]> git.proxmox.com Git - rustc.git/blob - src/jemalloc/src/ckh.c
Imported Upstream version 1.9.0+dfsg1
[rustc.git] / src / jemalloc / src / ckh.c
1 /*
2 *******************************************************************************
3 * Implementation of (2^1+,2) cuckoo hashing, where 2^1+ indicates that each
4 * hash bucket contains 2^n cells, for n >= 1, and 2 indicates that two hash
5 * functions are employed. The original cuckoo hashing algorithm was described
6 * in:
7 *
8 * Pagh, R., F.F. Rodler (2004) Cuckoo Hashing. Journal of Algorithms
9 * 51(2):122-144.
10 *
11 * Generalization of cuckoo hashing was discussed in:
12 *
13 * Erlingsson, U., M. Manasse, F. McSherry (2006) A cool and practical
14 * alternative to traditional hash tables. In Proceedings of the 7th
15 * Workshop on Distributed Data and Structures (WDAS'06), Santa Clara, CA,
16 * January 2006.
17 *
18 * This implementation uses precisely two hash functions because that is the
19 * fewest that can work, and supporting multiple hashes is an implementation
20 * burden. Here is a reproduction of Figure 1 from Erlingsson et al. (2006)
21 * that shows approximate expected maximum load factors for various
22 * configurations:
23 *
24 * | #cells/bucket |
25 * #hashes | 1 | 2 | 4 | 8 |
26 * --------+-------+-------+-------+-------+
27 * 1 | 0.006 | 0.006 | 0.03 | 0.12 |
28 * 2 | 0.49 | 0.86 |>0.93< |>0.96< |
29 * 3 | 0.91 | 0.97 | 0.98 | 0.999 |
30 * 4 | 0.97 | 0.99 | 0.999 | |
31 *
32 * The number of cells per bucket is chosen such that a bucket fits in one cache
33 * line. So, on 32- and 64-bit systems, we use (8,2) and (4,2) cuckoo hashing,
34 * respectively.
35 *
36 ******************************************************************************/
37 #define JEMALLOC_CKH_C_
38 #include "jemalloc/internal/jemalloc_internal.h"
39
40 /******************************************************************************/
41 /* Function prototypes for non-inline static functions. */
42
43 static bool ckh_grow(tsd_t *tsd, ckh_t *ckh);
44 static void ckh_shrink(tsd_t *tsd, ckh_t *ckh);
45
46 /******************************************************************************/
47
48 /*
49 * Search bucket for key and return the cell number if found; SIZE_T_MAX
50 * otherwise.
51 */
52 JEMALLOC_INLINE_C size_t
53 ckh_bucket_search(ckh_t *ckh, size_t bucket, const void *key)
54 {
55 ckhc_t *cell;
56 unsigned i;
57
58 for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
59 cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
60 if (cell->key != NULL && ckh->keycomp(key, cell->key))
61 return ((bucket << LG_CKH_BUCKET_CELLS) + i);
62 }
63
64 return (SIZE_T_MAX);
65 }
66
67 /*
68 * Search table for key and return cell number if found; SIZE_T_MAX otherwise.
69 */
70 JEMALLOC_INLINE_C size_t
71 ckh_isearch(ckh_t *ckh, const void *key)
72 {
73 size_t hashes[2], bucket, cell;
74
75 assert(ckh != NULL);
76
77 ckh->hash(key, hashes);
78
79 /* Search primary bucket. */
80 bucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) - 1);
81 cell = ckh_bucket_search(ckh, bucket, key);
82 if (cell != SIZE_T_MAX)
83 return (cell);
84
85 /* Search secondary bucket. */
86 bucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
87 cell = ckh_bucket_search(ckh, bucket, key);
88 return (cell);
89 }
90
91 JEMALLOC_INLINE_C bool
92 ckh_try_bucket_insert(ckh_t *ckh, size_t bucket, const void *key,
93 const void *data)
94 {
95 ckhc_t *cell;
96 unsigned offset, i;
97
98 /*
99 * Cycle through the cells in the bucket, starting at a random position.
100 * The randomness avoids worst-case search overhead as buckets fill up.
101 */
102 offset = (unsigned)prng_lg_range(&ckh->prng_state, LG_CKH_BUCKET_CELLS);
103 for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
104 cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) +
105 ((i + offset) & ((ZU(1) << LG_CKH_BUCKET_CELLS) - 1))];
106 if (cell->key == NULL) {
107 cell->key = key;
108 cell->data = data;
109 ckh->count++;
110 return (false);
111 }
112 }
113
114 return (true);
115 }
116
117 /*
118 * No space is available in bucket. Randomly evict an item, then try to find an
119 * alternate location for that item. Iteratively repeat this
120 * eviction/relocation procedure until either success or detection of an
121 * eviction/relocation bucket cycle.
122 */
123 JEMALLOC_INLINE_C bool
124 ckh_evict_reloc_insert(ckh_t *ckh, size_t argbucket, void const **argkey,
125 void const **argdata)
126 {
127 const void *key, *data, *tkey, *tdata;
128 ckhc_t *cell;
129 size_t hashes[2], bucket, tbucket;
130 unsigned i;
131
132 bucket = argbucket;
133 key = *argkey;
134 data = *argdata;
135 while (true) {
136 /*
137 * Choose a random item within the bucket to evict. This is
138 * critical to correct function, because without (eventually)
139 * evicting all items within a bucket during iteration, it
140 * would be possible to get stuck in an infinite loop if there
141 * were an item for which both hashes indicated the same
142 * bucket.
143 */
144 i = (unsigned)prng_lg_range(&ckh->prng_state,
145 LG_CKH_BUCKET_CELLS);
146 cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
147 assert(cell->key != NULL);
148
149 /* Swap cell->{key,data} and {key,data} (evict). */
150 tkey = cell->key; tdata = cell->data;
151 cell->key = key; cell->data = data;
152 key = tkey; data = tdata;
153
154 #ifdef CKH_COUNT
155 ckh->nrelocs++;
156 #endif
157
158 /* Find the alternate bucket for the evicted item. */
159 ckh->hash(key, hashes);
160 tbucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
161 if (tbucket == bucket) {
162 tbucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets)
163 - 1);
164 /*
165 * It may be that (tbucket == bucket) still, if the
166 * item's hashes both indicate this bucket. However,
167 * we are guaranteed to eventually escape this bucket
168 * during iteration, assuming pseudo-random item
169 * selection (true randomness would make infinite
170 * looping a remote possibility). The reason we can
171 * never get trapped forever is that there are two
172 * cases:
173 *
174 * 1) This bucket == argbucket, so we will quickly
175 * detect an eviction cycle and terminate.
176 * 2) An item was evicted to this bucket from another,
177 * which means that at least one item in this bucket
178 * has hashes that indicate distinct buckets.
179 */
180 }
181 /* Check for a cycle. */
182 if (tbucket == argbucket) {
183 *argkey = key;
184 *argdata = data;
185 return (true);
186 }
187
188 bucket = tbucket;
189 if (!ckh_try_bucket_insert(ckh, bucket, key, data))
190 return (false);
191 }
192 }
193
194 JEMALLOC_INLINE_C bool
195 ckh_try_insert(ckh_t *ckh, void const**argkey, void const**argdata)
196 {
197 size_t hashes[2], bucket;
198 const void *key = *argkey;
199 const void *data = *argdata;
200
201 ckh->hash(key, hashes);
202
203 /* Try to insert in primary bucket. */
204 bucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) - 1);
205 if (!ckh_try_bucket_insert(ckh, bucket, key, data))
206 return (false);
207
208 /* Try to insert in secondary bucket. */
209 bucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
210 if (!ckh_try_bucket_insert(ckh, bucket, key, data))
211 return (false);
212
213 /*
214 * Try to find a place for this item via iterative eviction/relocation.
215 */
216 return (ckh_evict_reloc_insert(ckh, bucket, argkey, argdata));
217 }
218
219 /*
220 * Try to rebuild the hash table from scratch by inserting all items from the
221 * old table into the new.
222 */
223 JEMALLOC_INLINE_C bool
224 ckh_rebuild(ckh_t *ckh, ckhc_t *aTab)
225 {
226 size_t count, i, nins;
227 const void *key, *data;
228
229 count = ckh->count;
230 ckh->count = 0;
231 for (i = nins = 0; nins < count; i++) {
232 if (aTab[i].key != NULL) {
233 key = aTab[i].key;
234 data = aTab[i].data;
235 if (ckh_try_insert(ckh, &key, &data)) {
236 ckh->count = count;
237 return (true);
238 }
239 nins++;
240 }
241 }
242
243 return (false);
244 }
245
246 static bool
247 ckh_grow(tsd_t *tsd, ckh_t *ckh)
248 {
249 bool ret;
250 ckhc_t *tab, *ttab;
251 unsigned lg_prevbuckets, lg_curcells;
252
253 #ifdef CKH_COUNT
254 ckh->ngrows++;
255 #endif
256
257 /*
258 * It is possible (though unlikely, given well behaved hashes) that the
259 * table will have to be doubled more than once in order to create a
260 * usable table.
261 */
262 lg_prevbuckets = ckh->lg_curbuckets;
263 lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS;
264 while (true) {
265 size_t usize;
266
267 lg_curcells++;
268 usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE);
269 if (unlikely(usize == 0 || usize > HUGE_MAXCLASS)) {
270 ret = true;
271 goto label_return;
272 }
273 tab = (ckhc_t *)ipallocztm(tsd, usize, CACHELINE, true, NULL,
274 true, NULL);
275 if (tab == NULL) {
276 ret = true;
277 goto label_return;
278 }
279 /* Swap in new table. */
280 ttab = ckh->tab;
281 ckh->tab = tab;
282 tab = ttab;
283 ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
284
285 if (!ckh_rebuild(ckh, tab)) {
286 idalloctm(tsd, tab, tcache_get(tsd, false), true, true);
287 break;
288 }
289
290 /* Rebuilding failed, so back out partially rebuilt table. */
291 idalloctm(tsd, ckh->tab, tcache_get(tsd, false), true, true);
292 ckh->tab = tab;
293 ckh->lg_curbuckets = lg_prevbuckets;
294 }
295
296 ret = false;
297 label_return:
298 return (ret);
299 }
300
301 static void
302 ckh_shrink(tsd_t *tsd, ckh_t *ckh)
303 {
304 ckhc_t *tab, *ttab;
305 size_t usize;
306 unsigned lg_prevbuckets, lg_curcells;
307
308 /*
309 * It is possible (though unlikely, given well behaved hashes) that the
310 * table rebuild will fail.
311 */
312 lg_prevbuckets = ckh->lg_curbuckets;
313 lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS - 1;
314 usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE);
315 if (unlikely(usize == 0 || usize > HUGE_MAXCLASS))
316 return;
317 tab = (ckhc_t *)ipallocztm(tsd, usize, CACHELINE, true, NULL, true,
318 NULL);
319 if (tab == NULL) {
320 /*
321 * An OOM error isn't worth propagating, since it doesn't
322 * prevent this or future operations from proceeding.
323 */
324 return;
325 }
326 /* Swap in new table. */
327 ttab = ckh->tab;
328 ckh->tab = tab;
329 tab = ttab;
330 ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
331
332 if (!ckh_rebuild(ckh, tab)) {
333 idalloctm(tsd, tab, tcache_get(tsd, false), true, true);
334 #ifdef CKH_COUNT
335 ckh->nshrinks++;
336 #endif
337 return;
338 }
339
340 /* Rebuilding failed, so back out partially rebuilt table. */
341 idalloctm(tsd, ckh->tab, tcache_get(tsd, false), true, true);
342 ckh->tab = tab;
343 ckh->lg_curbuckets = lg_prevbuckets;
344 #ifdef CKH_COUNT
345 ckh->nshrinkfails++;
346 #endif
347 }
348
349 bool
350 ckh_new(tsd_t *tsd, ckh_t *ckh, size_t minitems, ckh_hash_t *hash,
351 ckh_keycomp_t *keycomp)
352 {
353 bool ret;
354 size_t mincells, usize;
355 unsigned lg_mincells;
356
357 assert(minitems > 0);
358 assert(hash != NULL);
359 assert(keycomp != NULL);
360
361 #ifdef CKH_COUNT
362 ckh->ngrows = 0;
363 ckh->nshrinks = 0;
364 ckh->nshrinkfails = 0;
365 ckh->ninserts = 0;
366 ckh->nrelocs = 0;
367 #endif
368 ckh->prng_state = 42; /* Value doesn't really matter. */
369 ckh->count = 0;
370
371 /*
372 * Find the minimum power of 2 that is large enough to fit minitems
373 * entries. We are using (2+,2) cuckoo hashing, which has an expected
374 * maximum load factor of at least ~0.86, so 0.75 is a conservative load
375 * factor that will typically allow mincells items to fit without ever
376 * growing the table.
377 */
378 assert(LG_CKH_BUCKET_CELLS > 0);
379 mincells = ((minitems + (3 - (minitems % 3))) / 3) << 2;
380 for (lg_mincells = LG_CKH_BUCKET_CELLS;
381 (ZU(1) << lg_mincells) < mincells;
382 lg_mincells++)
383 ; /* Do nothing. */
384 ckh->lg_minbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
385 ckh->lg_curbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
386 ckh->hash = hash;
387 ckh->keycomp = keycomp;
388
389 usize = sa2u(sizeof(ckhc_t) << lg_mincells, CACHELINE);
390 if (unlikely(usize == 0 || usize > HUGE_MAXCLASS)) {
391 ret = true;
392 goto label_return;
393 }
394 ckh->tab = (ckhc_t *)ipallocztm(tsd, usize, CACHELINE, true, NULL, true,
395 NULL);
396 if (ckh->tab == NULL) {
397 ret = true;
398 goto label_return;
399 }
400
401 ret = false;
402 label_return:
403 return (ret);
404 }
405
406 void
407 ckh_delete(tsd_t *tsd, ckh_t *ckh)
408 {
409
410 assert(ckh != NULL);
411
412 #ifdef CKH_VERBOSE
413 malloc_printf(
414 "%s(%p): ngrows: %"FMTu64", nshrinks: %"FMTu64","
415 " nshrinkfails: %"FMTu64", ninserts: %"FMTu64","
416 " nrelocs: %"FMTu64"\n", __func__, ckh,
417 (unsigned long long)ckh->ngrows,
418 (unsigned long long)ckh->nshrinks,
419 (unsigned long long)ckh->nshrinkfails,
420 (unsigned long long)ckh->ninserts,
421 (unsigned long long)ckh->nrelocs);
422 #endif
423
424 idalloctm(tsd, ckh->tab, tcache_get(tsd, false), true, true);
425 if (config_debug)
426 memset(ckh, 0x5a, sizeof(ckh_t));
427 }
428
429 size_t
430 ckh_count(ckh_t *ckh)
431 {
432
433 assert(ckh != NULL);
434
435 return (ckh->count);
436 }
437
438 bool
439 ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data)
440 {
441 size_t i, ncells;
442
443 for (i = *tabind, ncells = (ZU(1) << (ckh->lg_curbuckets +
444 LG_CKH_BUCKET_CELLS)); i < ncells; i++) {
445 if (ckh->tab[i].key != NULL) {
446 if (key != NULL)
447 *key = (void *)ckh->tab[i].key;
448 if (data != NULL)
449 *data = (void *)ckh->tab[i].data;
450 *tabind = i + 1;
451 return (false);
452 }
453 }
454
455 return (true);
456 }
457
458 bool
459 ckh_insert(tsd_t *tsd, ckh_t *ckh, const void *key, const void *data)
460 {
461 bool ret;
462
463 assert(ckh != NULL);
464 assert(ckh_search(ckh, key, NULL, NULL));
465
466 #ifdef CKH_COUNT
467 ckh->ninserts++;
468 #endif
469
470 while (ckh_try_insert(ckh, &key, &data)) {
471 if (ckh_grow(tsd, ckh)) {
472 ret = true;
473 goto label_return;
474 }
475 }
476
477 ret = false;
478 label_return:
479 return (ret);
480 }
481
482 bool
483 ckh_remove(tsd_t *tsd, ckh_t *ckh, const void *searchkey, void **key,
484 void **data)
485 {
486 size_t cell;
487
488 assert(ckh != NULL);
489
490 cell = ckh_isearch(ckh, searchkey);
491 if (cell != SIZE_T_MAX) {
492 if (key != NULL)
493 *key = (void *)ckh->tab[cell].key;
494 if (data != NULL)
495 *data = (void *)ckh->tab[cell].data;
496 ckh->tab[cell].key = NULL;
497 ckh->tab[cell].data = NULL; /* Not necessary. */
498
499 ckh->count--;
500 /* Try to halve the table if it is less than 1/4 full. */
501 if (ckh->count < (ZU(1) << (ckh->lg_curbuckets
502 + LG_CKH_BUCKET_CELLS - 2)) && ckh->lg_curbuckets
503 > ckh->lg_minbuckets) {
504 /* Ignore error due to OOM. */
505 ckh_shrink(tsd, ckh);
506 }
507
508 return (false);
509 }
510
511 return (true);
512 }
513
514 bool
515 ckh_search(ckh_t *ckh, const void *searchkey, void **key, void **data)
516 {
517 size_t cell;
518
519 assert(ckh != NULL);
520
521 cell = ckh_isearch(ckh, searchkey);
522 if (cell != SIZE_T_MAX) {
523 if (key != NULL)
524 *key = (void *)ckh->tab[cell].key;
525 if (data != NULL)
526 *data = (void *)ckh->tab[cell].data;
527 return (false);
528 }
529
530 return (true);
531 }
532
533 void
534 ckh_string_hash(const void *key, size_t r_hash[2])
535 {
536
537 hash(key, strlen((const char *)key), 0x94122f33U, r_hash);
538 }
539
540 bool
541 ckh_string_keycomp(const void *k1, const void *k2)
542 {
543
544 assert(k1 != NULL);
545 assert(k2 != NULL);
546
547 return (strcmp((char *)k1, (char *)k2) ? false : true);
548 }
549
550 void
551 ckh_pointer_hash(const void *key, size_t r_hash[2])
552 {
553 union {
554 const void *v;
555 size_t i;
556 } u;
557
558 assert(sizeof(u.v) == sizeof(u.i));
559 u.v = key;
560 hash(&u.i, sizeof(u.i), 0xd983396eU, r_hash);
561 }
562
563 bool
564 ckh_pointer_keycomp(const void *k1, const void *k2)
565 {
566
567 return ((k1 == k2) ? true : false);
568 }