]> git.proxmox.com Git - rustc.git/blob - src/liballoc/collections/vec_deque.rs
New upstream version 1.43.0+dfsg1
[rustc.git] / src / liballoc / collections / vec_deque.rs
1 //! A double-ended queue implemented with a growable ring buffer.
2 //!
3 //! This queue has `O(1)` amortized inserts and removals from both ends of the
4 //! container. It also has `O(1)` indexing like a vector. The contained elements
5 //! are not required to be copyable, and the queue will be sendable if the
6 //! contained type is sendable.
7
8 #![stable(feature = "rust1", since = "1.0.0")]
9
10 use core::array::LengthAtMost32;
11 use core::cmp::{self, Ordering};
12 use core::fmt;
13 use core::hash::{Hash, Hasher};
14 use core::iter::{once, repeat_with, FromIterator, FusedIterator};
15 use core::mem::{self, replace};
16 use core::ops::Bound::{Excluded, Included, Unbounded};
17 use core::ops::{Index, IndexMut, RangeBounds, Try};
18 use core::ptr::{self, NonNull};
19 use core::slice;
20
21 use crate::collections::TryReserveError;
22 use crate::raw_vec::RawVec;
23 use crate::vec::Vec;
24
25 #[stable(feature = "drain", since = "1.6.0")]
26 pub use self::drain::Drain;
27
28 mod drain;
29
30 #[cfg(test)]
31 mod tests;
32
33 const INITIAL_CAPACITY: usize = 7; // 2^3 - 1
34 const MINIMUM_CAPACITY: usize = 1; // 2 - 1
35 #[cfg(target_pointer_width = "16")]
36 const MAXIMUM_ZST_CAPACITY: usize = 1 << (16 - 1); // Largest possible power of two
37 #[cfg(target_pointer_width = "32")]
38 const MAXIMUM_ZST_CAPACITY: usize = 1 << (32 - 1); // Largest possible power of two
39 #[cfg(target_pointer_width = "64")]
40 const MAXIMUM_ZST_CAPACITY: usize = 1 << (64 - 1); // Largest possible power of two
41
42 /// A double-ended queue implemented with a growable ring buffer.
43 ///
44 /// The "default" usage of this type as a queue is to use [`push_back`] to add to
45 /// the queue, and [`pop_front`] to remove from the queue. [`extend`] and [`append`]
46 /// push onto the back in this manner, and iterating over `VecDeque` goes front
47 /// to back.
48 ///
49 /// [`push_back`]: #method.push_back
50 /// [`pop_front`]: #method.pop_front
51 /// [`extend`]: #method.extend
52 /// [`append`]: #method.append
53 #[stable(feature = "rust1", since = "1.0.0")]
54 pub struct VecDeque<T> {
55 // tail and head are pointers into the buffer. Tail always points
56 // to the first element that could be read, Head always points
57 // to where data should be written.
58 // If tail == head the buffer is empty. The length of the ringbuffer
59 // is defined as the distance between the two.
60 tail: usize,
61 head: usize,
62 buf: RawVec<T>,
63 }
64
65 /// PairSlices pairs up equal length slice parts of two deques
66 ///
67 /// For example, given deques "A" and "B" with the following division into slices:
68 ///
69 /// A: [0 1 2] [3 4 5]
70 /// B: [a b] [c d e]
71 ///
72 /// It produces the following sequence of matching slices:
73 ///
74 /// ([0 1], [a b])
75 /// ([2], [c])
76 /// ([3 4], [d e])
77 ///
78 /// and the uneven remainder of either A or B is skipped.
79 struct PairSlices<'a, 'b, T> {
80 a0: &'a mut [T],
81 a1: &'a mut [T],
82 b0: &'b [T],
83 b1: &'b [T],
84 }
85
86 impl<'a, 'b, T> PairSlices<'a, 'b, T> {
87 fn from(to: &'a mut VecDeque<T>, from: &'b VecDeque<T>) -> Self {
88 let (a0, a1) = to.as_mut_slices();
89 let (b0, b1) = from.as_slices();
90 PairSlices { a0, a1, b0, b1 }
91 }
92
93 fn has_remainder(&self) -> bool {
94 !self.b0.is_empty()
95 }
96
97 fn remainder(self) -> impl Iterator<Item = &'b [T]> {
98 once(self.b0).chain(once(self.b1))
99 }
100 }
101
102 impl<'a, 'b, T> Iterator for PairSlices<'a, 'b, T> {
103 type Item = (&'a mut [T], &'b [T]);
104 fn next(&mut self) -> Option<Self::Item> {
105 // Get next part length
106 let part = cmp::min(self.a0.len(), self.b0.len());
107 if part == 0 {
108 return None;
109 }
110 let (p0, p1) = replace(&mut self.a0, &mut []).split_at_mut(part);
111 let (q0, q1) = self.b0.split_at(part);
112
113 // Move a1 into a0, if it's empty (and b1, b0 the same way).
114 self.a0 = p1;
115 self.b0 = q1;
116 if self.a0.is_empty() {
117 self.a0 = replace(&mut self.a1, &mut []);
118 }
119 if self.b0.is_empty() {
120 self.b0 = replace(&mut self.b1, &[]);
121 }
122 Some((p0, q0))
123 }
124 }
125
126 #[stable(feature = "rust1", since = "1.0.0")]
127 impl<T: Clone> Clone for VecDeque<T> {
128 fn clone(&self) -> VecDeque<T> {
129 self.iter().cloned().collect()
130 }
131
132 fn clone_from(&mut self, other: &Self) {
133 self.truncate(other.len());
134
135 let mut iter = PairSlices::from(self, other);
136 while let Some((dst, src)) = iter.next() {
137 dst.clone_from_slice(&src);
138 }
139
140 if iter.has_remainder() {
141 for remainder in iter.remainder() {
142 self.extend(remainder.iter().cloned());
143 }
144 }
145 }
146 }
147
148 #[stable(feature = "rust1", since = "1.0.0")]
149 unsafe impl<#[may_dangle] T> Drop for VecDeque<T> {
150 fn drop(&mut self) {
151 /// Runs the destructor for all items in the slice when it gets dropped (normally or
152 /// during unwinding).
153 struct Dropper<'a, T>(&'a mut [T]);
154
155 impl<'a, T> Drop for Dropper<'a, T> {
156 fn drop(&mut self) {
157 unsafe {
158 ptr::drop_in_place(self.0);
159 }
160 }
161 }
162
163 let (front, back) = self.as_mut_slices();
164 unsafe {
165 let _back_dropper = Dropper(back);
166 // use drop for [T]
167 ptr::drop_in_place(front);
168 }
169 // RawVec handles deallocation
170 }
171 }
172
173 #[stable(feature = "rust1", since = "1.0.0")]
174 impl<T> Default for VecDeque<T> {
175 /// Creates an empty `VecDeque<T>`.
176 #[inline]
177 fn default() -> VecDeque<T> {
178 VecDeque::new()
179 }
180 }
181
182 impl<T> VecDeque<T> {
183 /// Marginally more convenient
184 #[inline]
185 fn ptr(&self) -> *mut T {
186 self.buf.ptr()
187 }
188
189 /// Marginally more convenient
190 #[inline]
191 fn cap(&self) -> usize {
192 if mem::size_of::<T>() == 0 {
193 // For zero sized types, we are always at maximum capacity
194 MAXIMUM_ZST_CAPACITY
195 } else {
196 self.buf.capacity()
197 }
198 }
199
200 /// Turn ptr into a slice
201 #[inline]
202 unsafe fn buffer_as_slice(&self) -> &[T] {
203 slice::from_raw_parts(self.ptr(), self.cap())
204 }
205
206 /// Turn ptr into a mut slice
207 #[inline]
208 unsafe fn buffer_as_mut_slice(&mut self) -> &mut [T] {
209 slice::from_raw_parts_mut(self.ptr(), self.cap())
210 }
211
212 /// Moves an element out of the buffer
213 #[inline]
214 unsafe fn buffer_read(&mut self, off: usize) -> T {
215 ptr::read(self.ptr().add(off))
216 }
217
218 /// Writes an element into the buffer, moving it.
219 #[inline]
220 unsafe fn buffer_write(&mut self, off: usize, value: T) {
221 ptr::write(self.ptr().add(off), value);
222 }
223
224 /// Returns `true` if the buffer is at full capacity.
225 #[inline]
226 fn is_full(&self) -> bool {
227 self.cap() - self.len() == 1
228 }
229
230 /// Returns the index in the underlying buffer for a given logical element
231 /// index.
232 #[inline]
233 fn wrap_index(&self, idx: usize) -> usize {
234 wrap_index(idx, self.cap())
235 }
236
237 /// Returns the index in the underlying buffer for a given logical element
238 /// index + addend.
239 #[inline]
240 fn wrap_add(&self, idx: usize, addend: usize) -> usize {
241 wrap_index(idx.wrapping_add(addend), self.cap())
242 }
243
244 /// Returns the index in the underlying buffer for a given logical element
245 /// index - subtrahend.
246 #[inline]
247 fn wrap_sub(&self, idx: usize, subtrahend: usize) -> usize {
248 wrap_index(idx.wrapping_sub(subtrahend), self.cap())
249 }
250
251 /// Copies a contiguous block of memory len long from src to dst
252 #[inline]
253 unsafe fn copy(&self, dst: usize, src: usize, len: usize) {
254 debug_assert!(
255 dst + len <= self.cap(),
256 "cpy dst={} src={} len={} cap={}",
257 dst,
258 src,
259 len,
260 self.cap()
261 );
262 debug_assert!(
263 src + len <= self.cap(),
264 "cpy dst={} src={} len={} cap={}",
265 dst,
266 src,
267 len,
268 self.cap()
269 );
270 ptr::copy(self.ptr().add(src), self.ptr().add(dst), len);
271 }
272
273 /// Copies a contiguous block of memory len long from src to dst
274 #[inline]
275 unsafe fn copy_nonoverlapping(&self, dst: usize, src: usize, len: usize) {
276 debug_assert!(
277 dst + len <= self.cap(),
278 "cno dst={} src={} len={} cap={}",
279 dst,
280 src,
281 len,
282 self.cap()
283 );
284 debug_assert!(
285 src + len <= self.cap(),
286 "cno dst={} src={} len={} cap={}",
287 dst,
288 src,
289 len,
290 self.cap()
291 );
292 ptr::copy_nonoverlapping(self.ptr().add(src), self.ptr().add(dst), len);
293 }
294
295 /// Copies a potentially wrapping block of memory len long from src to dest.
296 /// (abs(dst - src) + len) must be no larger than cap() (There must be at
297 /// most one continuous overlapping region between src and dest).
298 unsafe fn wrap_copy(&self, dst: usize, src: usize, len: usize) {
299 #[allow(dead_code)]
300 fn diff(a: usize, b: usize) -> usize {
301 if a <= b { b - a } else { a - b }
302 }
303 debug_assert!(
304 cmp::min(diff(dst, src), self.cap() - diff(dst, src)) + len <= self.cap(),
305 "wrc dst={} src={} len={} cap={}",
306 dst,
307 src,
308 len,
309 self.cap()
310 );
311
312 if src == dst || len == 0 {
313 return;
314 }
315
316 let dst_after_src = self.wrap_sub(dst, src) < len;
317
318 let src_pre_wrap_len = self.cap() - src;
319 let dst_pre_wrap_len = self.cap() - dst;
320 let src_wraps = src_pre_wrap_len < len;
321 let dst_wraps = dst_pre_wrap_len < len;
322
323 match (dst_after_src, src_wraps, dst_wraps) {
324 (_, false, false) => {
325 // src doesn't wrap, dst doesn't wrap
326 //
327 // S . . .
328 // 1 [_ _ A A B B C C _]
329 // 2 [_ _ A A A A B B _]
330 // D . . .
331 //
332 self.copy(dst, src, len);
333 }
334 (false, false, true) => {
335 // dst before src, src doesn't wrap, dst wraps
336 //
337 // S . . .
338 // 1 [A A B B _ _ _ C C]
339 // 2 [A A B B _ _ _ A A]
340 // 3 [B B B B _ _ _ A A]
341 // . . D .
342 //
343 self.copy(dst, src, dst_pre_wrap_len);
344 self.copy(0, src + dst_pre_wrap_len, len - dst_pre_wrap_len);
345 }
346 (true, false, true) => {
347 // src before dst, src doesn't wrap, dst wraps
348 //
349 // S . . .
350 // 1 [C C _ _ _ A A B B]
351 // 2 [B B _ _ _ A A B B]
352 // 3 [B B _ _ _ A A A A]
353 // . . D .
354 //
355 self.copy(0, src + dst_pre_wrap_len, len - dst_pre_wrap_len);
356 self.copy(dst, src, dst_pre_wrap_len);
357 }
358 (false, true, false) => {
359 // dst before src, src wraps, dst doesn't wrap
360 //
361 // . . S .
362 // 1 [C C _ _ _ A A B B]
363 // 2 [C C _ _ _ B B B B]
364 // 3 [C C _ _ _ B B C C]
365 // D . . .
366 //
367 self.copy(dst, src, src_pre_wrap_len);
368 self.copy(dst + src_pre_wrap_len, 0, len - src_pre_wrap_len);
369 }
370 (true, true, false) => {
371 // src before dst, src wraps, dst doesn't wrap
372 //
373 // . . S .
374 // 1 [A A B B _ _ _ C C]
375 // 2 [A A A A _ _ _ C C]
376 // 3 [C C A A _ _ _ C C]
377 // D . . .
378 //
379 self.copy(dst + src_pre_wrap_len, 0, len - src_pre_wrap_len);
380 self.copy(dst, src, src_pre_wrap_len);
381 }
382 (false, true, true) => {
383 // dst before src, src wraps, dst wraps
384 //
385 // . . . S .
386 // 1 [A B C D _ E F G H]
387 // 2 [A B C D _ E G H H]
388 // 3 [A B C D _ E G H A]
389 // 4 [B C C D _ E G H A]
390 // . . D . .
391 //
392 debug_assert!(dst_pre_wrap_len > src_pre_wrap_len);
393 let delta = dst_pre_wrap_len - src_pre_wrap_len;
394 self.copy(dst, src, src_pre_wrap_len);
395 self.copy(dst + src_pre_wrap_len, 0, delta);
396 self.copy(0, delta, len - dst_pre_wrap_len);
397 }
398 (true, true, true) => {
399 // src before dst, src wraps, dst wraps
400 //
401 // . . S . .
402 // 1 [A B C D _ E F G H]
403 // 2 [A A B D _ E F G H]
404 // 3 [H A B D _ E F G H]
405 // 4 [H A B D _ E F F G]
406 // . . . D .
407 //
408 debug_assert!(src_pre_wrap_len > dst_pre_wrap_len);
409 let delta = src_pre_wrap_len - dst_pre_wrap_len;
410 self.copy(delta, 0, len - src_pre_wrap_len);
411 self.copy(0, self.cap() - delta, delta);
412 self.copy(dst, src, dst_pre_wrap_len);
413 }
414 }
415 }
416
417 /// Frobs the head and tail sections around to handle the fact that we
418 /// just reallocated. Unsafe because it trusts old_capacity.
419 #[inline]
420 unsafe fn handle_capacity_increase(&mut self, old_capacity: usize) {
421 let new_capacity = self.cap();
422
423 // Move the shortest contiguous section of the ring buffer
424 // T H
425 // [o o o o o o o . ]
426 // T H
427 // A [o o o o o o o . . . . . . . . . ]
428 // H T
429 // [o o . o o o o o ]
430 // T H
431 // B [. . . o o o o o o o . . . . . . ]
432 // H T
433 // [o o o o o . o o ]
434 // H T
435 // C [o o o o o . . . . . . . . . o o ]
436
437 if self.tail <= self.head {
438 // A
439 // Nop
440 } else if self.head < old_capacity - self.tail {
441 // B
442 self.copy_nonoverlapping(old_capacity, 0, self.head);
443 self.head += old_capacity;
444 debug_assert!(self.head > self.tail);
445 } else {
446 // C
447 let new_tail = new_capacity - (old_capacity - self.tail);
448 self.copy_nonoverlapping(new_tail, self.tail, old_capacity - self.tail);
449 self.tail = new_tail;
450 debug_assert!(self.head < self.tail);
451 }
452 debug_assert!(self.head < self.cap());
453 debug_assert!(self.tail < self.cap());
454 debug_assert!(self.cap().count_ones() == 1);
455 }
456 }
457
458 impl<T> VecDeque<T> {
459 /// Creates an empty `VecDeque`.
460 ///
461 /// # Examples
462 ///
463 /// ```
464 /// use std::collections::VecDeque;
465 ///
466 /// let vector: VecDeque<u32> = VecDeque::new();
467 /// ```
468 #[stable(feature = "rust1", since = "1.0.0")]
469 pub fn new() -> VecDeque<T> {
470 VecDeque::with_capacity(INITIAL_CAPACITY)
471 }
472
473 /// Creates an empty `VecDeque` with space for at least `capacity` elements.
474 ///
475 /// # Examples
476 ///
477 /// ```
478 /// use std::collections::VecDeque;
479 ///
480 /// let vector: VecDeque<u32> = VecDeque::with_capacity(10);
481 /// ```
482 #[stable(feature = "rust1", since = "1.0.0")]
483 pub fn with_capacity(capacity: usize) -> VecDeque<T> {
484 // +1 since the ringbuffer always leaves one space empty
485 let cap = cmp::max(capacity + 1, MINIMUM_CAPACITY + 1).next_power_of_two();
486 assert!(cap > capacity, "capacity overflow");
487
488 VecDeque { tail: 0, head: 0, buf: RawVec::with_capacity(cap) }
489 }
490
491 /// Retrieves an element in the `VecDeque` by index.
492 ///
493 /// Element at index 0 is the front of the queue.
494 ///
495 /// # Examples
496 ///
497 /// ```
498 /// use std::collections::VecDeque;
499 ///
500 /// let mut buf = VecDeque::new();
501 /// buf.push_back(3);
502 /// buf.push_back(4);
503 /// buf.push_back(5);
504 /// assert_eq!(buf.get(1), Some(&4));
505 /// ```
506 #[stable(feature = "rust1", since = "1.0.0")]
507 pub fn get(&self, index: usize) -> Option<&T> {
508 if index < self.len() {
509 let idx = self.wrap_add(self.tail, index);
510 unsafe { Some(&*self.ptr().add(idx)) }
511 } else {
512 None
513 }
514 }
515
516 /// Retrieves an element in the `VecDeque` mutably by index.
517 ///
518 /// Element at index 0 is the front of the queue.
519 ///
520 /// # Examples
521 ///
522 /// ```
523 /// use std::collections::VecDeque;
524 ///
525 /// let mut buf = VecDeque::new();
526 /// buf.push_back(3);
527 /// buf.push_back(4);
528 /// buf.push_back(5);
529 /// if let Some(elem) = buf.get_mut(1) {
530 /// *elem = 7;
531 /// }
532 ///
533 /// assert_eq!(buf[1], 7);
534 /// ```
535 #[stable(feature = "rust1", since = "1.0.0")]
536 pub fn get_mut(&mut self, index: usize) -> Option<&mut T> {
537 if index < self.len() {
538 let idx = self.wrap_add(self.tail, index);
539 unsafe { Some(&mut *self.ptr().add(idx)) }
540 } else {
541 None
542 }
543 }
544
545 /// Swaps elements at indices `i` and `j`.
546 ///
547 /// `i` and `j` may be equal.
548 ///
549 /// Element at index 0 is the front of the queue.
550 ///
551 /// # Panics
552 ///
553 /// Panics if either index is out of bounds.
554 ///
555 /// # Examples
556 ///
557 /// ```
558 /// use std::collections::VecDeque;
559 ///
560 /// let mut buf = VecDeque::new();
561 /// buf.push_back(3);
562 /// buf.push_back(4);
563 /// buf.push_back(5);
564 /// assert_eq!(buf, [3, 4, 5]);
565 /// buf.swap(0, 2);
566 /// assert_eq!(buf, [5, 4, 3]);
567 /// ```
568 #[stable(feature = "rust1", since = "1.0.0")]
569 pub fn swap(&mut self, i: usize, j: usize) {
570 assert!(i < self.len());
571 assert!(j < self.len());
572 let ri = self.wrap_add(self.tail, i);
573 let rj = self.wrap_add(self.tail, j);
574 unsafe { ptr::swap(self.ptr().add(ri), self.ptr().add(rj)) }
575 }
576
577 /// Returns the number of elements the `VecDeque` can hold without
578 /// reallocating.
579 ///
580 /// # Examples
581 ///
582 /// ```
583 /// use std::collections::VecDeque;
584 ///
585 /// let buf: VecDeque<i32> = VecDeque::with_capacity(10);
586 /// assert!(buf.capacity() >= 10);
587 /// ```
588 #[inline]
589 #[stable(feature = "rust1", since = "1.0.0")]
590 pub fn capacity(&self) -> usize {
591 self.cap() - 1
592 }
593
594 /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
595 /// given `VecDeque`. Does nothing if the capacity is already sufficient.
596 ///
597 /// Note that the allocator may give the collection more space than it requests. Therefore
598 /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`] if future
599 /// insertions are expected.
600 ///
601 /// # Panics
602 ///
603 /// Panics if the new capacity overflows `usize`.
604 ///
605 /// # Examples
606 ///
607 /// ```
608 /// use std::collections::VecDeque;
609 ///
610 /// let mut buf: VecDeque<i32> = vec![1].into_iter().collect();
611 /// buf.reserve_exact(10);
612 /// assert!(buf.capacity() >= 11);
613 /// ```
614 ///
615 /// [`reserve`]: #method.reserve
616 #[stable(feature = "rust1", since = "1.0.0")]
617 pub fn reserve_exact(&mut self, additional: usize) {
618 self.reserve(additional);
619 }
620
621 /// Reserves capacity for at least `additional` more elements to be inserted in the given
622 /// `VecDeque`. The collection may reserve more space to avoid frequent reallocations.
623 ///
624 /// # Panics
625 ///
626 /// Panics if the new capacity overflows `usize`.
627 ///
628 /// # Examples
629 ///
630 /// ```
631 /// use std::collections::VecDeque;
632 ///
633 /// let mut buf: VecDeque<i32> = vec![1].into_iter().collect();
634 /// buf.reserve(10);
635 /// assert!(buf.capacity() >= 11);
636 /// ```
637 #[stable(feature = "rust1", since = "1.0.0")]
638 pub fn reserve(&mut self, additional: usize) {
639 let old_cap = self.cap();
640 let used_cap = self.len() + 1;
641 let new_cap = used_cap
642 .checked_add(additional)
643 .and_then(|needed_cap| needed_cap.checked_next_power_of_two())
644 .expect("capacity overflow");
645
646 if new_cap > old_cap {
647 self.buf.reserve_exact(used_cap, new_cap - used_cap);
648 unsafe {
649 self.handle_capacity_increase(old_cap);
650 }
651 }
652 }
653
654 /// Tries to reserves the minimum capacity for exactly `additional` more elements to
655 /// be inserted in the given `VecDeque<T>`. After calling `reserve_exact`,
656 /// capacity will be greater than or equal to `self.len() + additional`.
657 /// Does nothing if the capacity is already sufficient.
658 ///
659 /// Note that the allocator may give the collection more space than it
660 /// requests. Therefore, capacity can not be relied upon to be precisely
661 /// minimal. Prefer `reserve` if future insertions are expected.
662 ///
663 /// # Errors
664 ///
665 /// If the capacity overflows, or the allocator reports a failure, then an error
666 /// is returned.
667 ///
668 /// # Examples
669 ///
670 /// ```
671 /// #![feature(try_reserve)]
672 /// use std::collections::TryReserveError;
673 /// use std::collections::VecDeque;
674 ///
675 /// fn process_data(data: &[u32]) -> Result<VecDeque<u32>, TryReserveError> {
676 /// let mut output = VecDeque::new();
677 ///
678 /// // Pre-reserve the memory, exiting if we can't
679 /// output.try_reserve_exact(data.len())?;
680 ///
681 /// // Now we know this can't OOM in the middle of our complex work
682 /// output.extend(data.iter().map(|&val| {
683 /// val * 2 + 5 // very complicated
684 /// }));
685 ///
686 /// Ok(output)
687 /// }
688 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
689 /// ```
690 #[unstable(feature = "try_reserve", reason = "new API", issue = "48043")]
691 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
692 self.try_reserve(additional)
693 }
694
695 /// Tries to reserve capacity for at least `additional` more elements to be inserted
696 /// in the given `VecDeque<T>`. The collection may reserve more space to avoid
697 /// frequent reallocations. After calling `reserve`, capacity will be
698 /// greater than or equal to `self.len() + additional`. Does nothing if
699 /// capacity is already sufficient.
700 ///
701 /// # Errors
702 ///
703 /// If the capacity overflows, or the allocator reports a failure, then an error
704 /// is returned.
705 ///
706 /// # Examples
707 ///
708 /// ```
709 /// #![feature(try_reserve)]
710 /// use std::collections::TryReserveError;
711 /// use std::collections::VecDeque;
712 ///
713 /// fn process_data(data: &[u32]) -> Result<VecDeque<u32>, TryReserveError> {
714 /// let mut output = VecDeque::new();
715 ///
716 /// // Pre-reserve the memory, exiting if we can't
717 /// output.try_reserve(data.len())?;
718 ///
719 /// // Now we know this can't OOM in the middle of our complex work
720 /// output.extend(data.iter().map(|&val| {
721 /// val * 2 + 5 // very complicated
722 /// }));
723 ///
724 /// Ok(output)
725 /// }
726 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
727 /// ```
728 #[unstable(feature = "try_reserve", reason = "new API", issue = "48043")]
729 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
730 let old_cap = self.cap();
731 let used_cap = self.len() + 1;
732 let new_cap = used_cap
733 .checked_add(additional)
734 .and_then(|needed_cap| needed_cap.checked_next_power_of_two())
735 .ok_or(TryReserveError::CapacityOverflow)?;
736
737 if new_cap > old_cap {
738 self.buf.try_reserve_exact(used_cap, new_cap - used_cap)?;
739 unsafe {
740 self.handle_capacity_increase(old_cap);
741 }
742 }
743 Ok(())
744 }
745
746 /// Shrinks the capacity of the `VecDeque` as much as possible.
747 ///
748 /// It will drop down as close as possible to the length but the allocator may still inform the
749 /// `VecDeque` that there is space for a few more elements.
750 ///
751 /// # Examples
752 ///
753 /// ```
754 /// use std::collections::VecDeque;
755 ///
756 /// let mut buf = VecDeque::with_capacity(15);
757 /// buf.extend(0..4);
758 /// assert_eq!(buf.capacity(), 15);
759 /// buf.shrink_to_fit();
760 /// assert!(buf.capacity() >= 4);
761 /// ```
762 #[stable(feature = "deque_extras_15", since = "1.5.0")]
763 pub fn shrink_to_fit(&mut self) {
764 self.shrink_to(0);
765 }
766
767 /// Shrinks the capacity of the `VecDeque` with a lower bound.
768 ///
769 /// The capacity will remain at least as large as both the length
770 /// and the supplied value.
771 ///
772 /// Panics if the current capacity is smaller than the supplied
773 /// minimum capacity.
774 ///
775 /// # Examples
776 ///
777 /// ```
778 /// #![feature(shrink_to)]
779 /// use std::collections::VecDeque;
780 ///
781 /// let mut buf = VecDeque::with_capacity(15);
782 /// buf.extend(0..4);
783 /// assert_eq!(buf.capacity(), 15);
784 /// buf.shrink_to(6);
785 /// assert!(buf.capacity() >= 6);
786 /// buf.shrink_to(0);
787 /// assert!(buf.capacity() >= 4);
788 /// ```
789 #[unstable(feature = "shrink_to", reason = "new API", issue = "56431")]
790 pub fn shrink_to(&mut self, min_capacity: usize) {
791 assert!(self.capacity() >= min_capacity, "Tried to shrink to a larger capacity");
792
793 // +1 since the ringbuffer always leaves one space empty
794 // len + 1 can't overflow for an existing, well-formed ringbuffer.
795 let target_cap = cmp::max(cmp::max(min_capacity, self.len()) + 1, MINIMUM_CAPACITY + 1)
796 .next_power_of_two();
797
798 if target_cap < self.cap() {
799 // There are three cases of interest:
800 // All elements are out of desired bounds
801 // Elements are contiguous, and head is out of desired bounds
802 // Elements are discontiguous, and tail is out of desired bounds
803 //
804 // At all other times, element positions are unaffected.
805 //
806 // Indicates that elements at the head should be moved.
807 let head_outside = self.head == 0 || self.head >= target_cap;
808 // Move elements from out of desired bounds (positions after target_cap)
809 if self.tail >= target_cap && head_outside {
810 // T H
811 // [. . . . . . . . o o o o o o o . ]
812 // T H
813 // [o o o o o o o . ]
814 unsafe {
815 self.copy_nonoverlapping(0, self.tail, self.len());
816 }
817 self.head = self.len();
818 self.tail = 0;
819 } else if self.tail != 0 && self.tail < target_cap && head_outside {
820 // T H
821 // [. . . o o o o o o o . . . . . . ]
822 // H T
823 // [o o . o o o o o ]
824 let len = self.wrap_sub(self.head, target_cap);
825 unsafe {
826 self.copy_nonoverlapping(0, target_cap, len);
827 }
828 self.head = len;
829 debug_assert!(self.head < self.tail);
830 } else if self.tail >= target_cap {
831 // H T
832 // [o o o o o . . . . . . . . . o o ]
833 // H T
834 // [o o o o o . o o ]
835 debug_assert!(self.wrap_sub(self.head, 1) < target_cap);
836 let len = self.cap() - self.tail;
837 let new_tail = target_cap - len;
838 unsafe {
839 self.copy_nonoverlapping(new_tail, self.tail, len);
840 }
841 self.tail = new_tail;
842 debug_assert!(self.head < self.tail);
843 }
844
845 self.buf.shrink_to_fit(target_cap);
846
847 debug_assert!(self.head < self.cap());
848 debug_assert!(self.tail < self.cap());
849 debug_assert!(self.cap().count_ones() == 1);
850 }
851 }
852
853 /// Shortens the `VecDeque`, keeping the first `len` elements and dropping
854 /// the rest.
855 ///
856 /// If `len` is greater than the `VecDeque`'s current length, this has no
857 /// effect.
858 ///
859 /// # Examples
860 ///
861 /// ```
862 /// use std::collections::VecDeque;
863 ///
864 /// let mut buf = VecDeque::new();
865 /// buf.push_back(5);
866 /// buf.push_back(10);
867 /// buf.push_back(15);
868 /// assert_eq!(buf, [5, 10, 15]);
869 /// buf.truncate(1);
870 /// assert_eq!(buf, [5]);
871 /// ```
872 #[stable(feature = "deque_extras", since = "1.16.0")]
873 pub fn truncate(&mut self, len: usize) {
874 /// Runs the destructor for all items in the slice when it gets dropped (normally or
875 /// during unwinding).
876 struct Dropper<'a, T>(&'a mut [T]);
877
878 impl<'a, T> Drop for Dropper<'a, T> {
879 fn drop(&mut self) {
880 unsafe {
881 ptr::drop_in_place(self.0);
882 }
883 }
884 }
885
886 // Safe because:
887 //
888 // * Any slice passed to `drop_in_place` is valid; the second case has
889 // `len <= front.len()` and returning on `len > self.len()` ensures
890 // `begin <= back.len()` in the first case
891 // * The head of the VecDeque is moved before calling `drop_in_place`,
892 // so no value is dropped twice if `drop_in_place` panics
893 unsafe {
894 if len > self.len() {
895 return;
896 }
897 let num_dropped = self.len() - len;
898 let (front, back) = self.as_mut_slices();
899 if len > front.len() {
900 let begin = len - front.len();
901 let drop_back = back.get_unchecked_mut(begin..) as *mut _;
902 self.head = self.wrap_sub(self.head, num_dropped);
903 ptr::drop_in_place(drop_back);
904 } else {
905 let drop_back = back as *mut _;
906 let drop_front = front.get_unchecked_mut(len..) as *mut _;
907 self.head = self.wrap_sub(self.head, num_dropped);
908
909 // Make sure the second half is dropped even when a destructor
910 // in the first one panics.
911 let _back_dropper = Dropper(&mut *drop_back);
912 ptr::drop_in_place(drop_front);
913 }
914 }
915 }
916
917 /// Returns a front-to-back iterator.
918 ///
919 /// # Examples
920 ///
921 /// ```
922 /// use std::collections::VecDeque;
923 ///
924 /// let mut buf = VecDeque::new();
925 /// buf.push_back(5);
926 /// buf.push_back(3);
927 /// buf.push_back(4);
928 /// let b: &[_] = &[&5, &3, &4];
929 /// let c: Vec<&i32> = buf.iter().collect();
930 /// assert_eq!(&c[..], b);
931 /// ```
932 #[stable(feature = "rust1", since = "1.0.0")]
933 pub fn iter(&self) -> Iter<'_, T> {
934 Iter { tail: self.tail, head: self.head, ring: unsafe { self.buffer_as_slice() } }
935 }
936
937 /// Returns a front-to-back iterator that returns mutable references.
938 ///
939 /// # Examples
940 ///
941 /// ```
942 /// use std::collections::VecDeque;
943 ///
944 /// let mut buf = VecDeque::new();
945 /// buf.push_back(5);
946 /// buf.push_back(3);
947 /// buf.push_back(4);
948 /// for num in buf.iter_mut() {
949 /// *num = *num - 2;
950 /// }
951 /// let b: &[_] = &[&mut 3, &mut 1, &mut 2];
952 /// assert_eq!(&buf.iter_mut().collect::<Vec<&mut i32>>()[..], b);
953 /// ```
954 #[stable(feature = "rust1", since = "1.0.0")]
955 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
956 IterMut { tail: self.tail, head: self.head, ring: unsafe { self.buffer_as_mut_slice() } }
957 }
958
959 /// Returns a pair of slices which contain, in order, the contents of the
960 /// `VecDeque`.
961 ///
962 /// # Examples
963 ///
964 /// ```
965 /// use std::collections::VecDeque;
966 ///
967 /// let mut vector = VecDeque::new();
968 ///
969 /// vector.push_back(0);
970 /// vector.push_back(1);
971 /// vector.push_back(2);
972 ///
973 /// assert_eq!(vector.as_slices(), (&[0, 1, 2][..], &[][..]));
974 ///
975 /// vector.push_front(10);
976 /// vector.push_front(9);
977 ///
978 /// assert_eq!(vector.as_slices(), (&[9, 10][..], &[0, 1, 2][..]));
979 /// ```
980 #[inline]
981 #[stable(feature = "deque_extras_15", since = "1.5.0")]
982 pub fn as_slices(&self) -> (&[T], &[T]) {
983 unsafe {
984 let buf = self.buffer_as_slice();
985 RingSlices::ring_slices(buf, self.head, self.tail)
986 }
987 }
988
989 /// Returns a pair of slices which contain, in order, the contents of the
990 /// `VecDeque`.
991 ///
992 /// # Examples
993 ///
994 /// ```
995 /// use std::collections::VecDeque;
996 ///
997 /// let mut vector = VecDeque::new();
998 ///
999 /// vector.push_back(0);
1000 /// vector.push_back(1);
1001 ///
1002 /// vector.push_front(10);
1003 /// vector.push_front(9);
1004 ///
1005 /// vector.as_mut_slices().0[0] = 42;
1006 /// vector.as_mut_slices().1[0] = 24;
1007 /// assert_eq!(vector.as_slices(), (&[42, 10][..], &[24, 1][..]));
1008 /// ```
1009 #[inline]
1010 #[stable(feature = "deque_extras_15", since = "1.5.0")]
1011 pub fn as_mut_slices(&mut self) -> (&mut [T], &mut [T]) {
1012 unsafe {
1013 let head = self.head;
1014 let tail = self.tail;
1015 let buf = self.buffer_as_mut_slice();
1016 RingSlices::ring_slices(buf, head, tail)
1017 }
1018 }
1019
1020 /// Returns the number of elements in the `VecDeque`.
1021 ///
1022 /// # Examples
1023 ///
1024 /// ```
1025 /// use std::collections::VecDeque;
1026 ///
1027 /// let mut v = VecDeque::new();
1028 /// assert_eq!(v.len(), 0);
1029 /// v.push_back(1);
1030 /// assert_eq!(v.len(), 1);
1031 /// ```
1032 #[stable(feature = "rust1", since = "1.0.0")]
1033 pub fn len(&self) -> usize {
1034 count(self.tail, self.head, self.cap())
1035 }
1036
1037 /// Returns `true` if the `VecDeque` is empty.
1038 ///
1039 /// # Examples
1040 ///
1041 /// ```
1042 /// use std::collections::VecDeque;
1043 ///
1044 /// let mut v = VecDeque::new();
1045 /// assert!(v.is_empty());
1046 /// v.push_front(1);
1047 /// assert!(!v.is_empty());
1048 /// ```
1049 #[stable(feature = "rust1", since = "1.0.0")]
1050 pub fn is_empty(&self) -> bool {
1051 self.tail == self.head
1052 }
1053
1054 /// Creates a draining iterator that removes the specified range in the
1055 /// `VecDeque` and yields the removed items.
1056 ///
1057 /// Note 1: The element range is removed even if the iterator is not
1058 /// consumed until the end.
1059 ///
1060 /// Note 2: It is unspecified how many elements are removed from the deque,
1061 /// if the `Drain` value is not dropped, but the borrow it holds expires
1062 /// (e.g., due to `mem::forget`).
1063 ///
1064 /// # Panics
1065 ///
1066 /// Panics if the starting point is greater than the end point or if
1067 /// the end point is greater than the length of the vector.
1068 ///
1069 /// # Examples
1070 ///
1071 /// ```
1072 /// use std::collections::VecDeque;
1073 ///
1074 /// let mut v: VecDeque<_> = vec![1, 2, 3].into_iter().collect();
1075 /// let drained = v.drain(2..).collect::<VecDeque<_>>();
1076 /// assert_eq!(drained, [3]);
1077 /// assert_eq!(v, [1, 2]);
1078 ///
1079 /// // A full range clears all contents
1080 /// v.drain(..);
1081 /// assert!(v.is_empty());
1082 /// ```
1083 #[inline]
1084 #[stable(feature = "drain", since = "1.6.0")]
1085 pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
1086 where
1087 R: RangeBounds<usize>,
1088 {
1089 // Memory safety
1090 //
1091 // When the Drain is first created, the source deque is shortened to
1092 // make sure no uninitialized or moved-from elements are accessible at
1093 // all if the Drain's destructor never gets to run.
1094 //
1095 // Drain will ptr::read out the values to remove.
1096 // When finished, the remaining data will be copied back to cover the hole,
1097 // and the head/tail values will be restored correctly.
1098 //
1099 let len = self.len();
1100 let start = match range.start_bound() {
1101 Included(&n) => n,
1102 Excluded(&n) => n + 1,
1103 Unbounded => 0,
1104 };
1105 let end = match range.end_bound() {
1106 Included(&n) => n + 1,
1107 Excluded(&n) => n,
1108 Unbounded => len,
1109 };
1110 assert!(start <= end, "drain lower bound was too large");
1111 assert!(end <= len, "drain upper bound was too large");
1112
1113 // The deque's elements are parted into three segments:
1114 // * self.tail -> drain_tail
1115 // * drain_tail -> drain_head
1116 // * drain_head -> self.head
1117 //
1118 // T = self.tail; H = self.head; t = drain_tail; h = drain_head
1119 //
1120 // We store drain_tail as self.head, and drain_head and self.head as
1121 // after_tail and after_head respectively on the Drain. This also
1122 // truncates the effective array such that if the Drain is leaked, we
1123 // have forgotten about the potentially moved values after the start of
1124 // the drain.
1125 //
1126 // T t h H
1127 // [. . . o o x x o o . . .]
1128 //
1129 let drain_tail = self.wrap_add(self.tail, start);
1130 let drain_head = self.wrap_add(self.tail, end);
1131 let head = self.head;
1132
1133 // "forget" about the values after the start of the drain until after
1134 // the drain is complete and the Drain destructor is run.
1135 self.head = drain_tail;
1136
1137 Drain {
1138 deque: NonNull::from(&mut *self),
1139 after_tail: drain_head,
1140 after_head: head,
1141 iter: Iter {
1142 tail: drain_tail,
1143 head: drain_head,
1144 // Crucially, we only create shared references from `self` here and read from
1145 // it. We do not write to `self` nor reborrow to a mutable reference.
1146 // Hence the raw pointer we created above, for `deque`, remains valid.
1147 ring: unsafe { self.buffer_as_slice() },
1148 },
1149 }
1150 }
1151
1152 /// Clears the `VecDeque`, removing all values.
1153 ///
1154 /// # Examples
1155 ///
1156 /// ```
1157 /// use std::collections::VecDeque;
1158 ///
1159 /// let mut v = VecDeque::new();
1160 /// v.push_back(1);
1161 /// v.clear();
1162 /// assert!(v.is_empty());
1163 /// ```
1164 #[stable(feature = "rust1", since = "1.0.0")]
1165 #[inline]
1166 pub fn clear(&mut self) {
1167 self.truncate(0);
1168 }
1169
1170 /// Returns `true` if the `VecDeque` contains an element equal to the
1171 /// given value.
1172 ///
1173 /// # Examples
1174 ///
1175 /// ```
1176 /// use std::collections::VecDeque;
1177 ///
1178 /// let mut vector: VecDeque<u32> = VecDeque::new();
1179 ///
1180 /// vector.push_back(0);
1181 /// vector.push_back(1);
1182 ///
1183 /// assert_eq!(vector.contains(&1), true);
1184 /// assert_eq!(vector.contains(&10), false);
1185 /// ```
1186 #[stable(feature = "vec_deque_contains", since = "1.12.0")]
1187 pub fn contains(&self, x: &T) -> bool
1188 where
1189 T: PartialEq<T>,
1190 {
1191 let (a, b) = self.as_slices();
1192 a.contains(x) || b.contains(x)
1193 }
1194
1195 /// Provides a reference to the front element, or `None` if the `VecDeque` is
1196 /// empty.
1197 ///
1198 /// # Examples
1199 ///
1200 /// ```
1201 /// use std::collections::VecDeque;
1202 ///
1203 /// let mut d = VecDeque::new();
1204 /// assert_eq!(d.front(), None);
1205 ///
1206 /// d.push_back(1);
1207 /// d.push_back(2);
1208 /// assert_eq!(d.front(), Some(&1));
1209 /// ```
1210 #[stable(feature = "rust1", since = "1.0.0")]
1211 pub fn front(&self) -> Option<&T> {
1212 if !self.is_empty() { Some(&self[0]) } else { None }
1213 }
1214
1215 /// Provides a mutable reference to the front element, or `None` if the
1216 /// `VecDeque` is empty.
1217 ///
1218 /// # Examples
1219 ///
1220 /// ```
1221 /// use std::collections::VecDeque;
1222 ///
1223 /// let mut d = VecDeque::new();
1224 /// assert_eq!(d.front_mut(), None);
1225 ///
1226 /// d.push_back(1);
1227 /// d.push_back(2);
1228 /// match d.front_mut() {
1229 /// Some(x) => *x = 9,
1230 /// None => (),
1231 /// }
1232 /// assert_eq!(d.front(), Some(&9));
1233 /// ```
1234 #[stable(feature = "rust1", since = "1.0.0")]
1235 pub fn front_mut(&mut self) -> Option<&mut T> {
1236 if !self.is_empty() { Some(&mut self[0]) } else { None }
1237 }
1238
1239 /// Provides a reference to the back element, or `None` if the `VecDeque` is
1240 /// empty.
1241 ///
1242 /// # Examples
1243 ///
1244 /// ```
1245 /// use std::collections::VecDeque;
1246 ///
1247 /// let mut d = VecDeque::new();
1248 /// assert_eq!(d.back(), None);
1249 ///
1250 /// d.push_back(1);
1251 /// d.push_back(2);
1252 /// assert_eq!(d.back(), Some(&2));
1253 /// ```
1254 #[stable(feature = "rust1", since = "1.0.0")]
1255 pub fn back(&self) -> Option<&T> {
1256 if !self.is_empty() { Some(&self[self.len() - 1]) } else { None }
1257 }
1258
1259 /// Provides a mutable reference to the back element, or `None` if the
1260 /// `VecDeque` is empty.
1261 ///
1262 /// # Examples
1263 ///
1264 /// ```
1265 /// use std::collections::VecDeque;
1266 ///
1267 /// let mut d = VecDeque::new();
1268 /// assert_eq!(d.back(), None);
1269 ///
1270 /// d.push_back(1);
1271 /// d.push_back(2);
1272 /// match d.back_mut() {
1273 /// Some(x) => *x = 9,
1274 /// None => (),
1275 /// }
1276 /// assert_eq!(d.back(), Some(&9));
1277 /// ```
1278 #[stable(feature = "rust1", since = "1.0.0")]
1279 pub fn back_mut(&mut self) -> Option<&mut T> {
1280 let len = self.len();
1281 if !self.is_empty() { Some(&mut self[len - 1]) } else { None }
1282 }
1283
1284 /// Removes the first element and returns it, or `None` if the `VecDeque` is
1285 /// empty.
1286 ///
1287 /// # Examples
1288 ///
1289 /// ```
1290 /// use std::collections::VecDeque;
1291 ///
1292 /// let mut d = VecDeque::new();
1293 /// d.push_back(1);
1294 /// d.push_back(2);
1295 ///
1296 /// assert_eq!(d.pop_front(), Some(1));
1297 /// assert_eq!(d.pop_front(), Some(2));
1298 /// assert_eq!(d.pop_front(), None);
1299 /// ```
1300 #[stable(feature = "rust1", since = "1.0.0")]
1301 pub fn pop_front(&mut self) -> Option<T> {
1302 if self.is_empty() {
1303 None
1304 } else {
1305 let tail = self.tail;
1306 self.tail = self.wrap_add(self.tail, 1);
1307 unsafe { Some(self.buffer_read(tail)) }
1308 }
1309 }
1310
1311 /// Removes the last element from the `VecDeque` and returns it, or `None` if
1312 /// it is empty.
1313 ///
1314 /// # Examples
1315 ///
1316 /// ```
1317 /// use std::collections::VecDeque;
1318 ///
1319 /// let mut buf = VecDeque::new();
1320 /// assert_eq!(buf.pop_back(), None);
1321 /// buf.push_back(1);
1322 /// buf.push_back(3);
1323 /// assert_eq!(buf.pop_back(), Some(3));
1324 /// ```
1325 #[stable(feature = "rust1", since = "1.0.0")]
1326 pub fn pop_back(&mut self) -> Option<T> {
1327 if self.is_empty() {
1328 None
1329 } else {
1330 self.head = self.wrap_sub(self.head, 1);
1331 let head = self.head;
1332 unsafe { Some(self.buffer_read(head)) }
1333 }
1334 }
1335
1336 /// Prepends an element to the `VecDeque`.
1337 ///
1338 /// # Examples
1339 ///
1340 /// ```
1341 /// use std::collections::VecDeque;
1342 ///
1343 /// let mut d = VecDeque::new();
1344 /// d.push_front(1);
1345 /// d.push_front(2);
1346 /// assert_eq!(d.front(), Some(&2));
1347 /// ```
1348 #[stable(feature = "rust1", since = "1.0.0")]
1349 pub fn push_front(&mut self, value: T) {
1350 self.grow_if_necessary();
1351
1352 self.tail = self.wrap_sub(self.tail, 1);
1353 let tail = self.tail;
1354 unsafe {
1355 self.buffer_write(tail, value);
1356 }
1357 }
1358
1359 /// Appends an element to the back of the `VecDeque`.
1360 ///
1361 /// # Examples
1362 ///
1363 /// ```
1364 /// use std::collections::VecDeque;
1365 ///
1366 /// let mut buf = VecDeque::new();
1367 /// buf.push_back(1);
1368 /// buf.push_back(3);
1369 /// assert_eq!(3, *buf.back().unwrap());
1370 /// ```
1371 #[stable(feature = "rust1", since = "1.0.0")]
1372 pub fn push_back(&mut self, value: T) {
1373 self.grow_if_necessary();
1374
1375 let head = self.head;
1376 self.head = self.wrap_add(self.head, 1);
1377 unsafe { self.buffer_write(head, value) }
1378 }
1379
1380 #[inline]
1381 fn is_contiguous(&self) -> bool {
1382 self.tail <= self.head
1383 }
1384
1385 /// Removes an element from anywhere in the `VecDeque` and returns it,
1386 /// replacing it with the first element.
1387 ///
1388 /// This does not preserve ordering, but is O(1).
1389 ///
1390 /// Returns `None` if `index` is out of bounds.
1391 ///
1392 /// Element at index 0 is the front of the queue.
1393 ///
1394 /// # Examples
1395 ///
1396 /// ```
1397 /// use std::collections::VecDeque;
1398 ///
1399 /// let mut buf = VecDeque::new();
1400 /// assert_eq!(buf.swap_remove_front(0), None);
1401 /// buf.push_back(1);
1402 /// buf.push_back(2);
1403 /// buf.push_back(3);
1404 /// assert_eq!(buf, [1, 2, 3]);
1405 ///
1406 /// assert_eq!(buf.swap_remove_front(2), Some(3));
1407 /// assert_eq!(buf, [2, 1]);
1408 /// ```
1409 #[stable(feature = "deque_extras_15", since = "1.5.0")]
1410 pub fn swap_remove_front(&mut self, index: usize) -> Option<T> {
1411 let length = self.len();
1412 if length > 0 && index < length && index != 0 {
1413 self.swap(index, 0);
1414 } else if index >= length {
1415 return None;
1416 }
1417 self.pop_front()
1418 }
1419
1420 /// Removes an element from anywhere in the `VecDeque` and returns it, replacing it with the
1421 /// last element.
1422 ///
1423 /// This does not preserve ordering, but is O(1).
1424 ///
1425 /// Returns `None` if `index` is out of bounds.
1426 ///
1427 /// Element at index 0 is the front of the queue.
1428 ///
1429 /// # Examples
1430 ///
1431 /// ```
1432 /// use std::collections::VecDeque;
1433 ///
1434 /// let mut buf = VecDeque::new();
1435 /// assert_eq!(buf.swap_remove_back(0), None);
1436 /// buf.push_back(1);
1437 /// buf.push_back(2);
1438 /// buf.push_back(3);
1439 /// assert_eq!(buf, [1, 2, 3]);
1440 ///
1441 /// assert_eq!(buf.swap_remove_back(0), Some(1));
1442 /// assert_eq!(buf, [3, 2]);
1443 /// ```
1444 #[stable(feature = "deque_extras_15", since = "1.5.0")]
1445 pub fn swap_remove_back(&mut self, index: usize) -> Option<T> {
1446 let length = self.len();
1447 if length > 0 && index < length - 1 {
1448 self.swap(index, length - 1);
1449 } else if index >= length {
1450 return None;
1451 }
1452 self.pop_back()
1453 }
1454
1455 /// Inserts an element at `index` within the `VecDeque`, shifting all elements with indices
1456 /// greater than or equal to `index` towards the back.
1457 ///
1458 /// Element at index 0 is the front of the queue.
1459 ///
1460 /// # Panics
1461 ///
1462 /// Panics if `index` is greater than `VecDeque`'s length
1463 ///
1464 /// # Examples
1465 ///
1466 /// ```
1467 /// use std::collections::VecDeque;
1468 ///
1469 /// let mut vec_deque = VecDeque::new();
1470 /// vec_deque.push_back('a');
1471 /// vec_deque.push_back('b');
1472 /// vec_deque.push_back('c');
1473 /// assert_eq!(vec_deque, &['a', 'b', 'c']);
1474 ///
1475 /// vec_deque.insert(1, 'd');
1476 /// assert_eq!(vec_deque, &['a', 'd', 'b', 'c']);
1477 /// ```
1478 #[stable(feature = "deque_extras_15", since = "1.5.0")]
1479 pub fn insert(&mut self, index: usize, value: T) {
1480 assert!(index <= self.len(), "index out of bounds");
1481 self.grow_if_necessary();
1482
1483 // Move the least number of elements in the ring buffer and insert
1484 // the given object
1485 //
1486 // At most len/2 - 1 elements will be moved. O(min(n, n-i))
1487 //
1488 // There are three main cases:
1489 // Elements are contiguous
1490 // - special case when tail is 0
1491 // Elements are discontiguous and the insert is in the tail section
1492 // Elements are discontiguous and the insert is in the head section
1493 //
1494 // For each of those there are two more cases:
1495 // Insert is closer to tail
1496 // Insert is closer to head
1497 //
1498 // Key: H - self.head
1499 // T - self.tail
1500 // o - Valid element
1501 // I - Insertion element
1502 // A - The element that should be after the insertion point
1503 // M - Indicates element was moved
1504
1505 let idx = self.wrap_add(self.tail, index);
1506
1507 let distance_to_tail = index;
1508 let distance_to_head = self.len() - index;
1509
1510 let contiguous = self.is_contiguous();
1511
1512 match (contiguous, distance_to_tail <= distance_to_head, idx >= self.tail) {
1513 (true, true, _) if index == 0 => {
1514 // push_front
1515 //
1516 // T
1517 // I H
1518 // [A o o o o o o . . . . . . . . .]
1519 //
1520 // H T
1521 // [A o o o o o o o . . . . . I]
1522 //
1523
1524 self.tail = self.wrap_sub(self.tail, 1);
1525 }
1526 (true, true, _) => {
1527 unsafe {
1528 // contiguous, insert closer to tail:
1529 //
1530 // T I H
1531 // [. . . o o A o o o o . . . . . .]
1532 //
1533 // T H
1534 // [. . o o I A o o o o . . . . . .]
1535 // M M
1536 //
1537 // contiguous, insert closer to tail and tail is 0:
1538 //
1539 //
1540 // T I H
1541 // [o o A o o o o . . . . . . . . .]
1542 //
1543 // H T
1544 // [o I A o o o o o . . . . . . . o]
1545 // M M
1546
1547 let new_tail = self.wrap_sub(self.tail, 1);
1548
1549 self.copy(new_tail, self.tail, 1);
1550 // Already moved the tail, so we only copy `index - 1` elements.
1551 self.copy(self.tail, self.tail + 1, index - 1);
1552
1553 self.tail = new_tail;
1554 }
1555 }
1556 (true, false, _) => {
1557 unsafe {
1558 // contiguous, insert closer to head:
1559 //
1560 // T I H
1561 // [. . . o o o o A o o . . . . . .]
1562 //
1563 // T H
1564 // [. . . o o o o I A o o . . . . .]
1565 // M M M
1566
1567 self.copy(idx + 1, idx, self.head - idx);
1568 self.head = self.wrap_add(self.head, 1);
1569 }
1570 }
1571 (false, true, true) => {
1572 unsafe {
1573 // discontiguous, insert closer to tail, tail section:
1574 //
1575 // H T I
1576 // [o o o o o o . . . . . o o A o o]
1577 //
1578 // H T
1579 // [o o o o o o . . . . o o I A o o]
1580 // M M
1581
1582 self.copy(self.tail - 1, self.tail, index);
1583 self.tail -= 1;
1584 }
1585 }
1586 (false, false, true) => {
1587 unsafe {
1588 // discontiguous, insert closer to head, tail section:
1589 //
1590 // H T I
1591 // [o o . . . . . . . o o o o o A o]
1592 //
1593 // H T
1594 // [o o o . . . . . . o o o o o I A]
1595 // M M M M
1596
1597 // copy elements up to new head
1598 self.copy(1, 0, self.head);
1599
1600 // copy last element into empty spot at bottom of buffer
1601 self.copy(0, self.cap() - 1, 1);
1602
1603 // move elements from idx to end forward not including ^ element
1604 self.copy(idx + 1, idx, self.cap() - 1 - idx);
1605
1606 self.head += 1;
1607 }
1608 }
1609 (false, true, false) if idx == 0 => {
1610 unsafe {
1611 // discontiguous, insert is closer to tail, head section,
1612 // and is at index zero in the internal buffer:
1613 //
1614 // I H T
1615 // [A o o o o o o o o o . . . o o o]
1616 //
1617 // H T
1618 // [A o o o o o o o o o . . o o o I]
1619 // M M M
1620
1621 // copy elements up to new tail
1622 self.copy(self.tail - 1, self.tail, self.cap() - self.tail);
1623
1624 // copy last element into empty spot at bottom of buffer
1625 self.copy(self.cap() - 1, 0, 1);
1626
1627 self.tail -= 1;
1628 }
1629 }
1630 (false, true, false) => {
1631 unsafe {
1632 // discontiguous, insert closer to tail, head section:
1633 //
1634 // I H T
1635 // [o o o A o o o o o o . . . o o o]
1636 //
1637 // H T
1638 // [o o I A o o o o o o . . o o o o]
1639 // M M M M M M
1640
1641 // copy elements up to new tail
1642 self.copy(self.tail - 1, self.tail, self.cap() - self.tail);
1643
1644 // copy last element into empty spot at bottom of buffer
1645 self.copy(self.cap() - 1, 0, 1);
1646
1647 // move elements from idx-1 to end forward not including ^ element
1648 self.copy(0, 1, idx - 1);
1649
1650 self.tail -= 1;
1651 }
1652 }
1653 (false, false, false) => {
1654 unsafe {
1655 // discontiguous, insert closer to head, head section:
1656 //
1657 // I H T
1658 // [o o o o A o o . . . . . . o o o]
1659 //
1660 // H T
1661 // [o o o o I A o o . . . . . o o o]
1662 // M M M
1663
1664 self.copy(idx + 1, idx, self.head - idx);
1665 self.head += 1;
1666 }
1667 }
1668 }
1669
1670 // tail might've been changed so we need to recalculate
1671 let new_idx = self.wrap_add(self.tail, index);
1672 unsafe {
1673 self.buffer_write(new_idx, value);
1674 }
1675 }
1676
1677 /// Removes and returns the element at `index` from the `VecDeque`.
1678 /// Whichever end is closer to the removal point will be moved to make
1679 /// room, and all the affected elements will be moved to new positions.
1680 /// Returns `None` if `index` is out of bounds.
1681 ///
1682 /// Element at index 0 is the front of the queue.
1683 ///
1684 /// # Examples
1685 ///
1686 /// ```
1687 /// use std::collections::VecDeque;
1688 ///
1689 /// let mut buf = VecDeque::new();
1690 /// buf.push_back(1);
1691 /// buf.push_back(2);
1692 /// buf.push_back(3);
1693 /// assert_eq!(buf, [1, 2, 3]);
1694 ///
1695 /// assert_eq!(buf.remove(1), Some(2));
1696 /// assert_eq!(buf, [1, 3]);
1697 /// ```
1698 #[stable(feature = "rust1", since = "1.0.0")]
1699 pub fn remove(&mut self, index: usize) -> Option<T> {
1700 if self.is_empty() || self.len() <= index {
1701 return None;
1702 }
1703
1704 // There are three main cases:
1705 // Elements are contiguous
1706 // Elements are discontiguous and the removal is in the tail section
1707 // Elements are discontiguous and the removal is in the head section
1708 // - special case when elements are technically contiguous,
1709 // but self.head = 0
1710 //
1711 // For each of those there are two more cases:
1712 // Insert is closer to tail
1713 // Insert is closer to head
1714 //
1715 // Key: H - self.head
1716 // T - self.tail
1717 // o - Valid element
1718 // x - Element marked for removal
1719 // R - Indicates element that is being removed
1720 // M - Indicates element was moved
1721
1722 let idx = self.wrap_add(self.tail, index);
1723
1724 let elem = unsafe { Some(self.buffer_read(idx)) };
1725
1726 let distance_to_tail = index;
1727 let distance_to_head = self.len() - index;
1728
1729 let contiguous = self.is_contiguous();
1730
1731 match (contiguous, distance_to_tail <= distance_to_head, idx >= self.tail) {
1732 (true, true, _) => {
1733 unsafe {
1734 // contiguous, remove closer to tail:
1735 //
1736 // T R H
1737 // [. . . o o x o o o o . . . . . .]
1738 //
1739 // T H
1740 // [. . . . o o o o o o . . . . . .]
1741 // M M
1742
1743 self.copy(self.tail + 1, self.tail, index);
1744 self.tail += 1;
1745 }
1746 }
1747 (true, false, _) => {
1748 unsafe {
1749 // contiguous, remove closer to head:
1750 //
1751 // T R H
1752 // [. . . o o o o x o o . . . . . .]
1753 //
1754 // T H
1755 // [. . . o o o o o o . . . . . . .]
1756 // M M
1757
1758 self.copy(idx, idx + 1, self.head - idx - 1);
1759 self.head -= 1;
1760 }
1761 }
1762 (false, true, true) => {
1763 unsafe {
1764 // discontiguous, remove closer to tail, tail section:
1765 //
1766 // H T R
1767 // [o o o o o o . . . . . o o x o o]
1768 //
1769 // H T
1770 // [o o o o o o . . . . . . o o o o]
1771 // M M
1772
1773 self.copy(self.tail + 1, self.tail, index);
1774 self.tail = self.wrap_add(self.tail, 1);
1775 }
1776 }
1777 (false, false, false) => {
1778 unsafe {
1779 // discontiguous, remove closer to head, head section:
1780 //
1781 // R H T
1782 // [o o o o x o o . . . . . . o o o]
1783 //
1784 // H T
1785 // [o o o o o o . . . . . . . o o o]
1786 // M M
1787
1788 self.copy(idx, idx + 1, self.head - idx - 1);
1789 self.head -= 1;
1790 }
1791 }
1792 (false, false, true) => {
1793 unsafe {
1794 // discontiguous, remove closer to head, tail section:
1795 //
1796 // H T R
1797 // [o o o . . . . . . o o o o o x o]
1798 //
1799 // H T
1800 // [o o . . . . . . . o o o o o o o]
1801 // M M M M
1802 //
1803 // or quasi-discontiguous, remove next to head, tail section:
1804 //
1805 // H T R
1806 // [. . . . . . . . . o o o o o x o]
1807 //
1808 // T H
1809 // [. . . . . . . . . o o o o o o .]
1810 // M
1811
1812 // draw in elements in the tail section
1813 self.copy(idx, idx + 1, self.cap() - idx - 1);
1814
1815 // Prevents underflow.
1816 if self.head != 0 {
1817 // copy first element into empty spot
1818 self.copy(self.cap() - 1, 0, 1);
1819
1820 // move elements in the head section backwards
1821 self.copy(0, 1, self.head - 1);
1822 }
1823
1824 self.head = self.wrap_sub(self.head, 1);
1825 }
1826 }
1827 (false, true, false) => {
1828 unsafe {
1829 // discontiguous, remove closer to tail, head section:
1830 //
1831 // R H T
1832 // [o o x o o o o o o o . . . o o o]
1833 //
1834 // H T
1835 // [o o o o o o o o o o . . . . o o]
1836 // M M M M M
1837
1838 // draw in elements up to idx
1839 self.copy(1, 0, idx);
1840
1841 // copy last element into empty spot
1842 self.copy(0, self.cap() - 1, 1);
1843
1844 // move elements from tail to end forward, excluding the last one
1845 self.copy(self.tail + 1, self.tail, self.cap() - self.tail - 1);
1846
1847 self.tail = self.wrap_add(self.tail, 1);
1848 }
1849 }
1850 }
1851
1852 elem
1853 }
1854
1855 /// Splits the `VecDeque` into two at the given index.
1856 ///
1857 /// Returns a newly allocated `VecDeque`. `self` contains elements `[0, at)`,
1858 /// and the returned `VecDeque` contains elements `[at, len)`.
1859 ///
1860 /// Note that the capacity of `self` does not change.
1861 ///
1862 /// Element at index 0 is the front of the queue.
1863 ///
1864 /// # Panics
1865 ///
1866 /// Panics if `at > len`.
1867 ///
1868 /// # Examples
1869 ///
1870 /// ```
1871 /// use std::collections::VecDeque;
1872 ///
1873 /// let mut buf: VecDeque<_> = vec![1,2,3].into_iter().collect();
1874 /// let buf2 = buf.split_off(1);
1875 /// assert_eq!(buf, [1]);
1876 /// assert_eq!(buf2, [2, 3]);
1877 /// ```
1878 #[inline]
1879 #[stable(feature = "split_off", since = "1.4.0")]
1880 pub fn split_off(&mut self, at: usize) -> Self {
1881 let len = self.len();
1882 assert!(at <= len, "`at` out of bounds");
1883
1884 let other_len = len - at;
1885 let mut other = VecDeque::with_capacity(other_len);
1886
1887 unsafe {
1888 let (first_half, second_half) = self.as_slices();
1889
1890 let first_len = first_half.len();
1891 let second_len = second_half.len();
1892 if at < first_len {
1893 // `at` lies in the first half.
1894 let amount_in_first = first_len - at;
1895
1896 ptr::copy_nonoverlapping(first_half.as_ptr().add(at), other.ptr(), amount_in_first);
1897
1898 // just take all of the second half.
1899 ptr::copy_nonoverlapping(
1900 second_half.as_ptr(),
1901 other.ptr().add(amount_in_first),
1902 second_len,
1903 );
1904 } else {
1905 // `at` lies in the second half, need to factor in the elements we skipped
1906 // in the first half.
1907 let offset = at - first_len;
1908 let amount_in_second = second_len - offset;
1909 ptr::copy_nonoverlapping(
1910 second_half.as_ptr().add(offset),
1911 other.ptr(),
1912 amount_in_second,
1913 );
1914 }
1915 }
1916
1917 // Cleanup where the ends of the buffers are
1918 self.head = self.wrap_sub(self.head, other_len);
1919 other.head = other.wrap_index(other_len);
1920
1921 other
1922 }
1923
1924 /// Moves all the elements of `other` into `self`, leaving `other` empty.
1925 ///
1926 /// # Panics
1927 ///
1928 /// Panics if the new number of elements in self overflows a `usize`.
1929 ///
1930 /// # Examples
1931 ///
1932 /// ```
1933 /// use std::collections::VecDeque;
1934 ///
1935 /// let mut buf: VecDeque<_> = vec![1, 2].into_iter().collect();
1936 /// let mut buf2: VecDeque<_> = vec![3, 4].into_iter().collect();
1937 /// buf.append(&mut buf2);
1938 /// assert_eq!(buf, [1, 2, 3, 4]);
1939 /// assert_eq!(buf2, []);
1940 /// ```
1941 #[inline]
1942 #[stable(feature = "append", since = "1.4.0")]
1943 pub fn append(&mut self, other: &mut Self) {
1944 // naive impl
1945 self.extend(other.drain(..));
1946 }
1947
1948 /// Retains only the elements specified by the predicate.
1949 ///
1950 /// In other words, remove all elements `e` such that `f(&e)` returns false.
1951 /// This method operates in place, visiting each element exactly once in the
1952 /// original order, and preserves the order of the retained elements.
1953 ///
1954 /// # Examples
1955 ///
1956 /// ```
1957 /// use std::collections::VecDeque;
1958 ///
1959 /// let mut buf = VecDeque::new();
1960 /// buf.extend(1..5);
1961 /// buf.retain(|&x| x % 2 == 0);
1962 /// assert_eq!(buf, [2, 4]);
1963 /// ```
1964 ///
1965 /// The exact order may be useful for tracking external state, like an index.
1966 ///
1967 /// ```
1968 /// use std::collections::VecDeque;
1969 ///
1970 /// let mut buf = VecDeque::new();
1971 /// buf.extend(1..6);
1972 ///
1973 /// let keep = [false, true, true, false, true];
1974 /// let mut i = 0;
1975 /// buf.retain(|_| (keep[i], i += 1).0);
1976 /// assert_eq!(buf, [2, 3, 5]);
1977 /// ```
1978 #[stable(feature = "vec_deque_retain", since = "1.4.0")]
1979 pub fn retain<F>(&mut self, mut f: F)
1980 where
1981 F: FnMut(&T) -> bool,
1982 {
1983 let len = self.len();
1984 let mut del = 0;
1985 for i in 0..len {
1986 if !f(&self[i]) {
1987 del += 1;
1988 } else if del > 0 {
1989 self.swap(i - del, i);
1990 }
1991 }
1992 if del > 0 {
1993 self.truncate(len - del);
1994 }
1995 }
1996
1997 // This may panic or abort
1998 #[inline]
1999 fn grow_if_necessary(&mut self) {
2000 if self.is_full() {
2001 let old_cap = self.cap();
2002 self.buf.double();
2003 unsafe {
2004 self.handle_capacity_increase(old_cap);
2005 }
2006 debug_assert!(!self.is_full());
2007 }
2008 }
2009
2010 /// Modifies the `VecDeque` in-place so that `len()` is equal to `new_len`,
2011 /// either by removing excess elements from the back or by appending
2012 /// elements generated by calling `generator` to the back.
2013 ///
2014 /// # Examples
2015 ///
2016 /// ```
2017 /// use std::collections::VecDeque;
2018 ///
2019 /// let mut buf = VecDeque::new();
2020 /// buf.push_back(5);
2021 /// buf.push_back(10);
2022 /// buf.push_back(15);
2023 /// assert_eq!(buf, [5, 10, 15]);
2024 ///
2025 /// buf.resize_with(5, Default::default);
2026 /// assert_eq!(buf, [5, 10, 15, 0, 0]);
2027 ///
2028 /// buf.resize_with(2, || unreachable!());
2029 /// assert_eq!(buf, [5, 10]);
2030 ///
2031 /// let mut state = 100;
2032 /// buf.resize_with(5, || { state += 1; state });
2033 /// assert_eq!(buf, [5, 10, 101, 102, 103]);
2034 /// ```
2035 #[stable(feature = "vec_resize_with", since = "1.33.0")]
2036 pub fn resize_with(&mut self, new_len: usize, generator: impl FnMut() -> T) {
2037 let len = self.len();
2038
2039 if new_len > len {
2040 self.extend(repeat_with(generator).take(new_len - len))
2041 } else {
2042 self.truncate(new_len);
2043 }
2044 }
2045
2046 /// Rotates the double-ended queue `mid` places to the left.
2047 ///
2048 /// Equivalently,
2049 /// - Rotates item `mid` into the first position.
2050 /// - Pops the first `mid` items and pushes them to the end.
2051 /// - Rotates `len() - mid` places to the right.
2052 ///
2053 /// # Panics
2054 ///
2055 /// If `mid` is greater than `len()`. Note that `mid == len()`
2056 /// does _not_ panic and is a no-op rotation.
2057 ///
2058 /// # Complexity
2059 ///
2060 /// Takes `O(min(mid, len() - mid))` time and no extra space.
2061 ///
2062 /// # Examples
2063 ///
2064 /// ```
2065 /// use std::collections::VecDeque;
2066 ///
2067 /// let mut buf: VecDeque<_> = (0..10).collect();
2068 ///
2069 /// buf.rotate_left(3);
2070 /// assert_eq!(buf, [3, 4, 5, 6, 7, 8, 9, 0, 1, 2]);
2071 ///
2072 /// for i in 1..10 {
2073 /// assert_eq!(i * 3 % 10, buf[0]);
2074 /// buf.rotate_left(3);
2075 /// }
2076 /// assert_eq!(buf, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
2077 /// ```
2078 #[stable(feature = "vecdeque_rotate", since = "1.36.0")]
2079 pub fn rotate_left(&mut self, mid: usize) {
2080 assert!(mid <= self.len());
2081 let k = self.len() - mid;
2082 if mid <= k {
2083 unsafe { self.rotate_left_inner(mid) }
2084 } else {
2085 unsafe { self.rotate_right_inner(k) }
2086 }
2087 }
2088
2089 /// Rotates the double-ended queue `k` places to the right.
2090 ///
2091 /// Equivalently,
2092 /// - Rotates the first item into position `k`.
2093 /// - Pops the last `k` items and pushes them to the front.
2094 /// - Rotates `len() - k` places to the left.
2095 ///
2096 /// # Panics
2097 ///
2098 /// If `k` is greater than `len()`. Note that `k == len()`
2099 /// does _not_ panic and is a no-op rotation.
2100 ///
2101 /// # Complexity
2102 ///
2103 /// Takes `O(min(k, len() - k))` time and no extra space.
2104 ///
2105 /// # Examples
2106 ///
2107 /// ```
2108 /// use std::collections::VecDeque;
2109 ///
2110 /// let mut buf: VecDeque<_> = (0..10).collect();
2111 ///
2112 /// buf.rotate_right(3);
2113 /// assert_eq!(buf, [7, 8, 9, 0, 1, 2, 3, 4, 5, 6]);
2114 ///
2115 /// for i in 1..10 {
2116 /// assert_eq!(0, buf[i * 3 % 10]);
2117 /// buf.rotate_right(3);
2118 /// }
2119 /// assert_eq!(buf, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
2120 /// ```
2121 #[stable(feature = "vecdeque_rotate", since = "1.36.0")]
2122 pub fn rotate_right(&mut self, k: usize) {
2123 assert!(k <= self.len());
2124 let mid = self.len() - k;
2125 if k <= mid {
2126 unsafe { self.rotate_right_inner(k) }
2127 } else {
2128 unsafe { self.rotate_left_inner(mid) }
2129 }
2130 }
2131
2132 // Safety: the following two methods require that the rotation amount
2133 // be less than half the length of the deque.
2134 //
2135 // `wrap_copy` requires that `min(x, cap() - x) + copy_len <= cap()`,
2136 // but than `min` is never more than half the capacity, regardless of x,
2137 // so it's sound to call here because we're calling with something
2138 // less than half the length, which is never above half the capacity.
2139
2140 unsafe fn rotate_left_inner(&mut self, mid: usize) {
2141 debug_assert!(mid * 2 <= self.len());
2142 self.wrap_copy(self.head, self.tail, mid);
2143 self.head = self.wrap_add(self.head, mid);
2144 self.tail = self.wrap_add(self.tail, mid);
2145 }
2146
2147 unsafe fn rotate_right_inner(&mut self, k: usize) {
2148 debug_assert!(k * 2 <= self.len());
2149 self.head = self.wrap_sub(self.head, k);
2150 self.tail = self.wrap_sub(self.tail, k);
2151 self.wrap_copy(self.tail, self.head, k);
2152 }
2153 }
2154
2155 impl<T: Clone> VecDeque<T> {
2156 /// Modifies the `VecDeque` in-place so that `len()` is equal to new_len,
2157 /// either by removing excess elements from the back or by appending clones of `value`
2158 /// to the back.
2159 ///
2160 /// # Examples
2161 ///
2162 /// ```
2163 /// use std::collections::VecDeque;
2164 ///
2165 /// let mut buf = VecDeque::new();
2166 /// buf.push_back(5);
2167 /// buf.push_back(10);
2168 /// buf.push_back(15);
2169 /// assert_eq!(buf, [5, 10, 15]);
2170 ///
2171 /// buf.resize(2, 0);
2172 /// assert_eq!(buf, [5, 10]);
2173 ///
2174 /// buf.resize(5, 20);
2175 /// assert_eq!(buf, [5, 10, 20, 20, 20]);
2176 /// ```
2177 #[stable(feature = "deque_extras", since = "1.16.0")]
2178 pub fn resize(&mut self, new_len: usize, value: T) {
2179 self.resize_with(new_len, || value.clone());
2180 }
2181 }
2182
2183 /// Returns the index in the underlying buffer for a given logical element index.
2184 #[inline]
2185 fn wrap_index(index: usize, size: usize) -> usize {
2186 // size is always a power of 2
2187 debug_assert!(size.is_power_of_two());
2188 index & (size - 1)
2189 }
2190
2191 /// Returns the two slices that cover the `VecDeque`'s valid range
2192 trait RingSlices: Sized {
2193 fn slice(self, from: usize, to: usize) -> Self;
2194 fn split_at(self, i: usize) -> (Self, Self);
2195
2196 fn ring_slices(buf: Self, head: usize, tail: usize) -> (Self, Self) {
2197 let contiguous = tail <= head;
2198 if contiguous {
2199 let (empty, buf) = buf.split_at(0);
2200 (buf.slice(tail, head), empty)
2201 } else {
2202 let (mid, right) = buf.split_at(tail);
2203 let (left, _) = mid.split_at(head);
2204 (right, left)
2205 }
2206 }
2207 }
2208
2209 impl<T> RingSlices for &[T] {
2210 fn slice(self, from: usize, to: usize) -> Self {
2211 &self[from..to]
2212 }
2213 fn split_at(self, i: usize) -> (Self, Self) {
2214 (*self).split_at(i)
2215 }
2216 }
2217
2218 impl<T> RingSlices for &mut [T] {
2219 fn slice(self, from: usize, to: usize) -> Self {
2220 &mut self[from..to]
2221 }
2222 fn split_at(self, i: usize) -> (Self, Self) {
2223 (*self).split_at_mut(i)
2224 }
2225 }
2226
2227 /// Calculate the number of elements left to be read in the buffer
2228 #[inline]
2229 fn count(tail: usize, head: usize, size: usize) -> usize {
2230 // size is always a power of 2
2231 (head.wrapping_sub(tail)) & (size - 1)
2232 }
2233
2234 /// An iterator over the elements of a `VecDeque`.
2235 ///
2236 /// This `struct` is created by the [`iter`] method on [`VecDeque`]. See its
2237 /// documentation for more.
2238 ///
2239 /// [`iter`]: struct.VecDeque.html#method.iter
2240 /// [`VecDeque`]: struct.VecDeque.html
2241 #[stable(feature = "rust1", since = "1.0.0")]
2242 pub struct Iter<'a, T: 'a> {
2243 ring: &'a [T],
2244 tail: usize,
2245 head: usize,
2246 }
2247
2248 #[stable(feature = "collection_debug", since = "1.17.0")]
2249 impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
2250 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2251 let (front, back) = RingSlices::ring_slices(self.ring, self.head, self.tail);
2252 f.debug_tuple("Iter").field(&front).field(&back).finish()
2253 }
2254 }
2255
2256 // FIXME(#26925) Remove in favor of `#[derive(Clone)]`
2257 #[stable(feature = "rust1", since = "1.0.0")]
2258 impl<T> Clone for Iter<'_, T> {
2259 fn clone(&self) -> Self {
2260 Iter { ring: self.ring, tail: self.tail, head: self.head }
2261 }
2262 }
2263
2264 #[stable(feature = "rust1", since = "1.0.0")]
2265 impl<'a, T> Iterator for Iter<'a, T> {
2266 type Item = &'a T;
2267
2268 #[inline]
2269 fn next(&mut self) -> Option<&'a T> {
2270 if self.tail == self.head {
2271 return None;
2272 }
2273 let tail = self.tail;
2274 self.tail = wrap_index(self.tail.wrapping_add(1), self.ring.len());
2275 unsafe { Some(self.ring.get_unchecked(tail)) }
2276 }
2277
2278 #[inline]
2279 fn size_hint(&self) -> (usize, Option<usize>) {
2280 let len = count(self.tail, self.head, self.ring.len());
2281 (len, Some(len))
2282 }
2283
2284 fn fold<Acc, F>(self, mut accum: Acc, mut f: F) -> Acc
2285 where
2286 F: FnMut(Acc, Self::Item) -> Acc,
2287 {
2288 let (front, back) = RingSlices::ring_slices(self.ring, self.head, self.tail);
2289 accum = front.iter().fold(accum, &mut f);
2290 back.iter().fold(accum, &mut f)
2291 }
2292
2293 fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
2294 where
2295 Self: Sized,
2296 F: FnMut(B, Self::Item) -> R,
2297 R: Try<Ok = B>,
2298 {
2299 let (mut iter, final_res);
2300 if self.tail <= self.head {
2301 // single slice self.ring[self.tail..self.head]
2302 iter = self.ring[self.tail..self.head].iter();
2303 final_res = iter.try_fold(init, &mut f);
2304 } else {
2305 // two slices: self.ring[self.tail..], self.ring[..self.head]
2306 let (front, back) = self.ring.split_at(self.tail);
2307 let mut back_iter = back.iter();
2308 let res = back_iter.try_fold(init, &mut f);
2309 let len = self.ring.len();
2310 self.tail = (self.ring.len() - back_iter.len()) & (len - 1);
2311 iter = front[..self.head].iter();
2312 final_res = iter.try_fold(res?, &mut f);
2313 }
2314 self.tail = self.head - iter.len();
2315 final_res
2316 }
2317
2318 fn nth(&mut self, n: usize) -> Option<Self::Item> {
2319 if n >= count(self.tail, self.head, self.ring.len()) {
2320 self.tail = self.head;
2321 None
2322 } else {
2323 self.tail = wrap_index(self.tail.wrapping_add(n), self.ring.len());
2324 self.next()
2325 }
2326 }
2327
2328 #[inline]
2329 fn last(mut self) -> Option<&'a T> {
2330 self.next_back()
2331 }
2332 }
2333
2334 #[stable(feature = "rust1", since = "1.0.0")]
2335 impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
2336 #[inline]
2337 fn next_back(&mut self) -> Option<&'a T> {
2338 if self.tail == self.head {
2339 return None;
2340 }
2341 self.head = wrap_index(self.head.wrapping_sub(1), self.ring.len());
2342 unsafe { Some(self.ring.get_unchecked(self.head)) }
2343 }
2344
2345 fn rfold<Acc, F>(self, mut accum: Acc, mut f: F) -> Acc
2346 where
2347 F: FnMut(Acc, Self::Item) -> Acc,
2348 {
2349 let (front, back) = RingSlices::ring_slices(self.ring, self.head, self.tail);
2350 accum = back.iter().rfold(accum, &mut f);
2351 front.iter().rfold(accum, &mut f)
2352 }
2353
2354 fn try_rfold<B, F, R>(&mut self, init: B, mut f: F) -> R
2355 where
2356 Self: Sized,
2357 F: FnMut(B, Self::Item) -> R,
2358 R: Try<Ok = B>,
2359 {
2360 let (mut iter, final_res);
2361 if self.tail <= self.head {
2362 // single slice self.ring[self.tail..self.head]
2363 iter = self.ring[self.tail..self.head].iter();
2364 final_res = iter.try_rfold(init, &mut f);
2365 } else {
2366 // two slices: self.ring[self.tail..], self.ring[..self.head]
2367 let (front, back) = self.ring.split_at(self.tail);
2368 let mut front_iter = front[..self.head].iter();
2369 let res = front_iter.try_rfold(init, &mut f);
2370 self.head = front_iter.len();
2371 iter = back.iter();
2372 final_res = iter.try_rfold(res?, &mut f);
2373 }
2374 self.head = self.tail + iter.len();
2375 final_res
2376 }
2377 }
2378
2379 #[stable(feature = "rust1", since = "1.0.0")]
2380 impl<T> ExactSizeIterator for Iter<'_, T> {
2381 fn is_empty(&self) -> bool {
2382 self.head == self.tail
2383 }
2384 }
2385
2386 #[stable(feature = "fused", since = "1.26.0")]
2387 impl<T> FusedIterator for Iter<'_, T> {}
2388
2389 /// A mutable iterator over the elements of a `VecDeque`.
2390 ///
2391 /// This `struct` is created by the [`iter_mut`] method on [`VecDeque`]. See its
2392 /// documentation for more.
2393 ///
2394 /// [`iter_mut`]: struct.VecDeque.html#method.iter_mut
2395 /// [`VecDeque`]: struct.VecDeque.html
2396 #[stable(feature = "rust1", since = "1.0.0")]
2397 pub struct IterMut<'a, T: 'a> {
2398 ring: &'a mut [T],
2399 tail: usize,
2400 head: usize,
2401 }
2402
2403 #[stable(feature = "collection_debug", since = "1.17.0")]
2404 impl<T: fmt::Debug> fmt::Debug for IterMut<'_, T> {
2405 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2406 let (front, back) = RingSlices::ring_slices(&*self.ring, self.head, self.tail);
2407 f.debug_tuple("IterMut").field(&front).field(&back).finish()
2408 }
2409 }
2410
2411 #[stable(feature = "rust1", since = "1.0.0")]
2412 impl<'a, T> Iterator for IterMut<'a, T> {
2413 type Item = &'a mut T;
2414
2415 #[inline]
2416 fn next(&mut self) -> Option<&'a mut T> {
2417 if self.tail == self.head {
2418 return None;
2419 }
2420 let tail = self.tail;
2421 self.tail = wrap_index(self.tail.wrapping_add(1), self.ring.len());
2422
2423 unsafe {
2424 let elem = self.ring.get_unchecked_mut(tail);
2425 Some(&mut *(elem as *mut _))
2426 }
2427 }
2428
2429 #[inline]
2430 fn size_hint(&self) -> (usize, Option<usize>) {
2431 let len = count(self.tail, self.head, self.ring.len());
2432 (len, Some(len))
2433 }
2434
2435 fn fold<Acc, F>(self, mut accum: Acc, mut f: F) -> Acc
2436 where
2437 F: FnMut(Acc, Self::Item) -> Acc,
2438 {
2439 let (front, back) = RingSlices::ring_slices(self.ring, self.head, self.tail);
2440 accum = front.iter_mut().fold(accum, &mut f);
2441 back.iter_mut().fold(accum, &mut f)
2442 }
2443
2444 fn nth(&mut self, n: usize) -> Option<Self::Item> {
2445 if n >= count(self.tail, self.head, self.ring.len()) {
2446 self.tail = self.head;
2447 None
2448 } else {
2449 self.tail = wrap_index(self.tail.wrapping_add(n), self.ring.len());
2450 self.next()
2451 }
2452 }
2453
2454 #[inline]
2455 fn last(mut self) -> Option<&'a mut T> {
2456 self.next_back()
2457 }
2458 }
2459
2460 #[stable(feature = "rust1", since = "1.0.0")]
2461 impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
2462 #[inline]
2463 fn next_back(&mut self) -> Option<&'a mut T> {
2464 if self.tail == self.head {
2465 return None;
2466 }
2467 self.head = wrap_index(self.head.wrapping_sub(1), self.ring.len());
2468
2469 unsafe {
2470 let elem = self.ring.get_unchecked_mut(self.head);
2471 Some(&mut *(elem as *mut _))
2472 }
2473 }
2474
2475 fn rfold<Acc, F>(self, mut accum: Acc, mut f: F) -> Acc
2476 where
2477 F: FnMut(Acc, Self::Item) -> Acc,
2478 {
2479 let (front, back) = RingSlices::ring_slices(self.ring, self.head, self.tail);
2480 accum = back.iter_mut().rfold(accum, &mut f);
2481 front.iter_mut().rfold(accum, &mut f)
2482 }
2483 }
2484
2485 #[stable(feature = "rust1", since = "1.0.0")]
2486 impl<T> ExactSizeIterator for IterMut<'_, T> {
2487 fn is_empty(&self) -> bool {
2488 self.head == self.tail
2489 }
2490 }
2491
2492 #[stable(feature = "fused", since = "1.26.0")]
2493 impl<T> FusedIterator for IterMut<'_, T> {}
2494
2495 /// An owning iterator over the elements of a `VecDeque`.
2496 ///
2497 /// This `struct` is created by the [`into_iter`] method on [`VecDeque`]
2498 /// (provided by the `IntoIterator` trait). See its documentation for more.
2499 ///
2500 /// [`into_iter`]: struct.VecDeque.html#method.into_iter
2501 /// [`VecDeque`]: struct.VecDeque.html
2502 #[derive(Clone)]
2503 #[stable(feature = "rust1", since = "1.0.0")]
2504 pub struct IntoIter<T> {
2505 inner: VecDeque<T>,
2506 }
2507
2508 #[stable(feature = "collection_debug", since = "1.17.0")]
2509 impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
2510 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2511 f.debug_tuple("IntoIter").field(&self.inner).finish()
2512 }
2513 }
2514
2515 #[stable(feature = "rust1", since = "1.0.0")]
2516 impl<T> Iterator for IntoIter<T> {
2517 type Item = T;
2518
2519 #[inline]
2520 fn next(&mut self) -> Option<T> {
2521 self.inner.pop_front()
2522 }
2523
2524 #[inline]
2525 fn size_hint(&self) -> (usize, Option<usize>) {
2526 let len = self.inner.len();
2527 (len, Some(len))
2528 }
2529 }
2530
2531 #[stable(feature = "rust1", since = "1.0.0")]
2532 impl<T> DoubleEndedIterator for IntoIter<T> {
2533 #[inline]
2534 fn next_back(&mut self) -> Option<T> {
2535 self.inner.pop_back()
2536 }
2537 }
2538
2539 #[stable(feature = "rust1", since = "1.0.0")]
2540 impl<T> ExactSizeIterator for IntoIter<T> {
2541 fn is_empty(&self) -> bool {
2542 self.inner.is_empty()
2543 }
2544 }
2545
2546 #[stable(feature = "fused", since = "1.26.0")]
2547 impl<T> FusedIterator for IntoIter<T> {}
2548
2549 #[stable(feature = "rust1", since = "1.0.0")]
2550 impl<A: PartialEq> PartialEq for VecDeque<A> {
2551 fn eq(&self, other: &VecDeque<A>) -> bool {
2552 if self.len() != other.len() {
2553 return false;
2554 }
2555 let (sa, sb) = self.as_slices();
2556 let (oa, ob) = other.as_slices();
2557 if sa.len() == oa.len() {
2558 sa == oa && sb == ob
2559 } else if sa.len() < oa.len() {
2560 // Always divisible in three sections, for example:
2561 // self: [a b c|d e f]
2562 // other: [0 1 2 3|4 5]
2563 // front = 3, mid = 1,
2564 // [a b c] == [0 1 2] && [d] == [3] && [e f] == [4 5]
2565 let front = sa.len();
2566 let mid = oa.len() - front;
2567
2568 let (oa_front, oa_mid) = oa.split_at(front);
2569 let (sb_mid, sb_back) = sb.split_at(mid);
2570 debug_assert_eq!(sa.len(), oa_front.len());
2571 debug_assert_eq!(sb_mid.len(), oa_mid.len());
2572 debug_assert_eq!(sb_back.len(), ob.len());
2573 sa == oa_front && sb_mid == oa_mid && sb_back == ob
2574 } else {
2575 let front = oa.len();
2576 let mid = sa.len() - front;
2577
2578 let (sa_front, sa_mid) = sa.split_at(front);
2579 let (ob_mid, ob_back) = ob.split_at(mid);
2580 debug_assert_eq!(sa_front.len(), oa.len());
2581 debug_assert_eq!(sa_mid.len(), ob_mid.len());
2582 debug_assert_eq!(sb.len(), ob_back.len());
2583 sa_front == oa && sa_mid == ob_mid && sb == ob_back
2584 }
2585 }
2586 }
2587
2588 #[stable(feature = "rust1", since = "1.0.0")]
2589 impl<A: Eq> Eq for VecDeque<A> {}
2590
2591 macro_rules! __impl_slice_eq1 {
2592 ([$($vars:tt)*] $lhs:ty, $rhs:ty, $($constraints:tt)*) => {
2593 #[stable(feature = "vec_deque_partial_eq_slice", since = "1.17.0")]
2594 impl<A, B, $($vars)*> PartialEq<$rhs> for $lhs
2595 where
2596 A: PartialEq<B>,
2597 $($constraints)*
2598 {
2599 fn eq(&self, other: &$rhs) -> bool {
2600 if self.len() != other.len() {
2601 return false;
2602 }
2603 let (sa, sb) = self.as_slices();
2604 let (oa, ob) = other[..].split_at(sa.len());
2605 sa == oa && sb == ob
2606 }
2607 }
2608 }
2609 }
2610
2611 __impl_slice_eq1! { [] VecDeque<A>, Vec<B>, }
2612 __impl_slice_eq1! { [] VecDeque<A>, &[B], }
2613 __impl_slice_eq1! { [] VecDeque<A>, &mut [B], }
2614 __impl_slice_eq1! { [const N: usize] VecDeque<A>, [B; N], [B; N]: LengthAtMost32 }
2615 __impl_slice_eq1! { [const N: usize] VecDeque<A>, &[B; N], [B; N]: LengthAtMost32 }
2616 __impl_slice_eq1! { [const N: usize] VecDeque<A>, &mut [B; N], [B; N]: LengthAtMost32 }
2617
2618 #[stable(feature = "rust1", since = "1.0.0")]
2619 impl<A: PartialOrd> PartialOrd for VecDeque<A> {
2620 fn partial_cmp(&self, other: &VecDeque<A>) -> Option<Ordering> {
2621 self.iter().partial_cmp(other.iter())
2622 }
2623 }
2624
2625 #[stable(feature = "rust1", since = "1.0.0")]
2626 impl<A: Ord> Ord for VecDeque<A> {
2627 #[inline]
2628 fn cmp(&self, other: &VecDeque<A>) -> Ordering {
2629 self.iter().cmp(other.iter())
2630 }
2631 }
2632
2633 #[stable(feature = "rust1", since = "1.0.0")]
2634 impl<A: Hash> Hash for VecDeque<A> {
2635 fn hash<H: Hasher>(&self, state: &mut H) {
2636 self.len().hash(state);
2637 let (a, b) = self.as_slices();
2638 Hash::hash_slice(a, state);
2639 Hash::hash_slice(b, state);
2640 }
2641 }
2642
2643 #[stable(feature = "rust1", since = "1.0.0")]
2644 impl<A> Index<usize> for VecDeque<A> {
2645 type Output = A;
2646
2647 #[inline]
2648 fn index(&self, index: usize) -> &A {
2649 self.get(index).expect("Out of bounds access")
2650 }
2651 }
2652
2653 #[stable(feature = "rust1", since = "1.0.0")]
2654 impl<A> IndexMut<usize> for VecDeque<A> {
2655 #[inline]
2656 fn index_mut(&mut self, index: usize) -> &mut A {
2657 self.get_mut(index).expect("Out of bounds access")
2658 }
2659 }
2660
2661 #[stable(feature = "rust1", since = "1.0.0")]
2662 impl<A> FromIterator<A> for VecDeque<A> {
2663 fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> VecDeque<A> {
2664 let iterator = iter.into_iter();
2665 let (lower, _) = iterator.size_hint();
2666 let mut deq = VecDeque::with_capacity(lower);
2667 deq.extend(iterator);
2668 deq
2669 }
2670 }
2671
2672 #[stable(feature = "rust1", since = "1.0.0")]
2673 impl<T> IntoIterator for VecDeque<T> {
2674 type Item = T;
2675 type IntoIter = IntoIter<T>;
2676
2677 /// Consumes the `VecDeque` into a front-to-back iterator yielding elements by
2678 /// value.
2679 fn into_iter(self) -> IntoIter<T> {
2680 IntoIter { inner: self }
2681 }
2682 }
2683
2684 #[stable(feature = "rust1", since = "1.0.0")]
2685 impl<'a, T> IntoIterator for &'a VecDeque<T> {
2686 type Item = &'a T;
2687 type IntoIter = Iter<'a, T>;
2688
2689 fn into_iter(self) -> Iter<'a, T> {
2690 self.iter()
2691 }
2692 }
2693
2694 #[stable(feature = "rust1", since = "1.0.0")]
2695 impl<'a, T> IntoIterator for &'a mut VecDeque<T> {
2696 type Item = &'a mut T;
2697 type IntoIter = IterMut<'a, T>;
2698
2699 fn into_iter(self) -> IterMut<'a, T> {
2700 self.iter_mut()
2701 }
2702 }
2703
2704 #[stable(feature = "rust1", since = "1.0.0")]
2705 impl<A> Extend<A> for VecDeque<A> {
2706 fn extend<T: IntoIterator<Item = A>>(&mut self, iter: T) {
2707 // This function should be the moral equivalent of:
2708 //
2709 // for item in iter.into_iter() {
2710 // self.push_back(item);
2711 // }
2712 let mut iter = iter.into_iter();
2713 while let Some(element) = iter.next() {
2714 if self.len() == self.capacity() {
2715 let (lower, _) = iter.size_hint();
2716 self.reserve(lower.saturating_add(1));
2717 }
2718
2719 let head = self.head;
2720 self.head = self.wrap_add(self.head, 1);
2721 unsafe {
2722 self.buffer_write(head, element);
2723 }
2724 }
2725 }
2726 }
2727
2728 #[stable(feature = "extend_ref", since = "1.2.0")]
2729 impl<'a, T: 'a + Copy> Extend<&'a T> for VecDeque<T> {
2730 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
2731 self.extend(iter.into_iter().cloned());
2732 }
2733 }
2734
2735 #[stable(feature = "rust1", since = "1.0.0")]
2736 impl<T: fmt::Debug> fmt::Debug for VecDeque<T> {
2737 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2738 f.debug_list().entries(self).finish()
2739 }
2740 }
2741
2742 #[stable(feature = "vecdeque_vec_conversions", since = "1.10.0")]
2743 impl<T> From<Vec<T>> for VecDeque<T> {
2744 /// Turn a [`Vec<T>`] into a [`VecDeque<T>`].
2745 ///
2746 /// [`Vec<T>`]: crate::vec::Vec
2747 /// [`VecDeque<T>`]: crate::collections::VecDeque
2748 ///
2749 /// This avoids reallocating where possible, but the conditions for that are
2750 /// strict, and subject to change, and so shouldn't be relied upon unless the
2751 /// `Vec<T>` came from `From<VecDeque<T>>` and hasn't been reallocated.
2752 fn from(mut other: Vec<T>) -> Self {
2753 unsafe {
2754 let other_buf = other.as_mut_ptr();
2755 let mut buf = RawVec::from_raw_parts(other_buf, other.capacity());
2756 let len = other.len();
2757 mem::forget(other);
2758
2759 // We need to extend the buf if it's not a power of two, too small
2760 // or doesn't have at least one free space
2761 if !buf.capacity().is_power_of_two()
2762 || (buf.capacity() < (MINIMUM_CAPACITY + 1))
2763 || (buf.capacity() == len)
2764 {
2765 let cap = cmp::max(buf.capacity() + 1, MINIMUM_CAPACITY + 1).next_power_of_two();
2766 buf.reserve_exact(len, cap - len);
2767 }
2768
2769 VecDeque { tail: 0, head: len, buf }
2770 }
2771 }
2772 }
2773
2774 #[stable(feature = "vecdeque_vec_conversions", since = "1.10.0")]
2775 impl<T> From<VecDeque<T>> for Vec<T> {
2776 /// Turn a [`VecDeque<T>`] into a [`Vec<T>`].
2777 ///
2778 /// [`Vec<T>`]: crate::vec::Vec
2779 /// [`VecDeque<T>`]: crate::collections::VecDeque
2780 ///
2781 /// This never needs to re-allocate, but does need to do O(n) data movement if
2782 /// the circular buffer doesn't happen to be at the beginning of the allocation.
2783 ///
2784 /// # Examples
2785 ///
2786 /// ```
2787 /// use std::collections::VecDeque;
2788 ///
2789 /// // This one is O(1).
2790 /// let deque: VecDeque<_> = (1..5).collect();
2791 /// let ptr = deque.as_slices().0.as_ptr();
2792 /// let vec = Vec::from(deque);
2793 /// assert_eq!(vec, [1, 2, 3, 4]);
2794 /// assert_eq!(vec.as_ptr(), ptr);
2795 ///
2796 /// // This one needs data rearranging.
2797 /// let mut deque: VecDeque<_> = (1..5).collect();
2798 /// deque.push_front(9);
2799 /// deque.push_front(8);
2800 /// let ptr = deque.as_slices().1.as_ptr();
2801 /// let vec = Vec::from(deque);
2802 /// assert_eq!(vec, [8, 9, 1, 2, 3, 4]);
2803 /// assert_eq!(vec.as_ptr(), ptr);
2804 /// ```
2805 fn from(other: VecDeque<T>) -> Self {
2806 unsafe {
2807 let buf = other.buf.ptr();
2808 let len = other.len();
2809 let tail = other.tail;
2810 let head = other.head;
2811 let cap = other.cap();
2812
2813 // Need to move the ring to the front of the buffer, as vec will expect this.
2814 if other.is_contiguous() {
2815 ptr::copy(buf.add(tail), buf, len);
2816 } else {
2817 if (tail - head) >= cmp::min(cap - tail, head) {
2818 // There is enough free space in the centre for the shortest block so we can
2819 // do this in at most three copy moves.
2820 if (cap - tail) > head {
2821 // right hand block is the long one; move that enough for the left
2822 ptr::copy(buf.add(tail), buf.add(tail - head), cap - tail);
2823 // copy left in the end
2824 ptr::copy(buf, buf.add(cap - head), head);
2825 // shift the new thing to the start
2826 ptr::copy(buf.add(tail - head), buf, len);
2827 } else {
2828 // left hand block is the long one, we can do it in two!
2829 ptr::copy(buf, buf.add(cap - tail), head);
2830 ptr::copy(buf.add(tail), buf, cap - tail);
2831 }
2832 } else {
2833 // Need to use N swaps to move the ring
2834 // We can use the space at the end of the ring as a temp store
2835
2836 let mut left_edge: usize = 0;
2837 let mut right_edge: usize = tail;
2838
2839 // The general problem looks like this
2840 // GHIJKLM...ABCDEF - before any swaps
2841 // ABCDEFM...GHIJKL - after 1 pass of swaps
2842 // ABCDEFGHIJM...KL - swap until the left edge reaches the temp store
2843 // - then restart the algorithm with a new (smaller) store
2844 // Sometimes the temp store is reached when the right edge is at the end
2845 // of the buffer - this means we've hit the right order with fewer swaps!
2846 // E.g
2847 // EF..ABCD
2848 // ABCDEF.. - after four only swaps we've finished
2849
2850 while left_edge < len && right_edge != cap {
2851 let mut right_offset = 0;
2852 for i in left_edge..right_edge {
2853 right_offset = (i - left_edge) % (cap - right_edge);
2854 let src: isize = (right_edge + right_offset) as isize;
2855 ptr::swap(buf.add(i), buf.offset(src));
2856 }
2857 let n_ops = right_edge - left_edge;
2858 left_edge += n_ops;
2859 right_edge += right_offset + 1;
2860 }
2861 }
2862 }
2863 let out = Vec::from_raw_parts(buf, len, cap);
2864 mem::forget(other);
2865 out
2866 }
2867 }
2868 }