]> git.proxmox.com Git - rustc.git/blob - src/liballoc/boxed.rs
94f5f4042e13476077d578d26b8f703f6b025861
[rustc.git] / src / liballoc / boxed.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! A pointer type for heap allocation.
12 //!
13 //! `Box<T>`, casually referred to as a 'box', provides the simplest form of
14 //! heap allocation in Rust. Boxes provide ownership for this allocation, and
15 //! drop their contents when they go out of scope.
16 //!
17 //! # Examples
18 //!
19 //! Creating a box:
20 //!
21 //! ```
22 //! let x = Box::new(5);
23 //! ```
24 //!
25 //! Creating a recursive data structure:
26 //!
27 //! ```
28 //! #[derive(Debug)]
29 //! enum List<T> {
30 //! Cons(T, Box<List<T>>),
31 //! Nil,
32 //! }
33 //!
34 //! fn main() {
35 //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
36 //! println!("{:?}", list);
37 //! }
38 //! ```
39 //!
40 //! This will print `Cons(1, Cons(2, Nil))`.
41 //!
42 //! Recursive structures must be boxed, because if the definition of `Cons`
43 //! looked like this:
44 //!
45 //! ```compile_fail,E0072
46 //! # enum List<T> {
47 //! Cons(T, List<T>),
48 //! # }
49 //! ```
50 //!
51 //! It wouldn't work. This is because the size of a `List` depends on how many
52 //! elements are in the list, and so we don't know how much memory to allocate
53 //! for a `Cons`. By introducing a `Box`, which has a defined size, we know how
54 //! big `Cons` needs to be.
55
56 #![stable(feature = "rust1", since = "1.0.0")]
57
58 use heap::{Heap, Layout, Alloc};
59 use raw_vec::RawVec;
60
61 use core::any::Any;
62 use core::borrow;
63 use core::cmp::Ordering;
64 use core::fmt;
65 use core::hash::{self, Hash};
66 use core::iter::FusedIterator;
67 use core::marker::{self, Unsize};
68 use core::mem;
69 use core::ops::{CoerceUnsized, Deref, DerefMut};
70 use core::ops::{BoxPlace, Boxed, InPlace, Place, Placer};
71 use core::ptr::{self, Unique};
72 use core::convert::From;
73 use str::from_boxed_utf8_unchecked;
74
75 /// A value that represents the heap. This is the default place that the `box`
76 /// keyword allocates into when no place is supplied.
77 ///
78 /// The following two examples are equivalent:
79 ///
80 /// ```
81 /// #![feature(box_heap)]
82 ///
83 /// #![feature(box_syntax, placement_in_syntax)]
84 /// use std::boxed::HEAP;
85 ///
86 /// fn main() {
87 /// let foo: Box<i32> = in HEAP { 5 };
88 /// let foo = box 5;
89 /// }
90 /// ```
91 #[unstable(feature = "box_heap",
92 reason = "may be renamed; uncertain about custom allocator design",
93 issue = "27779")]
94 pub const HEAP: ExchangeHeapSingleton = ExchangeHeapSingleton { _force_singleton: () };
95
96 /// This the singleton type used solely for `boxed::HEAP`.
97 #[unstable(feature = "box_heap",
98 reason = "may be renamed; uncertain about custom allocator design",
99 issue = "27779")]
100 #[allow(missing_debug_implementations)]
101 #[derive(Copy, Clone)]
102 pub struct ExchangeHeapSingleton {
103 _force_singleton: (),
104 }
105
106 /// A pointer type for heap allocation.
107 ///
108 /// See the [module-level documentation](../../std/boxed/index.html) for more.
109 #[lang = "owned_box"]
110 #[fundamental]
111 #[stable(feature = "rust1", since = "1.0.0")]
112 pub struct Box<T: ?Sized>(Unique<T>);
113
114 /// `IntermediateBox` represents uninitialized backing storage for `Box`.
115 ///
116 /// FIXME (pnkfelix): Ideally we would just reuse `Box<T>` instead of
117 /// introducing a separate `IntermediateBox<T>`; but then you hit
118 /// issues when you e.g. attempt to destructure an instance of `Box`,
119 /// since it is a lang item and so it gets special handling by the
120 /// compiler. Easier just to make this parallel type for now.
121 ///
122 /// FIXME (pnkfelix): Currently the `box` protocol only supports
123 /// creating instances of sized types. This IntermediateBox is
124 /// designed to be forward-compatible with a future protocol that
125 /// supports creating instances of unsized types; that is why the type
126 /// parameter has the `?Sized` generalization marker, and is also why
127 /// this carries an explicit size. However, it probably does not need
128 /// to carry the explicit alignment; that is just a work-around for
129 /// the fact that the `align_of` intrinsic currently requires the
130 /// input type to be Sized (which I do not think is strictly
131 /// necessary).
132 #[unstable(feature = "placement_in",
133 reason = "placement box design is still being worked out.",
134 issue = "27779")]
135 #[allow(missing_debug_implementations)]
136 pub struct IntermediateBox<T: ?Sized> {
137 ptr: *mut u8,
138 layout: Layout,
139 marker: marker::PhantomData<*mut T>,
140 }
141
142 #[unstable(feature = "placement_in",
143 reason = "placement box design is still being worked out.",
144 issue = "27779")]
145 impl<T> Place<T> for IntermediateBox<T> {
146 fn pointer(&mut self) -> *mut T {
147 self.ptr as *mut T
148 }
149 }
150
151 unsafe fn finalize<T>(b: IntermediateBox<T>) -> Box<T> {
152 let p = b.ptr as *mut T;
153 mem::forget(b);
154 mem::transmute(p)
155 }
156
157 fn make_place<T>() -> IntermediateBox<T> {
158 let layout = Layout::new::<T>();
159
160 let p = if layout.size() == 0 {
161 mem::align_of::<T>() as *mut u8
162 } else {
163 unsafe {
164 Heap.alloc(layout.clone()).unwrap_or_else(|err| {
165 Heap.oom(err)
166 })
167 }
168 };
169
170 IntermediateBox {
171 ptr: p,
172 layout: layout,
173 marker: marker::PhantomData,
174 }
175 }
176
177 #[unstable(feature = "placement_in",
178 reason = "placement box design is still being worked out.",
179 issue = "27779")]
180 impl<T> BoxPlace<T> for IntermediateBox<T> {
181 fn make_place() -> IntermediateBox<T> {
182 make_place()
183 }
184 }
185
186 #[unstable(feature = "placement_in",
187 reason = "placement box design is still being worked out.",
188 issue = "27779")]
189 impl<T> InPlace<T> for IntermediateBox<T> {
190 type Owner = Box<T>;
191 unsafe fn finalize(self) -> Box<T> {
192 finalize(self)
193 }
194 }
195
196 #[unstable(feature = "placement_new_protocol", issue = "27779")]
197 impl<T> Boxed for Box<T> {
198 type Data = T;
199 type Place = IntermediateBox<T>;
200 unsafe fn finalize(b: IntermediateBox<T>) -> Box<T> {
201 finalize(b)
202 }
203 }
204
205 #[unstable(feature = "placement_in",
206 reason = "placement box design is still being worked out.",
207 issue = "27779")]
208 impl<T> Placer<T> for ExchangeHeapSingleton {
209 type Place = IntermediateBox<T>;
210
211 fn make_place(self) -> IntermediateBox<T> {
212 make_place()
213 }
214 }
215
216 #[unstable(feature = "placement_in",
217 reason = "placement box design is still being worked out.",
218 issue = "27779")]
219 impl<T: ?Sized> Drop for IntermediateBox<T> {
220 fn drop(&mut self) {
221 if self.layout.size() > 0 {
222 unsafe {
223 Heap.dealloc(self.ptr, self.layout.clone())
224 }
225 }
226 }
227 }
228
229 impl<T> Box<T> {
230 /// Allocates memory on the heap and then places `x` into it.
231 ///
232 /// This doesn't actually allocate if `T` is zero-sized.
233 ///
234 /// # Examples
235 ///
236 /// ```
237 /// let five = Box::new(5);
238 /// ```
239 #[stable(feature = "rust1", since = "1.0.0")]
240 #[inline(always)]
241 pub fn new(x: T) -> Box<T> {
242 box x
243 }
244 }
245
246 impl<T: ?Sized> Box<T> {
247 /// Constructs a box from a raw pointer.
248 ///
249 /// After calling this function, the raw pointer is owned by the
250 /// resulting `Box`. Specifically, the `Box` destructor will call
251 /// the destructor of `T` and free the allocated memory. Since the
252 /// way `Box` allocates and releases memory is unspecified, the
253 /// only valid pointer to pass to this function is the one taken
254 /// from another `Box` via the [`Box::into_raw`] function.
255 ///
256 /// This function is unsafe because improper use may lead to
257 /// memory problems. For example, a double-free may occur if the
258 /// function is called twice on the same raw pointer.
259 ///
260 /// [`Box::into_raw`]: struct.Box.html#method.into_raw
261 ///
262 /// # Examples
263 ///
264 /// ```
265 /// let x = Box::new(5);
266 /// let ptr = Box::into_raw(x);
267 /// let x = unsafe { Box::from_raw(ptr) };
268 /// ```
269 #[stable(feature = "box_raw", since = "1.4.0")]
270 #[inline]
271 pub unsafe fn from_raw(raw: *mut T) -> Self {
272 mem::transmute(raw)
273 }
274
275 /// Consumes the `Box`, returning the wrapped raw pointer.
276 ///
277 /// After calling this function, the caller is responsible for the
278 /// memory previously managed by the `Box`. In particular, the
279 /// caller should properly destroy `T` and release the memory. The
280 /// proper way to do so is to convert the raw pointer back into a
281 /// `Box` with the [`Box::from_raw`] function.
282 ///
283 /// Note: this is an associated function, which means that you have
284 /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
285 /// is so that there is no conflict with a method on the inner type.
286 ///
287 /// [`Box::from_raw`]: struct.Box.html#method.from_raw
288 ///
289 /// # Examples
290 ///
291 /// ```
292 /// let x = Box::new(5);
293 /// let ptr = Box::into_raw(x);
294 /// ```
295 #[stable(feature = "box_raw", since = "1.4.0")]
296 #[inline]
297 pub fn into_raw(b: Box<T>) -> *mut T {
298 unsafe { mem::transmute(b) }
299 }
300 }
301
302 #[stable(feature = "rust1", since = "1.0.0")]
303 unsafe impl<#[may_dangle] T: ?Sized> Drop for Box<T> {
304 fn drop(&mut self) {
305 // FIXME: Do nothing, drop is currently performed by compiler.
306 }
307 }
308
309 #[stable(feature = "rust1", since = "1.0.0")]
310 impl<T: Default> Default for Box<T> {
311 /// Creates a `Box<T>`, with the `Default` value for T.
312 fn default() -> Box<T> {
313 box Default::default()
314 }
315 }
316
317 #[stable(feature = "rust1", since = "1.0.0")]
318 impl<T> Default for Box<[T]> {
319 fn default() -> Box<[T]> {
320 Box::<[T; 0]>::new([])
321 }
322 }
323
324 #[stable(feature = "default_box_extra", since = "1.17.0")]
325 impl Default for Box<str> {
326 fn default() -> Box<str> {
327 unsafe { from_boxed_utf8_unchecked(Default::default()) }
328 }
329 }
330
331 #[stable(feature = "rust1", since = "1.0.0")]
332 impl<T: Clone> Clone for Box<T> {
333 /// Returns a new box with a `clone()` of this box's contents.
334 ///
335 /// # Examples
336 ///
337 /// ```
338 /// let x = Box::new(5);
339 /// let y = x.clone();
340 /// ```
341 #[rustfmt_skip]
342 #[inline]
343 fn clone(&self) -> Box<T> {
344 box { (**self).clone() }
345 }
346 /// Copies `source`'s contents into `self` without creating a new allocation.
347 ///
348 /// # Examples
349 ///
350 /// ```
351 /// let x = Box::new(5);
352 /// let mut y = Box::new(10);
353 ///
354 /// y.clone_from(&x);
355 ///
356 /// assert_eq!(*y, 5);
357 /// ```
358 #[inline]
359 fn clone_from(&mut self, source: &Box<T>) {
360 (**self).clone_from(&(**source));
361 }
362 }
363
364
365 #[stable(feature = "box_slice_clone", since = "1.3.0")]
366 impl Clone for Box<str> {
367 fn clone(&self) -> Self {
368 let len = self.len();
369 let buf = RawVec::with_capacity(len);
370 unsafe {
371 ptr::copy_nonoverlapping(self.as_ptr(), buf.ptr(), len);
372 from_boxed_utf8_unchecked(buf.into_box())
373 }
374 }
375 }
376
377 #[stable(feature = "rust1", since = "1.0.0")]
378 impl<T: ?Sized + PartialEq> PartialEq for Box<T> {
379 #[inline]
380 fn eq(&self, other: &Box<T>) -> bool {
381 PartialEq::eq(&**self, &**other)
382 }
383 #[inline]
384 fn ne(&self, other: &Box<T>) -> bool {
385 PartialEq::ne(&**self, &**other)
386 }
387 }
388 #[stable(feature = "rust1", since = "1.0.0")]
389 impl<T: ?Sized + PartialOrd> PartialOrd for Box<T> {
390 #[inline]
391 fn partial_cmp(&self, other: &Box<T>) -> Option<Ordering> {
392 PartialOrd::partial_cmp(&**self, &**other)
393 }
394 #[inline]
395 fn lt(&self, other: &Box<T>) -> bool {
396 PartialOrd::lt(&**self, &**other)
397 }
398 #[inline]
399 fn le(&self, other: &Box<T>) -> bool {
400 PartialOrd::le(&**self, &**other)
401 }
402 #[inline]
403 fn ge(&self, other: &Box<T>) -> bool {
404 PartialOrd::ge(&**self, &**other)
405 }
406 #[inline]
407 fn gt(&self, other: &Box<T>) -> bool {
408 PartialOrd::gt(&**self, &**other)
409 }
410 }
411 #[stable(feature = "rust1", since = "1.0.0")]
412 impl<T: ?Sized + Ord> Ord for Box<T> {
413 #[inline]
414 fn cmp(&self, other: &Box<T>) -> Ordering {
415 Ord::cmp(&**self, &**other)
416 }
417 }
418 #[stable(feature = "rust1", since = "1.0.0")]
419 impl<T: ?Sized + Eq> Eq for Box<T> {}
420
421 #[stable(feature = "rust1", since = "1.0.0")]
422 impl<T: ?Sized + Hash> Hash for Box<T> {
423 fn hash<H: hash::Hasher>(&self, state: &mut H) {
424 (**self).hash(state);
425 }
426 }
427
428 #[stable(feature = "from_for_ptrs", since = "1.6.0")]
429 impl<T> From<T> for Box<T> {
430 fn from(t: T) -> Self {
431 Box::new(t)
432 }
433 }
434
435 #[stable(feature = "box_from_slice", since = "1.17.0")]
436 impl<'a, T: Copy> From<&'a [T]> for Box<[T]> {
437 fn from(slice: &'a [T]) -> Box<[T]> {
438 let mut boxed = unsafe { RawVec::with_capacity(slice.len()).into_box() };
439 boxed.copy_from_slice(slice);
440 boxed
441 }
442 }
443
444 #[stable(feature = "box_from_slice", since = "1.17.0")]
445 impl<'a> From<&'a str> for Box<str> {
446 fn from(s: &'a str) -> Box<str> {
447 unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) }
448 }
449 }
450
451 #[stable(feature = "boxed_str_conv", since = "1.19.0")]
452 impl From<Box<str>> for Box<[u8]> {
453 fn from(s: Box<str>) -> Self {
454 unsafe {
455 mem::transmute(s)
456 }
457 }
458 }
459
460 impl Box<Any> {
461 #[inline]
462 #[stable(feature = "rust1", since = "1.0.0")]
463 /// Attempt to downcast the box to a concrete type.
464 ///
465 /// # Examples
466 ///
467 /// ```
468 /// use std::any::Any;
469 ///
470 /// fn print_if_string(value: Box<Any>) {
471 /// if let Ok(string) = value.downcast::<String>() {
472 /// println!("String ({}): {}", string.len(), string);
473 /// }
474 /// }
475 ///
476 /// fn main() {
477 /// let my_string = "Hello World".to_string();
478 /// print_if_string(Box::new(my_string));
479 /// print_if_string(Box::new(0i8));
480 /// }
481 /// ```
482 pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<Any>> {
483 if self.is::<T>() {
484 unsafe {
485 let raw: *mut Any = Box::into_raw(self);
486 Ok(Box::from_raw(raw as *mut T))
487 }
488 } else {
489 Err(self)
490 }
491 }
492 }
493
494 impl Box<Any + Send> {
495 #[inline]
496 #[stable(feature = "rust1", since = "1.0.0")]
497 /// Attempt to downcast the box to a concrete type.
498 ///
499 /// # Examples
500 ///
501 /// ```
502 /// use std::any::Any;
503 ///
504 /// fn print_if_string(value: Box<Any + Send>) {
505 /// if let Ok(string) = value.downcast::<String>() {
506 /// println!("String ({}): {}", string.len(), string);
507 /// }
508 /// }
509 ///
510 /// fn main() {
511 /// let my_string = "Hello World".to_string();
512 /// print_if_string(Box::new(my_string));
513 /// print_if_string(Box::new(0i8));
514 /// }
515 /// ```
516 pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<Any + Send>> {
517 <Box<Any>>::downcast(self).map_err(|s| unsafe {
518 // reapply the Send marker
519 mem::transmute::<Box<Any>, Box<Any + Send>>(s)
520 })
521 }
522 }
523
524 #[stable(feature = "rust1", since = "1.0.0")]
525 impl<T: fmt::Display + ?Sized> fmt::Display for Box<T> {
526 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
527 fmt::Display::fmt(&**self, f)
528 }
529 }
530
531 #[stable(feature = "rust1", since = "1.0.0")]
532 impl<T: fmt::Debug + ?Sized> fmt::Debug for Box<T> {
533 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
534 fmt::Debug::fmt(&**self, f)
535 }
536 }
537
538 #[stable(feature = "rust1", since = "1.0.0")]
539 impl<T: ?Sized> fmt::Pointer for Box<T> {
540 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
541 // It's not possible to extract the inner Uniq directly from the Box,
542 // instead we cast it to a *const which aliases the Unique
543 let ptr: *const T = &**self;
544 fmt::Pointer::fmt(&ptr, f)
545 }
546 }
547
548 #[stable(feature = "rust1", since = "1.0.0")]
549 impl<T: ?Sized> Deref for Box<T> {
550 type Target = T;
551
552 fn deref(&self) -> &T {
553 &**self
554 }
555 }
556
557 #[stable(feature = "rust1", since = "1.0.0")]
558 impl<T: ?Sized> DerefMut for Box<T> {
559 fn deref_mut(&mut self) -> &mut T {
560 &mut **self
561 }
562 }
563
564 #[stable(feature = "rust1", since = "1.0.0")]
565 impl<I: Iterator + ?Sized> Iterator for Box<I> {
566 type Item = I::Item;
567 fn next(&mut self) -> Option<I::Item> {
568 (**self).next()
569 }
570 fn size_hint(&self) -> (usize, Option<usize>) {
571 (**self).size_hint()
572 }
573 fn nth(&mut self, n: usize) -> Option<I::Item> {
574 (**self).nth(n)
575 }
576 }
577 #[stable(feature = "rust1", since = "1.0.0")]
578 impl<I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for Box<I> {
579 fn next_back(&mut self) -> Option<I::Item> {
580 (**self).next_back()
581 }
582 }
583 #[stable(feature = "rust1", since = "1.0.0")]
584 impl<I: ExactSizeIterator + ?Sized> ExactSizeIterator for Box<I> {
585 fn len(&self) -> usize {
586 (**self).len()
587 }
588 fn is_empty(&self) -> bool {
589 (**self).is_empty()
590 }
591 }
592
593 #[unstable(feature = "fused", issue = "35602")]
594 impl<I: FusedIterator + ?Sized> FusedIterator for Box<I> {}
595
596
597 /// `FnBox` is a version of the `FnOnce` intended for use with boxed
598 /// closure objects. The idea is that where one would normally store a
599 /// `Box<FnOnce()>` in a data structure, you should use
600 /// `Box<FnBox()>`. The two traits behave essentially the same, except
601 /// that a `FnBox` closure can only be called if it is boxed. (Note
602 /// that `FnBox` may be deprecated in the future if `Box<FnOnce()>`
603 /// closures become directly usable.)
604 ///
605 /// ### Example
606 ///
607 /// Here is a snippet of code which creates a hashmap full of boxed
608 /// once closures and then removes them one by one, calling each
609 /// closure as it is removed. Note that the type of the closures
610 /// stored in the map is `Box<FnBox() -> i32>` and not `Box<FnOnce()
611 /// -> i32>`.
612 ///
613 /// ```
614 /// #![feature(fnbox)]
615 ///
616 /// use std::boxed::FnBox;
617 /// use std::collections::HashMap;
618 ///
619 /// fn make_map() -> HashMap<i32, Box<FnBox() -> i32>> {
620 /// let mut map: HashMap<i32, Box<FnBox() -> i32>> = HashMap::new();
621 /// map.insert(1, Box::new(|| 22));
622 /// map.insert(2, Box::new(|| 44));
623 /// map
624 /// }
625 ///
626 /// fn main() {
627 /// let mut map = make_map();
628 /// for i in &[1, 2] {
629 /// let f = map.remove(&i).unwrap();
630 /// assert_eq!(f(), i * 22);
631 /// }
632 /// }
633 /// ```
634 #[rustc_paren_sugar]
635 #[unstable(feature = "fnbox",
636 reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
637 pub trait FnBox<A> {
638 type Output;
639
640 fn call_box(self: Box<Self>, args: A) -> Self::Output;
641 }
642
643 #[unstable(feature = "fnbox",
644 reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
645 impl<A, F> FnBox<A> for F
646 where F: FnOnce<A>
647 {
648 type Output = F::Output;
649
650 fn call_box(self: Box<F>, args: A) -> F::Output {
651 self.call_once(args)
652 }
653 }
654
655 #[unstable(feature = "fnbox",
656 reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
657 impl<'a, A, R> FnOnce<A> for Box<FnBox<A, Output = R> + 'a> {
658 type Output = R;
659
660 extern "rust-call" fn call_once(self, args: A) -> R {
661 self.call_box(args)
662 }
663 }
664
665 #[unstable(feature = "fnbox",
666 reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
667 impl<'a, A, R> FnOnce<A> for Box<FnBox<A, Output = R> + Send + 'a> {
668 type Output = R;
669
670 extern "rust-call" fn call_once(self, args: A) -> R {
671 self.call_box(args)
672 }
673 }
674
675 #[unstable(feature = "coerce_unsized", issue = "27732")]
676 impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Box<U>> for Box<T> {}
677
678 #[stable(feature = "box_slice_clone", since = "1.3.0")]
679 impl<T: Clone> Clone for Box<[T]> {
680 fn clone(&self) -> Self {
681 let mut new = BoxBuilder {
682 data: RawVec::with_capacity(self.len()),
683 len: 0,
684 };
685
686 let mut target = new.data.ptr();
687
688 for item in self.iter() {
689 unsafe {
690 ptr::write(target, item.clone());
691 target = target.offset(1);
692 };
693
694 new.len += 1;
695 }
696
697 return unsafe { new.into_box() };
698
699 // Helper type for responding to panics correctly.
700 struct BoxBuilder<T> {
701 data: RawVec<T>,
702 len: usize,
703 }
704
705 impl<T> BoxBuilder<T> {
706 unsafe fn into_box(self) -> Box<[T]> {
707 let raw = ptr::read(&self.data);
708 mem::forget(self);
709 raw.into_box()
710 }
711 }
712
713 impl<T> Drop for BoxBuilder<T> {
714 fn drop(&mut self) {
715 let mut data = self.data.ptr();
716 let max = unsafe { data.offset(self.len as isize) };
717
718 while data != max {
719 unsafe {
720 ptr::read(data);
721 data = data.offset(1);
722 }
723 }
724 }
725 }
726 }
727 }
728
729 #[stable(feature = "box_borrow", since = "1.1.0")]
730 impl<T: ?Sized> borrow::Borrow<T> for Box<T> {
731 fn borrow(&self) -> &T {
732 &**self
733 }
734 }
735
736 #[stable(feature = "box_borrow", since = "1.1.0")]
737 impl<T: ?Sized> borrow::BorrowMut<T> for Box<T> {
738 fn borrow_mut(&mut self) -> &mut T {
739 &mut **self
740 }
741 }
742
743 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
744 impl<T: ?Sized> AsRef<T> for Box<T> {
745 fn as_ref(&self) -> &T {
746 &**self
747 }
748 }
749
750 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
751 impl<T: ?Sized> AsMut<T> for Box<T> {
752 fn as_mut(&mut self) -> &mut T {
753 &mut **self
754 }
755 }