]> git.proxmox.com Git - rustc.git/blob - src/liballoc/boxed.rs
New upstream version 1.23.0+dfsg1
[rustc.git] / src / liballoc / boxed.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! A pointer type for heap allocation.
12 //!
13 //! `Box<T>`, casually referred to as a 'box', provides the simplest form of
14 //! heap allocation in Rust. Boxes provide ownership for this allocation, and
15 //! drop their contents when they go out of scope.
16 //!
17 //! # Examples
18 //!
19 //! Creating a box:
20 //!
21 //! ```
22 //! let x = Box::new(5);
23 //! ```
24 //!
25 //! Creating a recursive data structure:
26 //!
27 //! ```
28 //! #[derive(Debug)]
29 //! enum List<T> {
30 //! Cons(T, Box<List<T>>),
31 //! Nil,
32 //! }
33 //!
34 //! fn main() {
35 //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
36 //! println!("{:?}", list);
37 //! }
38 //! ```
39 //!
40 //! This will print `Cons(1, Cons(2, Nil))`.
41 //!
42 //! Recursive structures must be boxed, because if the definition of `Cons`
43 //! looked like this:
44 //!
45 //! ```compile_fail,E0072
46 //! # enum List<T> {
47 //! Cons(T, List<T>),
48 //! # }
49 //! ```
50 //!
51 //! It wouldn't work. This is because the size of a `List` depends on how many
52 //! elements are in the list, and so we don't know how much memory to allocate
53 //! for a `Cons`. By introducing a `Box`, which has a defined size, we know how
54 //! big `Cons` needs to be.
55
56 #![stable(feature = "rust1", since = "1.0.0")]
57
58 use heap::{Heap, Layout, Alloc};
59 use raw_vec::RawVec;
60
61 use core::any::Any;
62 use core::borrow;
63 use core::cmp::Ordering;
64 use core::fmt;
65 use core::hash::{self, Hash, Hasher};
66 use core::iter::FusedIterator;
67 use core::marker::{self, Unsize};
68 use core::mem;
69 use core::ops::{CoerceUnsized, Deref, DerefMut, Generator, GeneratorState};
70 use core::ops::{BoxPlace, Boxed, InPlace, Place, Placer};
71 use core::ptr::{self, Unique};
72 use core::convert::From;
73 use str::from_boxed_utf8_unchecked;
74
75 /// A value that represents the heap. This is the default place that the `box`
76 /// keyword allocates into when no place is supplied.
77 ///
78 /// The following two examples are equivalent:
79 ///
80 /// ```
81 /// #![feature(box_heap)]
82 ///
83 /// #![feature(box_syntax, placement_in_syntax)]
84 /// use std::boxed::HEAP;
85 ///
86 /// fn main() {
87 /// let foo: Box<i32> = in HEAP { 5 };
88 /// let foo = box 5;
89 /// }
90 /// ```
91 #[unstable(feature = "box_heap",
92 reason = "may be renamed; uncertain about custom allocator design",
93 issue = "27779")]
94 pub const HEAP: ExchangeHeapSingleton = ExchangeHeapSingleton { _force_singleton: () };
95
96 /// This the singleton type used solely for `boxed::HEAP`.
97 #[unstable(feature = "box_heap",
98 reason = "may be renamed; uncertain about custom allocator design",
99 issue = "27779")]
100 #[allow(missing_debug_implementations)]
101 #[derive(Copy, Clone)]
102 pub struct ExchangeHeapSingleton {
103 _force_singleton: (),
104 }
105
106 /// A pointer type for heap allocation.
107 ///
108 /// See the [module-level documentation](../../std/boxed/index.html) for more.
109 #[lang = "owned_box"]
110 #[fundamental]
111 #[stable(feature = "rust1", since = "1.0.0")]
112 pub struct Box<T: ?Sized>(Unique<T>);
113
114 /// `IntermediateBox` represents uninitialized backing storage for `Box`.
115 ///
116 /// FIXME (pnkfelix): Ideally we would just reuse `Box<T>` instead of
117 /// introducing a separate `IntermediateBox<T>`; but then you hit
118 /// issues when you e.g. attempt to destructure an instance of `Box`,
119 /// since it is a lang item and so it gets special handling by the
120 /// compiler. Easier just to make this parallel type for now.
121 ///
122 /// FIXME (pnkfelix): Currently the `box` protocol only supports
123 /// creating instances of sized types. This IntermediateBox is
124 /// designed to be forward-compatible with a future protocol that
125 /// supports creating instances of unsized types; that is why the type
126 /// parameter has the `?Sized` generalization marker, and is also why
127 /// this carries an explicit size. However, it probably does not need
128 /// to carry the explicit alignment; that is just a work-around for
129 /// the fact that the `align_of` intrinsic currently requires the
130 /// input type to be Sized (which I do not think is strictly
131 /// necessary).
132 #[unstable(feature = "placement_in",
133 reason = "placement box design is still being worked out.",
134 issue = "27779")]
135 #[allow(missing_debug_implementations)]
136 pub struct IntermediateBox<T: ?Sized> {
137 ptr: *mut u8,
138 layout: Layout,
139 marker: marker::PhantomData<*mut T>,
140 }
141
142 #[unstable(feature = "placement_in",
143 reason = "placement box design is still being worked out.",
144 issue = "27779")]
145 impl<T> Place<T> for IntermediateBox<T> {
146 fn pointer(&mut self) -> *mut T {
147 self.ptr as *mut T
148 }
149 }
150
151 unsafe fn finalize<T>(b: IntermediateBox<T>) -> Box<T> {
152 let p = b.ptr as *mut T;
153 mem::forget(b);
154 mem::transmute(p)
155 }
156
157 fn make_place<T>() -> IntermediateBox<T> {
158 let layout = Layout::new::<T>();
159
160 let p = if layout.size() == 0 {
161 mem::align_of::<T>() as *mut u8
162 } else {
163 unsafe {
164 Heap.alloc(layout.clone()).unwrap_or_else(|err| {
165 Heap.oom(err)
166 })
167 }
168 };
169
170 IntermediateBox {
171 ptr: p,
172 layout,
173 marker: marker::PhantomData,
174 }
175 }
176
177 #[unstable(feature = "placement_in",
178 reason = "placement box design is still being worked out.",
179 issue = "27779")]
180 impl<T> BoxPlace<T> for IntermediateBox<T> {
181 fn make_place() -> IntermediateBox<T> {
182 make_place()
183 }
184 }
185
186 #[unstable(feature = "placement_in",
187 reason = "placement box design is still being worked out.",
188 issue = "27779")]
189 impl<T> InPlace<T> for IntermediateBox<T> {
190 type Owner = Box<T>;
191 unsafe fn finalize(self) -> Box<T> {
192 finalize(self)
193 }
194 }
195
196 #[unstable(feature = "placement_new_protocol", issue = "27779")]
197 impl<T> Boxed for Box<T> {
198 type Data = T;
199 type Place = IntermediateBox<T>;
200 unsafe fn finalize(b: IntermediateBox<T>) -> Box<T> {
201 finalize(b)
202 }
203 }
204
205 #[unstable(feature = "placement_in",
206 reason = "placement box design is still being worked out.",
207 issue = "27779")]
208 impl<T> Placer<T> for ExchangeHeapSingleton {
209 type Place = IntermediateBox<T>;
210
211 fn make_place(self) -> IntermediateBox<T> {
212 make_place()
213 }
214 }
215
216 #[unstable(feature = "placement_in",
217 reason = "placement box design is still being worked out.",
218 issue = "27779")]
219 impl<T: ?Sized> Drop for IntermediateBox<T> {
220 fn drop(&mut self) {
221 if self.layout.size() > 0 {
222 unsafe {
223 Heap.dealloc(self.ptr, self.layout.clone())
224 }
225 }
226 }
227 }
228
229 impl<T> Box<T> {
230 /// Allocates memory on the heap and then places `x` into it.
231 ///
232 /// This doesn't actually allocate if `T` is zero-sized.
233 ///
234 /// # Examples
235 ///
236 /// ```
237 /// let five = Box::new(5);
238 /// ```
239 #[stable(feature = "rust1", since = "1.0.0")]
240 #[inline(always)]
241 pub fn new(x: T) -> Box<T> {
242 box x
243 }
244 }
245
246 impl<T: ?Sized> Box<T> {
247 /// Constructs a box from a raw pointer.
248 ///
249 /// After calling this function, the raw pointer is owned by the
250 /// resulting `Box`. Specifically, the `Box` destructor will call
251 /// the destructor of `T` and free the allocated memory. Since the
252 /// way `Box` allocates and releases memory is unspecified, the
253 /// only valid pointer to pass to this function is the one taken
254 /// from another `Box` via the [`Box::into_raw`] function.
255 ///
256 /// This function is unsafe because improper use may lead to
257 /// memory problems. For example, a double-free may occur if the
258 /// function is called twice on the same raw pointer.
259 ///
260 /// [`Box::into_raw`]: struct.Box.html#method.into_raw
261 ///
262 /// # Examples
263 ///
264 /// ```
265 /// let x = Box::new(5);
266 /// let ptr = Box::into_raw(x);
267 /// let x = unsafe { Box::from_raw(ptr) };
268 /// ```
269 #[stable(feature = "box_raw", since = "1.4.0")]
270 #[inline]
271 pub unsafe fn from_raw(raw: *mut T) -> Self {
272 Box::from_unique(Unique::new_unchecked(raw))
273 }
274
275 /// Constructs a `Box` from a `Unique<T>` pointer.
276 ///
277 /// After calling this function, the memory is owned by a `Box` and `T` can
278 /// then be destroyed and released upon drop.
279 ///
280 /// # Safety
281 ///
282 /// A `Unique<T>` can be safely created via [`Unique::new`] and thus doesn't
283 /// necessarily own the data pointed to nor is the data guaranteed to live
284 /// as long as the pointer.
285 ///
286 /// [`Unique::new`]: ../../core/ptr/struct.Unique.html#method.new
287 ///
288 /// # Examples
289 ///
290 /// ```
291 /// #![feature(unique)]
292 ///
293 /// fn main() {
294 /// let x = Box::new(5);
295 /// let ptr = Box::into_unique(x);
296 /// let x = unsafe { Box::from_unique(ptr) };
297 /// }
298 /// ```
299 #[unstable(feature = "unique", reason = "needs an RFC to flesh out design",
300 issue = "27730")]
301 #[inline]
302 pub unsafe fn from_unique(u: Unique<T>) -> Self {
303 mem::transmute(u)
304 }
305
306 /// Consumes the `Box`, returning the wrapped raw pointer.
307 ///
308 /// After calling this function, the caller is responsible for the
309 /// memory previously managed by the `Box`. In particular, the
310 /// caller should properly destroy `T` and release the memory. The
311 /// proper way to do so is to convert the raw pointer back into a
312 /// `Box` with the [`Box::from_raw`] function.
313 ///
314 /// Note: this is an associated function, which means that you have
315 /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
316 /// is so that there is no conflict with a method on the inner type.
317 ///
318 /// [`Box::from_raw`]: struct.Box.html#method.from_raw
319 ///
320 /// # Examples
321 ///
322 /// ```
323 /// let x = Box::new(5);
324 /// let ptr = Box::into_raw(x);
325 /// ```
326 #[stable(feature = "box_raw", since = "1.4.0")]
327 #[inline]
328 pub fn into_raw(b: Box<T>) -> *mut T {
329 Box::into_unique(b).as_ptr()
330 }
331
332 /// Consumes the `Box`, returning the wrapped pointer as `Unique<T>`.
333 ///
334 /// After calling this function, the caller is responsible for the
335 /// memory previously managed by the `Box`. In particular, the
336 /// caller should properly destroy `T` and release the memory. The
337 /// proper way to do so is to either convert the `Unique<T>` pointer:
338 ///
339 /// - Into a `Box` with the [`Box::from_unique`] function.
340 ///
341 /// - Into a raw pointer and back into a `Box` with the [`Box::from_raw`]
342 /// function.
343 ///
344 /// Note: this is an associated function, which means that you have
345 /// to call it as `Box::into_unique(b)` instead of `b.into_unique()`. This
346 /// is so that there is no conflict with a method on the inner type.
347 ///
348 /// [`Box::from_unique`]: struct.Box.html#method.from_unique
349 /// [`Box::from_raw`]: struct.Box.html#method.from_raw
350 ///
351 /// # Examples
352 ///
353 /// ```
354 /// #![feature(unique)]
355 ///
356 /// fn main() {
357 /// let x = Box::new(5);
358 /// let ptr = Box::into_unique(x);
359 /// }
360 /// ```
361 #[unstable(feature = "unique", reason = "needs an RFC to flesh out design",
362 issue = "27730")]
363 #[inline]
364 pub fn into_unique(b: Box<T>) -> Unique<T> {
365 unsafe { mem::transmute(b) }
366 }
367 }
368
369 #[stable(feature = "rust1", since = "1.0.0")]
370 unsafe impl<#[may_dangle] T: ?Sized> Drop for Box<T> {
371 fn drop(&mut self) {
372 // FIXME: Do nothing, drop is currently performed by compiler.
373 }
374 }
375
376 #[stable(feature = "rust1", since = "1.0.0")]
377 impl<T: Default> Default for Box<T> {
378 /// Creates a `Box<T>`, with the `Default` value for T.
379 fn default() -> Box<T> {
380 box Default::default()
381 }
382 }
383
384 #[stable(feature = "rust1", since = "1.0.0")]
385 impl<T> Default for Box<[T]> {
386 fn default() -> Box<[T]> {
387 Box::<[T; 0]>::new([])
388 }
389 }
390
391 #[stable(feature = "default_box_extra", since = "1.17.0")]
392 impl Default for Box<str> {
393 fn default() -> Box<str> {
394 unsafe { from_boxed_utf8_unchecked(Default::default()) }
395 }
396 }
397
398 #[stable(feature = "rust1", since = "1.0.0")]
399 impl<T: Clone> Clone for Box<T> {
400 /// Returns a new box with a `clone()` of this box's contents.
401 ///
402 /// # Examples
403 ///
404 /// ```
405 /// let x = Box::new(5);
406 /// let y = x.clone();
407 /// ```
408 #[rustfmt_skip]
409 #[inline]
410 fn clone(&self) -> Box<T> {
411 box { (**self).clone() }
412 }
413 /// Copies `source`'s contents into `self` without creating a new allocation.
414 ///
415 /// # Examples
416 ///
417 /// ```
418 /// let x = Box::new(5);
419 /// let mut y = Box::new(10);
420 ///
421 /// y.clone_from(&x);
422 ///
423 /// assert_eq!(*y, 5);
424 /// ```
425 #[inline]
426 fn clone_from(&mut self, source: &Box<T>) {
427 (**self).clone_from(&(**source));
428 }
429 }
430
431
432 #[stable(feature = "box_slice_clone", since = "1.3.0")]
433 impl Clone for Box<str> {
434 fn clone(&self) -> Self {
435 let len = self.len();
436 let buf = RawVec::with_capacity(len);
437 unsafe {
438 ptr::copy_nonoverlapping(self.as_ptr(), buf.ptr(), len);
439 from_boxed_utf8_unchecked(buf.into_box())
440 }
441 }
442 }
443
444 #[stable(feature = "rust1", since = "1.0.0")]
445 impl<T: ?Sized + PartialEq> PartialEq for Box<T> {
446 #[inline]
447 fn eq(&self, other: &Box<T>) -> bool {
448 PartialEq::eq(&**self, &**other)
449 }
450 #[inline]
451 fn ne(&self, other: &Box<T>) -> bool {
452 PartialEq::ne(&**self, &**other)
453 }
454 }
455 #[stable(feature = "rust1", since = "1.0.0")]
456 impl<T: ?Sized + PartialOrd> PartialOrd for Box<T> {
457 #[inline]
458 fn partial_cmp(&self, other: &Box<T>) -> Option<Ordering> {
459 PartialOrd::partial_cmp(&**self, &**other)
460 }
461 #[inline]
462 fn lt(&self, other: &Box<T>) -> bool {
463 PartialOrd::lt(&**self, &**other)
464 }
465 #[inline]
466 fn le(&self, other: &Box<T>) -> bool {
467 PartialOrd::le(&**self, &**other)
468 }
469 #[inline]
470 fn ge(&self, other: &Box<T>) -> bool {
471 PartialOrd::ge(&**self, &**other)
472 }
473 #[inline]
474 fn gt(&self, other: &Box<T>) -> bool {
475 PartialOrd::gt(&**self, &**other)
476 }
477 }
478 #[stable(feature = "rust1", since = "1.0.0")]
479 impl<T: ?Sized + Ord> Ord for Box<T> {
480 #[inline]
481 fn cmp(&self, other: &Box<T>) -> Ordering {
482 Ord::cmp(&**self, &**other)
483 }
484 }
485 #[stable(feature = "rust1", since = "1.0.0")]
486 impl<T: ?Sized + Eq> Eq for Box<T> {}
487
488 #[stable(feature = "rust1", since = "1.0.0")]
489 impl<T: ?Sized + Hash> Hash for Box<T> {
490 fn hash<H: hash::Hasher>(&self, state: &mut H) {
491 (**self).hash(state);
492 }
493 }
494
495 #[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
496 impl<T: ?Sized + Hasher> Hasher for Box<T> {
497 fn finish(&self) -> u64 {
498 (**self).finish()
499 }
500 fn write(&mut self, bytes: &[u8]) {
501 (**self).write(bytes)
502 }
503 fn write_u8(&mut self, i: u8) {
504 (**self).write_u8(i)
505 }
506 fn write_u16(&mut self, i: u16) {
507 (**self).write_u16(i)
508 }
509 fn write_u32(&mut self, i: u32) {
510 (**self).write_u32(i)
511 }
512 fn write_u64(&mut self, i: u64) {
513 (**self).write_u64(i)
514 }
515 fn write_u128(&mut self, i: u128) {
516 (**self).write_u128(i)
517 }
518 fn write_usize(&mut self, i: usize) {
519 (**self).write_usize(i)
520 }
521 fn write_i8(&mut self, i: i8) {
522 (**self).write_i8(i)
523 }
524 fn write_i16(&mut self, i: i16) {
525 (**self).write_i16(i)
526 }
527 fn write_i32(&mut self, i: i32) {
528 (**self).write_i32(i)
529 }
530 fn write_i64(&mut self, i: i64) {
531 (**self).write_i64(i)
532 }
533 fn write_i128(&mut self, i: i128) {
534 (**self).write_i128(i)
535 }
536 fn write_isize(&mut self, i: isize) {
537 (**self).write_isize(i)
538 }
539 }
540
541 #[stable(feature = "from_for_ptrs", since = "1.6.0")]
542 impl<T> From<T> for Box<T> {
543 fn from(t: T) -> Self {
544 Box::new(t)
545 }
546 }
547
548 #[stable(feature = "box_from_slice", since = "1.17.0")]
549 impl<'a, T: Copy> From<&'a [T]> for Box<[T]> {
550 fn from(slice: &'a [T]) -> Box<[T]> {
551 let mut boxed = unsafe { RawVec::with_capacity(slice.len()).into_box() };
552 boxed.copy_from_slice(slice);
553 boxed
554 }
555 }
556
557 #[stable(feature = "box_from_slice", since = "1.17.0")]
558 impl<'a> From<&'a str> for Box<str> {
559 fn from(s: &'a str) -> Box<str> {
560 unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) }
561 }
562 }
563
564 #[stable(feature = "boxed_str_conv", since = "1.19.0")]
565 impl From<Box<str>> for Box<[u8]> {
566 fn from(s: Box<str>) -> Self {
567 unsafe { Box::from_raw(Box::into_raw(s) as *mut [u8]) }
568 }
569 }
570
571 impl Box<Any> {
572 #[inline]
573 #[stable(feature = "rust1", since = "1.0.0")]
574 /// Attempt to downcast the box to a concrete type.
575 ///
576 /// # Examples
577 ///
578 /// ```
579 /// use std::any::Any;
580 ///
581 /// fn print_if_string(value: Box<Any>) {
582 /// if let Ok(string) = value.downcast::<String>() {
583 /// println!("String ({}): {}", string.len(), string);
584 /// }
585 /// }
586 ///
587 /// fn main() {
588 /// let my_string = "Hello World".to_string();
589 /// print_if_string(Box::new(my_string));
590 /// print_if_string(Box::new(0i8));
591 /// }
592 /// ```
593 pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<Any>> {
594 if self.is::<T>() {
595 unsafe {
596 let raw: *mut Any = Box::into_raw(self);
597 Ok(Box::from_raw(raw as *mut T))
598 }
599 } else {
600 Err(self)
601 }
602 }
603 }
604
605 impl Box<Any + Send> {
606 #[inline]
607 #[stable(feature = "rust1", since = "1.0.0")]
608 /// Attempt to downcast the box to a concrete type.
609 ///
610 /// # Examples
611 ///
612 /// ```
613 /// use std::any::Any;
614 ///
615 /// fn print_if_string(value: Box<Any + Send>) {
616 /// if let Ok(string) = value.downcast::<String>() {
617 /// println!("String ({}): {}", string.len(), string);
618 /// }
619 /// }
620 ///
621 /// fn main() {
622 /// let my_string = "Hello World".to_string();
623 /// print_if_string(Box::new(my_string));
624 /// print_if_string(Box::new(0i8));
625 /// }
626 /// ```
627 pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<Any + Send>> {
628 <Box<Any>>::downcast(self).map_err(|s| unsafe {
629 // reapply the Send marker
630 mem::transmute::<Box<Any>, Box<Any + Send>>(s)
631 })
632 }
633 }
634
635 #[stable(feature = "rust1", since = "1.0.0")]
636 impl<T: fmt::Display + ?Sized> fmt::Display for Box<T> {
637 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
638 fmt::Display::fmt(&**self, f)
639 }
640 }
641
642 #[stable(feature = "rust1", since = "1.0.0")]
643 impl<T: fmt::Debug + ?Sized> fmt::Debug for Box<T> {
644 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
645 fmt::Debug::fmt(&**self, f)
646 }
647 }
648
649 #[stable(feature = "rust1", since = "1.0.0")]
650 impl<T: ?Sized> fmt::Pointer for Box<T> {
651 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
652 // It's not possible to extract the inner Uniq directly from the Box,
653 // instead we cast it to a *const which aliases the Unique
654 let ptr: *const T = &**self;
655 fmt::Pointer::fmt(&ptr, f)
656 }
657 }
658
659 #[stable(feature = "rust1", since = "1.0.0")]
660 impl<T: ?Sized> Deref for Box<T> {
661 type Target = T;
662
663 fn deref(&self) -> &T {
664 &**self
665 }
666 }
667
668 #[stable(feature = "rust1", since = "1.0.0")]
669 impl<T: ?Sized> DerefMut for Box<T> {
670 fn deref_mut(&mut self) -> &mut T {
671 &mut **self
672 }
673 }
674
675 #[stable(feature = "rust1", since = "1.0.0")]
676 impl<I: Iterator + ?Sized> Iterator for Box<I> {
677 type Item = I::Item;
678 fn next(&mut self) -> Option<I::Item> {
679 (**self).next()
680 }
681 fn size_hint(&self) -> (usize, Option<usize>) {
682 (**self).size_hint()
683 }
684 fn nth(&mut self, n: usize) -> Option<I::Item> {
685 (**self).nth(n)
686 }
687 }
688 #[stable(feature = "rust1", since = "1.0.0")]
689 impl<I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for Box<I> {
690 fn next_back(&mut self) -> Option<I::Item> {
691 (**self).next_back()
692 }
693 }
694 #[stable(feature = "rust1", since = "1.0.0")]
695 impl<I: ExactSizeIterator + ?Sized> ExactSizeIterator for Box<I> {
696 fn len(&self) -> usize {
697 (**self).len()
698 }
699 fn is_empty(&self) -> bool {
700 (**self).is_empty()
701 }
702 }
703
704 #[unstable(feature = "fused", issue = "35602")]
705 impl<I: FusedIterator + ?Sized> FusedIterator for Box<I> {}
706
707
708 /// `FnBox` is a version of the `FnOnce` intended for use with boxed
709 /// closure objects. The idea is that where one would normally store a
710 /// `Box<FnOnce()>` in a data structure, you should use
711 /// `Box<FnBox()>`. The two traits behave essentially the same, except
712 /// that a `FnBox` closure can only be called if it is boxed. (Note
713 /// that `FnBox` may be deprecated in the future if `Box<FnOnce()>`
714 /// closures become directly usable.)
715 ///
716 /// # Examples
717 ///
718 /// Here is a snippet of code which creates a hashmap full of boxed
719 /// once closures and then removes them one by one, calling each
720 /// closure as it is removed. Note that the type of the closures
721 /// stored in the map is `Box<FnBox() -> i32>` and not `Box<FnOnce()
722 /// -> i32>`.
723 ///
724 /// ```
725 /// #![feature(fnbox)]
726 ///
727 /// use std::boxed::FnBox;
728 /// use std::collections::HashMap;
729 ///
730 /// fn make_map() -> HashMap<i32, Box<FnBox() -> i32>> {
731 /// let mut map: HashMap<i32, Box<FnBox() -> i32>> = HashMap::new();
732 /// map.insert(1, Box::new(|| 22));
733 /// map.insert(2, Box::new(|| 44));
734 /// map
735 /// }
736 ///
737 /// fn main() {
738 /// let mut map = make_map();
739 /// for i in &[1, 2] {
740 /// let f = map.remove(&i).unwrap();
741 /// assert_eq!(f(), i * 22);
742 /// }
743 /// }
744 /// ```
745 #[rustc_paren_sugar]
746 #[unstable(feature = "fnbox",
747 reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
748 pub trait FnBox<A> {
749 type Output;
750
751 fn call_box(self: Box<Self>, args: A) -> Self::Output;
752 }
753
754 #[unstable(feature = "fnbox",
755 reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
756 impl<A, F> FnBox<A> for F
757 where F: FnOnce<A>
758 {
759 type Output = F::Output;
760
761 fn call_box(self: Box<F>, args: A) -> F::Output {
762 self.call_once(args)
763 }
764 }
765
766 #[unstable(feature = "fnbox",
767 reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
768 impl<'a, A, R> FnOnce<A> for Box<FnBox<A, Output = R> + 'a> {
769 type Output = R;
770
771 extern "rust-call" fn call_once(self, args: A) -> R {
772 self.call_box(args)
773 }
774 }
775
776 #[unstable(feature = "fnbox",
777 reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
778 impl<'a, A, R> FnOnce<A> for Box<FnBox<A, Output = R> + Send + 'a> {
779 type Output = R;
780
781 extern "rust-call" fn call_once(self, args: A) -> R {
782 self.call_box(args)
783 }
784 }
785
786 #[unstable(feature = "coerce_unsized", issue = "27732")]
787 impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Box<U>> for Box<T> {}
788
789 #[stable(feature = "box_slice_clone", since = "1.3.0")]
790 impl<T: Clone> Clone for Box<[T]> {
791 fn clone(&self) -> Self {
792 let mut new = BoxBuilder {
793 data: RawVec::with_capacity(self.len()),
794 len: 0,
795 };
796
797 let mut target = new.data.ptr();
798
799 for item in self.iter() {
800 unsafe {
801 ptr::write(target, item.clone());
802 target = target.offset(1);
803 };
804
805 new.len += 1;
806 }
807
808 return unsafe { new.into_box() };
809
810 // Helper type for responding to panics correctly.
811 struct BoxBuilder<T> {
812 data: RawVec<T>,
813 len: usize,
814 }
815
816 impl<T> BoxBuilder<T> {
817 unsafe fn into_box(self) -> Box<[T]> {
818 let raw = ptr::read(&self.data);
819 mem::forget(self);
820 raw.into_box()
821 }
822 }
823
824 impl<T> Drop for BoxBuilder<T> {
825 fn drop(&mut self) {
826 let mut data = self.data.ptr();
827 let max = unsafe { data.offset(self.len as isize) };
828
829 while data != max {
830 unsafe {
831 ptr::read(data);
832 data = data.offset(1);
833 }
834 }
835 }
836 }
837 }
838 }
839
840 #[stable(feature = "box_borrow", since = "1.1.0")]
841 impl<T: ?Sized> borrow::Borrow<T> for Box<T> {
842 fn borrow(&self) -> &T {
843 &**self
844 }
845 }
846
847 #[stable(feature = "box_borrow", since = "1.1.0")]
848 impl<T: ?Sized> borrow::BorrowMut<T> for Box<T> {
849 fn borrow_mut(&mut self) -> &mut T {
850 &mut **self
851 }
852 }
853
854 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
855 impl<T: ?Sized> AsRef<T> for Box<T> {
856 fn as_ref(&self) -> &T {
857 &**self
858 }
859 }
860
861 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
862 impl<T: ?Sized> AsMut<T> for Box<T> {
863 fn as_mut(&mut self) -> &mut T {
864 &mut **self
865 }
866 }
867
868 #[unstable(feature = "generator_trait", issue = "43122")]
869 impl<T> Generator for Box<T>
870 where T: Generator + ?Sized
871 {
872 type Yield = T::Yield;
873 type Return = T::Return;
874 fn resume(&mut self) -> GeneratorState<Self::Yield, Self::Return> {
875 (**self).resume()
876 }
877 }