]> git.proxmox.com Git - rustc.git/blob - src/liballoc/boxed.rs
New upstream version 1.41.1+dfsg1
[rustc.git] / src / liballoc / boxed.rs
1 //! A pointer type for heap allocation.
2 //!
3 //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
4 //! heap allocation in Rust. Boxes provide ownership for this allocation, and
5 //! drop their contents when they go out of scope.
6 //!
7 //! # Examples
8 //!
9 //! Move a value from the stack to the heap by creating a [`Box`]:
10 //!
11 //! ```
12 //! let val: u8 = 5;
13 //! let boxed: Box<u8> = Box::new(val);
14 //! ```
15 //!
16 //! Move a value from a [`Box`] back to the stack by [dereferencing]:
17 //!
18 //! ```
19 //! let boxed: Box<u8> = Box::new(5);
20 //! let val: u8 = *boxed;
21 //! ```
22 //!
23 //! Creating a recursive data structure:
24 //!
25 //! ```
26 //! #[derive(Debug)]
27 //! enum List<T> {
28 //! Cons(T, Box<List<T>>),
29 //! Nil,
30 //! }
31 //!
32 //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
33 //! println!("{:?}", list);
34 //! ```
35 //!
36 //! This will print `Cons(1, Cons(2, Nil))`.
37 //!
38 //! Recursive structures must be boxed, because if the definition of `Cons`
39 //! looked like this:
40 //!
41 //! ```compile_fail,E0072
42 //! # enum List<T> {
43 //! Cons(T, List<T>),
44 //! # }
45 //! ```
46 //!
47 //! It wouldn't work. This is because the size of a `List` depends on how many
48 //! elements are in the list, and so we don't know how much memory to allocate
49 //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
50 //! big `Cons` needs to be.
51 //!
52 //! # Memory layout
53 //!
54 //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
55 //! its allocation. It is valid to convert both ways between a [`Box`] and a
56 //! raw pointer allocated with the [`Global`] allocator, given that the
57 //! [`Layout`] used with the allocator is correct for the type. More precisely,
58 //! a `value: *mut T` that has been allocated with the [`Global`] allocator
59 //! with `Layout::for_value(&*value)` may be converted into a box using
60 //! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
61 //! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
62 //! [`Global`] allocator with [`Layout::for_value(&*value)`].
63 //!
64 //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
65 //! as a single pointer and is also ABI-compatible with C pointers
66 //! (i.e. the C type `T*`). This means that if you have extern "C"
67 //! Rust functions that will be called from C, you can define those
68 //! Rust functions using `Box<T>` types, and use `T*` as corresponding
69 //! type on the C side. As an example, consider this C header which
70 //! declares functions that create and destroy some kind of `Foo`
71 //! value:
72 //!
73 //! ```c
74 //! /* C header */
75 //!
76 //! /* Returns ownership to the caller */
77 //! struct Foo* foo_new(void);
78 //!
79 //! /* Takes ownership from the caller; no-op when invoked with NULL */
80 //! void foo_delete(struct Foo*);
81 //! ```
82 //!
83 //! These two functions might be implemented in Rust as follows. Here, the
84 //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
85 //! the ownership constraints. Note also that the nullable argument to
86 //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
87 //! cannot be null.
88 //!
89 //! ```
90 //! #[repr(C)]
91 //! pub struct Foo;
92 //!
93 //! #[no_mangle]
94 //! pub extern "C" fn foo_new() -> Box<Foo> {
95 //! Box::new(Foo)
96 //! }
97 //!
98 //! #[no_mangle]
99 //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
100 //! ```
101 //!
102 //! Even though `Box<T>` has the same representation and C ABI as a C pointer,
103 //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
104 //! and expect things to work. `Box<T>` values will always be fully aligned,
105 //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
106 //! free the value with the global allocator. In general, the best practice
107 //! is to only use `Box<T>` for pointers that originated from the global
108 //! allocator.
109 //!
110 //! **Important.** At least at present, you should avoid using
111 //! `Box<T>` types for functions that are defined in C but invoked
112 //! from Rust. In those cases, you should directly mirror the C types
113 //! as closely as possible. Using types like `Box<T>` where the C
114 //! definition is just using `T*` can lead to undefined behavior, as
115 //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
116 //!
117 //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
118 //! [dereferencing]: ../../std/ops/trait.Deref.html
119 //! [`Box`]: struct.Box.html
120 //! [`Box<T>`]: struct.Box.html
121 //! [`Box::<T>::from_raw(value)`]: struct.Box.html#method.from_raw
122 //! [`Box::<T>::into_raw`]: struct.Box.html#method.into_raw
123 //! [`Global`]: ../alloc/struct.Global.html
124 //! [`Layout`]: ../alloc/struct.Layout.html
125 //! [`Layout::for_value(&*value)`]: ../alloc/struct.Layout.html#method.for_value
126
127 #![stable(feature = "rust1", since = "1.0.0")]
128
129 use core::any::Any;
130 use core::array::LengthAtMost32;
131 use core::borrow;
132 use core::cmp::Ordering;
133 use core::convert::{From, TryFrom};
134 use core::fmt;
135 use core::future::Future;
136 use core::hash::{Hash, Hasher};
137 use core::iter::{Iterator, FromIterator, FusedIterator};
138 use core::marker::{Unpin, Unsize};
139 use core::mem;
140 use core::pin::Pin;
141 use core::ops::{
142 CoerceUnsized, DispatchFromDyn, Deref, DerefMut, Receiver, Generator, GeneratorState
143 };
144 use core::ptr::{self, NonNull, Unique};
145 use core::slice;
146 use core::task::{Context, Poll};
147
148 use crate::alloc::{self, Global, Alloc};
149 use crate::vec::Vec;
150 use crate::raw_vec::RawVec;
151 use crate::str::from_boxed_utf8_unchecked;
152
153 /// A pointer type for heap allocation.
154 ///
155 /// See the [module-level documentation](../../std/boxed/index.html) for more.
156 #[lang = "owned_box"]
157 #[fundamental]
158 #[stable(feature = "rust1", since = "1.0.0")]
159 pub struct Box<T: ?Sized>(Unique<T>);
160
161 impl<T> Box<T> {
162 /// Allocates memory on the heap and then places `x` into it.
163 ///
164 /// This doesn't actually allocate if `T` is zero-sized.
165 ///
166 /// # Examples
167 ///
168 /// ```
169 /// let five = Box::new(5);
170 /// ```
171 #[stable(feature = "rust1", since = "1.0.0")]
172 #[inline(always)]
173 pub fn new(x: T) -> Box<T> {
174 box x
175 }
176
177 /// Constructs a new box with uninitialized contents.
178 ///
179 /// # Examples
180 ///
181 /// ```
182 /// #![feature(new_uninit)]
183 ///
184 /// let mut five = Box::<u32>::new_uninit();
185 ///
186 /// let five = unsafe {
187 /// // Deferred initialization:
188 /// five.as_mut_ptr().write(5);
189 ///
190 /// five.assume_init()
191 /// };
192 ///
193 /// assert_eq!(*five, 5)
194 /// ```
195 #[unstable(feature = "new_uninit", issue = "63291")]
196 pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
197 let layout = alloc::Layout::new::<mem::MaybeUninit<T>>();
198 if layout.size() == 0 {
199 return Box(NonNull::dangling().into())
200 }
201 let ptr = unsafe {
202 Global.alloc(layout)
203 .unwrap_or_else(|_| alloc::handle_alloc_error(layout))
204 };
205 Box(ptr.cast().into())
206 }
207
208 /// Constructs a new `Box` with uninitialized contents, with the memory
209 /// being filled with `0` bytes.
210 ///
211 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
212 /// of this method.
213 ///
214 /// # Examples
215 ///
216 /// ```
217 /// #![feature(new_uninit)]
218 ///
219 /// let zero = Box::<u32>::new_zeroed();
220 /// let zero = unsafe { zero.assume_init() };
221 ///
222 /// assert_eq!(*zero, 0)
223 /// ```
224 ///
225 /// [zeroed]: ../../std/mem/union.MaybeUninit.html#method.zeroed
226 #[unstable(feature = "new_uninit", issue = "63291")]
227 pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
228 unsafe {
229 let mut uninit = Self::new_uninit();
230 ptr::write_bytes::<T>(uninit.as_mut_ptr(), 0, 1);
231 uninit
232 }
233 }
234
235 /// Constructs a new `Pin<Box<T>>`. If `T` does not implement `Unpin`, then
236 /// `x` will be pinned in memory and unable to be moved.
237 #[stable(feature = "pin", since = "1.33.0")]
238 #[inline(always)]
239 pub fn pin(x: T) -> Pin<Box<T>> {
240 (box x).into()
241 }
242 }
243
244 impl<T> Box<[T]> {
245 /// Constructs a new boxed slice with uninitialized contents.
246 ///
247 /// # Examples
248 ///
249 /// ```
250 /// #![feature(new_uninit)]
251 ///
252 /// let mut values = Box::<[u32]>::new_uninit_slice(3);
253 ///
254 /// let values = unsafe {
255 /// // Deferred initialization:
256 /// values[0].as_mut_ptr().write(1);
257 /// values[1].as_mut_ptr().write(2);
258 /// values[2].as_mut_ptr().write(3);
259 ///
260 /// values.assume_init()
261 /// };
262 ///
263 /// assert_eq!(*values, [1, 2, 3])
264 /// ```
265 #[unstable(feature = "new_uninit", issue = "63291")]
266 pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
267 let layout = alloc::Layout::array::<mem::MaybeUninit<T>>(len).unwrap();
268 let ptr = if layout.size() == 0 {
269 NonNull::dangling()
270 } else {
271 unsafe {
272 Global.alloc(layout)
273 .unwrap_or_else(|_| alloc::handle_alloc_error(layout))
274 .cast()
275 }
276 };
277 let slice = unsafe { slice::from_raw_parts_mut(ptr.as_ptr(), len) };
278 Box(Unique::from(slice))
279 }
280 }
281
282 impl<T> Box<mem::MaybeUninit<T>> {
283 /// Converts to `Box<T>`.
284 ///
285 /// # Safety
286 ///
287 /// As with [`MaybeUninit::assume_init`],
288 /// it is up to the caller to guarantee that the value
289 /// really is in an initialized state.
290 /// Calling this when the content is not yet fully initialized
291 /// causes immediate undefined behavior.
292 ///
293 /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
294 ///
295 /// # Examples
296 ///
297 /// ```
298 /// #![feature(new_uninit)]
299 ///
300 /// let mut five = Box::<u32>::new_uninit();
301 ///
302 /// let five: Box<u32> = unsafe {
303 /// // Deferred initialization:
304 /// five.as_mut_ptr().write(5);
305 ///
306 /// five.assume_init()
307 /// };
308 ///
309 /// assert_eq!(*five, 5)
310 /// ```
311 #[unstable(feature = "new_uninit", issue = "63291")]
312 #[inline]
313 pub unsafe fn assume_init(self) -> Box<T> {
314 Box(Box::into_unique(self).cast())
315 }
316 }
317
318 impl<T> Box<[mem::MaybeUninit<T>]> {
319 /// Converts to `Box<[T]>`.
320 ///
321 /// # Safety
322 ///
323 /// As with [`MaybeUninit::assume_init`],
324 /// it is up to the caller to guarantee that the values
325 /// really are in an initialized state.
326 /// Calling this when the content is not yet fully initialized
327 /// causes immediate undefined behavior.
328 ///
329 /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
330 ///
331 /// # Examples
332 ///
333 /// ```
334 /// #![feature(new_uninit)]
335 ///
336 /// let mut values = Box::<[u32]>::new_uninit_slice(3);
337 ///
338 /// let values = unsafe {
339 /// // Deferred initialization:
340 /// values[0].as_mut_ptr().write(1);
341 /// values[1].as_mut_ptr().write(2);
342 /// values[2].as_mut_ptr().write(3);
343 ///
344 /// values.assume_init()
345 /// };
346 ///
347 /// assert_eq!(*values, [1, 2, 3])
348 /// ```
349 #[unstable(feature = "new_uninit", issue = "63291")]
350 #[inline]
351 pub unsafe fn assume_init(self) -> Box<[T]> {
352 Box(Unique::new_unchecked(Box::into_raw(self) as _))
353 }
354 }
355
356 impl<T: ?Sized> Box<T> {
357 /// Constructs a box from a raw pointer.
358 ///
359 /// After calling this function, the raw pointer is owned by the
360 /// resulting `Box`. Specifically, the `Box` destructor will call
361 /// the destructor of `T` and free the allocated memory. For this
362 /// to be safe, the memory must have been allocated in accordance
363 /// with the [memory layout] used by `Box` .
364 ///
365 /// # Safety
366 ///
367 /// This function is unsafe because improper use may lead to
368 /// memory problems. For example, a double-free may occur if the
369 /// function is called twice on the same raw pointer.
370 ///
371 /// # Examples
372 /// Recreate a `Box` which was previously converted to a raw pointer
373 /// using [`Box::into_raw`]:
374 /// ```
375 /// let x = Box::new(5);
376 /// let ptr = Box::into_raw(x);
377 /// let x = unsafe { Box::from_raw(ptr) };
378 /// ```
379 /// Manually create a `Box` from scratch by using the global allocator:
380 /// ```
381 /// use std::alloc::{alloc, Layout};
382 ///
383 /// unsafe {
384 /// let ptr = alloc(Layout::new::<i32>()) as *mut i32;
385 /// *ptr = 5;
386 /// let x = Box::from_raw(ptr);
387 /// }
388 /// ```
389 ///
390 /// [memory layout]: index.html#memory-layout
391 /// [`Layout`]: ../alloc/struct.Layout.html
392 /// [`Box::into_raw`]: struct.Box.html#method.into_raw
393 #[stable(feature = "box_raw", since = "1.4.0")]
394 #[inline]
395 pub unsafe fn from_raw(raw: *mut T) -> Self {
396 Box(Unique::new_unchecked(raw))
397 }
398
399 /// Consumes the `Box`, returning a wrapped raw pointer.
400 ///
401 /// The pointer will be properly aligned and non-null.
402 ///
403 /// After calling this function, the caller is responsible for the
404 /// memory previously managed by the `Box`. In particular, the
405 /// caller should properly destroy `T` and release the memory, taking
406 /// into account the [memory layout] used by `Box`. The easiest way to
407 /// do this is to convert the raw pointer back into a `Box` with the
408 /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
409 /// the cleanup.
410 ///
411 /// Note: this is an associated function, which means that you have
412 /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
413 /// is so that there is no conflict with a method on the inner type.
414 ///
415 /// # Examples
416 /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
417 /// for automatic cleanup:
418 /// ```
419 /// let x = Box::new(String::from("Hello"));
420 /// let ptr = Box::into_raw(x);
421 /// let x = unsafe { Box::from_raw(ptr) };
422 /// ```
423 /// Manual cleanup by explicitly running the destructor and deallocating
424 /// the memory:
425 /// ```
426 /// use std::alloc::{dealloc, Layout};
427 /// use std::ptr;
428 ///
429 /// let x = Box::new(String::from("Hello"));
430 /// let p = Box::into_raw(x);
431 /// unsafe {
432 /// ptr::drop_in_place(p);
433 /// dealloc(p as *mut u8, Layout::new::<String>());
434 /// }
435 /// ```
436 ///
437 /// [memory layout]: index.html#memory-layout
438 /// [`Box::from_raw`]: struct.Box.html#method.from_raw
439 #[stable(feature = "box_raw", since = "1.4.0")]
440 #[inline]
441 pub fn into_raw(b: Box<T>) -> *mut T {
442 Box::into_raw_non_null(b).as_ptr()
443 }
444
445 /// Consumes the `Box`, returning the wrapped pointer as `NonNull<T>`.
446 ///
447 /// After calling this function, the caller is responsible for the
448 /// memory previously managed by the `Box`. In particular, the
449 /// caller should properly destroy `T` and release the memory. The
450 /// easiest way to do so is to convert the `NonNull<T>` pointer
451 /// into a raw pointer and back into a `Box` with the [`Box::from_raw`]
452 /// function.
453 ///
454 /// Note: this is an associated function, which means that you have
455 /// to call it as `Box::into_raw_non_null(b)`
456 /// instead of `b.into_raw_non_null()`. This
457 /// is so that there is no conflict with a method on the inner type.
458 ///
459 /// [`Box::from_raw`]: struct.Box.html#method.from_raw
460 ///
461 /// # Examples
462 ///
463 /// ```
464 /// #![feature(box_into_raw_non_null)]
465 ///
466 /// let x = Box::new(5);
467 /// let ptr = Box::into_raw_non_null(x);
468 ///
469 /// // Clean up the memory by converting the NonNull pointer back
470 /// // into a Box and letting the Box be dropped.
471 /// let x = unsafe { Box::from_raw(ptr.as_ptr()) };
472 /// ```
473 #[unstable(feature = "box_into_raw_non_null", issue = "47336")]
474 #[inline]
475 pub fn into_raw_non_null(b: Box<T>) -> NonNull<T> {
476 Box::into_unique(b).into()
477 }
478
479 #[unstable(feature = "ptr_internals", issue = "0", reason = "use into_raw_non_null instead")]
480 #[inline]
481 #[doc(hidden)]
482 pub fn into_unique(b: Box<T>) -> Unique<T> {
483 let mut unique = b.0;
484 mem::forget(b);
485 // Box is kind-of a library type, but recognized as a "unique pointer" by
486 // Stacked Borrows. This function here corresponds to "reborrowing to
487 // a raw pointer", but there is no actual reborrow here -- so
488 // without some care, the pointer we are returning here still carries
489 // the tag of `b`, with `Unique` permission.
490 // We round-trip through a mutable reference to avoid that.
491 unsafe { Unique::new_unchecked(unique.as_mut() as *mut T) }
492 }
493
494 /// Consumes and leaks the `Box`, returning a mutable reference,
495 /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
496 /// `'a`. If the type has only static references, or none at all, then this
497 /// may be chosen to be `'static`.
498 ///
499 /// This function is mainly useful for data that lives for the remainder of
500 /// the program's life. Dropping the returned reference will cause a memory
501 /// leak. If this is not acceptable, the reference should first be wrapped
502 /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
503 /// then be dropped which will properly destroy `T` and release the
504 /// allocated memory.
505 ///
506 /// Note: this is an associated function, which means that you have
507 /// to call it as `Box::leak(b)` instead of `b.leak()`. This
508 /// is so that there is no conflict with a method on the inner type.
509 ///
510 /// [`Box::from_raw`]: struct.Box.html#method.from_raw
511 ///
512 /// # Examples
513 ///
514 /// Simple usage:
515 ///
516 /// ```
517 /// let x = Box::new(41);
518 /// let static_ref: &'static mut usize = Box::leak(x);
519 /// *static_ref += 1;
520 /// assert_eq!(*static_ref, 42);
521 /// ```
522 ///
523 /// Unsized data:
524 ///
525 /// ```
526 /// let x = vec![1, 2, 3].into_boxed_slice();
527 /// let static_ref = Box::leak(x);
528 /// static_ref[0] = 4;
529 /// assert_eq!(*static_ref, [4, 2, 3]);
530 /// ```
531 #[stable(feature = "box_leak", since = "1.26.0")]
532 #[inline]
533 pub fn leak<'a>(b: Box<T>) -> &'a mut T
534 where
535 T: 'a // Technically not needed, but kept to be explicit.
536 {
537 unsafe { &mut *Box::into_raw(b) }
538 }
539
540 /// Converts a `Box<T>` into a `Pin<Box<T>>`
541 ///
542 /// This conversion does not allocate on the heap and happens in place.
543 ///
544 /// This is also available via [`From`].
545 #[unstable(feature = "box_into_pin", issue = "62370")]
546 pub fn into_pin(boxed: Box<T>) -> Pin<Box<T>> {
547 // It's not possible to move or replace the insides of a `Pin<Box<T>>`
548 // when `T: !Unpin`, so it's safe to pin it directly without any
549 // additional requirements.
550 unsafe { Pin::new_unchecked(boxed) }
551 }
552 }
553
554 #[stable(feature = "rust1", since = "1.0.0")]
555 unsafe impl<#[may_dangle] T: ?Sized> Drop for Box<T> {
556 fn drop(&mut self) {
557 // FIXME: Do nothing, drop is currently performed by compiler.
558 }
559 }
560
561 #[stable(feature = "rust1", since = "1.0.0")]
562 impl<T: Default> Default for Box<T> {
563 /// Creates a `Box<T>`, with the `Default` value for T.
564 fn default() -> Box<T> {
565 box Default::default()
566 }
567 }
568
569 #[stable(feature = "rust1", since = "1.0.0")]
570 impl<T> Default for Box<[T]> {
571 fn default() -> Box<[T]> {
572 Box::<[T; 0]>::new([])
573 }
574 }
575
576 #[stable(feature = "default_box_extra", since = "1.17.0")]
577 impl Default for Box<str> {
578 fn default() -> Box<str> {
579 unsafe { from_boxed_utf8_unchecked(Default::default()) }
580 }
581 }
582
583 #[stable(feature = "rust1", since = "1.0.0")]
584 impl<T: Clone> Clone for Box<T> {
585 /// Returns a new box with a `clone()` of this box's contents.
586 ///
587 /// # Examples
588 ///
589 /// ```
590 /// let x = Box::new(5);
591 /// let y = x.clone();
592 ///
593 /// // The value is the same
594 /// assert_eq!(x, y);
595 ///
596 /// // But they are unique objects
597 /// assert_ne!(&*x as *const i32, &*y as *const i32);
598 /// ```
599 #[rustfmt::skip]
600 #[inline]
601 fn clone(&self) -> Box<T> {
602 box { (**self).clone() }
603 }
604
605 /// Copies `source`'s contents into `self` without creating a new allocation.
606 ///
607 /// # Examples
608 ///
609 /// ```
610 /// let x = Box::new(5);
611 /// let mut y = Box::new(10);
612 /// let yp: *const i32 = &*y;
613 ///
614 /// y.clone_from(&x);
615 ///
616 /// // The value is the same
617 /// assert_eq!(x, y);
618 ///
619 /// // And no allocation occurred
620 /// assert_eq!(yp, &*y);
621 /// ```
622 #[inline]
623 fn clone_from(&mut self, source: &Box<T>) {
624 (**self).clone_from(&(**source));
625 }
626 }
627
628
629 #[stable(feature = "box_slice_clone", since = "1.3.0")]
630 impl Clone for Box<str> {
631 fn clone(&self) -> Self {
632 // this makes a copy of the data
633 let buf: Box<[u8]> = self.as_bytes().into();
634 unsafe {
635 from_boxed_utf8_unchecked(buf)
636 }
637 }
638 }
639
640 #[stable(feature = "rust1", since = "1.0.0")]
641 impl<T: ?Sized + PartialEq> PartialEq for Box<T> {
642 #[inline]
643 fn eq(&self, other: &Box<T>) -> bool {
644 PartialEq::eq(&**self, &**other)
645 }
646 #[inline]
647 fn ne(&self, other: &Box<T>) -> bool {
648 PartialEq::ne(&**self, &**other)
649 }
650 }
651 #[stable(feature = "rust1", since = "1.0.0")]
652 impl<T: ?Sized + PartialOrd> PartialOrd for Box<T> {
653 #[inline]
654 fn partial_cmp(&self, other: &Box<T>) -> Option<Ordering> {
655 PartialOrd::partial_cmp(&**self, &**other)
656 }
657 #[inline]
658 fn lt(&self, other: &Box<T>) -> bool {
659 PartialOrd::lt(&**self, &**other)
660 }
661 #[inline]
662 fn le(&self, other: &Box<T>) -> bool {
663 PartialOrd::le(&**self, &**other)
664 }
665 #[inline]
666 fn ge(&self, other: &Box<T>) -> bool {
667 PartialOrd::ge(&**self, &**other)
668 }
669 #[inline]
670 fn gt(&self, other: &Box<T>) -> bool {
671 PartialOrd::gt(&**self, &**other)
672 }
673 }
674 #[stable(feature = "rust1", since = "1.0.0")]
675 impl<T: ?Sized + Ord> Ord for Box<T> {
676 #[inline]
677 fn cmp(&self, other: &Box<T>) -> Ordering {
678 Ord::cmp(&**self, &**other)
679 }
680 }
681 #[stable(feature = "rust1", since = "1.0.0")]
682 impl<T: ?Sized + Eq> Eq for Box<T> {}
683
684 #[stable(feature = "rust1", since = "1.0.0")]
685 impl<T: ?Sized + Hash> Hash for Box<T> {
686 fn hash<H: Hasher>(&self, state: &mut H) {
687 (**self).hash(state);
688 }
689 }
690
691 #[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
692 impl<T: ?Sized + Hasher> Hasher for Box<T> {
693 fn finish(&self) -> u64 {
694 (**self).finish()
695 }
696 fn write(&mut self, bytes: &[u8]) {
697 (**self).write(bytes)
698 }
699 fn write_u8(&mut self, i: u8) {
700 (**self).write_u8(i)
701 }
702 fn write_u16(&mut self, i: u16) {
703 (**self).write_u16(i)
704 }
705 fn write_u32(&mut self, i: u32) {
706 (**self).write_u32(i)
707 }
708 fn write_u64(&mut self, i: u64) {
709 (**self).write_u64(i)
710 }
711 fn write_u128(&mut self, i: u128) {
712 (**self).write_u128(i)
713 }
714 fn write_usize(&mut self, i: usize) {
715 (**self).write_usize(i)
716 }
717 fn write_i8(&mut self, i: i8) {
718 (**self).write_i8(i)
719 }
720 fn write_i16(&mut self, i: i16) {
721 (**self).write_i16(i)
722 }
723 fn write_i32(&mut self, i: i32) {
724 (**self).write_i32(i)
725 }
726 fn write_i64(&mut self, i: i64) {
727 (**self).write_i64(i)
728 }
729 fn write_i128(&mut self, i: i128) {
730 (**self).write_i128(i)
731 }
732 fn write_isize(&mut self, i: isize) {
733 (**self).write_isize(i)
734 }
735 }
736
737 #[stable(feature = "from_for_ptrs", since = "1.6.0")]
738 impl<T> From<T> for Box<T> {
739 /// Converts a generic type `T` into a `Box<T>`
740 ///
741 /// The conversion allocates on the heap and moves `t`
742 /// from the stack into it.
743 ///
744 /// # Examples
745 /// ```rust
746 /// let x = 5;
747 /// let boxed = Box::new(5);
748 ///
749 /// assert_eq!(Box::from(x), boxed);
750 /// ```
751 fn from(t: T) -> Self {
752 Box::new(t)
753 }
754 }
755
756 #[stable(feature = "pin", since = "1.33.0")]
757 impl<T: ?Sized> From<Box<T>> for Pin<Box<T>> {
758 /// Converts a `Box<T>` into a `Pin<Box<T>>`
759 ///
760 /// This conversion does not allocate on the heap and happens in place.
761 fn from(boxed: Box<T>) -> Self {
762 Box::into_pin(boxed)
763 }
764 }
765
766 #[stable(feature = "box_from_slice", since = "1.17.0")]
767 impl<T: Copy> From<&[T]> for Box<[T]> {
768 /// Converts a `&[T]` into a `Box<[T]>`
769 ///
770 /// This conversion allocates on the heap
771 /// and performs a copy of `slice`.
772 ///
773 /// # Examples
774 /// ```rust
775 /// // create a &[u8] which will be used to create a Box<[u8]>
776 /// let slice: &[u8] = &[104, 101, 108, 108, 111];
777 /// let boxed_slice: Box<[u8]> = Box::from(slice);
778 ///
779 /// println!("{:?}", boxed_slice);
780 /// ```
781 fn from(slice: &[T]) -> Box<[T]> {
782 let len = slice.len();
783 let buf = RawVec::with_capacity(len);
784 unsafe {
785 ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len);
786 buf.into_box()
787 }
788 }
789 }
790
791 #[stable(feature = "box_from_slice", since = "1.17.0")]
792 impl From<&str> for Box<str> {
793 /// Converts a `&str` into a `Box<str>`
794 ///
795 /// This conversion allocates on the heap
796 /// and performs a copy of `s`.
797 ///
798 /// # Examples
799 /// ```rust
800 /// let boxed: Box<str> = Box::from("hello");
801 /// println!("{}", boxed);
802 /// ```
803 #[inline]
804 fn from(s: &str) -> Box<str> {
805 unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) }
806 }
807 }
808
809 #[stable(feature = "boxed_str_conv", since = "1.19.0")]
810 impl From<Box<str>> for Box<[u8]> {
811 /// Converts a `Box<str>>` into a `Box<[u8]>`
812 ///
813 /// This conversion does not allocate on the heap and happens in place.
814 ///
815 /// # Examples
816 /// ```rust
817 /// // create a Box<str> which will be used to create a Box<[u8]>
818 /// let boxed: Box<str> = Box::from("hello");
819 /// let boxed_str: Box<[u8]> = Box::from(boxed);
820 ///
821 /// // create a &[u8] which will be used to create a Box<[u8]>
822 /// let slice: &[u8] = &[104, 101, 108, 108, 111];
823 /// let boxed_slice = Box::from(slice);
824 ///
825 /// assert_eq!(boxed_slice, boxed_str);
826 /// ```
827 #[inline]
828 fn from(s: Box<str>) -> Self {
829 unsafe { Box::from_raw(Box::into_raw(s) as *mut [u8]) }
830 }
831 }
832
833 #[unstable(feature = "boxed_slice_try_from", issue = "0")]
834 impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]>
835 where
836 [T; N]: LengthAtMost32,
837 {
838 type Error = Box<[T]>;
839
840 fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> {
841 if boxed_slice.len() == N {
842 Ok(unsafe { Box::from_raw(Box::into_raw(boxed_slice) as *mut [T; N]) })
843 } else {
844 Err(boxed_slice)
845 }
846 }
847 }
848
849 impl Box<dyn Any> {
850 #[inline]
851 #[stable(feature = "rust1", since = "1.0.0")]
852 /// Attempt to downcast the box to a concrete type.
853 ///
854 /// # Examples
855 ///
856 /// ```
857 /// use std::any::Any;
858 ///
859 /// fn print_if_string(value: Box<dyn Any>) {
860 /// if let Ok(string) = value.downcast::<String>() {
861 /// println!("String ({}): {}", string.len(), string);
862 /// }
863 /// }
864 ///
865 /// let my_string = "Hello World".to_string();
866 /// print_if_string(Box::new(my_string));
867 /// print_if_string(Box::new(0i8));
868 /// ```
869 pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<dyn Any>> {
870 if self.is::<T>() {
871 unsafe {
872 let raw: *mut dyn Any = Box::into_raw(self);
873 Ok(Box::from_raw(raw as *mut T))
874 }
875 } else {
876 Err(self)
877 }
878 }
879 }
880
881 impl Box<dyn Any + Send> {
882 #[inline]
883 #[stable(feature = "rust1", since = "1.0.0")]
884 /// Attempt to downcast the box to a concrete type.
885 ///
886 /// # Examples
887 ///
888 /// ```
889 /// use std::any::Any;
890 ///
891 /// fn print_if_string(value: Box<dyn Any + Send>) {
892 /// if let Ok(string) = value.downcast::<String>() {
893 /// println!("String ({}): {}", string.len(), string);
894 /// }
895 /// }
896 ///
897 /// let my_string = "Hello World".to_string();
898 /// print_if_string(Box::new(my_string));
899 /// print_if_string(Box::new(0i8));
900 /// ```
901 pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<dyn Any + Send>> {
902 <Box<dyn Any>>::downcast(self).map_err(|s| unsafe {
903 // reapply the Send marker
904 Box::from_raw(Box::into_raw(s) as *mut (dyn Any + Send))
905 })
906 }
907 }
908
909 #[stable(feature = "rust1", since = "1.0.0")]
910 impl<T: fmt::Display + ?Sized> fmt::Display for Box<T> {
911 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
912 fmt::Display::fmt(&**self, f)
913 }
914 }
915
916 #[stable(feature = "rust1", since = "1.0.0")]
917 impl<T: fmt::Debug + ?Sized> fmt::Debug for Box<T> {
918 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
919 fmt::Debug::fmt(&**self, f)
920 }
921 }
922
923 #[stable(feature = "rust1", since = "1.0.0")]
924 impl<T: ?Sized> fmt::Pointer for Box<T> {
925 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
926 // It's not possible to extract the inner Uniq directly from the Box,
927 // instead we cast it to a *const which aliases the Unique
928 let ptr: *const T = &**self;
929 fmt::Pointer::fmt(&ptr, f)
930 }
931 }
932
933 #[stable(feature = "rust1", since = "1.0.0")]
934 impl<T: ?Sized> Deref for Box<T> {
935 type Target = T;
936
937 fn deref(&self) -> &T {
938 &**self
939 }
940 }
941
942 #[stable(feature = "rust1", since = "1.0.0")]
943 impl<T: ?Sized> DerefMut for Box<T> {
944 fn deref_mut(&mut self) -> &mut T {
945 &mut **self
946 }
947 }
948
949 #[unstable(feature = "receiver_trait", issue = "0")]
950 impl<T: ?Sized> Receiver for Box<T> {}
951
952 #[stable(feature = "rust1", since = "1.0.0")]
953 impl<I: Iterator + ?Sized> Iterator for Box<I> {
954 type Item = I::Item;
955 fn next(&mut self) -> Option<I::Item> {
956 (**self).next()
957 }
958 fn size_hint(&self) -> (usize, Option<usize>) {
959 (**self).size_hint()
960 }
961 fn nth(&mut self, n: usize) -> Option<I::Item> {
962 (**self).nth(n)
963 }
964 fn last(self) -> Option<I::Item> {
965 BoxIter::last(self)
966 }
967 }
968
969 trait BoxIter {
970 type Item;
971 fn last(self) -> Option<Self::Item>;
972 }
973
974 impl<I: Iterator + ?Sized> BoxIter for Box<I> {
975 type Item = I::Item;
976 default fn last(self) -> Option<I::Item> {
977 #[inline]
978 fn some<T>(_: Option<T>, x: T) -> Option<T> {
979 Some(x)
980 }
981
982 self.fold(None, some)
983 }
984 }
985
986 /// Specialization for sized `I`s that uses `I`s implementation of `last()`
987 /// instead of the default.
988 #[stable(feature = "rust1", since = "1.0.0")]
989 impl<I: Iterator> BoxIter for Box<I> {
990 fn last(self) -> Option<I::Item> {
991 (*self).last()
992 }
993 }
994
995 #[stable(feature = "rust1", since = "1.0.0")]
996 impl<I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for Box<I> {
997 fn next_back(&mut self) -> Option<I::Item> {
998 (**self).next_back()
999 }
1000 fn nth_back(&mut self, n: usize) -> Option<I::Item> {
1001 (**self).nth_back(n)
1002 }
1003 }
1004 #[stable(feature = "rust1", since = "1.0.0")]
1005 impl<I: ExactSizeIterator + ?Sized> ExactSizeIterator for Box<I> {
1006 fn len(&self) -> usize {
1007 (**self).len()
1008 }
1009 fn is_empty(&self) -> bool {
1010 (**self).is_empty()
1011 }
1012 }
1013
1014 #[stable(feature = "fused", since = "1.26.0")]
1015 impl<I: FusedIterator + ?Sized> FusedIterator for Box<I> {}
1016
1017 #[stable(feature = "boxed_closure_impls", since = "1.35.0")]
1018 impl<A, F: FnOnce<A> + ?Sized> FnOnce<A> for Box<F> {
1019 type Output = <F as FnOnce<A>>::Output;
1020
1021 extern "rust-call" fn call_once(self, args: A) -> Self::Output {
1022 <F as FnOnce<A>>::call_once(*self, args)
1023 }
1024 }
1025
1026 #[stable(feature = "boxed_closure_impls", since = "1.35.0")]
1027 impl<A, F: FnMut<A> + ?Sized> FnMut<A> for Box<F> {
1028 extern "rust-call" fn call_mut(&mut self, args: A) -> Self::Output {
1029 <F as FnMut<A>>::call_mut(self, args)
1030 }
1031 }
1032
1033 #[stable(feature = "boxed_closure_impls", since = "1.35.0")]
1034 impl<A, F: Fn<A> + ?Sized> Fn<A> for Box<F> {
1035 extern "rust-call" fn call(&self, args: A) -> Self::Output {
1036 <F as Fn<A>>::call(self, args)
1037 }
1038 }
1039
1040 #[unstable(feature = "coerce_unsized", issue = "27732")]
1041 impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Box<U>> for Box<T> {}
1042
1043 #[unstable(feature = "dispatch_from_dyn", issue = "0")]
1044 impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T> {}
1045
1046 #[stable(feature = "boxed_slice_from_iter", since = "1.32.0")]
1047 impl<A> FromIterator<A> for Box<[A]> {
1048 fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self {
1049 iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
1050 }
1051 }
1052
1053 #[stable(feature = "box_slice_clone", since = "1.3.0")]
1054 impl<T: Clone> Clone for Box<[T]> {
1055 fn clone(&self) -> Self {
1056 let mut new = BoxBuilder {
1057 data: RawVec::with_capacity(self.len()),
1058 len: 0,
1059 };
1060
1061 let mut target = new.data.ptr();
1062
1063 for item in self.iter() {
1064 unsafe {
1065 ptr::write(target, item.clone());
1066 target = target.offset(1);
1067 };
1068
1069 new.len += 1;
1070 }
1071
1072 return unsafe { new.into_box() };
1073
1074 // Helper type for responding to panics correctly.
1075 struct BoxBuilder<T> {
1076 data: RawVec<T>,
1077 len: usize,
1078 }
1079
1080 impl<T> BoxBuilder<T> {
1081 unsafe fn into_box(self) -> Box<[T]> {
1082 let raw = ptr::read(&self.data);
1083 mem::forget(self);
1084 raw.into_box()
1085 }
1086 }
1087
1088 impl<T> Drop for BoxBuilder<T> {
1089 fn drop(&mut self) {
1090 let mut data = self.data.ptr();
1091 let max = unsafe { data.add(self.len) };
1092
1093 while data != max {
1094 unsafe {
1095 ptr::read(data);
1096 data = data.offset(1);
1097 }
1098 }
1099 }
1100 }
1101 }
1102 }
1103
1104 #[stable(feature = "box_borrow", since = "1.1.0")]
1105 impl<T: ?Sized> borrow::Borrow<T> for Box<T> {
1106 fn borrow(&self) -> &T {
1107 &**self
1108 }
1109 }
1110
1111 #[stable(feature = "box_borrow", since = "1.1.0")]
1112 impl<T: ?Sized> borrow::BorrowMut<T> for Box<T> {
1113 fn borrow_mut(&mut self) -> &mut T {
1114 &mut **self
1115 }
1116 }
1117
1118 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
1119 impl<T: ?Sized> AsRef<T> for Box<T> {
1120 fn as_ref(&self) -> &T {
1121 &**self
1122 }
1123 }
1124
1125 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
1126 impl<T: ?Sized> AsMut<T> for Box<T> {
1127 fn as_mut(&mut self) -> &mut T {
1128 &mut **self
1129 }
1130 }
1131
1132 /* Nota bene
1133 *
1134 * We could have chosen not to add this impl, and instead have written a
1135 * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
1136 * because Box<T> implements Unpin even when T does not, as a result of
1137 * this impl.
1138 *
1139 * We chose this API instead of the alternative for a few reasons:
1140 * - Logically, it is helpful to understand pinning in regard to the
1141 * memory region being pointed to. For this reason none of the
1142 * standard library pointer types support projecting through a pin
1143 * (Box<T> is the only pointer type in std for which this would be
1144 * safe.)
1145 * - It is in practice very useful to have Box<T> be unconditionally
1146 * Unpin because of trait objects, for which the structural auto
1147 * trait functionality does not apply (e.g., Box<dyn Foo> would
1148 * otherwise not be Unpin).
1149 *
1150 * Another type with the same semantics as Box but only a conditional
1151 * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
1152 * could have a method to project a Pin<T> from it.
1153 */
1154 #[stable(feature = "pin", since = "1.33.0")]
1155 impl<T: ?Sized> Unpin for Box<T> { }
1156
1157 #[unstable(feature = "generator_trait", issue = "43122")]
1158 impl<G: ?Sized + Generator + Unpin> Generator for Box<G> {
1159 type Yield = G::Yield;
1160 type Return = G::Return;
1161
1162 fn resume(mut self: Pin<&mut Self>) -> GeneratorState<Self::Yield, Self::Return> {
1163 G::resume(Pin::new(&mut *self))
1164 }
1165 }
1166
1167 #[unstable(feature = "generator_trait", issue = "43122")]
1168 impl<G: ?Sized + Generator> Generator for Pin<Box<G>> {
1169 type Yield = G::Yield;
1170 type Return = G::Return;
1171
1172 fn resume(mut self: Pin<&mut Self>) -> GeneratorState<Self::Yield, Self::Return> {
1173 G::resume((*self).as_mut())
1174 }
1175 }
1176
1177 #[stable(feature = "futures_api", since = "1.36.0")]
1178 impl<F: ?Sized + Future + Unpin> Future for Box<F> {
1179 type Output = F::Output;
1180
1181 fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
1182 F::poll(Pin::new(&mut *self), cx)
1183 }
1184 }