) {
1151
1152 #if HAVE_PAM
1153
1154 static const struct pam_conv conv = {
1155 .conv = null_conv,
1156 .appdata_ptr = NULL
1157 };
1158
1159 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1160 pam_handle_t *handle = NULL;
1161 sigset_t old_ss;
1162 int pam_code = PAM_SUCCESS, r;
1163 char **nv, **e = NULL;
1164 bool close_session = false;
1165 pid_t pam_pid = 0, parent_pid;
1166 int flags = 0;
1167
1168 assert(name);
1169 assert(user);
1170 assert(env);
1171
1172 /* We set up PAM in the parent process, then fork. The child
1173 * will then stay around until killed via PR_GET_PDEATHSIG or
1174 * systemd via the cgroup logic. It will then remove the PAM
1175 * session again. The parent process will exec() the actual
1176 * daemon. We do things this way to ensure that the main PID
1177 * of the daemon is the one we initially fork()ed. */
1178
1179 r = barrier_create(&barrier);
1180 if (r < 0)
1181 goto fail;
1182
1183 if (log_get_max_level() < LOG_DEBUG)
1184 flags |= PAM_SILENT;
1185
1186 pam_code = pam_start(name, user, &conv, &handle);
1187 if (pam_code != PAM_SUCCESS) {
1188 handle = NULL;
1189 goto fail;
1190 }
1191
1192 if (!tty) {
1193 _cleanup_free_ char *q = NULL;
1194
1195 /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1196 * out if that's the case, and read the TTY off it. */
1197
1198 if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1199 tty = strjoina("/dev/", q);
1200 }
1201
1202 if (tty) {
1203 pam_code = pam_set_item(handle, PAM_TTY, tty);
1204 if (pam_code != PAM_SUCCESS)
1205 goto fail;
1206 }
1207
1208 STRV_FOREACH(nv, *env) {
1209 pam_code = pam_putenv(handle, *nv);
1210 if (pam_code != PAM_SUCCESS)
1211 goto fail;
1212 }
1213
1214 pam_code = pam_acct_mgmt(handle, flags);
1215 if (pam_code != PAM_SUCCESS)
1216 goto fail;
1217
1218 pam_code = pam_setcred(handle, PAM_ESTABLISH_CRED | flags);
1219 if (pam_code != PAM_SUCCESS)
1220 log_debug("pam_setcred() failed, ignoring: %s", pam_strerror(handle, pam_code));
1221
1222 pam_code = pam_open_session(handle, flags);
1223 if (pam_code != PAM_SUCCESS)
1224 goto fail;
1225
1226 close_session = true;
1227
1228 e = pam_getenvlist(handle);
1229 if (!e) {
1230 pam_code = PAM_BUF_ERR;
1231 goto fail;
1232 }
1233
1234 /* Block SIGTERM, so that we know that it won't get lost in
1235 * the child */
1236
1237 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1238
1239 parent_pid = getpid_cached();
1240
1241 r = safe_fork("(sd-pam)", 0, &pam_pid);
1242 if (r < 0)
1243 goto fail;
1244 if (r == 0) {
1245 int sig, ret = EXIT_PAM;
1246
1247 /* The child's job is to reset the PAM session on
1248 * termination */
1249 barrier_set_role(&barrier, BARRIER_CHILD);
1250
1251 /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only those fds
1252 * are open here that have been opened by PAM. */
1253 (void) close_many(fds, n_fds);
1254
1255 /* Drop privileges - we don't need any to pam_close_session
1256 * and this will make PR_SET_PDEATHSIG work in most cases.
1257 * If this fails, ignore the error - but expect sd-pam threads
1258 * to fail to exit normally */
1259
1260 r = maybe_setgroups(0, NULL);
1261 if (r < 0)
1262 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1263 if (setresgid(gid, gid, gid) < 0)
1264 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1265 if (setresuid(uid, uid, uid) < 0)
1266 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1267
1268 (void) ignore_signals(SIGPIPE, -1);
1269
1270 /* Wait until our parent died. This will only work if
1271 * the above setresuid() succeeds, otherwise the kernel
1272 * will not allow unprivileged parents kill their privileged
1273 * children this way. We rely on the control groups kill logic
1274 * to do the rest for us. */
1275 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1276 goto child_finish;
1277
1278 /* Tell the parent that our setup is done. This is especially
1279 * important regarding dropping privileges. Otherwise, unit
1280 * setup might race against our setresuid(2) call.
1281 *
1282 * If the parent aborted, we'll detect this below, hence ignore
1283 * return failure here. */
1284 (void) barrier_place(&barrier);
1285
1286 /* Check if our parent process might already have died? */
1287 if (getppid() == parent_pid) {
1288 sigset_t ss;
1289
1290 assert_se(sigemptyset(&ss) >= 0);
1291 assert_se(sigaddset(&ss, SIGTERM) >= 0);
1292
1293 for (;;) {
1294 if (sigwait(&ss, &sig) < 0) {
1295 if (errno == EINTR)
1296 continue;
1297
1298 goto child_finish;
1299 }
1300
1301 assert(sig == SIGTERM);
1302 break;
1303 }
1304 }
1305
1306 pam_code = pam_setcred(handle, PAM_DELETE_CRED | flags);
1307 if (pam_code != PAM_SUCCESS)
1308 goto child_finish;
1309
1310 /* If our parent died we'll end the session */
1311 if (getppid() != parent_pid) {
1312 pam_code = pam_close_session(handle, flags);
1313 if (pam_code != PAM_SUCCESS)
1314 goto child_finish;
1315 }
1316
1317 ret = 0;
1318
1319 child_finish:
1320 pam_end(handle, pam_code | flags);
1321 _exit(ret);
1322 }
1323
1324 barrier_set_role(&barrier, BARRIER_PARENT);
1325
1326 /* If the child was forked off successfully it will do all the
1327 * cleanups, so forget about the handle here. */
1328 handle = NULL;
1329
1330 /* Unblock SIGTERM again in the parent */
1331 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1332
1333 /* We close the log explicitly here, since the PAM modules
1334 * might have opened it, but we don't want this fd around. */
1335 closelog();
1336
1337 /* Synchronously wait for the child to initialize. We don't care for
1338 * errors as we cannot recover. However, warn loudly if it happens. */
1339 if (!barrier_place_and_sync(&barrier))
1340 log_error("PAM initialization failed");
1341
1342 return strv_free_and_replace(*env, e);
1343
1344 fail:
1345 if (pam_code != PAM_SUCCESS) {
1346 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1347 r = -EPERM; /* PAM errors do not map to errno */
1348 } else
1349 log_error_errno(r, "PAM failed: %m");
1350
1351 if (handle) {
1352 if (close_session)
1353 pam_code = pam_close_session(handle, flags);
1354
1355 pam_end(handle, pam_code | flags);
1356 }
1357
1358 strv_free(e);
1359 closelog();
1360
1361 return r;
1362 #else
1363 return 0;
1364 #endif
1365 }
1366
1367 static void rename_process_from_path(const char *path) {
1368 char process_name[11];
1369 const char *p;
1370 size_t l;
1371
1372 /* This resulting string must fit in 10 chars (i.e. the length
1373 * of "/sbin/init") to look pretty in /bin/ps */
1374
1375 p = basename(path);
1376 if (isempty(p)) {
1377 rename_process("(...)");
1378 return;
1379 }
1380
1381 l = strlen(p);
1382 if (l > 8) {
1383 /* The end of the process name is usually more
1384 * interesting, since the first bit might just be
1385 * "systemd-" */
1386 p = p + l - 8;
1387 l = 8;
1388 }
1389
1390 process_name[0] = '(';
1391 memcpy(process_name+1, p, l);
1392 process_name[1+l] = ')';
1393 process_name[1+l+1] = 0;
1394
1395 rename_process(process_name);
1396 }
1397
1398 static bool context_has_address_families(const ExecContext *c) {
1399 assert(c);
1400
1401 return c->address_families_allow_list ||
1402 !set_isempty(c->address_families);
1403 }
1404
1405 static bool context_has_syscall_filters(const ExecContext *c) {
1406 assert(c);
1407
1408 return c->syscall_allow_list ||
1409 !hashmap_isempty(c->syscall_filter);
1410 }
1411
1412 static bool context_has_syscall_logs(const ExecContext *c) {
1413 assert(c);
1414
1415 return c->syscall_log_allow_list ||
1416 !hashmap_isempty(c->syscall_log);
1417 }
1418
1419 static bool context_has_no_new_privileges(const ExecContext *c) {
1420 assert(c);
1421
1422 if (c->no_new_privileges)
1423 return true;
1424
1425 if (have_effective_cap(CAP_SYS_ADMIN)) /* if we are privileged, we don't need NNP */
1426 return false;
1427
1428 /* We need NNP if we have any form of seccomp and are unprivileged */
1429 return context_has_address_families(c) ||
1430 c->memory_deny_write_execute ||
1431 c->restrict_realtime ||
1432 c->restrict_suid_sgid ||
1433 exec_context_restrict_namespaces_set(c) ||
1434 c->protect_clock ||
1435 c->protect_kernel_tunables ||
1436 c->protect_kernel_modules ||
1437 c->protect_kernel_logs ||
1438 c->private_devices ||
1439 context_has_syscall_filters(c) ||
1440 context_has_syscall_logs(c) ||
1441 !set_isempty(c->syscall_archs) ||
1442 c->lock_personality ||
1443 c->protect_hostname;
1444 }
1445
1446 static bool exec_context_has_credentials(const ExecContext *context) {
1447
1448 assert(context);
1449
1450 return !hashmap_isempty(context->set_credentials) ||
1451 context->load_credentials;
1452 }
1453
1454 #if HAVE_SECCOMP
1455
1456 static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1457
1458 if (is_seccomp_available())
1459 return false;
1460
1461 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1462 return true;
1463 }
1464
1465 static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1466 uint32_t negative_action, default_action, action;
1467 int r;
1468
1469 assert(u);
1470 assert(c);
1471
1472 if (!context_has_syscall_filters(c))
1473 return 0;
1474
1475 if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1476 return 0;
1477
1478 negative_action = c->syscall_errno == SECCOMP_ERROR_NUMBER_KILL ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno);
1479
1480 if (c->syscall_allow_list) {
1481 default_action = negative_action;
1482 action = SCMP_ACT_ALLOW;
1483 } else {
1484 default_action = SCMP_ACT_ALLOW;
1485 action = negative_action;
1486 }
1487
1488 if (needs_ambient_hack) {
1489 r = seccomp_filter_set_add(c->syscall_filter, c->syscall_allow_list, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1490 if (r < 0)
1491 return r;
1492 }
1493
1494 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1495 }
1496
1497 static int apply_syscall_log(const Unit* u, const ExecContext *c) {
1498 #ifdef SCMP_ACT_LOG
1499 uint32_t default_action, action;
1500 #endif
1501
1502 assert(u);
1503 assert(c);
1504
1505 if (!context_has_syscall_logs(c))
1506 return 0;
1507
1508 #ifdef SCMP_ACT_LOG
1509 if (skip_seccomp_unavailable(u, "SystemCallLog="))
1510 return 0;
1511
1512 if (c->syscall_log_allow_list) {
1513 /* Log nothing but the ones listed */
1514 default_action = SCMP_ACT_ALLOW;
1515 action = SCMP_ACT_LOG;
1516 } else {
1517 /* Log everything but the ones listed */
1518 default_action = SCMP_ACT_LOG;
1519 action = SCMP_ACT_ALLOW;
1520 }
1521
1522 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_log, action, false);
1523 #else
1524 /* old libseccomp */
1525 log_unit_debug(u, "SECCOMP feature SCMP_ACT_LOG not available, skipping SystemCallLog=");
1526 return 0;
1527 #endif
1528 }
1529
1530 static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1531 assert(u);
1532 assert(c);
1533
1534 if (set_isempty(c->syscall_archs))
1535 return 0;
1536
1537 if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1538 return 0;
1539
1540 return seccomp_restrict_archs(c->syscall_archs);
1541 }
1542
1543 static int apply_address_families(const Unit* u, const ExecContext *c) {
1544 assert(u);
1545 assert(c);
1546
1547 if (!context_has_address_families(c))
1548 return 0;
1549
1550 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1551 return 0;
1552
1553 return seccomp_restrict_address_families(c->address_families, c->address_families_allow_list);
1554 }
1555
1556 static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1557 assert(u);
1558 assert(c);
1559
1560 if (!c->memory_deny_write_execute)
1561 return 0;
1562
1563 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1564 return 0;
1565
1566 return seccomp_memory_deny_write_execute();
1567 }
1568
1569 static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1570 assert(u);
1571 assert(c);
1572
1573 if (!c->restrict_realtime)
1574 return 0;
1575
1576 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1577 return 0;
1578
1579 return seccomp_restrict_realtime();
1580 }
1581
1582 static int apply_restrict_suid_sgid(const Unit* u, const ExecContext *c) {
1583 assert(u);
1584 assert(c);
1585
1586 if (!c->restrict_suid_sgid)
1587 return 0;
1588
1589 if (skip_seccomp_unavailable(u, "RestrictSUIDSGID="))
1590 return 0;
1591
1592 return seccomp_restrict_suid_sgid();
1593 }
1594
1595 static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1596 assert(u);
1597 assert(c);
1598
1599 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1600 * let's protect even those systems where this is left on in the kernel. */
1601
1602 if (!c->protect_kernel_tunables)
1603 return 0;
1604
1605 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1606 return 0;
1607
1608 return seccomp_protect_sysctl();
1609 }
1610
1611 static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1612 assert(u);
1613 assert(c);
1614
1615 /* Turn off module syscalls on ProtectKernelModules=yes */
1616
1617 if (!c->protect_kernel_modules)
1618 return 0;
1619
1620 if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1621 return 0;
1622
1623 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1624 }
1625
1626 static int apply_protect_kernel_logs(const Unit *u, const ExecContext *c) {
1627 assert(u);
1628 assert(c);
1629
1630 if (!c->protect_kernel_logs)
1631 return 0;
1632
1633 if (skip_seccomp_unavailable(u, "ProtectKernelLogs="))
1634 return 0;
1635
1636 return seccomp_protect_syslog();
1637 }
1638
1639 static int apply_protect_clock(const Unit *u, const ExecContext *c) {
1640 assert(u);
1641 assert(c);
1642
1643 if (!c->protect_clock)
1644 return 0;
1645
1646 if (skip_seccomp_unavailable(u, "ProtectClock="))
1647 return 0;
1648
1649 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_CLOCK, SCMP_ACT_ERRNO(EPERM), false);
1650 }
1651
1652 static int apply_private_devices(const Unit *u, const ExecContext *c) {
1653 assert(u);
1654 assert(c);
1655
1656 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1657
1658 if (!c->private_devices)
1659 return 0;
1660
1661 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1662 return 0;
1663
1664 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1665 }
1666
1667 static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1668 assert(u);
1669 assert(c);
1670
1671 if (!exec_context_restrict_namespaces_set(c))
1672 return 0;
1673
1674 if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1675 return 0;
1676
1677 return seccomp_restrict_namespaces(c->restrict_namespaces);
1678 }
1679
1680 static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1681 unsigned long personality;
1682 int r;
1683
1684 assert(u);
1685 assert(c);
1686
1687 if (!c->lock_personality)
1688 return 0;
1689
1690 if (skip_seccomp_unavailable(u, "LockPersonality="))
1691 return 0;
1692
1693 personality = c->personality;
1694
1695 /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1696 if (personality == PERSONALITY_INVALID) {
1697
1698 r = opinionated_personality(&personality);
1699 if (r < 0)
1700 return r;
1701 }
1702
1703 return seccomp_lock_personality(personality);
1704 }
1705
1706 #endif
1707
1708 static int apply_protect_hostname(const Unit *u, const ExecContext *c, int *ret_exit_status) {
1709 assert(u);
1710 assert(c);
1711
1712 if (!c->protect_hostname)
1713 return 0;
1714
1715 if (ns_type_supported(NAMESPACE_UTS)) {
1716 if (unshare(CLONE_NEWUTS) < 0) {
1717 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno)) {
1718 *ret_exit_status = EXIT_NAMESPACE;
1719 return log_unit_error_errno(u, errno, "Failed to set up UTS namespacing: %m");
1720 }
1721
1722 log_unit_warning(u, "ProtectHostname=yes is configured, but UTS namespace setup is prohibited (container manager?), ignoring namespace setup.");
1723 }
1724 } else
1725 log_unit_warning(u, "ProtectHostname=yes is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.");
1726
1727 #if HAVE_SECCOMP
1728 int r;
1729
1730 if (skip_seccomp_unavailable(u, "ProtectHostname="))
1731 return 0;
1732
1733 r = seccomp_protect_hostname();
1734 if (r < 0) {
1735 *ret_exit_status = EXIT_SECCOMP;
1736 return log_unit_error_errno(u, r, "Failed to apply hostname restrictions: %m");
1737 }
1738 #endif
1739
1740 return 0;
1741 }
1742
1743 static void do_idle_pipe_dance(int idle_pipe[static 4]) {
1744 assert(idle_pipe);
1745
1746 idle_pipe[1] = safe_close(idle_pipe[1]);
1747 idle_pipe[2] = safe_close(idle_pipe[2]);
1748
1749 if (idle_pipe[0] >= 0) {
1750 int r;
1751
1752 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1753
1754 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1755 ssize_t n;
1756
1757 /* Signal systemd that we are bored and want to continue. */
1758 n = write(idle_pipe[3], "x", 1);
1759 if (n > 0)
1760 /* Wait for systemd to react to the signal above. */
1761 (void) fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1762 }
1763
1764 idle_pipe[0] = safe_close(idle_pipe[0]);
1765
1766 }
1767
1768 idle_pipe[3] = safe_close(idle_pipe[3]);
1769 }
1770
1771 static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1772
1773 static int build_environment(
1774 const Unit *u,
1775 const ExecContext *c,
1776 const ExecParameters *p,
1777 size_t n_fds,
1778 const char *home,
1779 const char *username,
1780 const char *shell,
1781 dev_t journal_stream_dev,
1782 ino_t journal_stream_ino,
1783 char ***ret) {
1784
1785 _cleanup_strv_free_ char **our_env = NULL;
1786 size_t n_env = 0;
1787 char *x;
1788
1789 assert(u);
1790 assert(c);
1791 assert(p);
1792 assert(ret);
1793
1794 #define N_ENV_VARS 16
1795 our_env = new0(char*, N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1796 if (!our_env)
1797 return -ENOMEM;
1798
1799 if (n_fds > 0) {
1800 _cleanup_free_ char *joined = NULL;
1801
1802 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1803 return -ENOMEM;
1804 our_env[n_env++] = x;
1805
1806 if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1807 return -ENOMEM;
1808 our_env[n_env++] = x;
1809
1810 joined = strv_join(p->fd_names, ":");
1811 if (!joined)
1812 return -ENOMEM;
1813
1814 x = strjoin("LISTEN_FDNAMES=", joined);
1815 if (!x)
1816 return -ENOMEM;
1817 our_env[n_env++] = x;
1818 }
1819
1820 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1821 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1822 return -ENOMEM;
1823 our_env[n_env++] = x;
1824
1825 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1826 return -ENOMEM;
1827 our_env[n_env++] = x;
1828 }
1829
1830 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use D-Bus look up dynamic
1831 * users via PID 1, possibly dead-locking the dbus daemon. This way it will not use D-Bus to resolve names, but
1832 * check the database directly. */
1833 if (p->flags & EXEC_NSS_BYPASS_BUS) {
1834 x = strdup("SYSTEMD_NSS_BYPASS_BUS=1");
1835 if (!x)
1836 return -ENOMEM;
1837 our_env[n_env++] = x;
1838 }
1839
1840 if (home) {
1841 x = strjoin("HOME=", home);
1842 if (!x)
1843 return -ENOMEM;
1844
1845 path_simplify(x + 5, true);
1846 our_env[n_env++] = x;
1847 }
1848
1849 if (username) {
1850 x = strjoin("LOGNAME=", username);
1851 if (!x)
1852 return -ENOMEM;
1853 our_env[n_env++] = x;
1854
1855 x = strjoin("USER=", username);
1856 if (!x)
1857 return -ENOMEM;
1858 our_env[n_env++] = x;
1859 }
1860
1861 if (shell) {
1862 x = strjoin("SHELL=", shell);
1863 if (!x)
1864 return -ENOMEM;
1865
1866 path_simplify(x + 6, true);
1867 our_env[n_env++] = x;
1868 }
1869
1870 if (!sd_id128_is_null(u->invocation_id)) {
1871 if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
1872 return -ENOMEM;
1873
1874 our_env[n_env++] = x;
1875 }
1876
1877 if (exec_context_needs_term(c)) {
1878 const char *tty_path, *term = NULL;
1879
1880 tty_path = exec_context_tty_path(c);
1881
1882 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try
1883 * to inherit the $TERM set for PID 1. This is useful for containers so that the $TERM the
1884 * container manager passes to PID 1 ends up all the way in the console login shown. */
1885
1886 if (path_equal_ptr(tty_path, "/dev/console") && getppid() == 1)
1887 term = getenv("TERM");
1888
1889 if (!term)
1890 term = default_term_for_tty(tty_path);
1891
1892 x = strjoin("TERM=", term);
1893 if (!x)
1894 return -ENOMEM;
1895 our_env[n_env++] = x;
1896 }
1897
1898 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
1899 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
1900 return -ENOMEM;
1901
1902 our_env[n_env++] = x;
1903 }
1904
1905 if (c->log_namespace) {
1906 x = strjoin("LOG_NAMESPACE=", c->log_namespace);
1907 if (!x)
1908 return -ENOMEM;
1909
1910 our_env[n_env++] = x;
1911 }
1912
1913 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1914 _cleanup_free_ char *pre = NULL, *joined = NULL;
1915 const char *n;
1916
1917 if (!p->prefix[t])
1918 continue;
1919
1920 if (strv_isempty(c->directories[t].paths))
1921 continue;
1922
1923 n = exec_directory_env_name_to_string(t);
1924 if (!n)
1925 continue;
1926
1927 pre = strjoin(p->prefix[t], "/");
1928 if (!pre)
1929 return -ENOMEM;
1930
1931 joined = strv_join_full(c->directories[t].paths, ":", pre, true);
1932 if (!joined)
1933 return -ENOMEM;
1934
1935 x = strjoin(n, "=", joined);
1936 if (!x)
1937 return -ENOMEM;
1938
1939 our_env[n_env++] = x;
1940 }
1941
1942 if (exec_context_has_credentials(c) && p->prefix[EXEC_DIRECTORY_RUNTIME]) {
1943 x = strjoin("CREDENTIALS_DIRECTORY=", p->prefix[EXEC_DIRECTORY_RUNTIME], "/credentials/", u->id);
1944 if (!x)
1945 return -ENOMEM;
1946
1947 our_env[n_env++] = x;
1948 }
1949
1950 our_env[n_env++] = NULL;
1951 assert(n_env <= N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1952 #undef N_ENV_VARS
1953
1954 *ret = TAKE_PTR(our_env);
1955
1956 return 0;
1957 }
1958
1959 static int build_pass_environment(const ExecContext *c, char ***ret) {
1960 _cleanup_strv_free_ char **pass_env = NULL;
1961 size_t n_env = 0, n_bufsize = 0;
1962 char **i;
1963
1964 STRV_FOREACH(i, c->pass_environment) {
1965 _cleanup_free_ char *x = NULL;
1966 char *v;
1967
1968 v = getenv(*i);
1969 if (!v)
1970 continue;
1971 x = strjoin(*i, "=", v);
1972 if (!x)
1973 return -ENOMEM;
1974
1975 if (!GREEDY_REALLOC(pass_env, n_bufsize, n_env + 2))
1976 return -ENOMEM;
1977
1978 pass_env[n_env++] = TAKE_PTR(x);
1979 pass_env[n_env] = NULL;
1980 }
1981
1982 *ret = TAKE_PTR(pass_env);
1983
1984 return 0;
1985 }
1986
1987 static bool exec_needs_mount_namespace(
1988 const ExecContext *context,
1989 const ExecParameters *params,
1990 const ExecRuntime *runtime) {
1991
1992 assert(context);
1993 assert(params);
1994
1995 if (context->root_image)
1996 return true;
1997
1998 if (!strv_isempty(context->read_write_paths) ||
1999 !strv_isempty(context->read_only_paths) ||
2000 !strv_isempty(context->inaccessible_paths))
2001 return true;
2002
2003 if (context->n_bind_mounts > 0)
2004 return true;
2005
2006 if (context->n_temporary_filesystems > 0)
2007 return true;
2008
2009 if (context->n_mount_images > 0)
2010 return true;
2011
2012 if (!IN_SET(context->mount_flags, 0, MS_SHARED))
2013 return true;
2014
2015 if (context->private_tmp && runtime && (runtime->tmp_dir || runtime->var_tmp_dir))
2016 return true;
2017
2018 if (context->private_devices ||
2019 context->private_mounts ||
2020 context->protect_system != PROTECT_SYSTEM_NO ||
2021 context->protect_home != PROTECT_HOME_NO ||
2022 context->protect_kernel_tunables ||
2023 context->protect_kernel_modules ||
2024 context->protect_kernel_logs ||
2025 context->protect_control_groups ||
2026 context->protect_proc != PROTECT_PROC_DEFAULT ||
2027 context->proc_subset != PROC_SUBSET_ALL)
2028 return true;
2029
2030 if (context->root_directory) {
2031 if (exec_context_get_effective_mount_apivfs(context))
2032 return true;
2033
2034 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2035 if (!params->prefix[t])
2036 continue;
2037
2038 if (!strv_isempty(context->directories[t].paths))
2039 return true;
2040 }
2041 }
2042
2043 if (context->dynamic_user &&
2044 (!strv_isempty(context->directories[EXEC_DIRECTORY_STATE].paths) ||
2045 !strv_isempty(context->directories[EXEC_DIRECTORY_CACHE].paths) ||
2046 !strv_isempty(context->directories[EXEC_DIRECTORY_LOGS].paths)))
2047 return true;
2048
2049 if (context->log_namespace)
2050 return true;
2051
2052 return false;
2053 }
2054
2055 static int setup_private_users(uid_t ouid, gid_t ogid, uid_t uid, gid_t gid) {
2056 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
2057 _cleanup_close_pair_ int errno_pipe[2] = { -1, -1 };
2058 _cleanup_close_ int unshare_ready_fd = -1;
2059 _cleanup_(sigkill_waitp) pid_t pid = 0;
2060 uint64_t c = 1;
2061 ssize_t n;
2062 int r;
2063
2064 /* Set up a user namespace and map the original UID/GID (IDs from before any user or group changes, i.e.
2065 * the IDs from the user or system manager(s)) to itself, the selected UID/GID to itself, and everything else to
2066 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
2067 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
2068 * which waits for the parent to create the new user namespace while staying in the original namespace. The
2069 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
2070 * continues execution normally.
2071 * For unprivileged users (i.e. without capabilities), the root to root mapping is excluded. As such, it
2072 * does not need CAP_SETUID to write the single line mapping to itself. */
2073
2074 /* Can only set up multiple mappings with CAP_SETUID. */
2075 if (have_effective_cap(CAP_SETUID) && uid != ouid && uid_is_valid(uid))
2076 r = asprintf(&uid_map,
2077 UID_FMT " " UID_FMT " 1\n" /* Map $OUID → $OUID */
2078 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
2079 ouid, ouid, uid, uid);
2080 else
2081 r = asprintf(&uid_map,
2082 UID_FMT " " UID_FMT " 1\n", /* Map $OUID → $OUID */
2083 ouid, ouid);
2084
2085 if (r < 0)
2086 return -ENOMEM;
2087
2088 /* Can only set up multiple mappings with CAP_SETGID. */
2089 if (have_effective_cap(CAP_SETGID) && gid != ogid && gid_is_valid(gid))
2090 r = asprintf(&gid_map,
2091 GID_FMT " " GID_FMT " 1\n" /* Map $OGID → $OGID */
2092 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
2093 ogid, ogid, gid, gid);
2094 else
2095 r = asprintf(&gid_map,
2096 GID_FMT " " GID_FMT " 1\n", /* Map $OGID -> $OGID */
2097 ogid, ogid);
2098
2099 if (r < 0)
2100 return -ENOMEM;
2101
2102 /* Create a communication channel so that the parent can tell the child when it finished creating the user
2103 * namespace. */
2104 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
2105 if (unshare_ready_fd < 0)
2106 return -errno;
2107
2108 /* Create a communication channel so that the child can tell the parent a proper error code in case it
2109 * failed. */
2110 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
2111 return -errno;
2112
2113 r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
2114 if (r < 0)
2115 return r;
2116 if (r == 0) {
2117 _cleanup_close_ int fd = -1;
2118 const char *a;
2119 pid_t ppid;
2120
2121 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
2122 * here, after the parent opened its own user namespace. */
2123
2124 ppid = getppid();
2125 errno_pipe[0] = safe_close(errno_pipe[0]);
2126
2127 /* Wait until the parent unshared the user namespace */
2128 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
2129 r = -errno;
2130 goto child_fail;
2131 }
2132
2133 /* Disable the setgroups() system call in the child user namespace, for good. */
2134 a = procfs_file_alloca(ppid, "setgroups");
2135 fd = open(a, O_WRONLY|O_CLOEXEC);
2136 if (fd < 0) {
2137 if (errno != ENOENT) {
2138 r = -errno;
2139 goto child_fail;
2140 }
2141
2142 /* If the file is missing the kernel is too old, let's continue anyway. */
2143 } else {
2144 if (write(fd, "deny\n", 5) < 0) {
2145 r = -errno;
2146 goto child_fail;
2147 }
2148
2149 fd = safe_close(fd);
2150 }
2151
2152 /* First write the GID map */
2153 a = procfs_file_alloca(ppid, "gid_map");
2154 fd = open(a, O_WRONLY|O_CLOEXEC);
2155 if (fd < 0) {
2156 r = -errno;
2157 goto child_fail;
2158 }
2159 if (write(fd, gid_map, strlen(gid_map)) < 0) {
2160 r = -errno;
2161 goto child_fail;
2162 }
2163 fd = safe_close(fd);
2164
2165 /* The write the UID map */
2166 a = procfs_file_alloca(ppid, "uid_map");
2167 fd = open(a, O_WRONLY|O_CLOEXEC);
2168 if (fd < 0) {
2169 r = -errno;
2170 goto child_fail;
2171 }
2172 if (write(fd, uid_map, strlen(uid_map)) < 0) {
2173 r = -errno;
2174 goto child_fail;
2175 }
2176
2177 _exit(EXIT_SUCCESS);
2178
2179 child_fail:
2180 (void) write(errno_pipe[1], &r, sizeof(r));
2181 _exit(EXIT_FAILURE);
2182 }
2183
2184 errno_pipe[1] = safe_close(errno_pipe[1]);
2185
2186 if (unshare(CLONE_NEWUSER) < 0)
2187 return -errno;
2188
2189 /* Let the child know that the namespace is ready now */
2190 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2191 return -errno;
2192
2193 /* Try to read an error code from the child */
2194 n = read(errno_pipe[0], &r, sizeof(r));
2195 if (n < 0)
2196 return -errno;
2197 if (n == sizeof(r)) { /* an error code was sent to us */
2198 if (r < 0)
2199 return r;
2200 return -EIO;
2201 }
2202 if (n != 0) /* on success we should have read 0 bytes */
2203 return -EIO;
2204
2205 r = wait_for_terminate_and_check("(sd-userns)", pid, 0);
2206 pid = 0;
2207 if (r < 0)
2208 return r;
2209 if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2210 return -EIO;
2211
2212 return 0;
2213 }
2214
2215 static bool exec_directory_is_private(const ExecContext *context, ExecDirectoryType type) {
2216 if (!context->dynamic_user)
2217 return false;
2218
2219 if (type == EXEC_DIRECTORY_CONFIGURATION)
2220 return false;
2221
2222 if (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO)
2223 return false;
2224
2225 return true;
2226 }
2227
2228 static int setup_exec_directory(
2229 const ExecContext *context,
2230 const ExecParameters *params,
2231 uid_t uid,
2232 gid_t gid,
2233 ExecDirectoryType type,
2234 int *exit_status) {
2235
2236 static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2237 [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2238 [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2239 [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2240 [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2241 [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2242 };
2243 char **rt;
2244 int r;
2245
2246 assert(context);
2247 assert(params);
2248 assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2249 assert(exit_status);
2250
2251 if (!params->prefix[type])
2252 return 0;
2253
2254 if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2255 if (!uid_is_valid(uid))
2256 uid = 0;
2257 if (!gid_is_valid(gid))
2258 gid = 0;
2259 }
2260
2261 STRV_FOREACH(rt, context->directories[type].paths) {
2262 _cleanup_free_ char *p = NULL, *pp = NULL;
2263
2264 p = path_join(params->prefix[type], *rt);
2265 if (!p) {
2266 r = -ENOMEM;
2267 goto fail;
2268 }
2269
2270 r = mkdir_parents_label(p, 0755);
2271 if (r < 0)
2272 goto fail;
2273
2274 if (exec_directory_is_private(context, type)) {
2275 _cleanup_free_ char *private_root = NULL;
2276
2277 /* So, here's one extra complication when dealing with DynamicUser=1 units. In that
2278 * case we want to avoid leaving a directory around fully accessible that is owned by
2279 * a dynamic user whose UID is later on reused. To lock this down we use the same
2280 * trick used by container managers to prohibit host users to get access to files of
2281 * the same UID in containers: we place everything inside a directory that has an
2282 * access mode of 0700 and is owned root:root, so that it acts as security boundary
2283 * for unprivileged host code. We then use fs namespacing to make this directory
2284 * permeable for the service itself.
2285 *
2286 * Specifically: for a service which wants a special directory "foo/" we first create
2287 * a directory "private/" with access mode 0700 owned by root:root. Then we place
2288 * "foo" inside of that directory (i.e. "private/foo/"), and make "foo" a symlink to
2289 * "private/foo". This way, privileged host users can access "foo/" as usual, but
2290 * unprivileged host users can't look into it. Inside of the namespace of the unit
2291 * "private/" is replaced by a more liberally accessible tmpfs, into which the host's
2292 * "private/foo/" is mounted under the same name, thus disabling the access boundary
2293 * for the service and making sure it only gets access to the dirs it needs but no
2294 * others. Tricky? Yes, absolutely, but it works!
2295 *
2296 * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not
2297 * to be owned by the service itself.
2298 *
2299 * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used
2300 * for sharing files or sockets with other services. */
2301
2302 private_root = path_join(params->prefix[type], "private");
2303 if (!private_root) {
2304 r = -ENOMEM;
2305 goto fail;
2306 }
2307
2308 /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2309 r = mkdir_safe_label(private_root, 0700, 0, 0, MKDIR_WARN_MODE);
2310 if (r < 0)
2311 goto fail;
2312
2313 pp = path_join(private_root, *rt);
2314 if (!pp) {
2315 r = -ENOMEM;
2316 goto fail;
2317 }
2318
2319 /* Create all directories between the configured directory and this private root, and mark them 0755 */
2320 r = mkdir_parents_label(pp, 0755);
2321 if (r < 0)
2322 goto fail;
2323
2324 if (is_dir(p, false) > 0 &&
2325 (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2326
2327 /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2328 * it over. Most likely the service has been upgraded from one that didn't use
2329 * DynamicUser=1, to one that does. */
2330
2331 log_info("Found pre-existing public %s= directory %s, migrating to %s.\n"
2332 "Apparently, service previously had DynamicUser= turned off, and has now turned it on.",
2333 exec_directory_type_to_string(type), p, pp);
2334
2335 if (rename(p, pp) < 0) {
2336 r = -errno;
2337 goto fail;
2338 }
2339 } else {
2340 /* Otherwise, create the actual directory for the service */
2341
2342 r = mkdir_label(pp, context->directories[type].mode);
2343 if (r < 0 && r != -EEXIST)
2344 goto fail;
2345 }
2346
2347 /* And link it up from the original place */
2348 r = symlink_idempotent(pp, p, true);
2349 if (r < 0)
2350 goto fail;
2351
2352 } else {
2353 _cleanup_free_ char *target = NULL;
2354
2355 if (type != EXEC_DIRECTORY_CONFIGURATION &&
2356 readlink_and_make_absolute(p, &target) >= 0) {
2357 _cleanup_free_ char *q = NULL, *q_resolved = NULL, *target_resolved = NULL;
2358
2359 /* This already exists and is a symlink? Interesting. Maybe it's one created
2360 * by DynamicUser=1 (see above)?
2361 *
2362 * We do this for all directory types except for ConfigurationDirectory=,
2363 * since they all support the private/ symlink logic at least in some
2364 * configurations, see above. */
2365
2366 r = chase_symlinks(target, NULL, 0, &target_resolved, NULL);
2367 if (r < 0)
2368 goto fail;
2369
2370 q = path_join(params->prefix[type], "private", *rt);
2371 if (!q) {
2372 r = -ENOMEM;
2373 goto fail;
2374 }
2375
2376 /* /var/lib or friends may be symlinks. So, let's chase them also. */
2377 r = chase_symlinks(q, NULL, CHASE_NONEXISTENT, &q_resolved, NULL);
2378 if (r < 0)
2379 goto fail;
2380
2381 if (path_equal(q_resolved, target_resolved)) {
2382
2383 /* Hmm, apparently DynamicUser= was once turned on for this service,
2384 * but is no longer. Let's move the directory back up. */
2385
2386 log_info("Found pre-existing private %s= directory %s, migrating to %s.\n"
2387 "Apparently, service previously had DynamicUser= turned on, and has now turned it off.",
2388 exec_directory_type_to_string(type), q, p);
2389
2390 if (unlink(p) < 0) {
2391 r = -errno;
2392 goto fail;
2393 }
2394
2395 if (rename(q, p) < 0) {
2396 r = -errno;
2397 goto fail;
2398 }
2399 }
2400 }
2401
2402 r = mkdir_label(p, context->directories[type].mode);
2403 if (r < 0) {
2404 if (r != -EEXIST)
2405 goto fail;
2406
2407 if (type == EXEC_DIRECTORY_CONFIGURATION) {
2408 struct stat st;
2409
2410 /* Don't change the owner/access mode of the configuration directory,
2411 * as in the common case it is not written to by a service, and shall
2412 * not be writable. */
2413
2414 if (stat(p, &st) < 0) {
2415 r = -errno;
2416 goto fail;
2417 }
2418
2419 /* Still complain if the access mode doesn't match */
2420 if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0)
2421 log_warning("%s \'%s\' already exists but the mode is different. "
2422 "(File system: %o %sMode: %o)",
2423 exec_directory_type_to_string(type), *rt,
2424 st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777);
2425
2426 continue;
2427 }
2428 }
2429 }
2430
2431 /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't
2432 * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the
2433 * current UID/GID ownership.) */
2434 r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID);
2435 if (r < 0)
2436 goto fail;
2437
2438 /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we
2439 * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID
2440 * assignments to exist.*/
2441 r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777);
2442 if (r < 0)
2443 goto fail;
2444 }
2445
2446 return 0;
2447
2448 fail:
2449 *exit_status = exit_status_table[type];
2450 return r;
2451 }
2452
2453 static int write_credential(
2454 int dfd,
2455 const char *id,
2456 const void *data,
2457 size_t size,
2458 uid_t uid,
2459 bool ownership_ok) {
2460
2461 _cleanup_(unlink_and_freep) char *tmp = NULL;
2462 _cleanup_close_ int fd = -1;
2463 int r;
2464
2465 r = tempfn_random_child("", "cred", &tmp);
2466 if (r < 0)
2467 return r;
2468
2469 fd = openat(dfd, tmp, O_CREAT|O_RDWR|O_CLOEXEC|O_EXCL|O_NOFOLLOW|O_NOCTTY, 0600);
2470 if (fd < 0) {
2471 tmp = mfree(tmp);
2472 return -errno;
2473 }
2474
2475 r = loop_write(fd, data, size, /* do_pool = */ false);
2476 if (r < 0)
2477 return r;
2478
2479 if (fchmod(fd, 0400) < 0) /* Take away "w" bit */
2480 return -errno;
2481
2482 if (uid_is_valid(uid) && uid != getuid()) {
2483 r = fd_add_uid_acl_permission(fd, uid, ACL_READ);
2484 if (r < 0) {
2485 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2486 return r;
2487
2488 if (!ownership_ok) /* Ideally we use ACLs, since we can neatly express what we want
2489 * to express: that the user gets read access and nothing
2490 * else. But if the backing fs can't support that (e.g. ramfs)
2491 * then we can use file ownership instead. But that's only safe if
2492 * we can then re-mount the whole thing read-only, so that the
2493 * user can no longer chmod() the file to gain write access. */
2494 return r;
2495
2496 if (fchown(fd, uid, (gid_t) -1) < 0)
2497 return -errno;
2498 }
2499 }
2500
2501 if (renameat(dfd, tmp, dfd, id) < 0)
2502 return -errno;
2503
2504 tmp = mfree(tmp);
2505 return 0;
2506 }
2507
2508 #define CREDENTIALS_BYTES_MAX (1024LU * 1024LU) /* Refuse to pass more than 1M, after all this is unswappable memory */
2509
2510 static int acquire_credentials(
2511 const ExecContext *context,
2512 const ExecParameters *params,
2513 const char *unit,
2514 const char *p,
2515 uid_t uid,
2516 bool ownership_ok) {
2517
2518 uint64_t left = CREDENTIALS_BYTES_MAX;
2519 _cleanup_close_ int dfd = -1;
2520 ExecSetCredential *sc;
2521 char **id, **fn;
2522 int r;
2523
2524 assert(context);
2525 assert(p);
2526
2527 dfd = open(p, O_DIRECTORY|O_CLOEXEC);
2528 if (dfd < 0)
2529 return -errno;
2530
2531 /* First we use the literally specified credentials. Note that they might be overridden again below,
2532 * and thus act as a "default" if the same credential is specified multiple times */
2533 HASHMAP_FOREACH(sc, context->set_credentials) {
2534 size_t add;
2535
2536 add = strlen(sc->id) + sc->size;
2537 if (add > left)
2538 return -E2BIG;
2539
2540 r = write_credential(dfd, sc->id, sc->data, sc->size, uid, ownership_ok);
2541 if (r < 0)
2542 return r;
2543
2544 left -= add;
2545 }
2546
2547 /* Then, load credential off disk (or acquire via AF_UNIX socket) */
2548 STRV_FOREACH_PAIR(id, fn, context->load_credentials) {
2549 ReadFullFileFlags flags = READ_FULL_FILE_SECURE;
2550 _cleanup_(erase_and_freep) char *data = NULL;
2551 _cleanup_free_ char *j = NULL, *bindname = NULL;
2552 const char *source;
2553 size_t size, add;
2554
2555 if (path_is_absolute(*fn)) {
2556 /* If this is an absolute path, read the data directly from it, and support AF_UNIX sockets */
2557 source = *fn;
2558 flags |= READ_FULL_FILE_CONNECT_SOCKET;
2559
2560 /* Pass some minimal info about the unit and the credential name we are looking to acquire
2561 * via the source socket address in case we read off an AF_UNIX socket. */
2562 if (asprintf(&bindname, "@%" PRIx64"/unit/%s/%s", random_u64(), unit, *id) < 0)
2563 return -ENOMEM;
2564
2565 } else if (params->received_credentials) {
2566 /* If this is a relative path, take it relative to the credentials we received
2567 * ourselves. We don't support the AF_UNIX stuff in this mode, since we are operating
2568 * on a credential store, i.e. this is guaranteed to be regular files. */
2569 j = path_join(params->received_credentials, *fn);
2570 if (!j)
2571 return -ENOMEM;
2572
2573 source = j;
2574 } else
2575 source = NULL;
2576
2577
2578 if (source)
2579 r = read_full_file_full(AT_FDCWD, source, flags, bindname, &data, &size);
2580 else
2581 r = -ENOENT;
2582 if (r == -ENOENT &&
2583 faccessat(dfd, *id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0) /* If the source file doesn't exist, but we already acquired the key otherwise, then don't fail */
2584 continue;
2585 if (r < 0)
2586 return r;
2587
2588 add = strlen(*id) + size;
2589 if (add > left)
2590 return -E2BIG;
2591
2592 r = write_credential(dfd, *id, data, size, uid, ownership_ok);
2593 if (r < 0)
2594 return r;
2595
2596 left -= add;
2597 }
2598
2599 if (fchmod(dfd, 0500) < 0) /* Now take away the "w" bit */
2600 return -errno;
2601
2602 /* After we created all keys with the right perms, also make sure the credential store as a whole is
2603 * accessible */
2604
2605 if (uid_is_valid(uid) && uid != getuid()) {
2606 r = fd_add_uid_acl_permission(dfd, uid, ACL_READ | ACL_EXECUTE);
2607 if (r < 0) {
2608 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2609 return r;
2610
2611 if (!ownership_ok)
2612 return r;
2613
2614 if (fchown(dfd, uid, (gid_t) -1) < 0)
2615 return -errno;
2616 }
2617 }
2618
2619 return 0;
2620 }
2621
2622 static int setup_credentials_internal(
2623 const ExecContext *context,
2624 const ExecParameters *params,
2625 const char *unit,
2626 const char *final, /* This is where the credential store shall eventually end up at */
2627 const char *workspace, /* This is where we can prepare it before moving it to the final place */
2628 bool reuse_workspace, /* Whether to reuse any existing workspace mount if it already is a mount */
2629 bool must_mount, /* Whether to require that we mount something, it's not OK to use the plain directory fall back */
2630 uid_t uid) {
2631
2632 int r, workspace_mounted; /* negative if we don't know yet whether we have/can mount something; true
2633 * if we mounted something; false if we definitely can't mount anything */
2634 bool final_mounted;
2635 const char *where;
2636
2637 assert(context);
2638 assert(final);
2639 assert(workspace);
2640
2641 if (reuse_workspace) {
2642 r = path_is_mount_point(workspace, NULL, 0);
2643 if (r < 0)
2644 return r;
2645 if (r > 0)
2646 workspace_mounted = true; /* If this is already a mount, and we are supposed to reuse it, let's keep this in mind */
2647 else
2648 workspace_mounted = -1; /* We need to figure out if we can mount something to the workspace */
2649 } else
2650 workspace_mounted = -1; /* ditto */
2651
2652 r = path_is_mount_point(final, NULL, 0);
2653 if (r < 0)
2654 return r;
2655 if (r > 0) {
2656 /* If the final place already has something mounted, we use that. If the workspace also has
2657 * something mounted we assume it's actually the same mount (but with MS_RDONLY
2658 * different). */
2659 final_mounted = true;
2660
2661 if (workspace_mounted < 0) {
2662 /* If the final place is mounted, but the workspace we isn't, then let's bind mount
2663 * the final version to the workspace, and make it writable, so that we can make
2664 * changes */
2665
2666 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
2667 if (r < 0)
2668 return r;
2669
2670 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
2671 if (r < 0)
2672 return r;
2673
2674 workspace_mounted = true;
2675 }
2676 } else
2677 final_mounted = false;
2678
2679 if (workspace_mounted < 0) {
2680 /* Nothing is mounted on the workspace yet, let's try to mount something now */
2681 for (int try = 0;; try++) {
2682
2683 if (try == 0) {
2684 /* Try "ramfs" first, since it's not swap backed */
2685 r = mount_nofollow_verbose(LOG_DEBUG, "ramfs", workspace, "ramfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, "mode=0700");
2686 if (r >= 0) {
2687 workspace_mounted = true;
2688 break;
2689 }
2690
2691 } else if (try == 1) {
2692 _cleanup_free_ char *opts = NULL;
2693
2694 if (asprintf(&opts, "mode=0700,nr_inodes=1024,size=%lu", CREDENTIALS_BYTES_MAX) < 0)
2695 return -ENOMEM;
2696
2697 /* Fall back to "tmpfs" otherwise */
2698 r = mount_nofollow_verbose(LOG_DEBUG, "tmpfs", workspace, "tmpfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, opts);
2699 if (r >= 0) {
2700 workspace_mounted = true;
2701 break;
2702 }
2703
2704 } else {
2705 /* If that didn't work, try to make a bind mount from the final to the workspace, so that we can make it writable there. */
2706 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
2707 if (r < 0) {
2708 if (!ERRNO_IS_PRIVILEGE(r)) /* Propagate anything that isn't a permission problem */
2709 return r;
2710
2711 if (must_mount) /* If we it's not OK to use the plain directory
2712 * fallback, propagate all errors too */
2713 return r;
2714
2715 /* If we lack privileges to bind mount stuff, then let's gracefully
2716 * proceed for compat with container envs, and just use the final dir
2717 * as is. */
2718
2719 workspace_mounted = false;
2720 break;
2721 }
2722
2723 /* Make the new bind mount writable (i.e. drop MS_RDONLY) */
2724 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
2725 if (r < 0)
2726 return r;
2727
2728 workspace_mounted = true;
2729 break;
2730 }
2731 }
2732 }
2733
2734 assert(!must_mount || workspace_mounted > 0);
2735 where = workspace_mounted ? workspace : final;
2736
2737 r = acquire_credentials(context, params, unit, where, uid, workspace_mounted);
2738 if (r < 0)
2739 return r;
2740
2741 if (workspace_mounted) {
2742 /* Make workspace read-only now, so that any bind mount we make from it defaults to read-only too */
2743 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_RDONLY|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
2744 if (r < 0)
2745 return r;
2746
2747 /* And mount it to the final place, read-only */
2748 if (final_mounted)
2749 r = umount_verbose(LOG_DEBUG, workspace, MNT_DETACH|UMOUNT_NOFOLLOW);
2750 else
2751 r = mount_nofollow_verbose(LOG_DEBUG, workspace, final, NULL, MS_MOVE, NULL);
2752 if (r < 0)
2753 return r;
2754 } else {
2755 _cleanup_free_ char *parent = NULL;
2756
2757 /* If we do not have our own mount put used the plain directory fallback, then we need to
2758 * open access to the top-level credential directory and the per-service directory now */
2759
2760 parent = dirname_malloc(final);
2761 if (!parent)
2762 return -ENOMEM;
2763 if (chmod(parent, 0755) < 0)
2764 return -errno;
2765 }
2766
2767 return 0;
2768 }
2769
2770 static int setup_credentials(
2771 const ExecContext *context,
2772 const ExecParameters *params,
2773 const char *unit,
2774 uid_t uid) {
2775
2776 _cleanup_free_ char *p = NULL, *q = NULL;
2777 const char *i;
2778 int r;
2779
2780 assert(context);
2781 assert(params);
2782
2783 if (!exec_context_has_credentials(context))
2784 return 0;
2785
2786 if (!params->prefix[EXEC_DIRECTORY_RUNTIME])
2787 return -EINVAL;
2788
2789 /* This where we'll place stuff when we are done; this main credentials directory is world-readable,
2790 * and the subdir we mount over with a read-only file system readable by the service's user */
2791 q = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials");
2792 if (!q)
2793 return -ENOMEM;
2794
2795 r = mkdir_label(q, 0755); /* top-level dir: world readable/searchable */
2796 if (r < 0 && r != -EEXIST)
2797 return r;
2798
2799 p = path_join(q, unit);
2800 if (!p)
2801 return -ENOMEM;
2802
2803 r = mkdir_label(p, 0700); /* per-unit dir: private to user */
2804 if (r < 0 && r != -EEXIST)
2805 return r;
2806
2807 r = safe_fork("(sd-mkdcreds)", FORK_DEATHSIG|FORK_WAIT|FORK_NEW_MOUNTNS, NULL);
2808 if (r < 0) {
2809 _cleanup_free_ char *t = NULL, *u = NULL;
2810
2811 /* If this is not a privilege or support issue then propagate the error */
2812 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2813 return r;
2814
2815 /* Temporary workspace, that remains inaccessible all the time. We prepare stuff there before moving
2816 * it into place, so that users can't access half-initialized credential stores. */
2817 t = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "systemd/temporary-credentials");
2818 if (!t)
2819 return -ENOMEM;
2820
2821 /* We can't set up a mount namespace. In that case operate on a fixed, inaccessible per-unit
2822 * directory outside of /run/credentials/ first, and then move it over to /run/credentials/
2823 * after it is fully set up */
2824 u = path_join(t, unit);
2825 if (!u)
2826 return -ENOMEM;
2827
2828 FOREACH_STRING(i, t, u) {
2829 r = mkdir_label(i, 0700);
2830 if (r < 0 && r != -EEXIST)
2831 return r;
2832 }
2833
2834 r = setup_credentials_internal(
2835 context,
2836 params,
2837 unit,
2838 p, /* final mount point */
2839 u, /* temporary workspace to overmount */
2840 true, /* reuse the workspace if it is already a mount */
2841 false, /* it's OK to fall back to a plain directory if we can't mount anything */
2842 uid);
2843
2844 (void) rmdir(u); /* remove the workspace again if we can. */
2845
2846 if (r < 0)
2847 return r;
2848
2849 } else if (r == 0) {
2850
2851 /* We managed to set up a mount namespace, and are now in a child. That's great. In this case
2852 * we can use the same directory for all cases, after turning off propagation. Question
2853 * though is: where do we turn off propagation exactly, and where do we place the workspace
2854 * directory? We need some place that is guaranteed to be a mount point in the host, and
2855 * which is guaranteed to have a subdir we can mount over. /run/ is not suitable for this,
2856 * since we ultimately want to move the resulting file system there, i.e. we need propagation
2857 * for /run/ eventually. We could use our own /run/systemd/bind mount on itself, but that
2858 * would be visible in the host mount table all the time, which we want to avoid. Hence, what
2859 * we do here instead we use /dev/ and /dev/shm/ for our purposes. We know for sure that
2860 * /dev/ is a mount point and we now for sure that /dev/shm/ exists. Hence we can turn off
2861 * propagation on the former, and then overmount the latter.
2862 *
2863 * Yes it's nasty playing games with /dev/ and /dev/shm/ like this, since it does not exist
2864 * for this purpose, but there are few other candidates that work equally well for us, and
2865 * given that the we do this in a privately namespaced short-lived single-threaded process
2866 * that no one else sees this should be OK to do.*/
2867
2868 r = mount_nofollow_verbose(LOG_DEBUG, NULL, "/dev", NULL, MS_SLAVE|MS_REC, NULL); /* Turn off propagation from our namespace to host */
2869 if (r < 0)
2870 goto child_fail;
2871
2872 r = setup_credentials_internal(
2873 context,
2874 params,
2875 unit,
2876 p, /* final mount point */
2877 "/dev/shm", /* temporary workspace to overmount */
2878 false, /* do not reuse /dev/shm if it is already a mount, under no circumstances */
2879 true, /* insist that something is mounted, do not allow fallback to plain directory */
2880 uid);
2881 if (r < 0)
2882 goto child_fail;
2883
2884 _exit(EXIT_SUCCESS);
2885
2886 child_fail:
2887 _exit(EXIT_FAILURE);
2888 }
2889
2890 return 0;
2891 }
2892
2893 #if ENABLE_SMACK
2894 static int setup_smack(
2895 const ExecContext *context,
2896 const char *executable) {
2897 int r;
2898
2899 assert(context);
2900 assert(executable);
2901
2902 if (context->smack_process_label) {
2903 r = mac_smack_apply_pid(0, context->smack_process_label);
2904 if (r < 0)
2905 return r;
2906 }
2907 #ifdef SMACK_DEFAULT_PROCESS_LABEL
2908 else {
2909 _cleanup_free_ char *exec_label = NULL;
2910
2911 r = mac_smack_read(executable, SMACK_ATTR_EXEC, &exec_label);
2912 if (r < 0 && !IN_SET(r, -ENODATA, -EOPNOTSUPP))
2913 return r;
2914
2915 r = mac_smack_apply_pid(0, exec_label ? : SMACK_DEFAULT_PROCESS_LABEL);
2916 if (r < 0)
2917 return r;
2918 }
2919 #endif
2920
2921 return 0;
2922 }
2923 #endif
2924
2925 static int compile_bind_mounts(
2926 const ExecContext *context,
2927 const ExecParameters *params,
2928 BindMount **ret_bind_mounts,
2929 size_t *ret_n_bind_mounts,
2930 char ***ret_empty_directories) {
2931
2932 _cleanup_strv_free_ char **empty_directories = NULL;
2933 BindMount *bind_mounts;
2934 size_t n, h = 0;
2935 int r;
2936
2937 assert(context);
2938 assert(params);
2939 assert(ret_bind_mounts);
2940 assert(ret_n_bind_mounts);
2941 assert(ret_empty_directories);
2942
2943 n = context->n_bind_mounts;
2944 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2945 if (!params->prefix[t])
2946 continue;
2947
2948 n += strv_length(context->directories[t].paths);
2949 }
2950
2951 if (n <= 0) {
2952 *ret_bind_mounts = NULL;
2953 *ret_n_bind_mounts = 0;
2954 *ret_empty_directories = NULL;
2955 return 0;
2956 }
2957
2958 bind_mounts = new(BindMount, n);
2959 if (!bind_mounts)
2960 return -ENOMEM;
2961
2962 for (size_t i = 0; i < context->n_bind_mounts; i++) {
2963 BindMount *item = context->bind_mounts + i;
2964 char *s, *d;
2965
2966 s = strdup(item->source);
2967 if (!s) {
2968 r = -ENOMEM;
2969 goto finish;
2970 }
2971
2972 d = strdup(item->destination);
2973 if (!d) {
2974 free(s);
2975 r = -ENOMEM;
2976 goto finish;
2977 }
2978
2979 bind_mounts[h++] = (BindMount) {
2980 .source = s,
2981 .destination = d,
2982 .read_only = item->read_only,
2983 .recursive = item->recursive,
2984 .ignore_enoent = item->ignore_enoent,
2985 };
2986 }
2987
2988 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2989 char **suffix;
2990
2991 if (!params->prefix[t])
2992 continue;
2993
2994 if (strv_isempty(context->directories[t].paths))
2995 continue;
2996
2997 if (exec_directory_is_private(context, t) &&
2998 !exec_context_with_rootfs(context)) {
2999 char *private_root;
3000
3001 /* So this is for a dynamic user, and we need to make sure the process can access its own
3002 * directory. For that we overmount the usually inaccessible "private" subdirectory with a
3003 * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
3004
3005 private_root = path_join(params->prefix[t], "private");
3006 if (!private_root) {
3007 r = -ENOMEM;
3008 goto finish;
3009 }
3010
3011 r = strv_consume(&empty_directories, private_root);
3012 if (r < 0)
3013 goto finish;
3014 }
3015
3016 STRV_FOREACH(suffix, context->directories[t].paths) {
3017 char *s, *d;
3018
3019 if (exec_directory_is_private(context, t))
3020 s = path_join(params->prefix[t], "private", *suffix);
3021 else
3022 s = path_join(params->prefix[t], *suffix);
3023 if (!s) {
3024 r = -ENOMEM;
3025 goto finish;
3026 }
3027
3028 if (exec_directory_is_private(context, t) &&
3029 exec_context_with_rootfs(context))
3030 /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
3031 * directory is not created on the root directory. So, let's bind-mount the directory
3032 * on the 'non-private' place. */
3033 d = path_join(params->prefix[t], *suffix);
3034 else
3035 d = strdup(s);
3036 if (!d) {
3037 free(s);
3038 r = -ENOMEM;
3039 goto finish;
3040 }
3041
3042 bind_mounts[h++] = (BindMount) {
3043 .source = s,
3044 .destination = d,
3045 .read_only = false,
3046 .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */
3047 .recursive = true,
3048 .ignore_enoent = false,
3049 };
3050 }
3051 }
3052
3053 assert(h == n);
3054
3055 *ret_bind_mounts = bind_mounts;
3056 *ret_n_bind_mounts = n;
3057 *ret_empty_directories = TAKE_PTR(empty_directories);
3058
3059 return (int) n;
3060
3061 finish:
3062 bind_mount_free_many(bind_mounts, h);
3063 return r;
3064 }
3065
3066 static bool insist_on_sandboxing(
3067 const ExecContext *context,
3068 const char *root_dir,
3069 const char *root_image,
3070 const BindMount *bind_mounts,
3071 size_t n_bind_mounts) {
3072
3073 assert(context);
3074 assert(n_bind_mounts == 0 || bind_mounts);
3075
3076 /* Checks whether we need to insist on fs namespacing. i.e. whether we have settings configured that
3077 * would alter the view on the file system beyond making things read-only or invisible, i.e. would
3078 * rearrange stuff in a way we cannot ignore gracefully. */
3079
3080 if (context->n_temporary_filesystems > 0)
3081 return true;
3082
3083 if (root_dir || root_image)
3084 return true;
3085
3086 if (context->n_mount_images > 0)
3087 return true;
3088
3089 if (context->dynamic_user)
3090 return true;
3091
3092 /* If there are any bind mounts set that don't map back onto themselves, fs namespacing becomes
3093 * essential. */
3094 for (size_t i = 0; i < n_bind_mounts; i++)
3095 if (!path_equal(bind_mounts[i].source, bind_mounts[i].destination))
3096 return true;
3097
3098 if (context->log_namespace)
3099 return true;
3100
3101 return false;
3102 }
3103
3104 static int apply_mount_namespace(
3105 const Unit *u,
3106 ExecCommandFlags command_flags,
3107 const ExecContext *context,
3108 const ExecParameters *params,
3109 const ExecRuntime *runtime,
3110 char **error_path) {
3111
3112 _cleanup_strv_free_ char **empty_directories = NULL;
3113 const char *tmp_dir = NULL, *var_tmp_dir = NULL;
3114 const char *root_dir = NULL, *root_image = NULL;
3115 _cleanup_free_ char *creds_path = NULL;
3116 NamespaceInfo ns_info;
3117 bool needs_sandboxing;
3118 BindMount *bind_mounts = NULL;
3119 size_t n_bind_mounts = 0;
3120 int r;
3121
3122 assert(context);
3123
3124 if (params->flags & EXEC_APPLY_CHROOT) {
3125 root_image = context->root_image;
3126
3127 if (!root_image)
3128 root_dir = context->root_directory;
3129 }
3130
3131 r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
3132 if (r < 0)
3133 return r;
3134
3135 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command_flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3136 if (needs_sandboxing) {
3137 /* The runtime struct only contains the parent of the private /tmp,
3138 * which is non-accessible to world users. Inside of it there's a /tmp
3139 * that is sticky, and that's the one we want to use here.
3140 * This does not apply when we are using /run/systemd/empty as fallback. */
3141
3142 if (context->private_tmp && runtime) {
3143 if (streq_ptr(runtime->tmp_dir, RUN_SYSTEMD_EMPTY))
3144 tmp_dir = runtime->tmp_dir;
3145 else if (runtime->tmp_dir)
3146 tmp_dir = strjoina(runtime->tmp_dir, "/tmp");
3147
3148 if (streq_ptr(runtime->var_tmp_dir, RUN_SYSTEMD_EMPTY))
3149 var_tmp_dir = runtime->var_tmp_dir;
3150 else if (runtime->var_tmp_dir)
3151 var_tmp_dir = strjoina(runtime->var_tmp_dir, "/tmp");
3152 }
3153
3154 ns_info = (NamespaceInfo) {
3155 .ignore_protect_paths = false,
3156 .private_dev = context->private_devices,
3157 .protect_control_groups = context->protect_control_groups,
3158 .protect_kernel_tunables = context->protect_kernel_tunables,
3159 .protect_kernel_modules = context->protect_kernel_modules,
3160 .protect_kernel_logs = context->protect_kernel_logs,
3161 .protect_hostname = context->protect_hostname,
3162 .mount_apivfs = exec_context_get_effective_mount_apivfs(context),
3163 .private_mounts = context->private_mounts,
3164 .protect_home = context->protect_home,
3165 .protect_system = context->protect_system,
3166 .protect_proc = context->protect_proc,
3167 .proc_subset = context->proc_subset,
3168 };
3169 } else if (!context->dynamic_user && root_dir)
3170 /*
3171 * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
3172 * sandbox info, otherwise enforce it, don't ignore protected paths and
3173 * fail if we are enable to apply the sandbox inside the mount namespace.
3174 */
3175 ns_info = (NamespaceInfo) {
3176 .ignore_protect_paths = true,
3177 };
3178 else
3179 ns_info = (NamespaceInfo) {};
3180
3181 if (context->mount_flags == MS_SHARED)
3182 log_unit_debug(u, "shared mount propagation hidden by other fs namespacing unit settings: ignoring");
3183
3184 if (exec_context_has_credentials(context) && params->prefix[EXEC_DIRECTORY_RUNTIME]) {
3185 creds_path = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials", u->id);
3186 if (!creds_path) {
3187 r = -ENOMEM;
3188 goto finalize;
3189 }
3190 }
3191
3192 r = setup_namespace(root_dir, root_image, context->root_image_options,
3193 &ns_info, context->read_write_paths,
3194 needs_sandboxing ? context->read_only_paths : NULL,
3195 needs_sandboxing ? context->inaccessible_paths : NULL,
3196 empty_directories,
3197 bind_mounts,
3198 n_bind_mounts,
3199 context->temporary_filesystems,
3200 context->n_temporary_filesystems,
3201 context->mount_images,
3202 context->n_mount_images,
3203 tmp_dir,
3204 var_tmp_dir,
3205 creds_path,
3206 context->log_namespace,
3207 context->mount_flags,
3208 context->root_hash, context->root_hash_size, context->root_hash_path,
3209 context->root_hash_sig, context->root_hash_sig_size, context->root_hash_sig_path,
3210 context->root_verity,
3211 DISSECT_IMAGE_DISCARD_ON_LOOP|DISSECT_IMAGE_RELAX_VAR_CHECK|DISSECT_IMAGE_FSCK,
3212 error_path);
3213
3214 /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
3215 * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively
3216 * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
3217 * completely different execution environment. */
3218 if (r == -ENOANO) {
3219 if (insist_on_sandboxing(
3220 context,
3221 root_dir, root_image,
3222 bind_mounts,
3223 n_bind_mounts)) {
3224 log_unit_debug(u, "Failed to set up namespace, and refusing to continue since the selected namespacing options alter mount environment non-trivially.\n"
3225 "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
3226 n_bind_mounts, context->n_temporary_filesystems, yes_no(root_dir), yes_no(root_image), yes_no(context->dynamic_user));
3227
3228 r = -EOPNOTSUPP;
3229 } else {
3230 log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
3231 r = 0;
3232 }
3233 }
3234
3235 finalize:
3236 bind_mount_free_many(bind_mounts, n_bind_mounts);
3237 return r;
3238 }
3239
3240 static int apply_working_directory(
3241 const ExecContext *context,
3242 const ExecParameters *params,
3243 const char *home,
3244 int *exit_status) {
3245
3246 const char *d, *wd;
3247
3248 assert(context);
3249 assert(exit_status);
3250
3251 if (context->working_directory_home) {
3252
3253 if (!home) {
3254 *exit_status = EXIT_CHDIR;
3255 return -ENXIO;
3256 }
3257
3258 wd = home;
3259
3260 } else
3261 wd = empty_to_root(context->working_directory);
3262
3263 if (params->flags & EXEC_APPLY_CHROOT)
3264 d = wd;
3265 else
3266 d = prefix_roota(context->root_directory, wd);
3267
3268 if (chdir(d) < 0 && !context->working_directory_missing_ok) {
3269 *exit_status = EXIT_CHDIR;
3270 return -errno;
3271 }
3272
3273 return 0;
3274 }
3275
3276 static int apply_root_directory(
3277 const ExecContext *context,
3278 const ExecParameters *params,
3279 const bool needs_mount_ns,
3280 int *exit_status) {
3281
3282 assert(context);
3283 assert(exit_status);
3284
3285 if (params->flags & EXEC_APPLY_CHROOT)
3286 if (!needs_mount_ns && context->root_directory)
3287 if (chroot(context->root_directory) < 0) {
3288 *exit_status = EXIT_CHROOT;
3289 return -errno;
3290 }
3291
3292 return 0;
3293 }
3294
3295 static int setup_keyring(
3296 const Unit *u,
3297 const ExecContext *context,
3298 const ExecParameters *p,
3299 uid_t uid, gid_t gid) {
3300
3301 key_serial_t keyring;
3302 int r = 0;
3303 uid_t saved_uid;
3304 gid_t saved_gid;
3305
3306 assert(u);
3307 assert(context);
3308 assert(p);
3309
3310 /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
3311 * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
3312 * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
3313 * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
3314 * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
3315 * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
3316
3317 if (context->keyring_mode == EXEC_KEYRING_INHERIT)
3318 return 0;
3319
3320 /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
3321 * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
3322 * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
3323 * & group is just as nasty as acquiring a reference to the user keyring. */
3324
3325 saved_uid = getuid();
3326 saved_gid = getgid();
3327
3328 if (gid_is_valid(gid) && gid != saved_gid) {
3329 if (setregid(gid, -1) < 0)
3330 return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
3331 }
3332
3333 if (uid_is_valid(uid) && uid != saved_uid) {
3334 if (setreuid(uid, -1) < 0) {
3335 r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
3336 goto out;
3337 }
3338 }
3339
3340 keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
3341 if (keyring == -1) {
3342 if (errno == ENOSYS)
3343 log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
3344 else if (ERRNO_IS_PRIVILEGE(errno))
3345 log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
3346 else if (errno == EDQUOT)
3347 log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
3348 else
3349 r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
3350
3351 goto out;
3352 }
3353
3354 /* When requested link the user keyring into the session keyring. */
3355 if (context->keyring_mode == EXEC_KEYRING_SHARED) {
3356
3357 if (keyctl(KEYCTL_LINK,
3358 KEY_SPEC_USER_KEYRING,
3359 KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
3360 r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
3361 goto out;
3362 }
3363 }
3364
3365 /* Restore uid/gid back */
3366 if (uid_is_valid(uid) && uid != saved_uid) {
3367 if (setreuid(saved_uid, -1) < 0) {
3368 r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
3369 goto out;
3370 }
3371 }
3372
3373 if (gid_is_valid(gid) && gid != saved_gid) {
3374 if (setregid(saved_gid, -1) < 0)
3375 return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
3376 }
3377
3378 /* Populate they keyring with the invocation ID by default, as original saved_uid. */
3379 if (!sd_id128_is_null(u->invocation_id)) {
3380 key_serial_t key;
3381
3382 key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
3383 if (key == -1)
3384 log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
3385 else {
3386 if (keyctl(KEYCTL_SETPERM, key,
3387 KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
3388 KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
3389 r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
3390 }
3391 }
3392
3393 out:
3394 /* Revert back uid & gid for the last time, and exit */
3395 /* no extra logging, as only the first already reported error matters */
3396 if (getuid() != saved_uid)
3397 (void) setreuid(saved_uid, -1);
3398
3399 if (getgid() != saved_gid)
3400 (void) setregid(saved_gid, -1);
3401
3402 return r;
3403 }
3404
3405 static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) {
3406 assert(array);
3407 assert(n);
3408 assert(pair);
3409
3410 if (pair[0] >= 0)
3411 array[(*n)++] = pair[0];
3412 if (pair[1] >= 0)
3413 array[(*n)++] = pair[1];
3414 }
3415
3416 static int close_remaining_fds(
3417 const ExecParameters *params,
3418 const ExecRuntime *runtime,
3419 const DynamicCreds *dcreds,
3420 int user_lookup_fd,
3421 int socket_fd,
3422 int exec_fd,
3423 const int *fds, size_t n_fds) {
3424
3425 size_t n_dont_close = 0;
3426 int dont_close[n_fds + 12];
3427
3428 assert(params);
3429
3430 if (params->stdin_fd >= 0)
3431 dont_close[n_dont_close++] = params->stdin_fd;
3432 if (params->stdout_fd >= 0)
3433 dont_close[n_dont_close++] = params->stdout_fd;
3434 if (params->stderr_fd >= 0)
3435 dont_close[n_dont_close++] = params->stderr_fd;
3436
3437 if (socket_fd >= 0)
3438 dont_close[n_dont_close++] = socket_fd;
3439 if (exec_fd >= 0)
3440 dont_close[n_dont_close++] = exec_fd;
3441 if (n_fds > 0) {
3442 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
3443 n_dont_close += n_fds;
3444 }
3445
3446 if (runtime)
3447 append_socket_pair(dont_close, &n_dont_close, runtime->netns_storage_socket);
3448
3449 if (dcreds) {
3450 if (dcreds->user)
3451 append_socket_pair(dont_close, &n_dont_close, dcreds->user->storage_socket);
3452 if (dcreds->group)
3453 append_socket_pair(dont_close, &n_dont_close, dcreds->group->storage_socket);
3454 }
3455
3456 if (user_lookup_fd >= 0)
3457 dont_close[n_dont_close++] = user_lookup_fd;
3458
3459 return close_all_fds(dont_close, n_dont_close);
3460 }
3461
3462 static int send_user_lookup(
3463 Unit *unit,
3464 int user_lookup_fd,
3465 uid_t uid,
3466 gid_t gid) {
3467
3468 assert(unit);
3469
3470 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
3471 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
3472 * specified. */
3473
3474 if (user_lookup_fd < 0)
3475 return 0;
3476
3477 if (!uid_is_valid(uid) && !gid_is_valid(gid))
3478 return 0;
3479
3480 if (writev(user_lookup_fd,
3481 (struct iovec[]) {
3482 IOVEC_INIT(&uid, sizeof(uid)),
3483 IOVEC_INIT(&gid, sizeof(gid)),
3484 IOVEC_INIT_STRING(unit->id) }, 3) < 0)
3485 return -errno;
3486
3487 return 0;
3488 }
3489
3490 static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
3491 int r;
3492
3493 assert(c);
3494 assert(home);
3495 assert(buf);
3496
3497 /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
3498
3499 if (*home)
3500 return 0;
3501
3502 if (!c->working_directory_home)
3503 return 0;
3504
3505 r = get_home_dir(buf);
3506 if (r < 0)
3507 return r;
3508
3509 *home = *buf;
3510 return 1;
3511 }
3512
3513 static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
3514 _cleanup_strv_free_ char ** list = NULL;
3515 int r;
3516
3517 assert(c);
3518 assert(p);
3519 assert(ret);
3520
3521 assert(c->dynamic_user);
3522
3523 /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
3524 * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
3525 * directories. */
3526
3527 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3528 char **i;
3529
3530 if (t == EXEC_DIRECTORY_CONFIGURATION)
3531 continue;
3532
3533 if (!p->prefix[t])
3534 continue;
3535
3536 STRV_FOREACH(i, c->directories[t].paths) {
3537 char *e;
3538
3539 if (exec_directory_is_private(c, t))
3540 e = path_join(p->prefix[t], "private", *i);
3541 else
3542 e = path_join(p->prefix[t], *i);
3543 if (!e)
3544 return -ENOMEM;
3545
3546 r = strv_consume(&list, e);
3547 if (r < 0)
3548 return r;
3549 }
3550 }
3551
3552 *ret = TAKE_PTR(list);
3553
3554 return 0;
3555 }
3556
3557 static char *exec_command_line(char **argv);
3558
3559 static int exec_parameters_get_cgroup_path(const ExecParameters *params, char **ret) {
3560 bool using_subcgroup;
3561 char *p;
3562
3563 assert(params);
3564 assert(ret);
3565
3566 if (!params->cgroup_path)
3567 return -EINVAL;
3568
3569 /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
3570 * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
3571 * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
3572 * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
3573 * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
3574 * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
3575 * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
3576 * flag, which is only passed for the former statements, not for the latter. */
3577
3578 using_subcgroup = FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP|EXEC_CGROUP_DELEGATE|EXEC_IS_CONTROL);
3579 if (using_subcgroup)
3580 p = path_join(params->cgroup_path, ".control");
3581 else
3582 p = strdup(params->cgroup_path);
3583 if (!p)
3584 return -ENOMEM;
3585
3586 *ret = p;
3587 return using_subcgroup;
3588 }
3589
3590 static int exec_context_cpu_affinity_from_numa(const ExecContext *c, CPUSet *ret) {
3591 _cleanup_(cpu_set_reset) CPUSet s = {};
3592 int r;
3593
3594 assert(c);
3595 assert(ret);
3596
3597 if (!c->numa_policy.nodes.set) {
3598 log_debug("Can't derive CPU affinity mask from NUMA mask because NUMA mask is not set, ignoring");
3599 return 0;
3600 }
3601
3602 r = numa_to_cpu_set(&c->numa_policy, &s);
3603 if (r < 0)
3604 return r;
3605
3606 cpu_set_reset(ret);
3607
3608 return cpu_set_add_all(ret, &s);
3609 }
3610
3611 bool exec_context_get_cpu_affinity_from_numa(const ExecContext *c) {
3612 assert(c);
3613
3614 return c->cpu_affinity_from_numa;
3615 }
3616
3617 static int exec_child(
3618 Unit *unit,
3619 const ExecCommand *command,
3620 const ExecContext *context,
3621 const ExecParameters *params,
3622 ExecRuntime *runtime,
3623 DynamicCreds *dcreds,
3624 int socket_fd,
3625 const int named_iofds[static 3],
3626 int *fds,
3627 size_t n_socket_fds,
3628 size_t n_storage_fds,
3629 char **files_env,
3630 int user_lookup_fd,
3631 int *exit_status) {
3632
3633 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **accum_env = NULL, **replaced_argv = NULL;
3634 int *fds_with_exec_fd, n_fds_with_exec_fd, r, ngids = 0, exec_fd = -1;
3635 _cleanup_free_ gid_t *supplementary_gids = NULL;
3636 const char *username = NULL, *groupname = NULL;
3637 _cleanup_free_ char *home_buffer = NULL;
3638 const char *home = NULL, *shell = NULL;
3639 char **final_argv = NULL;
3640 dev_t journal_stream_dev = 0;
3641 ino_t journal_stream_ino = 0;
3642 bool userns_set_up = false;
3643 bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
3644 needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
3645 needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
3646 needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
3647 #if HAVE_SELINUX
3648 _cleanup_free_ char *mac_selinux_context_net = NULL;
3649 bool use_selinux = false;
3650 #endif
3651 #if ENABLE_SMACK
3652 bool use_smack = false;
3653 #endif
3654 #if HAVE_APPARMOR
3655 bool use_apparmor = false;
3656 #endif
3657 uid_t saved_uid = getuid();
3658 gid_t saved_gid = getgid();
3659 uid_t uid = UID_INVALID;
3660 gid_t gid = GID_INVALID;
3661 size_t n_fds;
3662 int secure_bits;
3663 _cleanup_free_ gid_t *gids_after_pam = NULL;
3664 int ngids_after_pam = 0;
3665
3666 assert(unit);
3667 assert(command);
3668 assert(context);
3669 assert(params);
3670 assert(exit_status);
3671
3672 rename_process_from_path(command->path);
3673
3674 /* We reset exactly these signals, since they are the
3675 * only ones we set to SIG_IGN in the main daemon. All
3676 * others we leave untouched because we set them to
3677 * SIG_DFL or a valid handler initially, both of which
3678 * will be demoted to SIG_DFL. */
3679 (void) default_signals(SIGNALS_CRASH_HANDLER,
3680 SIGNALS_IGNORE, -1);
3681
3682 if (context->ignore_sigpipe)
3683 (void) ignore_signals(SIGPIPE, -1);
3684
3685 r = reset_signal_mask();
3686 if (r < 0) {
3687 *exit_status = EXIT_SIGNAL_MASK;
3688 return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
3689 }
3690
3691 if (params->idle_pipe)
3692 do_idle_pipe_dance(params->idle_pipe);
3693
3694 /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
3695 * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
3696 * any fds open we don't really want open during the transition. In order to make logging work, we switch the
3697 * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
3698
3699 log_forget_fds();
3700 log_set_open_when_needed(true);
3701
3702 /* In case anything used libc syslog(), close this here, too */
3703 closelog();
3704
3705 n_fds = n_socket_fds + n_storage_fds;
3706 r = close_remaining_fds(params, runtime, dcreds, user_lookup_fd, socket_fd, params->exec_fd, fds, n_fds);
3707 if (r < 0) {
3708 *exit_status = EXIT_FDS;
3709 return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
3710 }
3711
3712 if (!context->same_pgrp &&
3713 setsid() < 0) {
3714 *exit_status = EXIT_SETSID;
3715 return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
3716 }
3717
3718 exec_context_tty_reset(context, params);
3719
3720 if (unit_shall_confirm_spawn(unit)) {
3721 const char *vc = params->confirm_spawn;
3722 _cleanup_free_ char *cmdline = NULL;
3723
3724 cmdline = exec_command_line(command->argv);
3725 if (!cmdline) {
3726 *exit_status = EXIT_MEMORY;
3727 return log_oom();
3728 }
3729
3730 r = ask_for_confirmation(vc, unit, cmdline);
3731 if (r != CONFIRM_EXECUTE) {
3732 if (r == CONFIRM_PRETEND_SUCCESS) {
3733 *exit_status = EXIT_SUCCESS;
3734 return 0;
3735 }
3736 *exit_status = EXIT_CONFIRM;
3737 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ECANCELED),
3738 "Execution cancelled by the user");
3739 }
3740 }
3741
3742 /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
3743 * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
3744 * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
3745 * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
3746 * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
3747 if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
3748 setenv("SYSTEMD_ACTIVATION_SCOPE", MANAGER_IS_SYSTEM(unit->manager) ? "system" : "user", true) != 0) {
3749 *exit_status = EXIT_MEMORY;
3750 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
3751 }
3752
3753 if (context->dynamic_user && dcreds) {
3754 _cleanup_strv_free_ char **suggested_paths = NULL;
3755
3756 /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
3757 * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here.*/
3758 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
3759 *exit_status = EXIT_USER;
3760 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
3761 }
3762
3763 r = compile_suggested_paths(context, params, &suggested_paths);
3764 if (r < 0) {
3765 *exit_status = EXIT_MEMORY;
3766 return log_oom();
3767 }
3768
3769 r = dynamic_creds_realize(dcreds, suggested_paths, &uid, &gid);
3770 if (r < 0) {
3771 *exit_status = EXIT_USER;
3772 if (r == -EILSEQ) {
3773 log_unit_error(unit, "Failed to update dynamic user credentials: User or group with specified name already exists.");
3774 return -EOPNOTSUPP;
3775 }
3776 return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
3777 }
3778
3779 if (!uid_is_valid(uid)) {
3780 *exit_status = EXIT_USER;
3781 log_unit_error(unit, "UID validation failed for \""UID_FMT"\"", uid);
3782 return -ESRCH;
3783 }
3784
3785 if (!gid_is_valid(gid)) {
3786 *exit_status = EXIT_USER;
3787 log_unit_error(unit, "GID validation failed for \""GID_FMT"\"", gid);
3788 return -ESRCH;
3789 }
3790
3791 if (dcreds->user)
3792 username = dcreds->user->name;
3793
3794 } else {
3795 r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
3796 if (r < 0) {
3797 *exit_status = EXIT_USER;
3798 return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
3799 }
3800
3801 r = get_fixed_group(context, &groupname, &gid);
3802 if (r < 0) {
3803 *exit_status = EXIT_GROUP;
3804 return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
3805 }
3806 }
3807
3808 /* Initialize user supplementary groups and get SupplementaryGroups= ones */
3809 r = get_supplementary_groups(context, username, groupname, gid,
3810 &supplementary_gids, &ngids);
3811 if (r < 0) {
3812 *exit_status = EXIT_GROUP;
3813 return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
3814 }
3815
3816 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
3817 if (r < 0) {
3818 *exit_status = EXIT_USER;
3819 return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
3820 }
3821
3822 user_lookup_fd = safe_close(user_lookup_fd);
3823
3824 r = acquire_home(context, uid, &home, &home_buffer);
3825 if (r < 0) {
3826 *exit_status = EXIT_CHDIR;
3827 return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
3828 }
3829
3830 /* If a socket is connected to STDIN/STDOUT/STDERR, we
3831 * must sure to drop O_NONBLOCK */
3832 if (socket_fd >= 0)
3833 (void) fd_nonblock(socket_fd, false);
3834
3835 /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
3836 * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
3837 if (params->cgroup_path) {
3838 _cleanup_free_ char *p = NULL;
3839
3840 r = exec_parameters_get_cgroup_path(params, &p);
3841 if (r < 0) {
3842 *exit_status = EXIT_CGROUP;
3843 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
3844 }
3845
3846 r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
3847 if (r < 0) {
3848 *exit_status = EXIT_CGROUP;
3849 return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
3850 }
3851 }
3852
3853 if (context->network_namespace_path && runtime && runtime->netns_storage_socket[0] >= 0) {
3854 r = open_netns_path(runtime->netns_storage_socket, context->network_namespace_path);
3855 if (r < 0) {
3856 *exit_status = EXIT_NETWORK;
3857 return log_unit_error_errno(unit, r, "Failed to open network namespace path %s: %m", context->network_namespace_path);
3858 }
3859 }
3860
3861 r = setup_input(context, params, socket_fd, named_iofds);
3862 if (r < 0) {
3863 *exit_status = EXIT_STDIN;
3864 return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
3865 }
3866
3867 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3868 if (r < 0) {
3869 *exit_status = EXIT_STDOUT;
3870 return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
3871 }
3872
3873 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3874 if (r < 0) {
3875 *exit_status = EXIT_STDERR;
3876 return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
3877 }
3878
3879 if (context->oom_score_adjust_set) {
3880 /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
3881 * prohibit write access to this file, and we shouldn't trip up over that. */
3882 r = set_oom_score_adjust(context->oom_score_adjust);
3883 if (ERRNO_IS_PRIVILEGE(r))
3884 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
3885 else if (r < 0) {
3886 *exit_status = EXIT_OOM_ADJUST;
3887 return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
3888 }
3889 }
3890
3891 if (context->coredump_filter_set) {
3892 r = set_coredump_filter(context->coredump_filter);
3893 if (ERRNO_IS_PRIVILEGE(r))
3894 log_unit_debug_errno(unit, r, "Failed to adjust coredump_filter, ignoring: %m");
3895 else if (r < 0)
3896 return log_unit_error_errno(unit, r, "Failed to adjust coredump_filter: %m");
3897 }
3898
3899 if (context->nice_set) {
3900 r = setpriority_closest(context->nice);
3901 if (r < 0)
3902 return log_unit_error_errno(unit, r, "Failed to set up process scheduling priority (nice level): %m");
3903 }
3904
3905 if (context->cpu_sched_set) {
3906 struct sched_param param = {
3907 .sched_priority = context->cpu_sched_priority,
3908 };
3909
3910 r = sched_setscheduler(0,
3911 context->cpu_sched_policy |
3912 (context->cpu_sched_reset_on_fork ?
3913 SCHED_RESET_ON_FORK : 0),
3914 &param);
3915 if (r < 0) {
3916 *exit_status = EXIT_SETSCHEDULER;
3917 return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
3918 }
3919 }
3920
3921 if (context->cpu_affinity_from_numa || context->cpu_set.set) {
3922 _cleanup_(cpu_set_reset) CPUSet converted_cpu_set = {};
3923 const CPUSet *cpu_set;
3924
3925 if (context->cpu_affinity_from_numa) {
3926 r = exec_context_cpu_affinity_from_numa(context, &converted_cpu_set);
3927 if (r < 0) {
3928 *exit_status = EXIT_CPUAFFINITY;
3929 return log_unit_error_errno(unit, r, "Failed to derive CPU affinity mask from NUMA mask: %m");
3930 }
3931
3932 cpu_set = &converted_cpu_set;
3933 } else
3934 cpu_set = &context->cpu_set;
3935
3936 if (sched_setaffinity(0, cpu_set->allocated, cpu_set->set) < 0) {
3937 *exit_status = EXIT_CPUAFFINITY;
3938 return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
3939 }
3940 }
3941
3942 if (mpol_is_valid(numa_policy_get_type(&context->numa_policy))) {
3943 r = apply_numa_policy(&context->numa_policy);
3944 if (r == -EOPNOTSUPP)
3945 log_unit_debug_errno(unit, r, "NUMA support not available, ignoring.");
3946 else if (r < 0) {
3947 *exit_status = EXIT_NUMA_POLICY;
3948 return log_unit_error_errno(unit, r, "Failed to set NUMA memory policy: %m");
3949 }
3950 }
3951
3952 if (context->ioprio_set)
3953 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
3954 *exit_status = EXIT_IOPRIO;
3955 return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
3956 }
3957
3958 if (context->timer_slack_nsec != NSEC_INFINITY)
3959 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
3960 *exit_status = EXIT_TIMERSLACK;
3961 return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
3962 }
3963
3964 if (context->personality != PERSONALITY_INVALID) {
3965 r = safe_personality(context->personality);
3966 if (r < 0) {
3967 *exit_status = EXIT_PERSONALITY;
3968 return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
3969 }
3970 }
3971
3972 if (context->utmp_id)
3973 utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
3974 context->tty_path,
3975 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
3976 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
3977 USER_PROCESS,
3978 username);
3979
3980 if (uid_is_valid(uid)) {
3981 r = chown_terminal(STDIN_FILENO, uid);
3982 if (r < 0) {
3983 *exit_status = EXIT_STDIN;
3984 return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
3985 }
3986 }
3987
3988 /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
3989 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
3990 * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
3991 * touch a single hierarchy too. */
3992 if (params->cgroup_path && context->user && (params->flags & EXEC_CGROUP_DELEGATE)) {
3993 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
3994 if (r < 0) {
3995 *exit_status = EXIT_CGROUP;
3996 return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
3997 }
3998 }
3999
4000 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
4001 r = setup_exec_directory(context, params, uid, gid, dt, exit_status);
4002 if (r < 0)
4003 return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
4004 }
4005
4006 if (FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
4007 r = setup_credentials(context, params, unit->id, uid);
4008 if (r < 0) {
4009 *exit_status = EXIT_CREDENTIALS;
4010 return log_unit_error_errno(unit, r, "Failed to set up credentials: %m");
4011 }
4012 }
4013
4014 r = build_environment(
4015 unit,
4016 context,
4017 params,
4018 n_fds,
4019 home,
4020 username,
4021 shell,
4022 journal_stream_dev,
4023 journal_stream_ino,
4024 &our_env);
4025 if (r < 0) {
4026 *exit_status = EXIT_MEMORY;
4027 return log_oom();
4028 }
4029
4030 r = build_pass_environment(context, &pass_env);
4031 if (r < 0) {
4032 *exit_status = EXIT_MEMORY;
4033 return log_oom();
4034 }
4035
4036 accum_env = strv_env_merge(5,
4037 params->environment,
4038 our_env,
4039 pass_env,
4040 context->environment,
4041 files_env);
4042 if (!accum_env) {
4043 *exit_status = EXIT_MEMORY;
4044 return log_oom();
4045 }
4046 accum_env = strv_env_clean(accum_env);
4047
4048 (void) umask(context->umask);
4049
4050 r = setup_keyring(unit, context, params, uid, gid);
4051 if (r < 0) {
4052 *exit_status = EXIT_KEYRING;
4053 return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
4054 }
4055
4056 /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted from it */
4057 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
4058
4059 /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked for it, and the kernel doesn't actually support ambient caps */
4060 needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
4061
4062 /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not desired */
4063 if (needs_ambient_hack)
4064 needs_setuid = false;
4065 else
4066 needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
4067
4068 if (needs_sandboxing) {
4069 /* MAC enablement checks need to be done before a new mount ns is created, as they rely on /sys being
4070 * present. The actual MAC context application will happen later, as late as possible, to avoid
4071 * impacting our own code paths. */
4072
4073 #if HAVE_SELINUX
4074 use_selinux = mac_selinux_use();
4075 #endif
4076 #if ENABLE_SMACK
4077 use_smack = mac_smack_use();
4078 #endif
4079 #if HAVE_APPARMOR
4080 use_apparmor = mac_apparmor_use();
4081 #endif
4082 }
4083
4084 if (needs_sandboxing) {
4085 int which_failed;
4086
4087 /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what
4088 * is set here. (See below.) */
4089
4090 r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
4091 if (r < 0) {
4092 *exit_status = EXIT_LIMITS;
4093 return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
4094 }
4095 }
4096
4097 if (needs_setuid && context->pam_name && username) {
4098 /* Let's call into PAM after we set up our own idea of resource limits to that pam_limits
4099 * wins here. (See above.) */
4100
4101 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
4102 if (r < 0) {
4103 *exit_status = EXIT_PAM;
4104 return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
4105 }
4106
4107 ngids_after_pam = getgroups_alloc(&gids_after_pam);
4108 if (ngids_after_pam < 0) {
4109 *exit_status = EXIT_MEMORY;
4110 return log_unit_error_errno(unit, ngids_after_pam, "Failed to obtain groups after setting up PAM: %m");
4111 }
4112 }
4113
4114 if (needs_sandboxing && context->private_users && !have_effective_cap(CAP_SYS_ADMIN)) {
4115 /* If we're unprivileged, set up the user namespace first to enable use of the other namespaces.
4116 * Users with CAP_SYS_ADMIN can set up user namespaces last because they will be able to
4117 * set up the all of the other namespaces (i.e. network, mount, UTS) without a user namespace. */
4118
4119 userns_set_up = true;
4120 r = setup_private_users(saved_uid, saved_gid, uid, gid);
4121 if (r < 0) {
4122 *exit_status = EXIT_USER;
4123 return log_unit_error_errno(unit, r, "Failed to set up user namespacing for unprivileged user: %m");
4124 }
4125 }
4126
4127 if ((context->private_network || context->network_namespace_path) && runtime && runtime->netns_storage_socket[0] >= 0) {
4128
4129 if (ns_type_supported(NAMESPACE_NET)) {
4130 r = setup_netns(runtime->netns_storage_socket);
4131 if (r == -EPERM)
4132 log_unit_warning_errno(unit, r,
4133 "PrivateNetwork=yes is configured, but network namespace setup failed, ignoring: %m");
4134 else if (r < 0) {
4135 *exit_status = EXIT_NETWORK;
4136 return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
4137 }
4138 } else if (context->network_namespace_path) {
4139 *exit_status = EXIT_NETWORK;
4140 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
4141 "NetworkNamespacePath= is not supported, refusing.");
4142 } else
4143 log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
4144 }
4145
4146 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
4147 if (needs_mount_namespace) {
4148 _cleanup_free_ char *error_path = NULL;
4149
4150 r = apply_mount_namespace(unit, command->flags, context, params, runtime, &error_path);
4151 if (r < 0) {
4152 *exit_status = EXIT_NAMESPACE;
4153 return log_unit_error_errno(unit, r, "Failed to set up mount namespacing%s%s: %m",
4154 error_path ? ": " : "", strempty(error_path));
4155 }
4156 }
4157
4158 if (needs_sandboxing) {
4159 r = apply_protect_hostname(unit, context, exit_status);
4160 if (r < 0)
4161 return r;
4162 }
4163
4164 /* Drop groups as early as possible.
4165 * This needs to be done after PrivateDevices=y setup as device nodes should be owned by the host's root.
4166 * For non-root in a userns, devices will be owned by the user/group before the group change, and nobody. */
4167 if (needs_setuid) {
4168 _cleanup_free_ gid_t *gids_to_enforce = NULL;
4169 int ngids_to_enforce = 0;
4170
4171 ngids_to_enforce = merge_gid_lists(supplementary_gids,
4172 ngids,
4173 gids_after_pam,
4174 ngids_after_pam,
4175 &gids_to_enforce);
4176 if (ngids_to_enforce < 0) {
4177 *exit_status = EXIT_MEMORY;
4178 return log_unit_error_errno(unit,
4179 ngids_to_enforce,
4180 "Failed to merge group lists. Group membership might be incorrect: %m");
4181 }
4182
4183 r = enforce_groups(gid, gids_to_enforce, ngids_to_enforce);
4184 if (r < 0) {
4185 *exit_status = EXIT_GROUP;
4186 return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
4187 }
4188 }
4189
4190 /* If the user namespace was not set up above, try to do it now.
4191 * It's preferred to set up the user namespace later (after all other namespaces) so as not to be
4192 * restricted by rules pertaining to combining user namspaces with other namespaces (e.g. in the
4193 * case of mount namespaces being less privileged when the mount point list is copied from a
4194 * different user namespace). */
4195
4196 if (needs_sandboxing && context->private_users && !userns_set_up) {
4197 r = setup_private_users(saved_uid, saved_gid, uid, gid);
4198 if (r < 0) {
4199 *exit_status = EXIT_USER;
4200 return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
4201 }
4202 }
4203
4204 /* Now that the mount namespace has been set up and privileges adjusted, let's look for the thing we
4205 * shall execute. */
4206
4207 _cleanup_free_ char *executable = NULL;
4208 r = find_executable_full(command->path, false, &executable);
4209 if (r < 0) {
4210 if (r != -ENOMEM && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
4211 log_struct_errno(LOG_INFO, r,
4212 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4213 LOG_UNIT_ID(unit),
4214 LOG_UNIT_INVOCATION_ID(unit),
4215 LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
4216 command->path),
4217 "EXECUTABLE=%s", command->path);
4218 return 0;
4219 }
4220
4221 *exit_status = EXIT_EXEC;
4222 return log_struct_errno(LOG_INFO, r,
4223 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4224 LOG_UNIT_ID(unit),
4225 LOG_UNIT_INVOCATION_ID(unit),
4226 LOG_UNIT_MESSAGE(unit, "Failed to locate executable %s: %m",
4227 command->path),
4228 "EXECUTABLE=%s", command->path);
4229 }
4230
4231 #if HAVE_SELINUX
4232 if (needs_sandboxing && use_selinux && params->selinux_context_net && socket_fd >= 0) {
4233 r = mac_selinux_get_child_mls_label(socket_fd, executable, context->selinux_context, &mac_selinux_context_net);
4234 if (r < 0) {
4235 *exit_status = EXIT_SELINUX_CONTEXT;
4236 return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
4237 }
4238 }
4239 #endif
4240
4241 /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that we are
4242 * more aggressive this time since socket_fd and the netns fds we don't need anymore. We do keep the exec_fd
4243 * however if we have it as we want to keep it open until the final execve(). */
4244
4245 if (params->exec_fd >= 0) {
4246 exec_fd = params->exec_fd;
4247
4248 if (exec_fd < 3 + (int) n_fds) {
4249 int moved_fd;
4250
4251 /* Let's move the exec fd far up, so that it's outside of the fd range we want to pass to the
4252 * process we are about to execute. */
4253
4254 moved_fd = fcntl(exec_fd, F_DUPFD_CLOEXEC, 3 + (int) n_fds);
4255 if (moved_fd < 0) {
4256 *exit_status = EXIT_FDS;
4257 return log_unit_error_errno(unit, errno, "Couldn't move exec fd up: %m");
4258 }
4259
4260 CLOSE_AND_REPLACE(exec_fd, moved_fd);
4261 } else {
4262 /* This fd should be FD_CLOEXEC already, but let's make sure. */
4263 r = fd_cloexec(exec_fd, true);
4264 if (r < 0) {
4265 *exit_status = EXIT_FDS;
4266 return log_unit_error_errno(unit, r, "Failed to make exec fd FD_CLOEXEC: %m");
4267 }
4268 }
4269
4270 fds_with_exec_fd = newa(int, n_fds + 1);
4271 memcpy_safe(fds_with_exec_fd, fds, n_fds * sizeof(int));
4272 fds_with_exec_fd[n_fds] = exec_fd;
4273 n_fds_with_exec_fd = n_fds + 1;
4274 } else {
4275 fds_with_exec_fd = fds;
4276 n_fds_with_exec_fd = n_fds;
4277 }
4278
4279 r = close_all_fds(fds_with_exec_fd, n_fds_with_exec_fd);
4280 if (r >= 0)
4281 r = shift_fds(fds, n_fds);
4282 if (r >= 0)
4283 r = flags_fds(fds, n_socket_fds, n_storage_fds, context->non_blocking);
4284 if (r < 0) {
4285 *exit_status = EXIT_FDS;
4286 return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
4287 }
4288
4289 /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
4290 * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
4291 * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
4292 * came this far. */
4293
4294 secure_bits = context->secure_bits;
4295
4296 if (needs_sandboxing) {
4297 uint64_t bset;
4298
4299 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly
4300 * requested. (Note this is placed after the general resource limit initialization, see
4301 * above, in order to take precedence.) */
4302 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
4303 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
4304 *exit_status = EXIT_LIMITS;
4305 return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
4306 }
4307 }
4308
4309 #if ENABLE_SMACK
4310 /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
4311 * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
4312 if (use_smack) {
4313 r = setup_smack(context, executable);
4314 if (r < 0) {
4315 *exit_status = EXIT_SMACK_PROCESS_LABEL;
4316 return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
4317 }
4318 }
4319 #endif
4320
4321 bset = context->capability_bounding_set;
4322 /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
4323 * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
4324 * instead of us doing that */
4325 if (needs_ambient_hack)
4326 bset |= (UINT64_C(1) << CAP_SETPCAP) |
4327 (UINT64_C(1) << CAP_SETUID) |
4328 (UINT64_C(1) << CAP_SETGID);
4329
4330 if (!cap_test_all(bset)) {
4331 r = capability_bounding_set_drop(bset, false);
4332 if (r < 0) {
4333 *exit_status = EXIT_CAPABILITIES;
4334 return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
4335 }
4336 }
4337
4338 /* Ambient capabilities are cleared during setresuid() (in enforce_user()) even with
4339 * keep-caps set.
4340 * To be able to raise the ambient capabilities after setresuid() they have to be
4341 * added to the inherited set and keep caps has to be set (done in enforce_user()).
4342 * After setresuid() the ambient capabilities can be raised as they are present in
4343 * the permitted and inhertiable set. However it is possible that someone wants to
4344 * set ambient capabilities without changing the user, so we also set the ambient
4345 * capabilities here.
4346 * The requested ambient capabilities are raised in the inheritable set if the
4347 * second argument is true. */
4348 if (!needs_ambient_hack) {
4349 r = capability_ambient_set_apply(context->capability_ambient_set, true);
4350 if (r < 0) {
4351 *exit_status = EXIT_CAPABILITIES;
4352 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
4353 }
4354 }
4355 }
4356
4357 /* chroot to root directory first, before we lose the ability to chroot */
4358 r = apply_root_directory(context, params, needs_mount_namespace, exit_status);
4359 if (r < 0)
4360 return log_unit_error_errno(unit, r, "Chrooting to the requested root directory failed: %m");
4361
4362 if (needs_setuid) {
4363 if (uid_is_valid(uid)) {
4364 r = enforce_user(context, uid);
4365 if (r < 0) {
4366 *exit_status = EXIT_USER;
4367 return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
4368 }
4369
4370 if (!needs_ambient_hack &&
4371 context->capability_ambient_set != 0) {
4372
4373 /* Raise the ambient capabilities after user change. */
4374 r = capability_ambient_set_apply(context->capability_ambient_set, false);
4375 if (r < 0) {
4376 *exit_status = EXIT_CAPABILITIES;
4377 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
4378 }
4379 }
4380 }
4381 }
4382
4383 /* Apply working directory here, because the working directory might be on NFS and only the user running
4384 * this service might have the correct privilege to change to the working directory */
4385 r = apply_working_directory(context, params, home, exit_status);
4386 if (r < 0)
4387 return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
4388
4389 if (needs_sandboxing) {
4390 /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
4391 * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
4392 * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
4393 * are restricted. */
4394
4395 #if HAVE_SELINUX
4396 if (use_selinux) {
4397 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
4398
4399 if (exec_context) {
4400 r = setexeccon(exec_context);
4401 if (r < 0) {
4402 *exit_status = EXIT_SELINUX_CONTEXT;
4403 return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
4404 }
4405 }
4406 }
4407 #endif
4408
4409 #if HAVE_APPARMOR
4410 if (use_apparmor && context->apparmor_profile) {
4411 r = aa_change_onexec(context->apparmor_profile);
4412 if (r < 0 && !context->apparmor_profile_ignore) {
4413 *exit_status = EXIT_APPARMOR_PROFILE;
4414 return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
4415 }
4416 }
4417 #endif
4418
4419 /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential EPERMs
4420 * we'll try not to call PR_SET_SECUREBITS unless necessary. Setting securebits requires
4421 * CAP_SETPCAP. */
4422 if (prctl(PR_GET_SECUREBITS) != secure_bits) {
4423 /* CAP_SETPCAP is required to set securebits. This capability is raised into the
4424 * effective set here.
4425 * The effective set is overwritten during execve with the following values:
4426 * - ambient set (for non-root processes)
4427 * - (inheritable | bounding) set for root processes)
4428 *
4429 * Hence there is no security impact to raise it in the effective set before execve
4430 */
4431 r = capability_gain_cap_setpcap(NULL);
4432 if (r < 0) {
4433 *exit_status = EXIT_CAPABILITIES;
4434 return log_unit_error_errno(unit, r, "Failed to gain CAP_SETPCAP for setting secure bits");
4435 }
4436 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
4437 *exit_status = EXIT_SECUREBITS;
4438 return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
4439 }
4440 }
4441
4442 if (context_has_no_new_privileges(context))
4443 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
4444 *exit_status = EXIT_NO_NEW_PRIVILEGES;
4445 return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
4446 }
4447
4448 #if HAVE_SECCOMP
4449 r = apply_address_families(unit, context);
4450 if (r < 0) {
4451 *exit_status = EXIT_ADDRESS_FAMILIES;
4452 return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
4453 }
4454
4455 r = apply_memory_deny_write_execute(unit, context);
4456 if (r < 0) {
4457 *exit_status = EXIT_SECCOMP;
4458 return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
4459 }
4460
4461 r = apply_restrict_realtime(unit, context);
4462 if (r < 0) {
4463 *exit_status = EXIT_SECCOMP;
4464 return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
4465 }
4466
4467 r = apply_restrict_suid_sgid(unit, context);
4468 if (r < 0) {
4469 *exit_status = EXIT_SECCOMP;
4470 return log_unit_error_errno(unit, r, "Failed to apply SUID/SGID restrictions: %m");
4471 }
4472
4473 r = apply_restrict_namespaces(unit, context);
4474 if (r < 0) {
4475 *exit_status = EXIT_SECCOMP;
4476 return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
4477 }
4478
4479 r = apply_protect_sysctl(unit, context);
4480 if (r < 0) {
4481 *exit_status = EXIT_SECCOMP;
4482 return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
4483 }
4484
4485 r = apply_protect_kernel_modules(unit, context);
4486 if (r < 0) {
4487 *exit_status = EXIT_SECCOMP;
4488 return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
4489 }
4490
4491 r = apply_protect_kernel_logs(unit, context);
4492 if (r < 0) {
4493 *exit_status = EXIT_SECCOMP;
4494 return log_unit_error_errno(unit, r, "Failed to apply kernel log restrictions: %m");
4495 }
4496
4497 r = apply_protect_clock(unit, context);
4498 if (r < 0) {
4499 *exit_status = EXIT_SECCOMP;
4500 return log_unit_error_errno(unit, r, "Failed to apply clock restrictions: %m");
4501 }
4502
4503 r = apply_private_devices(unit, context);
4504 if (r < 0) {
4505 *exit_status = EXIT_SECCOMP;
4506 return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
4507 }
4508
4509 r = apply_syscall_archs(unit, context);
4510 if (r < 0) {
4511 *exit_status = EXIT_SECCOMP;
4512 return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
4513 }
4514
4515 r = apply_lock_personality(unit, context);
4516 if (r < 0) {
4517 *exit_status = EXIT_SECCOMP;
4518 return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
4519 }
4520
4521 r = apply_syscall_log(unit, context);
4522 if (r < 0) {
4523 *exit_status = EXIT_SECCOMP;
4524 return log_unit_error_errno(unit, r, "Failed to apply system call log filters: %m");
4525 }
4526
4527 /* This really should remain the last step before the execve(), to make sure our own code is unaffected
4528 * by the filter as little as possible. */
4529 r = apply_syscall_filter(unit, context, needs_ambient_hack);
4530 if (r < 0) {
4531 *exit_status = EXIT_SECCOMP;
4532 return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
4533 }
4534 #endif
4535 }
4536
4537 if (!strv_isempty(context->unset_environment)) {
4538 char **ee = NULL;
4539
4540 ee = strv_env_delete(accum_env, 1, context->unset_environment);
4541 if (!ee) {
4542 *exit_status = EXIT_MEMORY;
4543 return log_oom();
4544 }
4545
4546 strv_free_and_replace(accum_env, ee);
4547 }
4548
4549 if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) {
4550 replaced_argv = replace_env_argv(command->argv, accum_env);
4551 if (!replaced_argv) {
4552 *exit_status = EXIT_MEMORY;
4553 return log_oom();
4554 }
4555 final_argv = replaced_argv;
4556 } else
4557 final_argv = command->argv;
4558
4559 if (DEBUG_LOGGING) {
4560 _cleanup_free_ char *line;
4561
4562 line = exec_command_line(final_argv);
4563 if (line)
4564 log_struct(LOG_DEBUG,
4565 "EXECUTABLE=%s", executable,
4566 LOG_UNIT_MESSAGE(unit, "Executing: %s", line),
4567 LOG_UNIT_ID(unit),
4568 LOG_UNIT_INVOCATION_ID(unit));
4569 }
4570
4571 if (exec_fd >= 0) {
4572 uint8_t hot = 1;
4573
4574 /* We have finished with all our initializations. Let's now let the manager know that. From this point
4575 * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
4576
4577 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
4578 *exit_status = EXIT_EXEC;
4579 return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
4580 }
4581 }
4582
4583 execve(executable, final_argv, accum_env);
4584 r = -errno;
4585
4586 if (exec_fd >= 0) {
4587 uint8_t hot = 0;
4588
4589 /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
4590 * that POLLHUP on it no longer means execve() succeeded. */
4591
4592 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
4593 *exit_status = EXIT_EXEC;
4594 return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
4595 }
4596 }
4597
4598 *exit_status = EXIT_EXEC;
4599 return log_unit_error_errno(unit, r, "Failed to execute %s: %m", executable);
4600 }
4601
4602 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
4603 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]);
4604
4605 int exec_spawn(Unit *unit,
4606 ExecCommand *command,
4607 const ExecContext *context,
4608 const ExecParameters *params,
4609 ExecRuntime *runtime,
4610 DynamicCreds *dcreds,
4611 pid_t *ret) {
4612
4613 int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
4614 _cleanup_free_ char *subcgroup_path = NULL;
4615 _cleanup_strv_free_ char **files_env = NULL;
4616 size_t n_storage_fds = 0, n_socket_fds = 0;
4617 _cleanup_free_ char *line = NULL;
4618 pid_t pid;
4619
4620 assert(unit);
4621 assert(command);
4622 assert(context);
4623 assert(ret);
4624 assert(params);
4625 assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
4626
4627 if (context->std_input == EXEC_INPUT_SOCKET ||
4628 context->std_output == EXEC_OUTPUT_SOCKET ||
4629 context->std_error == EXEC_OUTPUT_SOCKET) {
4630
4631 if (params->n_socket_fds > 1) {
4632 log_unit_error(unit, "Got more than one socket.");
4633 return -EINVAL;
4634 }
4635
4636 if (params->n_socket_fds == 0) {
4637 log_unit_error(unit, "Got no socket.");
4638 return -EINVAL;
4639 }
4640
4641 socket_fd = params->fds[0];
4642 } else {
4643 socket_fd = -1;
4644 fds = params->fds;
4645 n_socket_fds = params->n_socket_fds;
4646 n_storage_fds = params->n_storage_fds;
4647 }
4648
4649 r = exec_context_named_iofds(context, params, named_iofds);
4650 if (r < 0)
4651 return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
4652
4653 r = exec_context_load_environment(unit, context, &files_env);
4654 if (r < 0)
4655 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
4656
4657 line = exec_command_line(command->argv);
4658 if (!line)
4659 return log_oom();
4660
4661 /* Fork with up-to-date SELinux label database, so the child inherits the up-to-date db
4662 and, until the next SELinux policy changes, we save further reloads in future children. */
4663 mac_selinux_maybe_reload();
4664
4665 log_struct(LOG_DEBUG,
4666 LOG_UNIT_MESSAGE(unit, "About to execute %s", line),
4667 "EXECUTABLE=%s", command->path, /* We won't know the real executable path until we create
4668 the mount namespace in the child, but we want to log
4669 from the parent, so we need to use the (possibly
4670 inaccurate) path here. */
4671 LOG_UNIT_ID(unit),
4672 LOG_UNIT_INVOCATION_ID(unit));
4673
4674 if (params->cgroup_path) {
4675 r = exec_parameters_get_cgroup_path(params, &subcgroup_path);
4676 if (r < 0)
4677 return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
4678 if (r > 0) { /* We are using a child cgroup */
4679 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
4680 if (r < 0)
4681 return log_unit_error_errno(unit, r, "Failed to create control group '%s': %m", subcgroup_path);
4682 }
4683 }
4684
4685 pid = fork();
4686 if (pid < 0)
4687 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
4688
4689 if (pid == 0) {
4690 int exit_status = EXIT_SUCCESS;
4691
4692 r = exec_child(unit,
4693 command,
4694 context,
4695 params,
4696 runtime,
4697 dcreds,
4698 socket_fd,
4699 named_iofds,
4700 fds,
4701 n_socket_fds,
4702 n_storage_fds,
4703 files_env,
4704 unit->manager->user_lookup_fds[1],
4705 &exit_status);
4706
4707 if (r < 0) {
4708 const char *status =
4709 exit_status_to_string(exit_status,
4710 EXIT_STATUS_LIBC | EXIT_STATUS_SYSTEMD);
4711
4712 log_struct_errno(LOG_ERR, r,
4713 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4714 LOG_UNIT_ID(unit),
4715 LOG_UNIT_INVOCATION_ID(unit),
4716 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
4717 status, command->path),
4718 "EXECUTABLE=%s", command->path);
4719 }
4720
4721 _exit(exit_status);
4722 }
4723
4724 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
4725
4726 /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
4727 * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
4728 * process will be killed too). */
4729 if (subcgroup_path)
4730 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
4731
4732 exec_status_start(&command->exec_status, pid);
4733
4734 *ret = pid;
4735 return 0;
4736 }
4737
4738 void exec_context_init(ExecContext *c) {
4739 assert(c);
4740
4741 c->umask = 0022;
4742 c->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 0);
4743 c->cpu_sched_policy = SCHED_OTHER;
4744 c->syslog_priority = LOG_DAEMON|LOG_INFO;
4745 c->syslog_level_prefix = true;
4746 c->ignore_sigpipe = true;
4747 c->timer_slack_nsec = NSEC_INFINITY;
4748 c->personality = PERSONALITY_INVALID;
4749 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
4750 c->directories[t].mode = 0755;
4751 c->timeout_clean_usec = USEC_INFINITY;
4752 c->capability_bounding_set = CAP_ALL;
4753 assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
4754 c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
4755 c->log_level_max = -1;
4756 #if HAVE_SECCOMP
4757 c->syscall_errno = SECCOMP_ERROR_NUMBER_KILL;
4758 #endif
4759 numa_policy_reset(&c->numa_policy);
4760 }
4761
4762 void exec_context_done(ExecContext *c) {
4763 assert(c);
4764
4765 c->environment = strv_free(c->environment);
4766 c->environment_files = strv_free(c->environment_files);
4767 c->pass_environment = strv_free(c->pass_environment);
4768 c->unset_environment = strv_free(c->unset_environment);
4769
4770 rlimit_free_all(c->rlimit);
4771
4772 for (size_t l = 0; l < 3; l++) {
4773 c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
4774 c->stdio_file[l] = mfree(c->stdio_file[l]);
4775 }
4776
4777 c->working_directory = mfree(c->working_directory);
4778 c->root_directory = mfree(c->root_directory);
4779 c->root_image = mfree(c->root_image);
4780 c->root_image_options = mount_options_free_all(c->root_image_options);
4781 c->root_hash = mfree(c->root_hash);
4782 c->root_hash_size = 0;
4783 c->root_hash_path = mfree(c->root_hash_path);
4784 c->root_hash_sig = mfree(c->root_hash_sig);
4785 c->root_hash_sig_size = 0;
4786 c->root_hash_sig_path = mfree(c->root_hash_sig_path);
4787 c->root_verity = mfree(c->root_verity);
4788 c->tty_path = mfree(c->tty_path);
4789 c->syslog_identifier = mfree(c->syslog_identifier);
4790 c->user = mfree(c->user);
4791 c->group = mfree(c->group);
4792
4793 c->supplementary_groups = strv_free(c->supplementary_groups);
4794
4795 c->pam_name = mfree(c->pam_name);
4796
4797 c->read_only_paths = strv_free(c->read_only_paths);
4798 c->read_write_paths = strv_free(c->read_write_paths);
4799 c->inaccessible_paths = strv_free(c->inaccessible_paths);
4800
4801 bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
4802 c->bind_mounts = NULL;
4803 c->n_bind_mounts = 0;
4804 temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
4805 c->temporary_filesystems = NULL;
4806 c->n_temporary_filesystems = 0;
4807 c->mount_images = mount_image_free_many(c->mount_images, &c->n_mount_images);
4808
4809 cpu_set_reset(&c->cpu_set);
4810 numa_policy_reset(&c->numa_policy);
4811
4812 c->utmp_id = mfree(c->utmp_id);
4813 c->selinux_context = mfree(c->selinux_context);
4814 c->apparmor_profile = mfree(c->apparmor_profile);
4815 c->smack_process_label = mfree(c->smack_process_label);
4816
4817 c->syscall_filter = hashmap_free(c->syscall_filter);
4818 c->syscall_archs = set_free(c->syscall_archs);
4819 c->address_families = set_free(c->address_families);
4820
4821 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
4822 c->directories[t].paths = strv_free(c->directories[t].paths);
4823
4824 c->log_level_max = -1;
4825
4826 exec_context_free_log_extra_fields(c);
4827
4828 c->log_ratelimit_interval_usec = 0;
4829 c->log_ratelimit_burst = 0;
4830
4831 c->stdin_data = mfree(c->stdin_data);
4832 c->stdin_data_size = 0;
4833
4834 c->network_namespace_path = mfree(c->network_namespace_path);
4835
4836 c->log_namespace = mfree(c->log_namespace);
4837
4838 c->load_credentials = strv_free(c->load_credentials);
4839 c->set_credentials = hashmap_free(c->set_credentials);
4840 }
4841
4842 int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
4843 char **i;
4844
4845 assert(c);
4846
4847 if (!runtime_prefix)
4848 return 0;
4849
4850 STRV_FOREACH(i, c->directories[EXEC_DIRECTORY_RUNTIME].paths) {
4851 _cleanup_free_ char *p;
4852
4853 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
4854 p = path_join(runtime_prefix, "private", *i);
4855 else
4856 p = path_join(runtime_prefix, *i);
4857 if (!p)
4858 return -ENOMEM;
4859
4860 /* We execute this synchronously, since we need to be sure this is gone when we start the
4861 * service next. */
4862 (void) rm_rf(p, REMOVE_ROOT);
4863 }
4864
4865 return 0;
4866 }
4867
4868 int exec_context_destroy_credentials(const ExecContext *c, const char *runtime_prefix, const char *unit) {
4869 _cleanup_free_ char *p = NULL;
4870
4871 assert(c);
4872
4873 if (!runtime_prefix || !unit)
4874 return 0;
4875
4876 p = path_join(runtime_prefix, "credentials", unit);
4877 if (!p)
4878 return -ENOMEM;
4879
4880 /* This is either a tmpfs/ramfs of its own, or a plain directory. Either way, let's first try to
4881 * unmount it, and afterwards remove the mount point */
4882 (void) umount2(p, MNT_DETACH|UMOUNT_NOFOLLOW);
4883 (void) rm_rf(p, REMOVE_ROOT|REMOVE_CHMOD);
4884
4885 return 0;
4886 }
4887
4888 static void exec_command_done(ExecCommand *c) {
4889 assert(c);
4890
4891 c->path = mfree(c->path);
4892 c->argv = strv_free(c->argv);
4893 }
4894
4895 void exec_command_done_array(ExecCommand *c, size_t n) {
4896 size_t i;
4897
4898 for (i = 0; i < n; i++)
4899 exec_command_done(c+i);
4900 }
4901
4902 ExecCommand* exec_command_free_list(ExecCommand *c) {
4903 ExecCommand *i;
4904
4905 while ((i = c)) {
4906 LIST_REMOVE(command, c, i);
4907 exec_command_done(i);
4908 free(i);
4909 }
4910
4911 return NULL;
4912 }
4913
4914 void exec_command_free_array(ExecCommand **c, size_t n) {
4915 for (size_t i = 0; i < n; i++)
4916 c[i] = exec_command_free_list(c[i]);
4917 }
4918
4919 void exec_command_reset_status_array(ExecCommand *c, size_t n) {
4920 for (size_t i = 0; i < n; i++)
4921 exec_status_reset(&c[i].exec_status);
4922 }
4923
4924 void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
4925 for (size_t i = 0; i < n; i++) {
4926 ExecCommand *z;
4927
4928 LIST_FOREACH(command, z, c[i])
4929 exec_status_reset(&z->exec_status);
4930 }
4931 }
4932
4933 typedef struct InvalidEnvInfo {
4934 const Unit *unit;
4935 const char *path;
4936 } InvalidEnvInfo;
4937
4938 static void invalid_env(const char *p, void *userdata) {
4939 InvalidEnvInfo *info = userdata;
4940
4941 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
4942 }
4943
4944 const char* exec_context_fdname(const ExecContext *c, int fd_index) {
4945 assert(c);
4946
4947 switch (fd_index) {
4948
4949 case STDIN_FILENO:
4950 if (c->std_input != EXEC_INPUT_NAMED_FD)
4951 return NULL;
4952
4953 return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
4954
4955 case STDOUT_FILENO:
4956 if (c->std_output != EXEC_OUTPUT_NAMED_FD)
4957 return NULL;
4958
4959 return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
4960
4961 case STDERR_FILENO:
4962 if (c->std_error != EXEC_OUTPUT_NAMED_FD)
4963 return NULL;
4964
4965 return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
4966
4967 default:
4968 return NULL;
4969 }
4970 }
4971
4972 static int exec_context_named_iofds(
4973 const ExecContext *c,
4974 const ExecParameters *p,
4975 int named_iofds[static 3]) {
4976
4977 size_t targets;
4978 const char* stdio_fdname[3];
4979 size_t n_fds;
4980
4981 assert(c);
4982 assert(p);
4983 assert(named_iofds);
4984
4985 targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
4986 (c->std_output == EXEC_OUTPUT_NAMED_FD) +
4987 (c->std_error == EXEC_OUTPUT_NAMED_FD);
4988
4989 for (size_t i = 0; i < 3; i++)
4990 stdio_fdname[i] = exec_context_fdname(c, i);
4991
4992 n_fds = p->n_storage_fds + p->n_socket_fds;
4993
4994 for (size_t i = 0; i < n_fds && targets > 0; i++)
4995 if (named_iofds[STDIN_FILENO] < 0 &&
4996 c->std_input == EXEC_INPUT_NAMED_FD &&
4997 stdio_fdname[STDIN_FILENO] &&
4998 streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
4999
5000 named_iofds[STDIN_FILENO] = p->fds[i];
5001 targets--;
5002
5003 } else if (named_iofds[STDOUT_FILENO] < 0 &&
5004 c->std_output == EXEC_OUTPUT_NAMED_FD &&
5005 stdio_fdname[STDOUT_FILENO] &&
5006 streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
5007
5008 named_iofds[STDOUT_FILENO] = p->fds[i];
5009 targets--;
5010
5011 } else if (named_iofds[STDERR_FILENO] < 0 &&
5012 c->std_error == EXEC_OUTPUT_NAMED_FD &&
5013 stdio_fdname[STDERR_FILENO] &&
5014 streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
5015
5016 named_iofds[STDERR_FILENO] = p->fds[i];
5017 targets--;
5018 }
5019
5020 return targets == 0 ? 0 : -ENOENT;
5021 }
5022
5023 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l) {
5024 char **i, **r = NULL;
5025
5026 assert(c);
5027 assert(l);
5028
5029 STRV_FOREACH(i, c->environment_files) {
5030 char *fn;
5031 int k;
5032 bool ignore = false;
5033 char **p;
5034 _cleanup_globfree_ glob_t pglob = {};
5035
5036 fn = *i;
5037
5038 if (fn[0] == '-') {
5039 ignore = true;
5040 fn++;
5041 }
5042
5043 if (!path_is_absolute(fn)) {
5044 if (ignore)
5045 continue;
5046
5047 strv_free(r);
5048 return -EINVAL;
5049 }
5050
5051 /* Filename supports globbing, take all matching files */
5052 k = safe_glob(fn, 0, &pglob);
5053 if (k < 0) {
5054 if (ignore)
5055 continue;
5056
5057 strv_free(r);
5058 return k;
5059 }
5060
5061 /* When we don't match anything, -ENOENT should be returned */
5062 assert(pglob.gl_pathc > 0);
5063
5064 for (unsigned n = 0; n < pglob.gl_pathc; n++) {
5065 k = load_env_file(NULL, pglob.gl_pathv[n], &p);
5066 if (k < 0) {
5067 if (ignore)
5068 continue;
5069
5070 strv_free(r);
5071 return k;
5072 }
5073 /* Log invalid environment variables with filename */
5074 if (p) {
5075 InvalidEnvInfo info = {
5076 .unit = unit,
5077 .path = pglob.gl_pathv[n]
5078 };
5079
5080 p = strv_env_clean_with_callback(p, invalid_env, &info);
5081 }
5082
5083 if (!r)
5084 r = p;
5085 else {
5086 char **m;
5087
5088 m = strv_env_merge(2, r, p);
5089 strv_free(r);
5090 strv_free(p);
5091 if (!m)
5092 return -ENOMEM;
5093
5094 r = m;
5095 }
5096 }
5097 }
5098
5099 *l = r;
5100
5101 return 0;
5102 }
5103
5104 static bool tty_may_match_dev_console(const char *tty) {
5105 _cleanup_free_ char *resolved = NULL;
5106
5107 if (!tty)
5108 return true;
5109
5110 tty = skip_dev_prefix(tty);
5111
5112 /* trivial identity? */
5113 if (streq(tty, "console"))
5114 return true;
5115
5116 if (resolve_dev_console(&resolved) < 0)
5117 return true; /* if we could not resolve, assume it may */
5118
5119 /* "tty0" means the active VC, so it may be the same sometimes */
5120 return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
5121 }
5122
5123 static bool exec_context_may_touch_tty(const ExecContext *ec) {
5124 assert(ec);
5125
5126 return ec->tty_reset ||
5127 ec->tty_vhangup ||
5128 ec->tty_vt_disallocate ||
5129 is_terminal_input(ec->std_input) ||
5130 is_terminal_output(ec->std_output) ||
5131 is_terminal_output(ec->std_error);
5132 }
5133
5134 bool exec_context_may_touch_console(const ExecContext *ec) {
5135
5136 return exec_context_may_touch_tty(ec) &&
5137 tty_may_match_dev_console(exec_context_tty_path(ec));
5138 }
5139
5140 static void strv_fprintf(FILE *f, char **l) {
5141 char **g;
5142
5143 assert(f);
5144
5145 STRV_FOREACH(g, l)
5146 fprintf(f, " %s", *g);
5147 }
5148
5149 void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
5150 char **e, **d, buf_clean[FORMAT_TIMESPAN_MAX];
5151 int r;
5152
5153 assert(c);
5154 assert(f);
5155
5156 prefix = strempty(prefix);
5157
5158 fprintf(f,
5159 "%sUMask: %04o\n"
5160 "%sWorkingDirectory: %s\n"
5161 "%sRootDirectory: %s\n"
5162 "%sNonBlocking: %s\n"
5163 "%sPrivateTmp: %s\n"
5164 "%sPrivateDevices: %s\n"
5165 "%sProtectKernelTunables: %s\n"
5166 "%sProtectKernelModules: %s\n"
5167 "%sProtectKernelLogs: %s\n"
5168 "%sProtectClock: %s\n"
5169 "%sProtectControlGroups: %s\n"
5170 "%sPrivateNetwork: %s\n"
5171 "%sPrivateUsers: %s\n"
5172 "%sProtectHome: %s\n"
5173 "%sProtectSystem: %s\n"
5174 "%sMountAPIVFS: %s\n"
5175 "%sIgnoreSIGPIPE: %s\n"
5176 "%sMemoryDenyWriteExecute: %s\n"
5177 "%sRestrictRealtime: %s\n"
5178 "%sRestrictSUIDSGID: %s\n"
5179 "%sKeyringMode: %s\n"
5180 "%sProtectHostname: %s\n"
5181 "%sProtectProc: %s\n"
5182 "%sProcSubset: %s\n",
5183 prefix, c->umask,
5184 prefix, empty_to_root(c->working_directory),
5185 prefix, empty_to_root(c->root_directory),
5186 prefix, yes_no(c->non_blocking),
5187 prefix, yes_no(c->private_tmp),
5188 prefix, yes_no(c->private_devices),
5189 prefix, yes_no(c->protect_kernel_tunables),
5190 prefix, yes_no(c->protect_kernel_modules),
5191 prefix, yes_no(c->protect_kernel_logs),
5192 prefix, yes_no(c->protect_clock),
5193 prefix, yes_no(c->protect_control_groups),
5194 prefix, yes_no(c->private_network),
5195 prefix, yes_no(c->private_users),
5196 prefix, protect_home_to_string(c->protect_home),
5197 prefix, protect_system_to_string(c->protect_system),
5198 prefix, yes_no(exec_context_get_effective_mount_apivfs(c)),
5199 prefix, yes_no(c->ignore_sigpipe),
5200 prefix, yes_no(c->memory_deny_write_execute),
5201 prefix, yes_no(c->restrict_realtime),
5202 prefix, yes_no(c->restrict_suid_sgid),
5203 prefix, exec_keyring_mode_to_string(c->keyring_mode),
5204 prefix, yes_no(c->protect_hostname),
5205 prefix, protect_proc_to_string(c->protect_proc),
5206 prefix, proc_subset_to_string(c->proc_subset));
5207
5208 if (c->root_image)
5209 fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
5210
5211 if (c->root_image_options) {
5212 MountOptions *o;
5213
5214 fprintf(f, "%sRootImageOptions:", prefix);
5215 LIST_FOREACH(mount_options, o, c->root_image_options)
5216 if (!isempty(o->options))
5217 fprintf(f, " %s:%s",
5218 partition_designator_to_string(o->partition_designator),
5219 o->options);
5220 fprintf(f, "\n");
5221 }
5222
5223 if (c->root_hash) {
5224 _cleanup_free_ char *encoded = NULL;
5225 encoded = hexmem(c->root_hash, c->root_hash_size);
5226 if (encoded)
5227 fprintf(f, "%sRootHash: %s\n", prefix, encoded);
5228 }
5229
5230 if (c->root_hash_path)
5231 fprintf(f, "%sRootHash: %s\n", prefix, c->root_hash_path);
5232
5233 if (c->root_hash_sig) {
5234 _cleanup_free_ char *encoded = NULL;
5235 ssize_t len;
5236 len = base64mem(c->root_hash_sig, c->root_hash_sig_size, &encoded);
5237 if (len)
5238 fprintf(f, "%sRootHashSignature: base64:%s\n", prefix, encoded);
5239 }
5240
5241 if (c->root_hash_sig_path)
5242 fprintf(f, "%sRootHashSignature: %s\n", prefix, c->root_hash_sig_path);
5243
5244 if (c->root_verity)
5245 fprintf(f, "%sRootVerity: %s\n", prefix, c->root_verity);
5246
5247 STRV_FOREACH(e, c->environment)
5248 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
5249
5250 STRV_FOREACH(e, c->environment_files)
5251 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
5252
5253 STRV_FOREACH(e, c->pass_environment)
5254 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
5255
5256 STRV_FOREACH(e, c->unset_environment)
5257 fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
5258
5259 fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
5260
5261 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
5262 fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
5263
5264 STRV_FOREACH(d, c->directories[dt].paths)
5265 fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), *d);
5266 }
5267
5268 fprintf(f,
5269 "%sTimeoutCleanSec: %s\n",
5270 prefix, format_timespan(buf_clean, sizeof(buf_clean), c->timeout_clean_usec, USEC_PER_SEC));
5271
5272 if (c->nice_set)
5273 fprintf(f,
5274 "%sNice: %i\n",
5275 prefix, c->nice);
5276
5277 if (c->oom_score_adjust_set)
5278 fprintf(f,
5279 "%sOOMScoreAdjust: %i\n",
5280 prefix, c->oom_score_adjust);
5281
5282 if (c->coredump_filter_set)
5283 fprintf(f,
5284 "%sCoredumpFilter: 0x%"PRIx64"\n",
5285 prefix, c->coredump_filter);
5286
5287 for (unsigned i = 0; i < RLIM_NLIMITS; i++)
5288 if (c->rlimit[i]) {
5289 fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
5290 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
5291 fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
5292 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
5293 }
5294
5295 if (c->ioprio_set) {
5296 _cleanup_free_ char *class_str = NULL;
5297
5298 r = ioprio_class_to_string_alloc(IOPRIO_PRIO_CLASS(c->ioprio), &class_str);
5299 if (r >= 0)
5300 fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
5301
5302 fprintf(f, "%sIOPriority: %lu\n", prefix, IOPRIO_PRIO_DATA(c->ioprio));
5303 }
5304
5305 if (c->cpu_sched_set) {
5306 _cleanup_free_ char *policy_str = NULL;
5307
5308 r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
5309 if (r >= 0)
5310 fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
5311
5312 fprintf(f,
5313 "%sCPUSchedulingPriority: %i\n"
5314 "%sCPUSchedulingResetOnFork: %s\n",
5315 prefix, c->cpu_sched_priority,
5316 prefix, yes_no(c->cpu_sched_reset_on_fork));
5317 }
5318
5319 if (c->cpu_set.set) {
5320 _cleanup_free_ char *affinity = NULL;
5321
5322 affinity = cpu_set_to_range_string(&c->cpu_set);
5323 fprintf(f, "%sCPUAffinity: %s\n", prefix, affinity);
5324 }
5325
5326 if (mpol_is_valid(numa_policy_get_type(&c->numa_policy))) {
5327 _cleanup_free_ char *nodes = NULL;
5328
5329 nodes = cpu_set_to_range_string(&c->numa_policy.nodes);
5330 fprintf(f, "%sNUMAPolicy: %s\n", prefix, mpol_to_string(numa_policy_get_type(&c->numa_policy)));
5331 fprintf(f, "%sNUMAMask: %s\n", prefix, strnull(nodes));
5332 }
5333
5334 if (c->timer_slack_nsec != NSEC_INFINITY)
5335 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
5336
5337 fprintf(f,
5338 "%sStandardInput: %s\n"
5339 "%sStandardOutput: %s\n"
5340 "%sStandardError: %s\n",
5341 prefix, exec_input_to_string(c->std_input),
5342 prefix, exec_output_to_string(c->std_output),
5343 prefix, exec_output_to_string(c->std_error));
5344
5345 if (c->std_input == EXEC_INPUT_NAMED_FD)
5346 fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
5347 if (c->std_output == EXEC_OUTPUT_NAMED_FD)
5348 fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
5349 if (c->std_error == EXEC_OUTPUT_NAMED_FD)
5350 fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
5351
5352 if (c->std_input == EXEC_INPUT_FILE)
5353 fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
5354 if (c->std_output == EXEC_OUTPUT_FILE)
5355 fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5356 if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
5357 fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5358 if (c->std_error == EXEC_OUTPUT_FILE)
5359 fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5360 if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
5361 fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5362
5363 if (c->tty_path)
5364 fprintf(f,
5365 "%sTTYPath: %s\n"
5366 "%sTTYReset: %s\n"
5367 "%sTTYVHangup: %s\n"
5368 "%sTTYVTDisallocate: %s\n",
5369 prefix, c->tty_path,
5370 prefix, yes_no(c->tty_reset),
5371 prefix, yes_no(c->tty_vhangup),
5372 prefix, yes_no(c->tty_vt_disallocate));
5373
5374 if (IN_SET(c->std_output,
5375 EXEC_OUTPUT_KMSG,
5376 EXEC_OUTPUT_JOURNAL,
5377 EXEC_OUTPUT_KMSG_AND_CONSOLE,
5378 EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
5379 IN_SET(c->std_error,
5380 EXEC_OUTPUT_KMSG,
5381 EXEC_OUTPUT_JOURNAL,
5382 EXEC_OUTPUT_KMSG_AND_CONSOLE,
5383 EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
5384
5385 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
5386
5387 r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
5388 if (r >= 0)
5389 fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
5390
5391 r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
5392 if (r >= 0)
5393 fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
5394 }
5395
5396 if (c->log_level_max >= 0) {
5397 _cleanup_free_ char *t = NULL;
5398
5399 (void) log_level_to_string_alloc(c->log_level_max, &t);
5400
5401 fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
5402 }
5403
5404 if (c->log_ratelimit_interval_usec > 0) {
5405 char buf_timespan[FORMAT_TIMESPAN_MAX];
5406
5407 fprintf(f,
5408 "%sLogRateLimitIntervalSec: %s\n",
5409 prefix, format_timespan(buf_timespan, sizeof(buf_timespan), c->log_ratelimit_interval_usec, USEC_PER_SEC));
5410 }
5411
5412 if (c->log_ratelimit_burst > 0)
5413 fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_ratelimit_burst);
5414
5415 for (size_t j = 0; j < c->n_log_extra_fields; j++) {
5416 fprintf(f, "%sLogExtraFields: ", prefix);
5417 fwrite(c->log_extra_fields[j].iov_base,
5418 1, c->log_extra_fields[j].iov_len,
5419 f);
5420 fputc('\n', f);
5421 }
5422
5423 if (c->log_namespace)
5424 fprintf(f, "%sLogNamespace: %s\n", prefix, c->log_namespace);
5425
5426 if (c->secure_bits) {
5427 _cleanup_free_ char *str = NULL;
5428
5429 r = secure_bits_to_string_alloc(c->secure_bits, &str);
5430 if (r >= 0)
5431 fprintf(f, "%sSecure Bits: %s\n", prefix, str);
5432 }
5433
5434 if (c->capability_bounding_set != CAP_ALL) {
5435 _cleanup_free_ char *str = NULL;
5436
5437 r = capability_set_to_string_alloc(c->capability_bounding_set, &str);
5438 if (r >= 0)
5439 fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
5440 }
5441
5442 if (c->capability_ambient_set != 0) {
5443 _cleanup_free_ char *str = NULL;
5444
5445 r = capability_set_to_string_alloc(c->capability_ambient_set, &str);
5446 if (r >= 0)
5447 fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
5448 }
5449
5450 if (c->user)
5451 fprintf(f, "%sUser: %s\n", prefix, c->user);
5452 if (c->group)
5453 fprintf(f, "%sGroup: %s\n", prefix, c->group);
5454
5455 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
5456
5457 if (!strv_isempty(c->supplementary_groups)) {
5458 fprintf(f, "%sSupplementaryGroups:", prefix);
5459 strv_fprintf(f, c->supplementary_groups);
5460 fputs("\n", f);
5461 }
5462
5463 if (c->pam_name)
5464 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
5465
5466 if (!strv_isempty(c->read_write_paths)) {
5467 fprintf(f, "%sReadWritePaths:", prefix);
5468 strv_fprintf(f, c->read_write_paths);
5469 fputs("\n", f);
5470 }
5471
5472 if (!strv_isempty(c->read_only_paths)) {
5473 fprintf(f, "%sReadOnlyPaths:", prefix);
5474 strv_fprintf(f, c->read_only_paths);
5475 fputs("\n", f);
5476 }
5477
5478 if (!strv_isempty(c->inaccessible_paths)) {
5479 fprintf(f, "%sInaccessiblePaths:", prefix);
5480 strv_fprintf(f, c->inaccessible_paths);
5481 fputs("\n", f);
5482 }
5483
5484 for (size_t i = 0; i < c->n_bind_mounts; i++)
5485 fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
5486 c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
5487 c->bind_mounts[i].ignore_enoent ? "-": "",
5488 c->bind_mounts[i].source,
5489 c->bind_mounts[i].destination,
5490 c->bind_mounts[i].recursive ? "rbind" : "norbind");
5491
5492 for (size_t i = 0; i < c->n_temporary_filesystems; i++) {
5493 const TemporaryFileSystem *t = c->temporary_filesystems + i;
5494
5495 fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
5496 t->path,
5497 isempty(t->options) ? "" : ":",
5498 strempty(t->options));
5499 }
5500
5501 if (c->utmp_id)
5502 fprintf(f,
5503 "%sUtmpIdentifier: %s\n",
5504 prefix, c->utmp_id);
5505
5506 if (c->selinux_context)
5507 fprintf(f,
5508 "%sSELinuxContext: %s%s\n",
5509 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
5510
5511 if (c->apparmor_profile)
5512 fprintf(f,
5513 "%sAppArmorProfile: %s%s\n",
5514 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
5515
5516 if (c->smack_process_label)
5517 fprintf(f,
5518 "%sSmackProcessLabel: %s%s\n",
5519 prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
5520
5521 if (c->personality != PERSONALITY_INVALID)
5522 fprintf(f,
5523 "%sPersonality: %s\n",
5524 prefix, strna(personality_to_string(c->personality)));
5525
5526 fprintf(f,
5527 "%sLockPersonality: %s\n",
5528 prefix, yes_no(c->lock_personality));
5529
5530 if (c->syscall_filter) {
5531 #if HAVE_SECCOMP
5532 void *id, *val;
5533 bool first = true;
5534 #endif
5535
5536 fprintf(f,
5537 "%sSystemCallFilter: ",
5538 prefix);
5539
5540 if (!c->syscall_allow_list)
5541 fputc('~', f);
5542
5543 #if HAVE_SECCOMP
5544 HASHMAP_FOREACH_KEY(val, id, c->syscall_filter) {
5545 _cleanup_free_ char *name = NULL;
5546 const char *errno_name = NULL;
5547 int num = PTR_TO_INT(val);
5548
5549 if (first)
5550 first = false;
5551 else
5552 fputc(' ', f);
5553
5554 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
5555 fputs(strna(name), f);
5556
5557 if (num >= 0) {
5558 errno_name = seccomp_errno_or_action_to_string(num);
5559 if (errno_name)
5560 fprintf(f, ":%s", errno_name);
5561 else
5562 fprintf(f, ":%d", num);
5563 }
5564 }
5565 #endif
5566
5567 fputc('\n', f);
5568 }
5569
5570 if (c->syscall_archs) {
5571 #if HAVE_SECCOMP
5572 void *id;
5573 #endif
5574
5575 fprintf(f,
5576 "%sSystemCallArchitectures:",
5577 prefix);
5578
5579 #if HAVE_SECCOMP
5580 SET_FOREACH(id, c->syscall_archs)
5581 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
5582 #endif
5583 fputc('\n', f);
5584 }
5585
5586 if (exec_context_restrict_namespaces_set(c)) {
5587 _cleanup_free_ char *s = NULL;
5588
5589 r = namespace_flags_to_string(c->restrict_namespaces, &s);
5590 if (r >= 0)
5591 fprintf(f, "%sRestrictNamespaces: %s\n",
5592 prefix, strna(s));
5593 }
5594
5595 if (c->network_namespace_path)
5596 fprintf(f,
5597 "%sNetworkNamespacePath: %s\n",
5598 prefix, c->network_namespace_path);
5599
5600 if (c->syscall_errno > 0) {
5601 #if HAVE_SECCOMP
5602 const char *errno_name;
5603 #endif
5604
5605 fprintf(f, "%sSystemCallErrorNumber: ", prefix);
5606
5607 #if HAVE_SECCOMP
5608 errno_name = seccomp_errno_or_action_to_string(c->syscall_errno);
5609 if (errno_name)
5610 fputs(errno_name, f);
5611 else
5612 fprintf(f, "%d", c->syscall_errno);
5613 #endif
5614 fputc('\n', f);
5615 }
5616
5617 for (size_t i = 0; i < c->n_mount_images; i++) {
5618 MountOptions *o;
5619
5620 fprintf(f, "%sMountImages: %s%s:%s%s", prefix,
5621 c->mount_images[i].ignore_enoent ? "-": "",
5622 c->mount_images[i].source,
5623 c->mount_images[i].destination,
5624 LIST_IS_EMPTY(c->mount_images[i].mount_options) ? "": ":");
5625 LIST_FOREACH(mount_options, o, c->mount_images[i].mount_options)
5626 fprintf(f, "%s:%s",
5627 partition_designator_to_string(o->partition_designator),
5628 o->options);
5629 fprintf(f, "\n");
5630 }
5631 }
5632
5633 bool exec_context_maintains_privileges(const ExecContext *c) {
5634 assert(c);
5635
5636 /* Returns true if the process forked off would run under
5637 * an unchanged UID or as root. */
5638
5639 if (!c->user)
5640 return true;
5641
5642 if (streq(c->user, "root") || streq(c->user, "0"))
5643 return true;
5644
5645 return false;
5646 }
5647
5648 int exec_context_get_effective_ioprio(const ExecContext *c) {
5649 int p;
5650
5651 assert(c);
5652
5653 if (c->ioprio_set)
5654 return c->ioprio;
5655
5656 p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
5657 if (p < 0)
5658 return IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 4);
5659
5660 return p;
5661 }
5662
5663 bool exec_context_get_effective_mount_apivfs(const ExecContext *c) {
5664 assert(c);
5665
5666 /* Explicit setting wins */
5667 if (c->mount_apivfs_set)
5668 return c->mount_apivfs;
5669
5670 /* Default to "yes" if root directory or image are specified */
5671 if (exec_context_with_rootfs(c))
5672 return true;
5673
5674 return false;
5675 }
5676
5677 void exec_context_free_log_extra_fields(ExecContext *c) {
5678 assert(c);
5679
5680 for (size_t l = 0; l < c->n_log_extra_fields; l++)
5681 free(c->log_extra_fields[l].iov_base);
5682 c->log_extra_fields = mfree(c->log_extra_fields);
5683 c->n_log_extra_fields = 0;
5684 }
5685
5686 void exec_context_revert_tty(ExecContext *c) {
5687 int r;
5688
5689 assert(c);
5690
5691 /* First, reset the TTY (possibly kicking everybody else from the TTY) */
5692 exec_context_tty_reset(c, NULL);
5693
5694 /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path
5695 * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed
5696 * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */
5697
5698 if (exec_context_may_touch_tty(c)) {
5699 const char *path;
5700
5701 path = exec_context_tty_path(c);
5702 if (path) {
5703 r = chmod_and_chown(path, TTY_MODE, 0, TTY_GID);
5704 if (r < 0 && r != -ENOENT)
5705 log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s, ignoring: %m", path);
5706 }
5707 }
5708 }
5709
5710 int exec_context_get_clean_directories(
5711 ExecContext *c,
5712 char **prefix,
5713 ExecCleanMask mask,
5714 char ***ret) {
5715
5716 _cleanup_strv_free_ char **l = NULL;
5717 int r;
5718
5719 assert(c);
5720 assert(prefix);
5721 assert(ret);
5722
5723 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
5724 char **i;
5725
5726 if (!FLAGS_SET(mask, 1U << t))
5727 continue;
5728
5729 if (!prefix[t])
5730 continue;
5731
5732 STRV_FOREACH(i, c->directories[t].paths) {
5733 char *j;
5734
5735 j = path_join(prefix[t], *i);
5736 if (!j)
5737 return -ENOMEM;
5738
5739 r = strv_consume(&l, j);
5740 if (r < 0)
5741 return r;
5742
5743 /* Also remove private directories unconditionally. */
5744 if (t != EXEC_DIRECTORY_CONFIGURATION) {
5745 j = path_join(prefix[t], "private", *i);
5746 if (!j)
5747 return -ENOMEM;
5748
5749 r = strv_consume(&l, j);
5750 if (r < 0)
5751 return r;
5752 }
5753 }
5754 }
5755
5756 *ret = TAKE_PTR(l);
5757 return 0;
5758 }
5759
5760 int exec_context_get_clean_mask(ExecContext *c, ExecCleanMask *ret) {
5761 ExecCleanMask mask = 0;
5762
5763 assert(c);
5764 assert(ret);
5765
5766 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5767 if (!strv_isempty(c->directories[t].paths))
5768 mask |= 1U << t;
5769
5770 *ret = mask;
5771 return 0;
5772 }
5773
5774 void exec_status_start(ExecStatus *s, pid_t pid) {
5775 assert(s);
5776
5777 *s = (ExecStatus) {
5778 .pid = pid,
5779 };
5780
5781 dual_timestamp_get(&s->start_timestamp);
5782 }
5783
5784 void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
5785 assert(s);
5786
5787 if (s->pid != pid)
5788 *s = (ExecStatus) {
5789 .pid = pid,
5790 };
5791
5792 dual_timestamp_get(&s->exit_timestamp);
5793
5794 s->code = code;
5795 s->status = status;
5796
5797 if (context && context->utmp_id)
5798 (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
5799 }
5800
5801 void exec_status_reset(ExecStatus *s) {
5802 assert(s);
5803
5804 *s = (ExecStatus) {};
5805 }
5806
5807 void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
5808 char buf[FORMAT_TIMESTAMP_MAX];
5809
5810 assert(s);
5811 assert(f);
5812
5813 if (s->pid <= 0)
5814 return;
5815
5816 prefix = strempty(prefix);
5817
5818 fprintf(f,
5819 "%sPID: "PID_FMT"\n",
5820 prefix, s->pid);
5821
5822 if (dual_timestamp_is_set(&s->start_timestamp))
5823 fprintf(f,
5824 "%sStart Timestamp: %s\n",
5825 prefix, format_timestamp(buf, sizeof(buf), s->start_timestamp.realtime));
5826
5827 if (dual_timestamp_is_set(&s->exit_timestamp))
5828 fprintf(f,
5829 "%sExit Timestamp: %s\n"
5830 "%sExit Code: %s\n"
5831 "%sExit Status: %i\n",
5832 prefix, format_timestamp(buf, sizeof(buf), s->exit_timestamp.realtime),
5833 prefix, sigchld_code_to_string(s->code),
5834 prefix, s->status);
5835 }
5836
5837 static char *exec_command_line(char **argv) {
5838 size_t k;
5839 char *n, *p, **a;
5840 bool first = true;
5841
5842 assert(argv);
5843
5844 k = 1;
5845 STRV_FOREACH(a, argv)
5846 k += strlen(*a)+3;
5847
5848 n = new(char, k);
5849 if (!n)
5850 return NULL;
5851
5852 p = n;
5853 STRV_FOREACH(a, argv) {
5854
5855 if (!first)
5856 *(p++) = ' ';
5857 else
5858 first = false;
5859
5860 if (strpbrk(*a, WHITESPACE)) {
5861 *(p++) = '\'';
5862 p = stpcpy(p, *a);
5863 *(p++) = '\'';
5864 } else
5865 p = stpcpy(p, *a);
5866
5867 }
5868
5869 *p = 0;
5870
5871 /* FIXME: this doesn't really handle arguments that have
5872 * spaces and ticks in them */
5873
5874 return n;
5875 }
5876
5877 static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
5878 _cleanup_free_ char *cmd = NULL;
5879 const char *prefix2;
5880
5881 assert(c);
5882 assert(f);
5883
5884 prefix = strempty(prefix);
5885 prefix2 = strjoina(prefix, "\t");
5886
5887 cmd = exec_command_line(c->argv);
5888 fprintf(f,
5889 "%sCommand Line: %s\n",
5890 prefix, cmd ? cmd : strerror_safe(ENOMEM));
5891
5892 exec_status_dump(&c->exec_status, f, prefix2);
5893 }
5894
5895 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
5896 assert(f);
5897
5898 prefix = strempty(prefix);
5899
5900 LIST_FOREACH(command, c, c)
5901 exec_command_dump(c, f, prefix);
5902 }
5903
5904 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
5905 ExecCommand *end;
5906
5907 assert(l);
5908 assert(e);
5909
5910 if (*l) {
5911 /* It's kind of important, that we keep the order here */
5912 LIST_FIND_TAIL(command, *l, end);
5913 LIST_INSERT_AFTER(command, *l, end, e);
5914 } else
5915 *l = e;
5916 }
5917
5918 int exec_command_set(ExecCommand *c, const char *path, ...) {
5919 va_list ap;
5920 char **l, *p;
5921
5922 assert(c);
5923 assert(path);
5924
5925 va_start(ap, path);
5926 l = strv_new_ap(path, ap);
5927 va_end(ap);
5928
5929 if (!l)
5930 return -ENOMEM;
5931
5932 p = strdup(path);
5933 if (!p) {
5934 strv_free(l);
5935 return -ENOMEM;
5936 }
5937
5938 free_and_replace(c->path, p);
5939
5940 return strv_free_and_replace(c->argv, l);
5941 }
5942
5943 int exec_command_append(ExecCommand *c, const char *path, ...) {
5944 _cleanup_strv_free_ char **l = NULL;
5945 va_list ap;
5946 int r;
5947
5948 assert(c);
5949 assert(path);
5950
5951 va_start(ap, path);
5952 l = strv_new_ap(path, ap);
5953 va_end(ap);
5954
5955 if (!l)
5956 return -ENOMEM;
5957
5958 r = strv_extend_strv(&c->argv, l, false);
5959 if (r < 0)
5960 return r;
5961
5962 return 0;
5963 }
5964
5965 static void *remove_tmpdir_thread(void *p) {
5966 _cleanup_free_ char *path = p;
5967
5968 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
5969 return NULL;
5970 }
5971
5972 static ExecRuntime* exec_runtime_free(ExecRuntime *rt, bool destroy) {
5973 int r;
5974
5975 if (!rt)
5976 return NULL;
5977
5978 if (rt->manager)
5979 (void) hashmap_remove(rt->manager->exec_runtime_by_id, rt->id);
5980
5981 /* When destroy is true, then rm_rf tmp_dir and var_tmp_dir. */
5982
5983 if (destroy && rt->tmp_dir && !streq(rt->tmp_dir, RUN_SYSTEMD_EMPTY)) {
5984 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
5985
5986 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
5987 if (r < 0)
5988 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
5989 else
5990 rt->tmp_dir = NULL;
5991 }
5992
5993 if (destroy && rt->var_tmp_dir && !streq(rt->var_tmp_dir, RUN_SYSTEMD_EMPTY)) {
5994 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
5995
5996 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
5997 if (r < 0)
5998 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
5999 else
6000 rt->var_tmp_dir = NULL;
6001 }
6002
6003 rt->id = mfree(rt->id);
6004 rt->tmp_dir = mfree(rt->tmp_dir);
6005 rt->var_tmp_dir = mfree(rt->var_tmp_dir);
6006 safe_close_pair(rt->netns_storage_socket);
6007 return mfree(rt);
6008 }
6009
6010 static void exec_runtime_freep(ExecRuntime **rt) {
6011 (void) exec_runtime_free(*rt, false);
6012 }
6013
6014 static int exec_runtime_allocate(ExecRuntime **ret, const char *id) {
6015 _cleanup_free_ char *id_copy = NULL;
6016 ExecRuntime *n;
6017
6018 assert(ret);
6019
6020 id_copy = strdup(id);
6021 if (!id_copy)
6022 return -ENOMEM;
6023
6024 n = new(ExecRuntime, 1);
6025 if (!n)
6026 return -ENOMEM;
6027
6028 *n = (ExecRuntime) {
6029 .id = TAKE_PTR(id_copy),
6030 .netns_storage_socket = { -1, -1 },
6031 };
6032
6033 *ret = n;
6034 return 0;
6035 }
6036
6037 static int exec_runtime_add(
6038 Manager *m,
6039 const char *id,
6040 char **tmp_dir,
6041 char **var_tmp_dir,
6042 int netns_storage_socket[2],
6043 ExecRuntime **ret) {
6044
6045 _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
6046 int r;
6047
6048 assert(m);
6049 assert(id);
6050
6051 /* tmp_dir, var_tmp_dir, netns_storage_socket fds are donated on success */
6052
6053 r = hashmap_ensure_allocated(&m->exec_runtime_by_id, &string_hash_ops);
6054 if (r < 0)
6055 return r;
6056
6057 r = exec_runtime_allocate(&rt, id);
6058 if (r < 0)
6059 return r;
6060
6061 r = hashmap_put(m->exec_runtime_by_id, rt->id, rt);
6062 if (r < 0)
6063 return r;
6064
6065 assert(!!rt->tmp_dir == !!rt->var_tmp_dir); /* We require both to be set together */
6066 rt->tmp_dir = TAKE_PTR(*tmp_dir);
6067 rt->var_tmp_dir = TAKE_PTR(*var_tmp_dir);
6068
6069 if (netns_storage_socket) {
6070 rt->netns_storage_socket[0] = TAKE_FD(netns_storage_socket[0]);
6071 rt->netns_storage_socket[1] = TAKE_FD(netns_storage_socket[1]);
6072 }
6073
6074 rt->manager = m;
6075
6076 if (ret)
6077 *ret = rt;
6078 /* do not remove created ExecRuntime object when the operation succeeds. */
6079 TAKE_PTR(rt);
6080 return 0;
6081 }
6082
6083 static int exec_runtime_make(
6084 Manager *m,
6085 const ExecContext *c,
6086 const char *id,
6087 ExecRuntime **ret) {
6088
6089 _cleanup_(namespace_cleanup_tmpdirp) char *tmp_dir = NULL, *var_tmp_dir = NULL;
6090 _cleanup_close_pair_ int netns_storage_socket[2] = { -1, -1 };
6091 int r;
6092
6093 assert(m);
6094 assert(c);
6095 assert(id);
6096
6097 /* It is not necessary to create ExecRuntime object. */
6098 if (!c->private_network && !c->private_tmp && !c->network_namespace_path) {
6099 *ret = NULL;
6100 return 0;
6101 }
6102
6103 if (c->private_tmp &&
6104 !(prefixed_path_strv_contains(c->inaccessible_paths, "/tmp") &&
6105 (prefixed_path_strv_contains(c->inaccessible_paths, "/var/tmp") ||
6106 prefixed_path_strv_contains(c->inaccessible_paths, "/var")))) {
6107 r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
6108 if (r < 0)
6109 return r;
6110 }
6111
6112 if (c->private_network || c->network_namespace_path) {
6113 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
6114 return -errno;
6115 }
6116
6117 r = exec_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_storage_socket, ret);
6118 if (r < 0)
6119 return r;
6120
6121 return 1;
6122 }
6123
6124 int exec_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecRuntime **ret) {
6125 ExecRuntime *rt;
6126 int r;
6127
6128 assert(m);
6129 assert(id);
6130 assert(ret);
6131
6132 rt = hashmap_get(m->exec_runtime_by_id, id);
6133 if (rt)
6134 /* We already have a ExecRuntime object, let's increase the ref count and reuse it */
6135 goto ref;
6136
6137 if (!create) {
6138 *ret = NULL;
6139 return 0;
6140 }
6141
6142 /* If not found, then create a new object. */
6143 r = exec_runtime_make(m, c, id, &rt);
6144 if (r < 0)
6145 return r;
6146 if (r == 0) {
6147 /* When r == 0, it is not necessary to create ExecRuntime object. */
6148 *ret = NULL;
6149 return 0;
6150 }
6151
6152 ref:
6153 /* increment reference counter. */
6154 rt->n_ref++;
6155 *ret = rt;
6156 return 1;
6157 }
6158
6159 ExecRuntime *exec_runtime_unref(ExecRuntime *rt, bool destroy) {
6160 if (!rt)
6161 return NULL;
6162
6163 assert(rt->n_ref > 0);
6164
6165 rt->n_ref--;
6166 if (rt->n_ref > 0)
6167 return NULL;
6168
6169 return exec_runtime_free(rt, destroy);
6170 }
6171
6172 int exec_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
6173 ExecRuntime *rt;
6174
6175 assert(m);
6176 assert(f);
6177 assert(fds);
6178
6179 HASHMAP_FOREACH(rt, m->exec_runtime_by_id) {
6180 fprintf(f, "exec-runtime=%s", rt->id);
6181
6182 if (rt->tmp_dir)
6183 fprintf(f, " tmp-dir=%s", rt->tmp_dir);
6184
6185 if (rt->var_tmp_dir)
6186 fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
6187
6188 if (rt->netns_storage_socket[0] >= 0) {
6189 int copy;
6190
6191 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
6192 if (copy < 0)
6193 return copy;
6194
6195 fprintf(f, " netns-socket-0=%i", copy);
6196 }
6197
6198 if (rt->netns_storage_socket[1] >= 0) {
6199 int copy;
6200
6201 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
6202 if (copy < 0)
6203 return copy;
6204
6205 fprintf(f, " netns-socket-1=%i", copy);
6206 }
6207
6208 fputc('\n', f);
6209 }
6210
6211 return 0;
6212 }
6213
6214 int exec_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
6215 _cleanup_(exec_runtime_freep) ExecRuntime *rt_create = NULL;
6216 ExecRuntime *rt;
6217 int r;
6218
6219 /* This is for the migration from old (v237 or earlier) deserialization text.
6220 * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
6221 * Even if the ExecRuntime object originally created by the other unit, we cannot judge
6222 * so or not from the serialized text, then we always creates a new object owned by this. */
6223
6224 assert(u);
6225 assert(key);
6226 assert(value);
6227
6228 /* Manager manages ExecRuntime objects by the unit id.
6229 * So, we omit the serialized text when the unit does not have id (yet?)... */
6230 if (isempty(u->id)) {
6231 log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
6232 return 0;
6233 }
6234
6235 r = hashmap_ensure_allocated(&u->manager->exec_runtime_by_id, &string_hash_ops);
6236 if (r < 0) {
6237 log_unit_debug_errno(u, r, "Failed to allocate storage for runtime parameter: %m");
6238 return 0;
6239 }
6240
6241 rt = hashmap_get(u->manager->exec_runtime_by_id, u->id);
6242 if (!rt) {
6243 r = exec_runtime_allocate(&rt_create, u->id);
6244 if (r < 0)
6245 return log_oom();
6246
6247 rt = rt_create;
6248 }
6249
6250 if (streq(key, "tmp-dir")) {
6251 char *copy;
6252
6253 copy = strdup(value);
6254 if (!copy)
6255 return log_oom();
6256
6257 free_and_replace(rt->tmp_dir, copy);
6258
6259 } else if (streq(key, "var-tmp-dir")) {
6260 char *copy;
6261
6262 copy = strdup(value);
6263 if (!copy)
6264 return log_oom();
6265
6266 free_and_replace(rt->var_tmp_dir, copy);
6267
6268 } else if (streq(key, "netns-socket-0")) {
6269 int fd;
6270
6271 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
6272 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
6273 return 0;
6274 }
6275
6276 safe_close(rt->netns_storage_socket[0]);
6277 rt->netns_storage_socket[0] = fdset_remove(fds, fd);
6278
6279 } else if (streq(key, "netns-socket-1")) {
6280 int fd;
6281
6282 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
6283 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
6284 return 0;
6285 }
6286
6287 safe_close(rt->netns_storage_socket[1]);
6288 rt->netns_storage_socket[1] = fdset_remove(fds, fd);
6289 } else
6290 return 0;
6291
6292 /* If the object is newly created, then put it to the hashmap which manages ExecRuntime objects. */
6293 if (rt_create) {
6294 r = hashmap_put(u->manager->exec_runtime_by_id, rt_create->id, rt_create);
6295 if (r < 0) {
6296 log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
6297 return 0;
6298 }
6299
6300 rt_create->manager = u->manager;
6301
6302 /* Avoid cleanup */
6303 TAKE_PTR(rt_create);
6304 }
6305
6306 return 1;
6307 }
6308
6309 int exec_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
6310 _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
6311 char *id = NULL;
6312 int r, fdpair[] = {-1, -1};
6313 const char *p, *v = value;
6314 size_t n;
6315
6316 assert(m);
6317 assert(value);
6318 assert(fds);
6319
6320 n = strcspn(v, " ");
6321 id = strndupa(v, n);
6322 if (v[n] != ' ')
6323 goto finalize;
6324 p = v + n + 1;
6325
6326 v = startswith(p, "tmp-dir=");
6327 if (v) {
6328 n = strcspn(v, " ");
6329 tmp_dir = strndup(v, n);
6330 if (!tmp_dir)
6331 return log_oom();
6332 if (v[n] != ' ')
6333 goto finalize;
6334 p = v + n + 1;
6335 }
6336
6337 v = startswith(p, "var-tmp-dir=");
6338 if (v) {
6339 n = strcspn(v, " ");
6340 var_tmp_dir = strndup(v, n);
6341 if (!var_tmp_dir)
6342 return log_oom();
6343 if (v[n] != ' ')
6344 goto finalize;
6345 p = v + n + 1;
6346 }
6347
6348 v = startswith(p, "netns-socket-0=");
6349 if (v) {
6350 char *buf;
6351
6352 n = strcspn(v, " ");
6353 buf = strndupa(v, n);
6354
6355 r = safe_atoi(buf, &fdpair[0]);
6356 if (r < 0)
6357 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-0=%s: %m", buf);
6358 if (!fdset_contains(fds, fdpair[0]))
6359 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6360 "exec-runtime specification netns-socket-0= refers to unknown fd %d: %m", fdpair[0]);
6361 fdpair[0] = fdset_remove(fds, fdpair[0]);
6362 if (v[n] != ' ')
6363 goto finalize;
6364 p = v + n + 1;
6365 }
6366
6367 v = startswith(p, "netns-socket-1=");
6368 if (v) {
6369 char *buf;
6370
6371 n = strcspn(v, " ");
6372 buf = strndupa(v, n);
6373 r = safe_atoi(buf, &fdpair[1]);
6374 if (r < 0)
6375 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-1=%s: %m", buf);
6376 if (!fdset_contains(fds, fdpair[1]))
6377 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6378 "exec-runtime specification netns-socket-1= refers to unknown fd %d: %m", fdpair[1]);
6379 fdpair[1] = fdset_remove(fds, fdpair[1]);
6380 }
6381
6382 finalize:
6383 r = exec_runtime_add(m, id, &tmp_dir, &var_tmp_dir, fdpair, NULL);
6384 if (r < 0)
6385 return log_debug_errno(r, "Failed to add exec-runtime: %m");
6386 return 0;
6387 }
6388
6389 void exec_runtime_vacuum(Manager *m) {
6390 ExecRuntime *rt;
6391
6392 assert(m);
6393
6394 /* Free unreferenced ExecRuntime objects. This is used after manager deserialization process. */
6395
6396 HASHMAP_FOREACH(rt, m->exec_runtime_by_id) {
6397 if (rt->n_ref > 0)
6398 continue;
6399
6400 (void) exec_runtime_free(rt, false);
6401 }
6402 }
6403
6404 void exec_params_clear(ExecParameters *p) {
6405 if (!p)
6406 return;
6407
6408 p->environment = strv_free(p->environment);
6409 p->fd_names = strv_free(p->fd_names);
6410 p->fds = mfree(p->fds);
6411 p->exec_fd = safe_close(p->exec_fd);
6412 }
6413
6414 ExecSetCredential *exec_set_credential_free(ExecSetCredential *sc) {
6415 if (!sc)
6416 return NULL;
6417
6418 free(sc->id);
6419 free(sc->data);
6420 return mfree(sc);
6421 }
6422
6423 DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_set_credential_hash_ops, char, string_hash_func, string_compare_func, ExecSetCredential, exec_set_credential_free);
6424
6425 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
6426 [EXEC_INPUT_NULL] = "null",
6427 [EXEC_INPUT_TTY] = "tty",
6428 [EXEC_INPUT_TTY_FORCE] = "tty-force",
6429 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
6430 [EXEC_INPUT_SOCKET] = "socket",
6431 [EXEC_INPUT_NAMED_FD] = "fd",
6432 [EXEC_INPUT_DATA] = "data",
6433 [EXEC_INPUT_FILE] = "file",
6434 };
6435
6436 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
6437
6438 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
6439 [EXEC_OUTPUT_INHERIT] = "inherit",
6440 [EXEC_OUTPUT_NULL] = "null",
6441 [EXEC_OUTPUT_TTY] = "tty",
6442 [EXEC_OUTPUT_KMSG] = "kmsg",
6443 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
6444 [EXEC_OUTPUT_JOURNAL] = "journal",
6445 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
6446 [EXEC_OUTPUT_SOCKET] = "socket",
6447 [EXEC_OUTPUT_NAMED_FD] = "fd",
6448 [EXEC_OUTPUT_FILE] = "file",
6449 [EXEC_OUTPUT_FILE_APPEND] = "append",
6450 };
6451
6452 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
6453
6454 static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
6455 [EXEC_UTMP_INIT] = "init",
6456 [EXEC_UTMP_LOGIN] = "login",
6457 [EXEC_UTMP_USER] = "user",
6458 };
6459
6460 DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
6461
6462 static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
6463 [EXEC_PRESERVE_NO] = "no",
6464 [EXEC_PRESERVE_YES] = "yes",
6465 [EXEC_PRESERVE_RESTART] = "restart",
6466 };
6467
6468 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
6469
6470 /* This table maps ExecDirectoryType to the setting it is configured with in the unit */
6471 static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
6472 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
6473 [EXEC_DIRECTORY_STATE] = "StateDirectory",
6474 [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
6475 [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
6476 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
6477 };
6478
6479 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
6480
6481 /* And this table maps ExecDirectoryType too, but to a generic term identifying the type of resource. This
6482 * one is supposed to be generic enough to be used for unit types that don't use ExecContext and per-unit
6483 * directories, specifically .timer units with their timestamp touch file. */
6484 static const char* const exec_resource_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
6485 [EXEC_DIRECTORY_RUNTIME] = "runtime",
6486 [EXEC_DIRECTORY_STATE] = "state",
6487 [EXEC_DIRECTORY_CACHE] = "cache",
6488 [EXEC_DIRECTORY_LOGS] = "logs",
6489 [EXEC_DIRECTORY_CONFIGURATION] = "configuration",
6490 };
6491
6492 DEFINE_STRING_TABLE_LOOKUP(exec_resource_type, ExecDirectoryType);
6493
6494 /* And this table also maps ExecDirectoryType, to the environment variable we pass the selected directory to
6495 * the service payload in. */
6496 static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
6497 [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
6498 [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
6499 [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
6500 [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
6501 [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
6502 };
6503
6504 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
6505
6506 static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
6507 [EXEC_KEYRING_INHERIT] = "inherit",
6508 [EXEC_KEYRING_PRIVATE] = "private",
6509 [EXEC_KEYRING_SHARED] = "shared",
6510 };
6511
6512 DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);