]> git.proxmox.com Git - rustc.git/blob - src/liballoc/rc.rs
New upstream version 1.41.1+dfsg1
[rustc.git] / src / liballoc / rc.rs
1 //! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference
2 //! Counted'.
3 //!
4 //! The type [`Rc<T>`][`Rc`] provides shared ownership of a value of type `T`,
5 //! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new
6 //! pointer to the same allocation in the heap. When the last [`Rc`] pointer to a
7 //! given allocation is destroyed, the value stored in that allocation (often
8 //! referred to as "inner value") is also dropped.
9 //!
10 //! Shared references in Rust disallow mutation by default, and [`Rc`]
11 //! is no exception: you cannot generally obtain a mutable reference to
12 //! something inside an [`Rc`]. If you need mutability, put a [`Cell`]
13 //! or [`RefCell`] inside the [`Rc`]; see [an example of mutability
14 //! inside an Rc][mutability].
15 //!
16 //! [`Rc`] uses non-atomic reference counting. This means that overhead is very
17 //! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`]
18 //! does not implement [`Send`][send]. As a result, the Rust compiler
19 //! will check *at compile time* that you are not sending [`Rc`]s between
20 //! threads. If you need multi-threaded, atomic reference counting, use
21 //! [`sync::Arc`][arc].
22 //!
23 //! The [`downgrade`][downgrade] method can be used to create a non-owning
24 //! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
25 //! to an [`Rc`], but this will return [`None`] if the value stored in the allocation has
26 //! already been dropped. In other words, `Weak` pointers do not keep the value
27 //! inside the allocation alive; however, they *do* keep the allocation
28 //! (the backing store for the inner value) alive.
29 //!
30 //! A cycle between [`Rc`] pointers will never be deallocated. For this reason,
31 //! [`Weak`] is used to break cycles. For example, a tree could have strong
32 //! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from
33 //! children back to their parents.
34 //!
35 //! `Rc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
36 //! so you can call `T`'s methods on a value of type [`Rc<T>`][`Rc`]. To avoid name
37 //! clashes with `T`'s methods, the methods of [`Rc<T>`][`Rc`] itself are associated
38 //! functions, called using function-like syntax:
39 //!
40 //! ```
41 //! use std::rc::Rc;
42 //! let my_rc = Rc::new(());
43 //!
44 //! Rc::downgrade(&my_rc);
45 //! ```
46 //!
47 //! [`Weak<T>`][`Weak`] does not auto-dereference to `T`, because the inner value may have
48 //! already been dropped.
49 //!
50 //! # Cloning references
51 //!
52 //! Creating a new reference to the same allocation as an existing reference counted pointer
53 //! is done using the `Clone` trait implemented for [`Rc<T>`][`Rc`] and [`Weak<T>`][`Weak`].
54 //!
55 //! ```
56 //! use std::rc::Rc;
57 //! let foo = Rc::new(vec![1.0, 2.0, 3.0]);
58 //! // The two syntaxes below are equivalent.
59 //! let a = foo.clone();
60 //! let b = Rc::clone(&foo);
61 //! // a and b both point to the same memory location as foo.
62 //! ```
63 //!
64 //! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly
65 //! the meaning of the code. In the example above, this syntax makes it easier to see that
66 //! this code is creating a new reference rather than copying the whole content of foo.
67 //!
68 //! # Examples
69 //!
70 //! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
71 //! We want to have our `Gadget`s point to their `Owner`. We can't do this with
72 //! unique ownership, because more than one gadget may belong to the same
73 //! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s,
74 //! and have the `Owner` remain allocated as long as any `Gadget` points at it.
75 //!
76 //! ```
77 //! use std::rc::Rc;
78 //!
79 //! struct Owner {
80 //! name: String,
81 //! // ...other fields
82 //! }
83 //!
84 //! struct Gadget {
85 //! id: i32,
86 //! owner: Rc<Owner>,
87 //! // ...other fields
88 //! }
89 //!
90 //! fn main() {
91 //! // Create a reference-counted `Owner`.
92 //! let gadget_owner: Rc<Owner> = Rc::new(
93 //! Owner {
94 //! name: "Gadget Man".to_string(),
95 //! }
96 //! );
97 //!
98 //! // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>`
99 //! // gives us a new pointer to the same `Owner` allocation, incrementing
100 //! // the reference count in the process.
101 //! let gadget1 = Gadget {
102 //! id: 1,
103 //! owner: Rc::clone(&gadget_owner),
104 //! };
105 //! let gadget2 = Gadget {
106 //! id: 2,
107 //! owner: Rc::clone(&gadget_owner),
108 //! };
109 //!
110 //! // Dispose of our local variable `gadget_owner`.
111 //! drop(gadget_owner);
112 //!
113 //! // Despite dropping `gadget_owner`, we're still able to print out the name
114 //! // of the `Owner` of the `Gadget`s. This is because we've only dropped a
115 //! // single `Rc<Owner>`, not the `Owner` it points to. As long as there are
116 //! // other `Rc<Owner>` pointing at the same `Owner` allocation, it will remain
117 //! // live. The field projection `gadget1.owner.name` works because
118 //! // `Rc<Owner>` automatically dereferences to `Owner`.
119 //! println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
120 //! println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
121 //!
122 //! // At the end of the function, `gadget1` and `gadget2` are destroyed, and
123 //! // with them the last counted references to our `Owner`. Gadget Man now
124 //! // gets destroyed as well.
125 //! }
126 //! ```
127 //!
128 //! If our requirements change, and we also need to be able to traverse from
129 //! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner`
130 //! to `Gadget` introduces a cycle. This means that their
131 //! reference counts can never reach 0, and the allocation will never be destroyed:
132 //! a memory leak. In order to get around this, we can use [`Weak`]
133 //! pointers.
134 //!
135 //! Rust actually makes it somewhat difficult to produce this loop in the first
136 //! place. In order to end up with two values that point at each other, one of
137 //! them needs to be mutable. This is difficult because [`Rc`] enforces
138 //! memory safety by only giving out shared references to the value it wraps,
139 //! and these don't allow direct mutation. We need to wrap the part of the
140 //! value we wish to mutate in a [`RefCell`], which provides *interior
141 //! mutability*: a method to achieve mutability through a shared reference.
142 //! [`RefCell`] enforces Rust's borrowing rules at runtime.
143 //!
144 //! ```
145 //! use std::rc::Rc;
146 //! use std::rc::Weak;
147 //! use std::cell::RefCell;
148 //!
149 //! struct Owner {
150 //! name: String,
151 //! gadgets: RefCell<Vec<Weak<Gadget>>>,
152 //! // ...other fields
153 //! }
154 //!
155 //! struct Gadget {
156 //! id: i32,
157 //! owner: Rc<Owner>,
158 //! // ...other fields
159 //! }
160 //!
161 //! fn main() {
162 //! // Create a reference-counted `Owner`. Note that we've put the `Owner`'s
163 //! // vector of `Gadget`s inside a `RefCell` so that we can mutate it through
164 //! // a shared reference.
165 //! let gadget_owner: Rc<Owner> = Rc::new(
166 //! Owner {
167 //! name: "Gadget Man".to_string(),
168 //! gadgets: RefCell::new(vec![]),
169 //! }
170 //! );
171 //!
172 //! // Create `Gadget`s belonging to `gadget_owner`, as before.
173 //! let gadget1 = Rc::new(
174 //! Gadget {
175 //! id: 1,
176 //! owner: Rc::clone(&gadget_owner),
177 //! }
178 //! );
179 //! let gadget2 = Rc::new(
180 //! Gadget {
181 //! id: 2,
182 //! owner: Rc::clone(&gadget_owner),
183 //! }
184 //! );
185 //!
186 //! // Add the `Gadget`s to their `Owner`.
187 //! {
188 //! let mut gadgets = gadget_owner.gadgets.borrow_mut();
189 //! gadgets.push(Rc::downgrade(&gadget1));
190 //! gadgets.push(Rc::downgrade(&gadget2));
191 //!
192 //! // `RefCell` dynamic borrow ends here.
193 //! }
194 //!
195 //! // Iterate over our `Gadget`s, printing their details out.
196 //! for gadget_weak in gadget_owner.gadgets.borrow().iter() {
197 //!
198 //! // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't
199 //! // guarantee the allocation still exists, we need to call
200 //! // `upgrade`, which returns an `Option<Rc<Gadget>>`.
201 //! //
202 //! // In this case we know the allocation still exists, so we simply
203 //! // `unwrap` the `Option`. In a more complicated program, you might
204 //! // need graceful error handling for a `None` result.
205 //!
206 //! let gadget = gadget_weak.upgrade().unwrap();
207 //! println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
208 //! }
209 //!
210 //! // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2`
211 //! // are destroyed. There are now no strong (`Rc`) pointers to the
212 //! // gadgets, so they are destroyed. This zeroes the reference count on
213 //! // Gadget Man, so he gets destroyed as well.
214 //! }
215 //! ```
216 //!
217 //! [`Rc`]: struct.Rc.html
218 //! [`Weak`]: struct.Weak.html
219 //! [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
220 //! [`Cell`]: ../../std/cell/struct.Cell.html
221 //! [`RefCell`]: ../../std/cell/struct.RefCell.html
222 //! [send]: ../../std/marker/trait.Send.html
223 //! [arc]: ../../std/sync/struct.Arc.html
224 //! [`Deref`]: ../../std/ops/trait.Deref.html
225 //! [downgrade]: struct.Rc.html#method.downgrade
226 //! [upgrade]: struct.Weak.html#method.upgrade
227 //! [`None`]: ../../std/option/enum.Option.html#variant.None
228 //! [mutability]: ../../std/cell/index.html#introducing-mutability-inside-of-something-immutable
229
230 #![stable(feature = "rust1", since = "1.0.0")]
231
232 #[cfg(not(test))]
233 use crate::boxed::Box;
234 #[cfg(test)]
235 use std::boxed::Box;
236
237 use core::any::Any;
238 use core::array::LengthAtMost32;
239 use core::borrow;
240 use core::cell::Cell;
241 use core::cmp::Ordering;
242 use core::fmt;
243 use core::hash::{Hash, Hasher};
244 use core::intrinsics::abort;
245 use core::iter;
246 use core::marker::{self, Unpin, Unsize, PhantomData};
247 use core::mem::{self, align_of, align_of_val, forget, size_of_val};
248 use core::ops::{Deref, Receiver, CoerceUnsized, DispatchFromDyn};
249 use core::pin::Pin;
250 use core::ptr::{self, NonNull};
251 use core::slice::{self, from_raw_parts_mut};
252 use core::convert::{From, TryFrom};
253 use core::usize;
254
255 use crate::alloc::{Global, Alloc, Layout, box_free, handle_alloc_error};
256 use crate::string::String;
257 use crate::vec::Vec;
258
259 #[cfg(test)]
260 mod tests;
261
262 struct RcBox<T: ?Sized> {
263 strong: Cell<usize>,
264 weak: Cell<usize>,
265 value: T,
266 }
267
268 /// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference
269 /// Counted'.
270 ///
271 /// See the [module-level documentation](./index.html) for more details.
272 ///
273 /// The inherent methods of `Rc` are all associated functions, which means
274 /// that you have to call them as e.g., [`Rc::get_mut(&mut value)`][get_mut] instead of
275 /// `value.get_mut()`. This avoids conflicts with methods of the inner
276 /// type `T`.
277 ///
278 /// [get_mut]: #method.get_mut
279 #[cfg_attr(not(test), lang = "rc")]
280 #[stable(feature = "rust1", since = "1.0.0")]
281 pub struct Rc<T: ?Sized> {
282 ptr: NonNull<RcBox<T>>,
283 phantom: PhantomData<RcBox<T>>,
284 }
285
286 #[stable(feature = "rust1", since = "1.0.0")]
287 impl<T: ?Sized> !marker::Send for Rc<T> {}
288 #[stable(feature = "rust1", since = "1.0.0")]
289 impl<T: ?Sized> !marker::Sync for Rc<T> {}
290
291 #[unstable(feature = "coerce_unsized", issue = "27732")]
292 impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Rc<U>> for Rc<T> {}
293
294 #[unstable(feature = "dispatch_from_dyn", issue = "0")]
295 impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Rc<U>> for Rc<T> {}
296
297 impl<T: ?Sized> Rc<T> {
298 fn from_inner(ptr: NonNull<RcBox<T>>) -> Self {
299 Self {
300 ptr,
301 phantom: PhantomData,
302 }
303 }
304
305 unsafe fn from_ptr(ptr: *mut RcBox<T>) -> Self {
306 Self::from_inner(NonNull::new_unchecked(ptr))
307 }
308 }
309
310 impl<T> Rc<T> {
311 /// Constructs a new `Rc<T>`.
312 ///
313 /// # Examples
314 ///
315 /// ```
316 /// use std::rc::Rc;
317 ///
318 /// let five = Rc::new(5);
319 /// ```
320 #[stable(feature = "rust1", since = "1.0.0")]
321 pub fn new(value: T) -> Rc<T> {
322 // There is an implicit weak pointer owned by all the strong
323 // pointers, which ensures that the weak destructor never frees
324 // the allocation while the strong destructor is running, even
325 // if the weak pointer is stored inside the strong one.
326 Self::from_inner(Box::into_raw_non_null(box RcBox {
327 strong: Cell::new(1),
328 weak: Cell::new(1),
329 value,
330 }))
331 }
332
333 /// Constructs a new `Rc` with uninitialized contents.
334 ///
335 /// # Examples
336 ///
337 /// ```
338 /// #![feature(new_uninit)]
339 /// #![feature(get_mut_unchecked)]
340 ///
341 /// use std::rc::Rc;
342 ///
343 /// let mut five = Rc::<u32>::new_uninit();
344 ///
345 /// let five = unsafe {
346 /// // Deferred initialization:
347 /// Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
348 ///
349 /// five.assume_init()
350 /// };
351 ///
352 /// assert_eq!(*five, 5)
353 /// ```
354 #[unstable(feature = "new_uninit", issue = "63291")]
355 pub fn new_uninit() -> Rc<mem::MaybeUninit<T>> {
356 unsafe {
357 Rc::from_ptr(Rc::allocate_for_layout(
358 Layout::new::<T>(),
359 |mem| mem as *mut RcBox<mem::MaybeUninit<T>>,
360 ))
361 }
362 }
363
364 /// Constructs a new `Rc` with uninitialized contents, with the memory
365 /// being filled with `0` bytes.
366 ///
367 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
368 /// incorrect usage of this method.
369 ///
370 /// # Examples
371 ///
372 /// ```
373 /// #![feature(new_uninit)]
374 ///
375 /// use std::rc::Rc;
376 ///
377 /// let zero = Rc::<u32>::new_zeroed();
378 /// let zero = unsafe { zero.assume_init() };
379 ///
380 /// assert_eq!(*zero, 0)
381 /// ```
382 ///
383 /// [zeroed]: ../../std/mem/union.MaybeUninit.html#method.zeroed
384 #[unstable(feature = "new_uninit", issue = "63291")]
385 pub fn new_zeroed() -> Rc<mem::MaybeUninit<T>> {
386 unsafe {
387 let mut uninit = Self::new_uninit();
388 ptr::write_bytes::<T>(Rc::get_mut_unchecked(&mut uninit).as_mut_ptr(), 0, 1);
389 uninit
390 }
391 }
392
393 /// Constructs a new `Pin<Rc<T>>`. If `T` does not implement `Unpin`, then
394 /// `value` will be pinned in memory and unable to be moved.
395 #[stable(feature = "pin", since = "1.33.0")]
396 pub fn pin(value: T) -> Pin<Rc<T>> {
397 unsafe { Pin::new_unchecked(Rc::new(value)) }
398 }
399
400 /// Returns the inner value, if the `Rc` has exactly one strong reference.
401 ///
402 /// Otherwise, an [`Err`][result] is returned with the same `Rc` that was
403 /// passed in.
404 ///
405 /// This will succeed even if there are outstanding weak references.
406 ///
407 /// [result]: ../../std/result/enum.Result.html
408 ///
409 /// # Examples
410 ///
411 /// ```
412 /// use std::rc::Rc;
413 ///
414 /// let x = Rc::new(3);
415 /// assert_eq!(Rc::try_unwrap(x), Ok(3));
416 ///
417 /// let x = Rc::new(4);
418 /// let _y = Rc::clone(&x);
419 /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
420 /// ```
421 #[inline]
422 #[stable(feature = "rc_unique", since = "1.4.0")]
423 pub fn try_unwrap(this: Self) -> Result<T, Self> {
424 if Rc::strong_count(&this) == 1 {
425 unsafe {
426 let val = ptr::read(&*this); // copy the contained object
427
428 // Indicate to Weaks that they can't be promoted by decrementing
429 // the strong count, and then remove the implicit "strong weak"
430 // pointer while also handling drop logic by just crafting a
431 // fake Weak.
432 this.dec_strong();
433 let _weak = Weak { ptr: this.ptr };
434 forget(this);
435 Ok(val)
436 }
437 } else {
438 Err(this)
439 }
440 }
441 }
442
443 impl<T> Rc<[T]> {
444 /// Constructs a new reference-counted slice with uninitialized contents.
445 ///
446 /// # Examples
447 ///
448 /// ```
449 /// #![feature(new_uninit)]
450 /// #![feature(get_mut_unchecked)]
451 ///
452 /// use std::rc::Rc;
453 ///
454 /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
455 ///
456 /// let values = unsafe {
457 /// // Deferred initialization:
458 /// Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
459 /// Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
460 /// Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
461 ///
462 /// values.assume_init()
463 /// };
464 ///
465 /// assert_eq!(*values, [1, 2, 3])
466 /// ```
467 #[unstable(feature = "new_uninit", issue = "63291")]
468 pub fn new_uninit_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
469 unsafe {
470 Rc::from_ptr(Rc::allocate_for_slice(len))
471 }
472 }
473 }
474
475 impl<T> Rc<mem::MaybeUninit<T>> {
476 /// Converts to `Rc<T>`.
477 ///
478 /// # Safety
479 ///
480 /// As with [`MaybeUninit::assume_init`],
481 /// it is up to the caller to guarantee that the inner value
482 /// really is in an initialized state.
483 /// Calling this when the content is not yet fully initialized
484 /// causes immediate undefined behavior.
485 ///
486 /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
487 ///
488 /// # Examples
489 ///
490 /// ```
491 /// #![feature(new_uninit)]
492 /// #![feature(get_mut_unchecked)]
493 ///
494 /// use std::rc::Rc;
495 ///
496 /// let mut five = Rc::<u32>::new_uninit();
497 ///
498 /// let five = unsafe {
499 /// // Deferred initialization:
500 /// Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
501 ///
502 /// five.assume_init()
503 /// };
504 ///
505 /// assert_eq!(*five, 5)
506 /// ```
507 #[unstable(feature = "new_uninit", issue = "63291")]
508 #[inline]
509 pub unsafe fn assume_init(self) -> Rc<T> {
510 Rc::from_inner(mem::ManuallyDrop::new(self).ptr.cast())
511 }
512 }
513
514 impl<T> Rc<[mem::MaybeUninit<T>]> {
515 /// Converts to `Rc<[T]>`.
516 ///
517 /// # Safety
518 ///
519 /// As with [`MaybeUninit::assume_init`],
520 /// it is up to the caller to guarantee that the inner value
521 /// really is in an initialized state.
522 /// Calling this when the content is not yet fully initialized
523 /// causes immediate undefined behavior.
524 ///
525 /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
526 ///
527 /// # Examples
528 ///
529 /// ```
530 /// #![feature(new_uninit)]
531 /// #![feature(get_mut_unchecked)]
532 ///
533 /// use std::rc::Rc;
534 ///
535 /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
536 ///
537 /// let values = unsafe {
538 /// // Deferred initialization:
539 /// Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
540 /// Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
541 /// Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
542 ///
543 /// values.assume_init()
544 /// };
545 ///
546 /// assert_eq!(*values, [1, 2, 3])
547 /// ```
548 #[unstable(feature = "new_uninit", issue = "63291")]
549 #[inline]
550 pub unsafe fn assume_init(self) -> Rc<[T]> {
551 Rc::from_ptr(mem::ManuallyDrop::new(self).ptr.as_ptr() as _)
552 }
553 }
554
555 impl<T: ?Sized> Rc<T> {
556 /// Consumes the `Rc`, returning the wrapped pointer.
557 ///
558 /// To avoid a memory leak the pointer must be converted back to an `Rc` using
559 /// [`Rc::from_raw`][from_raw].
560 ///
561 /// [from_raw]: struct.Rc.html#method.from_raw
562 ///
563 /// # Examples
564 ///
565 /// ```
566 /// use std::rc::Rc;
567 ///
568 /// let x = Rc::new("hello".to_owned());
569 /// let x_ptr = Rc::into_raw(x);
570 /// assert_eq!(unsafe { &*x_ptr }, "hello");
571 /// ```
572 #[stable(feature = "rc_raw", since = "1.17.0")]
573 pub fn into_raw(this: Self) -> *const T {
574 let ptr: *const T = &*this;
575 mem::forget(this);
576 ptr
577 }
578
579 /// Constructs an `Rc` from a raw pointer.
580 ///
581 /// The raw pointer must have been previously returned by a call to a
582 /// [`Rc::into_raw`][into_raw].
583 ///
584 /// This function is unsafe because improper use may lead to memory problems. For example, a
585 /// double-free may occur if the function is called twice on the same raw pointer.
586 ///
587 /// [into_raw]: struct.Rc.html#method.into_raw
588 ///
589 /// # Examples
590 ///
591 /// ```
592 /// use std::rc::Rc;
593 ///
594 /// let x = Rc::new("hello".to_owned());
595 /// let x_ptr = Rc::into_raw(x);
596 ///
597 /// unsafe {
598 /// // Convert back to an `Rc` to prevent leak.
599 /// let x = Rc::from_raw(x_ptr);
600 /// assert_eq!(&*x, "hello");
601 ///
602 /// // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
603 /// }
604 ///
605 /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
606 /// ```
607 #[stable(feature = "rc_raw", since = "1.17.0")]
608 pub unsafe fn from_raw(ptr: *const T) -> Self {
609 let offset = data_offset(ptr);
610
611 // Reverse the offset to find the original RcBox.
612 let fake_ptr = ptr as *mut RcBox<T>;
613 let rc_ptr = set_data_ptr(fake_ptr, (ptr as *mut u8).offset(-offset));
614
615 Self::from_ptr(rc_ptr)
616 }
617
618 /// Consumes the `Rc`, returning the wrapped pointer as `NonNull<T>`.
619 ///
620 /// # Examples
621 ///
622 /// ```
623 /// #![feature(rc_into_raw_non_null)]
624 ///
625 /// use std::rc::Rc;
626 ///
627 /// let x = Rc::new("hello".to_owned());
628 /// let ptr = Rc::into_raw_non_null(x);
629 /// let deref = unsafe { ptr.as_ref() };
630 /// assert_eq!(deref, "hello");
631 /// ```
632 #[unstable(feature = "rc_into_raw_non_null", issue = "47336")]
633 #[inline]
634 pub fn into_raw_non_null(this: Self) -> NonNull<T> {
635 // safe because Rc guarantees its pointer is non-null
636 unsafe { NonNull::new_unchecked(Rc::into_raw(this) as *mut _) }
637 }
638
639 /// Creates a new [`Weak`][weak] pointer to this allocation.
640 ///
641 /// [weak]: struct.Weak.html
642 ///
643 /// # Examples
644 ///
645 /// ```
646 /// use std::rc::Rc;
647 ///
648 /// let five = Rc::new(5);
649 ///
650 /// let weak_five = Rc::downgrade(&five);
651 /// ```
652 #[stable(feature = "rc_weak", since = "1.4.0")]
653 pub fn downgrade(this: &Self) -> Weak<T> {
654 this.inc_weak();
655 // Make sure we do not create a dangling Weak
656 debug_assert!(!is_dangling(this.ptr));
657 Weak { ptr: this.ptr }
658 }
659
660 /// Gets the number of [`Weak`][weak] pointers to this allocation.
661 ///
662 /// [weak]: struct.Weak.html
663 ///
664 /// # Examples
665 ///
666 /// ```
667 /// use std::rc::Rc;
668 ///
669 /// let five = Rc::new(5);
670 /// let _weak_five = Rc::downgrade(&five);
671 ///
672 /// assert_eq!(1, Rc::weak_count(&five));
673 /// ```
674 #[inline]
675 #[stable(feature = "rc_counts", since = "1.15.0")]
676 pub fn weak_count(this: &Self) -> usize {
677 this.weak() - 1
678 }
679
680 /// Gets the number of strong (`Rc`) pointers to this allocation.
681 ///
682 /// # Examples
683 ///
684 /// ```
685 /// use std::rc::Rc;
686 ///
687 /// let five = Rc::new(5);
688 /// let _also_five = Rc::clone(&five);
689 ///
690 /// assert_eq!(2, Rc::strong_count(&five));
691 /// ```
692 #[inline]
693 #[stable(feature = "rc_counts", since = "1.15.0")]
694 pub fn strong_count(this: &Self) -> usize {
695 this.strong()
696 }
697
698 /// Returns `true` if there are no other `Rc` or [`Weak`][weak] pointers to
699 /// this allocation.
700 ///
701 /// [weak]: struct.Weak.html
702 #[inline]
703 fn is_unique(this: &Self) -> bool {
704 Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
705 }
706
707 /// Returns a mutable reference into the given `Rc`, if there are
708 /// no other `Rc` or [`Weak`][weak] pointers to the same allocation.
709 ///
710 /// Returns [`None`] otherwise, because it is not safe to
711 /// mutate a shared value.
712 ///
713 /// See also [`make_mut`][make_mut], which will [`clone`][clone]
714 /// the inner value when there are other pointers.
715 ///
716 /// [weak]: struct.Weak.html
717 /// [`None`]: ../../std/option/enum.Option.html#variant.None
718 /// [make_mut]: struct.Rc.html#method.make_mut
719 /// [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
720 ///
721 /// # Examples
722 ///
723 /// ```
724 /// use std::rc::Rc;
725 ///
726 /// let mut x = Rc::new(3);
727 /// *Rc::get_mut(&mut x).unwrap() = 4;
728 /// assert_eq!(*x, 4);
729 ///
730 /// let _y = Rc::clone(&x);
731 /// assert!(Rc::get_mut(&mut x).is_none());
732 /// ```
733 #[inline]
734 #[stable(feature = "rc_unique", since = "1.4.0")]
735 pub fn get_mut(this: &mut Self) -> Option<&mut T> {
736 if Rc::is_unique(this) {
737 unsafe {
738 Some(Rc::get_mut_unchecked(this))
739 }
740 } else {
741 None
742 }
743 }
744
745 /// Returns a mutable reference into the given `Rc`,
746 /// without any check.
747 ///
748 /// See also [`get_mut`], which is safe and does appropriate checks.
749 ///
750 /// [`get_mut`]: struct.Rc.html#method.get_mut
751 ///
752 /// # Safety
753 ///
754 /// Any other `Rc` or [`Weak`] pointers to the same allocation must not be dereferenced
755 /// for the duration of the returned borrow.
756 /// This is trivially the case if no such pointers exist,
757 /// for example immediately after `Rc::new`.
758 ///
759 /// # Examples
760 ///
761 /// ```
762 /// #![feature(get_mut_unchecked)]
763 ///
764 /// use std::rc::Rc;
765 ///
766 /// let mut x = Rc::new(String::new());
767 /// unsafe {
768 /// Rc::get_mut_unchecked(&mut x).push_str("foo")
769 /// }
770 /// assert_eq!(*x, "foo");
771 /// ```
772 #[inline]
773 #[unstable(feature = "get_mut_unchecked", issue = "63292")]
774 pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
775 &mut this.ptr.as_mut().value
776 }
777
778 #[inline]
779 #[stable(feature = "ptr_eq", since = "1.17.0")]
780 /// Returns `true` if the two `Rc`s point to the same allocation
781 /// (in a vein similar to [`ptr::eq`]).
782 ///
783 /// # Examples
784 ///
785 /// ```
786 /// use std::rc::Rc;
787 ///
788 /// let five = Rc::new(5);
789 /// let same_five = Rc::clone(&five);
790 /// let other_five = Rc::new(5);
791 ///
792 /// assert!(Rc::ptr_eq(&five, &same_five));
793 /// assert!(!Rc::ptr_eq(&five, &other_five));
794 /// ```
795 ///
796 /// [`ptr::eq`]: ../../std/ptr/fn.eq.html
797 pub fn ptr_eq(this: &Self, other: &Self) -> bool {
798 this.ptr.as_ptr() == other.ptr.as_ptr()
799 }
800 }
801
802 impl<T: Clone> Rc<T> {
803 /// Makes a mutable reference into the given `Rc`.
804 ///
805 /// If there are other `Rc` pointers to the same allocation, then `make_mut` will
806 /// [`clone`] the inner value to a new allocation to ensure unique ownership. This is also
807 /// referred to as clone-on-write.
808 ///
809 /// If there are no other `Rc` pointers to this allocation, then [`Weak`]
810 /// pointers to this allocation will be disassociated.
811 ///
812 /// See also [`get_mut`], which will fail rather than cloning.
813 ///
814 /// [`Weak`]: struct.Weak.html
815 /// [`clone`]: ../../std/clone/trait.Clone.html#tymethod.clone
816 /// [`get_mut`]: struct.Rc.html#method.get_mut
817 ///
818 /// # Examples
819 ///
820 /// ```
821 /// use std::rc::Rc;
822 ///
823 /// let mut data = Rc::new(5);
824 ///
825 /// *Rc::make_mut(&mut data) += 1; // Won't clone anything
826 /// let mut other_data = Rc::clone(&data); // Won't clone inner data
827 /// *Rc::make_mut(&mut data) += 1; // Clones inner data
828 /// *Rc::make_mut(&mut data) += 1; // Won't clone anything
829 /// *Rc::make_mut(&mut other_data) *= 2; // Won't clone anything
830 ///
831 /// // Now `data` and `other_data` point to different allocations.
832 /// assert_eq!(*data, 8);
833 /// assert_eq!(*other_data, 12);
834 /// ```
835 ///
836 /// [`Weak`] pointers will be disassociated:
837 ///
838 /// ```
839 /// use std::rc::Rc;
840 ///
841 /// let mut data = Rc::new(75);
842 /// let weak = Rc::downgrade(&data);
843 ///
844 /// assert!(75 == *data);
845 /// assert!(75 == *weak.upgrade().unwrap());
846 ///
847 /// *Rc::make_mut(&mut data) += 1;
848 ///
849 /// assert!(76 == *data);
850 /// assert!(weak.upgrade().is_none());
851 /// ```
852 #[inline]
853 #[stable(feature = "rc_unique", since = "1.4.0")]
854 pub fn make_mut(this: &mut Self) -> &mut T {
855 if Rc::strong_count(this) != 1 {
856 // Gotta clone the data, there are other Rcs
857 *this = Rc::new((**this).clone())
858 } else if Rc::weak_count(this) != 0 {
859 // Can just steal the data, all that's left is Weaks
860 unsafe {
861 let mut swap = Rc::new(ptr::read(&this.ptr.as_ref().value));
862 mem::swap(this, &mut swap);
863 swap.dec_strong();
864 // Remove implicit strong-weak ref (no need to craft a fake
865 // Weak here -- we know other Weaks can clean up for us)
866 swap.dec_weak();
867 forget(swap);
868 }
869 }
870 // This unsafety is ok because we're guaranteed that the pointer
871 // returned is the *only* pointer that will ever be returned to T. Our
872 // reference count is guaranteed to be 1 at this point, and we required
873 // the `Rc<T>` itself to be `mut`, so we're returning the only possible
874 // reference to the allocation.
875 unsafe {
876 &mut this.ptr.as_mut().value
877 }
878 }
879 }
880
881 impl Rc<dyn Any> {
882 #[inline]
883 #[stable(feature = "rc_downcast", since = "1.29.0")]
884 /// Attempt to downcast the `Rc<dyn Any>` to a concrete type.
885 ///
886 /// # Examples
887 ///
888 /// ```
889 /// use std::any::Any;
890 /// use std::rc::Rc;
891 ///
892 /// fn print_if_string(value: Rc<dyn Any>) {
893 /// if let Ok(string) = value.downcast::<String>() {
894 /// println!("String ({}): {}", string.len(), string);
895 /// }
896 /// }
897 ///
898 /// let my_string = "Hello World".to_string();
899 /// print_if_string(Rc::new(my_string));
900 /// print_if_string(Rc::new(0i8));
901 /// ```
902 pub fn downcast<T: Any>(self) -> Result<Rc<T>, Rc<dyn Any>> {
903 if (*self).is::<T>() {
904 let ptr = self.ptr.cast::<RcBox<T>>();
905 forget(self);
906 Ok(Rc::from_inner(ptr))
907 } else {
908 Err(self)
909 }
910 }
911 }
912
913 impl<T: ?Sized> Rc<T> {
914 /// Allocates an `RcBox<T>` with sufficient space for
915 /// a possibly-unsized inner value where the value has the layout provided.
916 ///
917 /// The function `mem_to_rcbox` is called with the data pointer
918 /// and must return back a (potentially fat)-pointer for the `RcBox<T>`.
919 unsafe fn allocate_for_layout(
920 value_layout: Layout,
921 mem_to_rcbox: impl FnOnce(*mut u8) -> *mut RcBox<T>
922 ) -> *mut RcBox<T> {
923 // Calculate layout using the given value layout.
924 // Previously, layout was calculated on the expression
925 // `&*(ptr as *const RcBox<T>)`, but this created a misaligned
926 // reference (see #54908).
927 let layout = Layout::new::<RcBox<()>>()
928 .extend(value_layout).unwrap().0
929 .pad_to_align();
930
931 // Allocate for the layout.
932 let mem = Global.alloc(layout)
933 .unwrap_or_else(|_| handle_alloc_error(layout));
934
935 // Initialize the RcBox
936 let inner = mem_to_rcbox(mem.as_ptr());
937 debug_assert_eq!(Layout::for_value(&*inner), layout);
938
939 ptr::write(&mut (*inner).strong, Cell::new(1));
940 ptr::write(&mut (*inner).weak, Cell::new(1));
941
942 inner
943 }
944
945 /// Allocates an `RcBox<T>` with sufficient space for an unsized inner value
946 unsafe fn allocate_for_ptr(ptr: *const T) -> *mut RcBox<T> {
947 // Allocate for the `RcBox<T>` using the given value.
948 Self::allocate_for_layout(
949 Layout::for_value(&*ptr),
950 |mem| set_data_ptr(ptr as *mut T, mem) as *mut RcBox<T>,
951 )
952 }
953
954 fn from_box(v: Box<T>) -> Rc<T> {
955 unsafe {
956 let box_unique = Box::into_unique(v);
957 let bptr = box_unique.as_ptr();
958
959 let value_size = size_of_val(&*bptr);
960 let ptr = Self::allocate_for_ptr(bptr);
961
962 // Copy value as bytes
963 ptr::copy_nonoverlapping(
964 bptr as *const T as *const u8,
965 &mut (*ptr).value as *mut _ as *mut u8,
966 value_size);
967
968 // Free the allocation without dropping its contents
969 box_free(box_unique);
970
971 Self::from_ptr(ptr)
972 }
973 }
974 }
975
976 impl<T> Rc<[T]> {
977 /// Allocates an `RcBox<[T]>` with the given length.
978 unsafe fn allocate_for_slice(len: usize) -> *mut RcBox<[T]> {
979 Self::allocate_for_layout(
980 Layout::array::<T>(len).unwrap(),
981 |mem| ptr::slice_from_raw_parts_mut(mem as *mut T, len) as *mut RcBox<[T]>,
982 )
983 }
984 }
985
986 /// Sets the data pointer of a `?Sized` raw pointer.
987 ///
988 /// For a slice/trait object, this sets the `data` field and leaves the rest
989 /// unchanged. For a sized raw pointer, this simply sets the pointer.
990 unsafe fn set_data_ptr<T: ?Sized, U>(mut ptr: *mut T, data: *mut U) -> *mut T {
991 ptr::write(&mut ptr as *mut _ as *mut *mut u8, data as *mut u8);
992 ptr
993 }
994
995 impl<T> Rc<[T]> {
996 /// Copy elements from slice into newly allocated Rc<[T]>
997 ///
998 /// Unsafe because the caller must either take ownership or bind `T: Copy`
999 unsafe fn copy_from_slice(v: &[T]) -> Rc<[T]> {
1000 let ptr = Self::allocate_for_slice(v.len());
1001
1002 ptr::copy_nonoverlapping(
1003 v.as_ptr(),
1004 &mut (*ptr).value as *mut [T] as *mut T,
1005 v.len());
1006
1007 Self::from_ptr(ptr)
1008 }
1009
1010 /// Constructs an `Rc<[T]>` from an iterator known to be of a certain size.
1011 ///
1012 /// Behavior is undefined should the size be wrong.
1013 unsafe fn from_iter_exact(iter: impl iter::Iterator<Item = T>, len: usize) -> Rc<[T]> {
1014 // Panic guard while cloning T elements.
1015 // In the event of a panic, elements that have been written
1016 // into the new RcBox will be dropped, then the memory freed.
1017 struct Guard<T> {
1018 mem: NonNull<u8>,
1019 elems: *mut T,
1020 layout: Layout,
1021 n_elems: usize,
1022 }
1023
1024 impl<T> Drop for Guard<T> {
1025 fn drop(&mut self) {
1026 unsafe {
1027 let slice = from_raw_parts_mut(self.elems, self.n_elems);
1028 ptr::drop_in_place(slice);
1029
1030 Global.dealloc(self.mem, self.layout);
1031 }
1032 }
1033 }
1034
1035 let ptr = Self::allocate_for_slice(len);
1036
1037 let mem = ptr as *mut _ as *mut u8;
1038 let layout = Layout::for_value(&*ptr);
1039
1040 // Pointer to first element
1041 let elems = &mut (*ptr).value as *mut [T] as *mut T;
1042
1043 let mut guard = Guard {
1044 mem: NonNull::new_unchecked(mem),
1045 elems,
1046 layout,
1047 n_elems: 0,
1048 };
1049
1050 for (i, item) in iter.enumerate() {
1051 ptr::write(elems.add(i), item);
1052 guard.n_elems += 1;
1053 }
1054
1055 // All clear. Forget the guard so it doesn't free the new RcBox.
1056 forget(guard);
1057
1058 Self::from_ptr(ptr)
1059 }
1060 }
1061
1062 /// Specialization trait used for `From<&[T]>`.
1063 trait RcFromSlice<T> {
1064 fn from_slice(slice: &[T]) -> Self;
1065 }
1066
1067 impl<T: Clone> RcFromSlice<T> for Rc<[T]> {
1068 #[inline]
1069 default fn from_slice(v: &[T]) -> Self {
1070 unsafe {
1071 Self::from_iter_exact(v.iter().cloned(), v.len())
1072 }
1073 }
1074 }
1075
1076 impl<T: Copy> RcFromSlice<T> for Rc<[T]> {
1077 #[inline]
1078 fn from_slice(v: &[T]) -> Self {
1079 unsafe { Rc::copy_from_slice(v) }
1080 }
1081 }
1082
1083 #[stable(feature = "rust1", since = "1.0.0")]
1084 impl<T: ?Sized> Deref for Rc<T> {
1085 type Target = T;
1086
1087 #[inline(always)]
1088 fn deref(&self) -> &T {
1089 &self.inner().value
1090 }
1091 }
1092
1093 #[unstable(feature = "receiver_trait", issue = "0")]
1094 impl<T: ?Sized> Receiver for Rc<T> {}
1095
1096 #[stable(feature = "rust1", since = "1.0.0")]
1097 unsafe impl<#[may_dangle] T: ?Sized> Drop for Rc<T> {
1098 /// Drops the `Rc`.
1099 ///
1100 /// This will decrement the strong reference count. If the strong reference
1101 /// count reaches zero then the only other references (if any) are
1102 /// [`Weak`], so we `drop` the inner value.
1103 ///
1104 /// # Examples
1105 ///
1106 /// ```
1107 /// use std::rc::Rc;
1108 ///
1109 /// struct Foo;
1110 ///
1111 /// impl Drop for Foo {
1112 /// fn drop(&mut self) {
1113 /// println!("dropped!");
1114 /// }
1115 /// }
1116 ///
1117 /// let foo = Rc::new(Foo);
1118 /// let foo2 = Rc::clone(&foo);
1119 ///
1120 /// drop(foo); // Doesn't print anything
1121 /// drop(foo2); // Prints "dropped!"
1122 /// ```
1123 ///
1124 /// [`Weak`]: ../../std/rc/struct.Weak.html
1125 fn drop(&mut self) {
1126 unsafe {
1127 self.dec_strong();
1128 if self.strong() == 0 {
1129 // destroy the contained object
1130 ptr::drop_in_place(self.ptr.as_mut());
1131
1132 // remove the implicit "strong weak" pointer now that we've
1133 // destroyed the contents.
1134 self.dec_weak();
1135
1136 if self.weak() == 0 {
1137 Global.dealloc(self.ptr.cast(), Layout::for_value(self.ptr.as_ref()));
1138 }
1139 }
1140 }
1141 }
1142 }
1143
1144 #[stable(feature = "rust1", since = "1.0.0")]
1145 impl<T: ?Sized> Clone for Rc<T> {
1146 /// Makes a clone of the `Rc` pointer.
1147 ///
1148 /// This creates another pointer to the same allocation, increasing the
1149 /// strong reference count.
1150 ///
1151 /// # Examples
1152 ///
1153 /// ```
1154 /// use std::rc::Rc;
1155 ///
1156 /// let five = Rc::new(5);
1157 ///
1158 /// let _ = Rc::clone(&five);
1159 /// ```
1160 #[inline]
1161 fn clone(&self) -> Rc<T> {
1162 self.inc_strong();
1163 Self::from_inner(self.ptr)
1164 }
1165 }
1166
1167 #[stable(feature = "rust1", since = "1.0.0")]
1168 impl<T: Default> Default for Rc<T> {
1169 /// Creates a new `Rc<T>`, with the `Default` value for `T`.
1170 ///
1171 /// # Examples
1172 ///
1173 /// ```
1174 /// use std::rc::Rc;
1175 ///
1176 /// let x: Rc<i32> = Default::default();
1177 /// assert_eq!(*x, 0);
1178 /// ```
1179 #[inline]
1180 fn default() -> Rc<T> {
1181 Rc::new(Default::default())
1182 }
1183 }
1184
1185 #[stable(feature = "rust1", since = "1.0.0")]
1186 trait RcEqIdent<T: ?Sized + PartialEq> {
1187 fn eq(&self, other: &Rc<T>) -> bool;
1188 fn ne(&self, other: &Rc<T>) -> bool;
1189 }
1190
1191 #[stable(feature = "rust1", since = "1.0.0")]
1192 impl<T: ?Sized + PartialEq> RcEqIdent<T> for Rc<T> {
1193 #[inline]
1194 default fn eq(&self, other: &Rc<T>) -> bool {
1195 **self == **other
1196 }
1197
1198 #[inline]
1199 default fn ne(&self, other: &Rc<T>) -> bool {
1200 **self != **other
1201 }
1202 }
1203
1204 /// We're doing this specialization here, and not as a more general optimization on `&T`, because it
1205 /// would otherwise add a cost to all equality checks on refs. We assume that `Rc`s are used to
1206 /// store large values, that are slow to clone, but also heavy to check for equality, causing this
1207 /// cost to pay off more easily. It's also more likely to have two `Rc` clones, that point to
1208 /// the same value, than two `&T`s.
1209 ///
1210 /// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
1211 #[stable(feature = "rust1", since = "1.0.0")]
1212 impl<T: ?Sized + Eq> RcEqIdent<T> for Rc<T> {
1213 #[inline]
1214 fn eq(&self, other: &Rc<T>) -> bool {
1215 Rc::ptr_eq(self, other) || **self == **other
1216 }
1217
1218 #[inline]
1219 fn ne(&self, other: &Rc<T>) -> bool {
1220 !Rc::ptr_eq(self, other) && **self != **other
1221 }
1222 }
1223
1224 #[stable(feature = "rust1", since = "1.0.0")]
1225 impl<T: ?Sized + PartialEq> PartialEq for Rc<T> {
1226 /// Equality for two `Rc`s.
1227 ///
1228 /// Two `Rc`s are equal if their inner values are equal, even if they are
1229 /// stored in different allocation.
1230 ///
1231 /// If `T` also implements `Eq` (implying reflexivity of equality),
1232 /// two `Rc`s that point to the same allocation are
1233 /// always equal.
1234 ///
1235 /// # Examples
1236 ///
1237 /// ```
1238 /// use std::rc::Rc;
1239 ///
1240 /// let five = Rc::new(5);
1241 ///
1242 /// assert!(five == Rc::new(5));
1243 /// ```
1244 #[inline]
1245 fn eq(&self, other: &Rc<T>) -> bool {
1246 RcEqIdent::eq(self, other)
1247 }
1248
1249 /// Inequality for two `Rc`s.
1250 ///
1251 /// Two `Rc`s are unequal if their inner values are unequal.
1252 ///
1253 /// If `T` also implements `Eq` (implying reflexivity of equality),
1254 /// two `Rc`s that point to the same allocation are
1255 /// never unequal.
1256 ///
1257 /// # Examples
1258 ///
1259 /// ```
1260 /// use std::rc::Rc;
1261 ///
1262 /// let five = Rc::new(5);
1263 ///
1264 /// assert!(five != Rc::new(6));
1265 /// ```
1266 #[inline]
1267 fn ne(&self, other: &Rc<T>) -> bool {
1268 RcEqIdent::ne(self, other)
1269 }
1270 }
1271
1272 #[stable(feature = "rust1", since = "1.0.0")]
1273 impl<T: ?Sized + Eq> Eq for Rc<T> {}
1274
1275 #[stable(feature = "rust1", since = "1.0.0")]
1276 impl<T: ?Sized + PartialOrd> PartialOrd for Rc<T> {
1277 /// Partial comparison for two `Rc`s.
1278 ///
1279 /// The two are compared by calling `partial_cmp()` on their inner values.
1280 ///
1281 /// # Examples
1282 ///
1283 /// ```
1284 /// use std::rc::Rc;
1285 /// use std::cmp::Ordering;
1286 ///
1287 /// let five = Rc::new(5);
1288 ///
1289 /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6)));
1290 /// ```
1291 #[inline(always)]
1292 fn partial_cmp(&self, other: &Rc<T>) -> Option<Ordering> {
1293 (**self).partial_cmp(&**other)
1294 }
1295
1296 /// Less-than comparison for two `Rc`s.
1297 ///
1298 /// The two are compared by calling `<` on their inner values.
1299 ///
1300 /// # Examples
1301 ///
1302 /// ```
1303 /// use std::rc::Rc;
1304 ///
1305 /// let five = Rc::new(5);
1306 ///
1307 /// assert!(five < Rc::new(6));
1308 /// ```
1309 #[inline(always)]
1310 fn lt(&self, other: &Rc<T>) -> bool {
1311 **self < **other
1312 }
1313
1314 /// 'Less than or equal to' comparison for two `Rc`s.
1315 ///
1316 /// The two are compared by calling `<=` on their inner values.
1317 ///
1318 /// # Examples
1319 ///
1320 /// ```
1321 /// use std::rc::Rc;
1322 ///
1323 /// let five = Rc::new(5);
1324 ///
1325 /// assert!(five <= Rc::new(5));
1326 /// ```
1327 #[inline(always)]
1328 fn le(&self, other: &Rc<T>) -> bool {
1329 **self <= **other
1330 }
1331
1332 /// Greater-than comparison for two `Rc`s.
1333 ///
1334 /// The two are compared by calling `>` on their inner values.
1335 ///
1336 /// # Examples
1337 ///
1338 /// ```
1339 /// use std::rc::Rc;
1340 ///
1341 /// let five = Rc::new(5);
1342 ///
1343 /// assert!(five > Rc::new(4));
1344 /// ```
1345 #[inline(always)]
1346 fn gt(&self, other: &Rc<T>) -> bool {
1347 **self > **other
1348 }
1349
1350 /// 'Greater than or equal to' comparison for two `Rc`s.
1351 ///
1352 /// The two are compared by calling `>=` on their inner values.
1353 ///
1354 /// # Examples
1355 ///
1356 /// ```
1357 /// use std::rc::Rc;
1358 ///
1359 /// let five = Rc::new(5);
1360 ///
1361 /// assert!(five >= Rc::new(5));
1362 /// ```
1363 #[inline(always)]
1364 fn ge(&self, other: &Rc<T>) -> bool {
1365 **self >= **other
1366 }
1367 }
1368
1369 #[stable(feature = "rust1", since = "1.0.0")]
1370 impl<T: ?Sized + Ord> Ord for Rc<T> {
1371 /// Comparison for two `Rc`s.
1372 ///
1373 /// The two are compared by calling `cmp()` on their inner values.
1374 ///
1375 /// # Examples
1376 ///
1377 /// ```
1378 /// use std::rc::Rc;
1379 /// use std::cmp::Ordering;
1380 ///
1381 /// let five = Rc::new(5);
1382 ///
1383 /// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6)));
1384 /// ```
1385 #[inline]
1386 fn cmp(&self, other: &Rc<T>) -> Ordering {
1387 (**self).cmp(&**other)
1388 }
1389 }
1390
1391 #[stable(feature = "rust1", since = "1.0.0")]
1392 impl<T: ?Sized + Hash> Hash for Rc<T> {
1393 fn hash<H: Hasher>(&self, state: &mut H) {
1394 (**self).hash(state);
1395 }
1396 }
1397
1398 #[stable(feature = "rust1", since = "1.0.0")]
1399 impl<T: ?Sized + fmt::Display> fmt::Display for Rc<T> {
1400 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1401 fmt::Display::fmt(&**self, f)
1402 }
1403 }
1404
1405 #[stable(feature = "rust1", since = "1.0.0")]
1406 impl<T: ?Sized + fmt::Debug> fmt::Debug for Rc<T> {
1407 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1408 fmt::Debug::fmt(&**self, f)
1409 }
1410 }
1411
1412 #[stable(feature = "rust1", since = "1.0.0")]
1413 impl<T: ?Sized> fmt::Pointer for Rc<T> {
1414 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1415 fmt::Pointer::fmt(&(&**self as *const T), f)
1416 }
1417 }
1418
1419 #[stable(feature = "from_for_ptrs", since = "1.6.0")]
1420 impl<T> From<T> for Rc<T> {
1421 fn from(t: T) -> Self {
1422 Rc::new(t)
1423 }
1424 }
1425
1426 #[stable(feature = "shared_from_slice", since = "1.21.0")]
1427 impl<T: Clone> From<&[T]> for Rc<[T]> {
1428 #[inline]
1429 fn from(v: &[T]) -> Rc<[T]> {
1430 <Self as RcFromSlice<T>>::from_slice(v)
1431 }
1432 }
1433
1434 #[stable(feature = "shared_from_slice", since = "1.21.0")]
1435 impl From<&str> for Rc<str> {
1436 #[inline]
1437 fn from(v: &str) -> Rc<str> {
1438 let rc = Rc::<[u8]>::from(v.as_bytes());
1439 unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) }
1440 }
1441 }
1442
1443 #[stable(feature = "shared_from_slice", since = "1.21.0")]
1444 impl From<String> for Rc<str> {
1445 #[inline]
1446 fn from(v: String) -> Rc<str> {
1447 Rc::from(&v[..])
1448 }
1449 }
1450
1451 #[stable(feature = "shared_from_slice", since = "1.21.0")]
1452 impl<T: ?Sized> From<Box<T>> for Rc<T> {
1453 #[inline]
1454 fn from(v: Box<T>) -> Rc<T> {
1455 Rc::from_box(v)
1456 }
1457 }
1458
1459 #[stable(feature = "shared_from_slice", since = "1.21.0")]
1460 impl<T> From<Vec<T>> for Rc<[T]> {
1461 #[inline]
1462 fn from(mut v: Vec<T>) -> Rc<[T]> {
1463 unsafe {
1464 let rc = Rc::copy_from_slice(&v);
1465
1466 // Allow the Vec to free its memory, but not destroy its contents
1467 v.set_len(0);
1468
1469 rc
1470 }
1471 }
1472 }
1473
1474 #[unstable(feature = "boxed_slice_try_from", issue = "0")]
1475 impl<T, const N: usize> TryFrom<Rc<[T]>> for Rc<[T; N]>
1476 where
1477 [T; N]: LengthAtMost32,
1478 {
1479 type Error = Rc<[T]>;
1480
1481 fn try_from(boxed_slice: Rc<[T]>) -> Result<Self, Self::Error> {
1482 if boxed_slice.len() == N {
1483 Ok(unsafe { Rc::from_raw(Rc::into_raw(boxed_slice) as *mut [T; N]) })
1484 } else {
1485 Err(boxed_slice)
1486 }
1487 }
1488 }
1489
1490 #[stable(feature = "shared_from_iter", since = "1.37.0")]
1491 impl<T> iter::FromIterator<T> for Rc<[T]> {
1492 /// Takes each element in the `Iterator` and collects it into an `Rc<[T]>`.
1493 ///
1494 /// # Performance characteristics
1495 ///
1496 /// ## The general case
1497 ///
1498 /// In the general case, collecting into `Rc<[T]>` is done by first
1499 /// collecting into a `Vec<T>`. That is, when writing the following:
1500 ///
1501 /// ```rust
1502 /// # use std::rc::Rc;
1503 /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
1504 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
1505 /// ```
1506 ///
1507 /// this behaves as if we wrote:
1508 ///
1509 /// ```rust
1510 /// # use std::rc::Rc;
1511 /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
1512 /// .collect::<Vec<_>>() // The first set of allocations happens here.
1513 /// .into(); // A second allocation for `Rc<[T]>` happens here.
1514 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
1515 /// ```
1516 ///
1517 /// This will allocate as many times as needed for constructing the `Vec<T>`
1518 /// and then it will allocate once for turning the `Vec<T>` into the `Rc<[T]>`.
1519 ///
1520 /// ## Iterators of known length
1521 ///
1522 /// When your `Iterator` implements `TrustedLen` and is of an exact size,
1523 /// a single allocation will be made for the `Rc<[T]>`. For example:
1524 ///
1525 /// ```rust
1526 /// # use std::rc::Rc;
1527 /// let evens: Rc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
1528 /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
1529 /// ```
1530 fn from_iter<I: iter::IntoIterator<Item = T>>(iter: I) -> Self {
1531 RcFromIter::from_iter(iter.into_iter())
1532 }
1533 }
1534
1535 /// Specialization trait used for collecting into `Rc<[T]>`.
1536 trait RcFromIter<T, I> {
1537 fn from_iter(iter: I) -> Self;
1538 }
1539
1540 impl<T, I: Iterator<Item = T>> RcFromIter<T, I> for Rc<[T]> {
1541 default fn from_iter(iter: I) -> Self {
1542 iter.collect::<Vec<T>>().into()
1543 }
1544 }
1545
1546 impl<T, I: iter::TrustedLen<Item = T>> RcFromIter<T, I> for Rc<[T]> {
1547 default fn from_iter(iter: I) -> Self {
1548 // This is the case for a `TrustedLen` iterator.
1549 let (low, high) = iter.size_hint();
1550 if let Some(high) = high {
1551 debug_assert_eq!(
1552 low, high,
1553 "TrustedLen iterator's size hint is not exact: {:?}",
1554 (low, high)
1555 );
1556
1557 unsafe {
1558 // SAFETY: We need to ensure that the iterator has an exact length and we have.
1559 Rc::from_iter_exact(iter, low)
1560 }
1561 } else {
1562 // Fall back to normal implementation.
1563 iter.collect::<Vec<T>>().into()
1564 }
1565 }
1566 }
1567
1568 impl<'a, T: 'a + Clone> RcFromIter<&'a T, slice::Iter<'a, T>> for Rc<[T]> {
1569 fn from_iter(iter: slice::Iter<'a, T>) -> Self {
1570 // Delegate to `impl<T: Clone> From<&[T]> for Rc<[T]>`.
1571 //
1572 // In the case that `T: Copy`, we get to use `ptr::copy_nonoverlapping`
1573 // which is even more performant.
1574 //
1575 // In the fall-back case we have `T: Clone`. This is still better
1576 // than the `TrustedLen` implementation as slices have a known length
1577 // and so we get to avoid calling `size_hint` and avoid the branching.
1578 iter.as_slice().into()
1579 }
1580 }
1581
1582 /// `Weak` is a version of [`Rc`] that holds a non-owning reference to the
1583 /// managed allocation. The allocation is accessed by calling [`upgrade`] on the `Weak`
1584 /// pointer, which returns an [`Option`]`<`[`Rc`]`<T>>`.
1585 ///
1586 /// Since a `Weak` reference does not count towards ownership, it will not
1587 /// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
1588 /// guarantees about the value still being present. Thus it may return [`None`]
1589 /// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
1590 /// itself (the backing store) from being deallocated.
1591 ///
1592 /// A `Weak` pointer is useful for keeping a temporary reference to the allocation
1593 /// managed by [`Rc`] without preventing its inner value from being dropped. It is also used to
1594 /// prevent circular references between [`Rc`] pointers, since mutual owning references
1595 /// would never allow either [`Rc`] to be dropped. For example, a tree could
1596 /// have strong [`Rc`] pointers from parent nodes to children, and `Weak`
1597 /// pointers from children back to their parents.
1598 ///
1599 /// The typical way to obtain a `Weak` pointer is to call [`Rc::downgrade`].
1600 ///
1601 /// [`Rc`]: struct.Rc.html
1602 /// [`Rc::downgrade`]: struct.Rc.html#method.downgrade
1603 /// [`upgrade`]: struct.Weak.html#method.upgrade
1604 /// [`Option`]: ../../std/option/enum.Option.html
1605 /// [`None`]: ../../std/option/enum.Option.html#variant.None
1606 #[stable(feature = "rc_weak", since = "1.4.0")]
1607 pub struct Weak<T: ?Sized> {
1608 // This is a `NonNull` to allow optimizing the size of this type in enums,
1609 // but it is not necessarily a valid pointer.
1610 // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
1611 // to allocate space on the heap. That's not a value a real pointer
1612 // will ever have because RcBox has alignment at least 2.
1613 ptr: NonNull<RcBox<T>>,
1614 }
1615
1616 #[stable(feature = "rc_weak", since = "1.4.0")]
1617 impl<T: ?Sized> !marker::Send for Weak<T> {}
1618 #[stable(feature = "rc_weak", since = "1.4.0")]
1619 impl<T: ?Sized> !marker::Sync for Weak<T> {}
1620
1621 #[unstable(feature = "coerce_unsized", issue = "27732")]
1622 impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Weak<U>> for Weak<T> {}
1623
1624 #[unstable(feature = "dispatch_from_dyn", issue = "0")]
1625 impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
1626
1627 impl<T> Weak<T> {
1628 /// Constructs a new `Weak<T>`, without allocating any memory.
1629 /// Calling [`upgrade`] on the return value always gives [`None`].
1630 ///
1631 /// [`upgrade`]: #method.upgrade
1632 /// [`None`]: ../../std/option/enum.Option.html
1633 ///
1634 /// # Examples
1635 ///
1636 /// ```
1637 /// use std::rc::Weak;
1638 ///
1639 /// let empty: Weak<i64> = Weak::new();
1640 /// assert!(empty.upgrade().is_none());
1641 /// ```
1642 #[stable(feature = "downgraded_weak", since = "1.10.0")]
1643 pub fn new() -> Weak<T> {
1644 Weak {
1645 ptr: NonNull::new(usize::MAX as *mut RcBox<T>).expect("MAX is not 0"),
1646 }
1647 }
1648
1649 /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
1650 ///
1651 /// The pointer is valid only if there are some strong references. The pointer may be dangling
1652 /// or even [`null`] otherwise.
1653 ///
1654 /// # Examples
1655 ///
1656 /// ```
1657 /// #![feature(weak_into_raw)]
1658 ///
1659 /// use std::rc::Rc;
1660 /// use std::ptr;
1661 ///
1662 /// let strong = Rc::new("hello".to_owned());
1663 /// let weak = Rc::downgrade(&strong);
1664 /// // Both point to the same object
1665 /// assert!(ptr::eq(&*strong, weak.as_raw()));
1666 /// // The strong here keeps it alive, so we can still access the object.
1667 /// assert_eq!("hello", unsafe { &*weak.as_raw() });
1668 ///
1669 /// drop(strong);
1670 /// // But not any more. We can do weak.as_raw(), but accessing the pointer would lead to
1671 /// // undefined behaviour.
1672 /// // assert_eq!("hello", unsafe { &*weak.as_raw() });
1673 /// ```
1674 ///
1675 /// [`null`]: ../../std/ptr/fn.null.html
1676 #[unstable(feature = "weak_into_raw", issue = "60728")]
1677 pub fn as_raw(&self) -> *const T {
1678 match self.inner() {
1679 None => ptr::null(),
1680 Some(inner) => {
1681 let offset = data_offset_sized::<T>();
1682 let ptr = inner as *const RcBox<T>;
1683 // Note: while the pointer we create may already point to dropped value, the
1684 // allocation still lives (it must hold the weak point as long as we are alive).
1685 // Therefore, the offset is OK to do, it won't get out of the allocation.
1686 let ptr = unsafe { (ptr as *const u8).offset(offset) };
1687 ptr as *const T
1688 }
1689 }
1690 }
1691
1692 /// Consumes the `Weak<T>` and turns it into a raw pointer.
1693 ///
1694 /// This converts the weak pointer into a raw pointer, preserving the original weak count. It
1695 /// can be turned back into the `Weak<T>` with [`from_raw`].
1696 ///
1697 /// The same restrictions of accessing the target of the pointer as with
1698 /// [`as_raw`] apply.
1699 ///
1700 /// # Examples
1701 ///
1702 /// ```
1703 /// #![feature(weak_into_raw)]
1704 ///
1705 /// use std::rc::{Rc, Weak};
1706 ///
1707 /// let strong = Rc::new("hello".to_owned());
1708 /// let weak = Rc::downgrade(&strong);
1709 /// let raw = weak.into_raw();
1710 ///
1711 /// assert_eq!(1, Rc::weak_count(&strong));
1712 /// assert_eq!("hello", unsafe { &*raw });
1713 ///
1714 /// drop(unsafe { Weak::from_raw(raw) });
1715 /// assert_eq!(0, Rc::weak_count(&strong));
1716 /// ```
1717 ///
1718 /// [`from_raw`]: struct.Weak.html#method.from_raw
1719 /// [`as_raw`]: struct.Weak.html#method.as_raw
1720 #[unstable(feature = "weak_into_raw", issue = "60728")]
1721 pub fn into_raw(self) -> *const T {
1722 let result = self.as_raw();
1723 mem::forget(self);
1724 result
1725 }
1726
1727 /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
1728 ///
1729 /// This can be used to safely get a strong reference (by calling [`upgrade`]
1730 /// later) or to deallocate the weak count by dropping the `Weak<T>`.
1731 ///
1732 /// It takes ownership of one weak count (with the exception of pointers created by [`new`],
1733 /// as these don't have any corresponding weak count).
1734 ///
1735 /// # Safety
1736 ///
1737 /// The pointer must have originated from the [`into_raw`] (or [`as_raw`], provided there was
1738 /// a corresponding [`forget`] on the `Weak<T>`) and must still own its potential weak reference
1739 /// count.
1740 ///
1741 /// It is allowed for the strong count to be 0 at the time of calling this, but the weak count
1742 /// must be non-zero or the pointer must have originated from a dangling `Weak<T>` (one created
1743 /// by [`new`]).
1744 ///
1745 /// # Examples
1746 ///
1747 /// ```
1748 /// #![feature(weak_into_raw)]
1749 ///
1750 /// use std::rc::{Rc, Weak};
1751 ///
1752 /// let strong = Rc::new("hello".to_owned());
1753 ///
1754 /// let raw_1 = Rc::downgrade(&strong).into_raw();
1755 /// let raw_2 = Rc::downgrade(&strong).into_raw();
1756 ///
1757 /// assert_eq!(2, Rc::weak_count(&strong));
1758 ///
1759 /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
1760 /// assert_eq!(1, Rc::weak_count(&strong));
1761 ///
1762 /// drop(strong);
1763 ///
1764 /// // Decrement the last weak count.
1765 /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
1766 /// ```
1767 ///
1768 /// [`into_raw`]: struct.Weak.html#method.into_raw
1769 /// [`upgrade`]: struct.Weak.html#method.upgrade
1770 /// [`Rc`]: struct.Rc.html
1771 /// [`Weak`]: struct.Weak.html
1772 /// [`as_raw`]: struct.Weak.html#method.as_raw
1773 /// [`new`]: struct.Weak.html#method.new
1774 /// [`forget`]: ../../std/mem/fn.forget.html
1775 #[unstable(feature = "weak_into_raw", issue = "60728")]
1776 pub unsafe fn from_raw(ptr: *const T) -> Self {
1777 if ptr.is_null() {
1778 Self::new()
1779 } else {
1780 // See Rc::from_raw for details
1781 let offset = data_offset(ptr);
1782 let fake_ptr = ptr as *mut RcBox<T>;
1783 let ptr = set_data_ptr(fake_ptr, (ptr as *mut u8).offset(-offset));
1784 Weak {
1785 ptr: NonNull::new(ptr).expect("Invalid pointer passed to from_raw"),
1786 }
1787 }
1788 }
1789 }
1790
1791 pub(crate) fn is_dangling<T: ?Sized>(ptr: NonNull<T>) -> bool {
1792 let address = ptr.as_ptr() as *mut () as usize;
1793 address == usize::MAX
1794 }
1795
1796 impl<T: ?Sized> Weak<T> {
1797 /// Attempts to upgrade the `Weak` pointer to an [`Rc`], delaying
1798 /// dropping of the inner value if successful.
1799 ///
1800 /// Returns [`None`] if the inner value has since been dropped.
1801 ///
1802 /// [`Rc`]: struct.Rc.html
1803 /// [`None`]: ../../std/option/enum.Option.html
1804 ///
1805 /// # Examples
1806 ///
1807 /// ```
1808 /// use std::rc::Rc;
1809 ///
1810 /// let five = Rc::new(5);
1811 ///
1812 /// let weak_five = Rc::downgrade(&five);
1813 ///
1814 /// let strong_five: Option<Rc<_>> = weak_five.upgrade();
1815 /// assert!(strong_five.is_some());
1816 ///
1817 /// // Destroy all strong pointers.
1818 /// drop(strong_five);
1819 /// drop(five);
1820 ///
1821 /// assert!(weak_five.upgrade().is_none());
1822 /// ```
1823 #[stable(feature = "rc_weak", since = "1.4.0")]
1824 pub fn upgrade(&self) -> Option<Rc<T>> {
1825 let inner = self.inner()?;
1826 if inner.strong() == 0 {
1827 None
1828 } else {
1829 inner.inc_strong();
1830 Some(Rc::from_inner(self.ptr))
1831 }
1832 }
1833
1834 /// Gets the number of strong (`Rc`) pointers pointing to this allocation.
1835 ///
1836 /// If `self` was created using [`Weak::new`], this will return 0.
1837 ///
1838 /// [`Weak::new`]: #method.new
1839 #[stable(feature = "weak_counts", since = "1.41.0")]
1840 pub fn strong_count(&self) -> usize {
1841 if let Some(inner) = self.inner() {
1842 inner.strong()
1843 } else {
1844 0
1845 }
1846 }
1847
1848 /// Gets the number of `Weak` pointers pointing to this allocation.
1849 ///
1850 /// If no strong pointers remain, this will return zero.
1851 #[stable(feature = "weak_counts", since = "1.41.0")]
1852 pub fn weak_count(&self) -> usize {
1853 self.inner().map(|inner| {
1854 if inner.strong() > 0 {
1855 inner.weak() - 1 // subtract the implicit weak ptr
1856 } else {
1857 0
1858 }
1859 }).unwrap_or(0)
1860 }
1861
1862 /// Returns `None` when the pointer is dangling and there is no allocated `RcBox`
1863 /// (i.e., when this `Weak` was created by `Weak::new`).
1864 #[inline]
1865 fn inner(&self) -> Option<&RcBox<T>> {
1866 if is_dangling(self.ptr) {
1867 None
1868 } else {
1869 Some(unsafe { self.ptr.as_ref() })
1870 }
1871 }
1872
1873 /// Returns `true` if the two `Weak`s point to the same allocation (similar to
1874 /// [`ptr::eq`]), or if both don't point to any allocation
1875 /// (because they were created with `Weak::new()`).
1876 ///
1877 /// # Notes
1878 ///
1879 /// Since this compares pointers it means that `Weak::new()` will equal each
1880 /// other, even though they don't point to any allocation.
1881 ///
1882 /// # Examples
1883 ///
1884 /// ```
1885 /// use std::rc::Rc;
1886 ///
1887 /// let first_rc = Rc::new(5);
1888 /// let first = Rc::downgrade(&first_rc);
1889 /// let second = Rc::downgrade(&first_rc);
1890 ///
1891 /// assert!(first.ptr_eq(&second));
1892 ///
1893 /// let third_rc = Rc::new(5);
1894 /// let third = Rc::downgrade(&third_rc);
1895 ///
1896 /// assert!(!first.ptr_eq(&third));
1897 /// ```
1898 ///
1899 /// Comparing `Weak::new`.
1900 ///
1901 /// ```
1902 /// use std::rc::{Rc, Weak};
1903 ///
1904 /// let first = Weak::new();
1905 /// let second = Weak::new();
1906 /// assert!(first.ptr_eq(&second));
1907 ///
1908 /// let third_rc = Rc::new(());
1909 /// let third = Rc::downgrade(&third_rc);
1910 /// assert!(!first.ptr_eq(&third));
1911 /// ```
1912 ///
1913 /// [`ptr::eq`]: ../../std/ptr/fn.eq.html
1914 #[inline]
1915 #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
1916 pub fn ptr_eq(&self, other: &Self) -> bool {
1917 self.ptr.as_ptr() == other.ptr.as_ptr()
1918 }
1919 }
1920
1921 #[stable(feature = "rc_weak", since = "1.4.0")]
1922 impl<T: ?Sized> Drop for Weak<T> {
1923 /// Drops the `Weak` pointer.
1924 ///
1925 /// # Examples
1926 ///
1927 /// ```
1928 /// use std::rc::{Rc, Weak};
1929 ///
1930 /// struct Foo;
1931 ///
1932 /// impl Drop for Foo {
1933 /// fn drop(&mut self) {
1934 /// println!("dropped!");
1935 /// }
1936 /// }
1937 ///
1938 /// let foo = Rc::new(Foo);
1939 /// let weak_foo = Rc::downgrade(&foo);
1940 /// let other_weak_foo = Weak::clone(&weak_foo);
1941 ///
1942 /// drop(weak_foo); // Doesn't print anything
1943 /// drop(foo); // Prints "dropped!"
1944 ///
1945 /// assert!(other_weak_foo.upgrade().is_none());
1946 /// ```
1947 fn drop(&mut self) {
1948 if let Some(inner) = self.inner() {
1949 inner.dec_weak();
1950 // the weak count starts at 1, and will only go to zero if all
1951 // the strong pointers have disappeared.
1952 if inner.weak() == 0 {
1953 unsafe {
1954 Global.dealloc(self.ptr.cast(), Layout::for_value(self.ptr.as_ref()));
1955 }
1956 }
1957 }
1958 }
1959 }
1960
1961 #[stable(feature = "rc_weak", since = "1.4.0")]
1962 impl<T: ?Sized> Clone for Weak<T> {
1963 /// Makes a clone of the `Weak` pointer that points to the same allocation.
1964 ///
1965 /// # Examples
1966 ///
1967 /// ```
1968 /// use std::rc::{Rc, Weak};
1969 ///
1970 /// let weak_five = Rc::downgrade(&Rc::new(5));
1971 ///
1972 /// let _ = Weak::clone(&weak_five);
1973 /// ```
1974 #[inline]
1975 fn clone(&self) -> Weak<T> {
1976 if let Some(inner) = self.inner() {
1977 inner.inc_weak()
1978 }
1979 Weak { ptr: self.ptr }
1980 }
1981 }
1982
1983 #[stable(feature = "rc_weak", since = "1.4.0")]
1984 impl<T: ?Sized + fmt::Debug> fmt::Debug for Weak<T> {
1985 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1986 write!(f, "(Weak)")
1987 }
1988 }
1989
1990 #[stable(feature = "downgraded_weak", since = "1.10.0")]
1991 impl<T> Default for Weak<T> {
1992 /// Constructs a new `Weak<T>`, allocating memory for `T` without initializing
1993 /// it. Calling [`upgrade`] on the return value always gives [`None`].
1994 ///
1995 /// [`None`]: ../../std/option/enum.Option.html
1996 /// [`upgrade`]: ../../std/rc/struct.Weak.html#method.upgrade
1997 ///
1998 /// # Examples
1999 ///
2000 /// ```
2001 /// use std::rc::Weak;
2002 ///
2003 /// let empty: Weak<i64> = Default::default();
2004 /// assert!(empty.upgrade().is_none());
2005 /// ```
2006 fn default() -> Weak<T> {
2007 Weak::new()
2008 }
2009 }
2010
2011 // NOTE: We checked_add here to deal with mem::forget safely. In particular
2012 // if you mem::forget Rcs (or Weaks), the ref-count can overflow, and then
2013 // you can free the allocation while outstanding Rcs (or Weaks) exist.
2014 // We abort because this is such a degenerate scenario that we don't care about
2015 // what happens -- no real program should ever experience this.
2016 //
2017 // This should have negligible overhead since you don't actually need to
2018 // clone these much in Rust thanks to ownership and move-semantics.
2019
2020 #[doc(hidden)]
2021 trait RcBoxPtr<T: ?Sized> {
2022 fn inner(&self) -> &RcBox<T>;
2023
2024 #[inline]
2025 fn strong(&self) -> usize {
2026 self.inner().strong.get()
2027 }
2028
2029 #[inline]
2030 fn inc_strong(&self) {
2031 let strong = self.strong();
2032
2033 // We want to abort on overflow instead of dropping the value.
2034 // The reference count will never be zero when this is called;
2035 // nevertheless, we insert an abort here to hint LLVM at
2036 // an otherwise missed optimization.
2037 if strong == 0 || strong == usize::max_value() {
2038 unsafe { abort(); }
2039 }
2040 self.inner().strong.set(strong + 1);
2041 }
2042
2043 #[inline]
2044 fn dec_strong(&self) {
2045 self.inner().strong.set(self.strong() - 1);
2046 }
2047
2048 #[inline]
2049 fn weak(&self) -> usize {
2050 self.inner().weak.get()
2051 }
2052
2053 #[inline]
2054 fn inc_weak(&self) {
2055 let weak = self.weak();
2056
2057 // We want to abort on overflow instead of dropping the value.
2058 // The reference count will never be zero when this is called;
2059 // nevertheless, we insert an abort here to hint LLVM at
2060 // an otherwise missed optimization.
2061 if weak == 0 || weak == usize::max_value() {
2062 unsafe { abort(); }
2063 }
2064 self.inner().weak.set(weak + 1);
2065 }
2066
2067 #[inline]
2068 fn dec_weak(&self) {
2069 self.inner().weak.set(self.weak() - 1);
2070 }
2071 }
2072
2073 impl<T: ?Sized> RcBoxPtr<T> for Rc<T> {
2074 #[inline(always)]
2075 fn inner(&self) -> &RcBox<T> {
2076 unsafe {
2077 self.ptr.as_ref()
2078 }
2079 }
2080 }
2081
2082 impl<T: ?Sized> RcBoxPtr<T> for RcBox<T> {
2083 #[inline(always)]
2084 fn inner(&self) -> &RcBox<T> {
2085 self
2086 }
2087 }
2088
2089 #[stable(feature = "rust1", since = "1.0.0")]
2090 impl<T: ?Sized> borrow::Borrow<T> for Rc<T> {
2091 fn borrow(&self) -> &T {
2092 &**self
2093 }
2094 }
2095
2096 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2097 impl<T: ?Sized> AsRef<T> for Rc<T> {
2098 fn as_ref(&self) -> &T {
2099 &**self
2100 }
2101 }
2102
2103 #[stable(feature = "pin", since = "1.33.0")]
2104 impl<T: ?Sized> Unpin for Rc<T> { }
2105
2106 unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> isize {
2107 // Align the unsized value to the end of the `RcBox`.
2108 // Because it is ?Sized, it will always be the last field in memory.
2109 data_offset_align(align_of_val(&*ptr))
2110 }
2111
2112 /// Computes the offset of the data field within `RcBox`.
2113 ///
2114 /// Unlike [`data_offset`], this doesn't need the pointer, but it works only on `T: Sized`.
2115 fn data_offset_sized<T>() -> isize {
2116 data_offset_align(align_of::<T>())
2117 }
2118
2119 #[inline]
2120 fn data_offset_align(align: usize) -> isize {
2121 let layout = Layout::new::<RcBox<()>>();
2122 (layout.size() + layout.padding_needed_for(align)) as isize
2123 }