]> git.proxmox.com Git - rustc.git/blob - src/liballoc/slice.rs
New upstream version 1.38.0+dfsg1
[rustc.git] / src / liballoc / slice.rs
1 //! A dynamically-sized view into a contiguous sequence, `[T]`.
2 //!
3 //! *[See also the slice primitive type](../../std/primitive.slice.html).*
4 //!
5 //! Slices are a view into a block of memory represented as a pointer and a
6 //! length.
7 //!
8 //! ```
9 //! // slicing a Vec
10 //! let vec = vec![1, 2, 3];
11 //! let int_slice = &vec[..];
12 //! // coercing an array to a slice
13 //! let str_slice: &[&str] = &["one", "two", "three"];
14 //! ```
15 //!
16 //! Slices are either mutable or shared. The shared slice type is `&[T]`,
17 //! while the mutable slice type is `&mut [T]`, where `T` represents the element
18 //! type. For example, you can mutate the block of memory that a mutable slice
19 //! points to:
20 //!
21 //! ```
22 //! let x = &mut [1, 2, 3];
23 //! x[1] = 7;
24 //! assert_eq!(x, &[1, 7, 3]);
25 //! ```
26 //!
27 //! Here are some of the things this module contains:
28 //!
29 //! ## Structs
30 //!
31 //! There are several structs that are useful for slices, such as [`Iter`], which
32 //! represents iteration over a slice.
33 //!
34 //! ## Trait Implementations
35 //!
36 //! There are several implementations of common traits for slices. Some examples
37 //! include:
38 //!
39 //! * [`Clone`]
40 //! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`].
41 //! * [`Hash`] - for slices whose element type is [`Hash`].
42 //!
43 //! ## Iteration
44 //!
45 //! The slices implement `IntoIterator`. The iterator yields references to the
46 //! slice elements.
47 //!
48 //! ```
49 //! let numbers = &[0, 1, 2];
50 //! for n in numbers {
51 //! println!("{} is a number!", n);
52 //! }
53 //! ```
54 //!
55 //! The mutable slice yields mutable references to the elements:
56 //!
57 //! ```
58 //! let mut scores = [7, 8, 9];
59 //! for score in &mut scores[..] {
60 //! *score += 1;
61 //! }
62 //! ```
63 //!
64 //! This iterator yields mutable references to the slice's elements, so while
65 //! the element type of the slice is `i32`, the element type of the iterator is
66 //! `&mut i32`.
67 //!
68 //! * [`.iter`] and [`.iter_mut`] are the explicit methods to return the default
69 //! iterators.
70 //! * Further methods that return iterators are [`.split`], [`.splitn`],
71 //! [`.chunks`], [`.windows`] and more.
72 //!
73 //! [`Clone`]: ../../std/clone/trait.Clone.html
74 //! [`Eq`]: ../../std/cmp/trait.Eq.html
75 //! [`Ord`]: ../../std/cmp/trait.Ord.html
76 //! [`Iter`]: struct.Iter.html
77 //! [`Hash`]: ../../std/hash/trait.Hash.html
78 //! [`.iter`]: ../../std/primitive.slice.html#method.iter
79 //! [`.iter_mut`]: ../../std/primitive.slice.html#method.iter_mut
80 //! [`.split`]: ../../std/primitive.slice.html#method.split
81 //! [`.splitn`]: ../../std/primitive.slice.html#method.splitn
82 //! [`.chunks`]: ../../std/primitive.slice.html#method.chunks
83 //! [`.windows`]: ../../std/primitive.slice.html#method.windows
84 #![stable(feature = "rust1", since = "1.0.0")]
85
86 // Many of the usings in this module are only used in the test configuration.
87 // It's cleaner to just turn off the unused_imports warning than to fix them.
88 #![cfg_attr(test, allow(unused_imports, dead_code))]
89
90 use core::borrow::{Borrow, BorrowMut};
91 use core::cmp::Ordering::{self, Less};
92 use core::mem::{self, size_of};
93 use core::ptr;
94 use core::{u8, u16, u32};
95
96 use crate::borrow::ToOwned;
97 use crate::boxed::Box;
98 use crate::vec::Vec;
99
100 #[stable(feature = "rust1", since = "1.0.0")]
101 pub use core::slice::{Chunks, Windows};
102 #[stable(feature = "rust1", since = "1.0.0")]
103 pub use core::slice::{Iter, IterMut};
104 #[stable(feature = "rust1", since = "1.0.0")]
105 pub use core::slice::{SplitMut, ChunksMut, Split};
106 #[stable(feature = "rust1", since = "1.0.0")]
107 pub use core::slice::{SplitN, RSplitN, SplitNMut, RSplitNMut};
108 #[stable(feature = "slice_rsplit", since = "1.27.0")]
109 pub use core::slice::{RSplit, RSplitMut};
110 #[stable(feature = "rust1", since = "1.0.0")]
111 pub use core::slice::{from_raw_parts, from_raw_parts_mut};
112 #[stable(feature = "from_ref", since = "1.28.0")]
113 pub use core::slice::{from_ref, from_mut};
114 #[stable(feature = "slice_get_slice", since = "1.28.0")]
115 pub use core::slice::SliceIndex;
116 #[stable(feature = "chunks_exact", since = "1.31.0")]
117 pub use core::slice::{ChunksExact, ChunksExactMut};
118 #[stable(feature = "rchunks", since = "1.31.0")]
119 pub use core::slice::{RChunks, RChunksMut, RChunksExact, RChunksExactMut};
120
121 ////////////////////////////////////////////////////////////////////////////////
122 // Basic slice extension methods
123 ////////////////////////////////////////////////////////////////////////////////
124
125 // HACK(japaric) needed for the implementation of `vec!` macro during testing
126 // N.B., see the `hack` module in this file for more details.
127 #[cfg(test)]
128 pub use hack::into_vec;
129
130 // HACK(japaric) needed for the implementation of `Vec::clone` during testing
131 // N.B., see the `hack` module in this file for more details.
132 #[cfg(test)]
133 pub use hack::to_vec;
134
135 // HACK(japaric): With cfg(test) `impl [T]` is not available, these three
136 // functions are actually methods that are in `impl [T]` but not in
137 // `core::slice::SliceExt` - we need to supply these functions for the
138 // `test_permutations` test
139 mod hack {
140 use crate::boxed::Box;
141 use crate::vec::Vec;
142 #[cfg(test)]
143 use crate::string::ToString;
144
145 pub fn into_vec<T>(b: Box<[T]>) -> Vec<T> {
146 unsafe {
147 let len = b.len();
148 let b = Box::into_raw(b);
149 let xs = Vec::from_raw_parts(b as *mut T, len, len);
150 xs
151 }
152 }
153
154 #[inline]
155 pub fn to_vec<T>(s: &[T]) -> Vec<T>
156 where T: Clone
157 {
158 let mut vector = Vec::with_capacity(s.len());
159 vector.extend_from_slice(s);
160 vector
161 }
162 }
163
164 #[lang = "slice_alloc"]
165 #[cfg(not(test))]
166 impl<T> [T] {
167 /// Sorts the slice.
168 ///
169 /// This sort is stable (i.e., does not reorder equal elements) and `O(n log n)` worst-case.
170 ///
171 /// When applicable, unstable sorting is preferred because it is generally faster than stable
172 /// sorting and it doesn't allocate auxiliary memory.
173 /// See [`sort_unstable`](#method.sort_unstable).
174 ///
175 /// # Current implementation
176 ///
177 /// The current algorithm is an adaptive, iterative merge sort inspired by
178 /// [timsort](https://en.wikipedia.org/wiki/Timsort).
179 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
180 /// two or more sorted sequences concatenated one after another.
181 ///
182 /// Also, it allocates temporary storage half the size of `self`, but for short slices a
183 /// non-allocating insertion sort is used instead.
184 ///
185 /// # Examples
186 ///
187 /// ```
188 /// let mut v = [-5, 4, 1, -3, 2];
189 ///
190 /// v.sort();
191 /// assert!(v == [-5, -3, 1, 2, 4]);
192 /// ```
193 #[stable(feature = "rust1", since = "1.0.0")]
194 #[inline]
195 pub fn sort(&mut self)
196 where T: Ord
197 {
198 merge_sort(self, |a, b| a.lt(b));
199 }
200
201 /// Sorts the slice with a comparator function.
202 ///
203 /// This sort is stable (i.e., does not reorder equal elements) and `O(n log n)` worst-case.
204 ///
205 /// The comparator function must define a total ordering for the elements in the slice. If
206 /// the ordering is not total, the order of the elements is unspecified. An order is a
207 /// total order if it is (for all `a`, `b` and `c`):
208 ///
209 /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
210 /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
211 ///
212 /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
213 /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
214 ///
215 /// ```
216 /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
217 /// floats.sort_by(|a, b| a.partial_cmp(b).unwrap());
218 /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
219 /// ```
220 ///
221 /// When applicable, unstable sorting is preferred because it is generally faster than stable
222 /// sorting and it doesn't allocate auxiliary memory.
223 /// See [`sort_unstable_by`](#method.sort_unstable_by).
224 ///
225 /// # Current implementation
226 ///
227 /// The current algorithm is an adaptive, iterative merge sort inspired by
228 /// [timsort](https://en.wikipedia.org/wiki/Timsort).
229 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
230 /// two or more sorted sequences concatenated one after another.
231 ///
232 /// Also, it allocates temporary storage half the size of `self`, but for short slices a
233 /// non-allocating insertion sort is used instead.
234 ///
235 /// # Examples
236 ///
237 /// ```
238 /// let mut v = [5, 4, 1, 3, 2];
239 /// v.sort_by(|a, b| a.cmp(b));
240 /// assert!(v == [1, 2, 3, 4, 5]);
241 ///
242 /// // reverse sorting
243 /// v.sort_by(|a, b| b.cmp(a));
244 /// assert!(v == [5, 4, 3, 2, 1]);
245 /// ```
246 #[stable(feature = "rust1", since = "1.0.0")]
247 #[inline]
248 pub fn sort_by<F>(&mut self, mut compare: F)
249 where F: FnMut(&T, &T) -> Ordering
250 {
251 merge_sort(self, |a, b| compare(a, b) == Less);
252 }
253
254 /// Sorts the slice with a key extraction function.
255 ///
256 /// This sort is stable (i.e., does not reorder equal elements) and `O(m n log(m n))`
257 /// worst-case, where the key function is `O(m)`.
258 ///
259 /// For expensive key functions (e.g. functions that are not simple property accesses or
260 /// basic operations), [`sort_by_cached_key`](#method.sort_by_cached_key) is likely to be
261 /// significantly faster, as it does not recompute element keys.
262 ///
263 /// When applicable, unstable sorting is preferred because it is generally faster than stable
264 /// sorting and it doesn't allocate auxiliary memory.
265 /// See [`sort_unstable_by_key`](#method.sort_unstable_by_key).
266 ///
267 /// # Current implementation
268 ///
269 /// The current algorithm is an adaptive, iterative merge sort inspired by
270 /// [timsort](https://en.wikipedia.org/wiki/Timsort).
271 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
272 /// two or more sorted sequences concatenated one after another.
273 ///
274 /// Also, it allocates temporary storage half the size of `self`, but for short slices a
275 /// non-allocating insertion sort is used instead.
276 ///
277 /// # Examples
278 ///
279 /// ```
280 /// let mut v = [-5i32, 4, 1, -3, 2];
281 ///
282 /// v.sort_by_key(|k| k.abs());
283 /// assert!(v == [1, 2, -3, 4, -5]);
284 /// ```
285 #[stable(feature = "slice_sort_by_key", since = "1.7.0")]
286 #[inline]
287 pub fn sort_by_key<K, F>(&mut self, mut f: F)
288 where F: FnMut(&T) -> K, K: Ord
289 {
290 merge_sort(self, |a, b| f(a).lt(&f(b)));
291 }
292
293 /// Sorts the slice with a key extraction function.
294 ///
295 /// During sorting, the key function is called only once per element.
296 ///
297 /// This sort is stable (i.e., does not reorder equal elements) and `O(m n + n log n)`
298 /// worst-case, where the key function is `O(m)`.
299 ///
300 /// For simple key functions (e.g., functions that are property accesses or
301 /// basic operations), [`sort_by_key`](#method.sort_by_key) is likely to be
302 /// faster.
303 ///
304 /// # Current implementation
305 ///
306 /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
307 /// which combines the fast average case of randomized quicksort with the fast worst case of
308 /// heapsort, while achieving linear time on slices with certain patterns. It uses some
309 /// randomization to avoid degenerate cases, but with a fixed seed to always provide
310 /// deterministic behavior.
311 ///
312 /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the
313 /// length of the slice.
314 ///
315 /// # Examples
316 ///
317 /// ```
318 /// let mut v = [-5i32, 4, 32, -3, 2];
319 ///
320 /// v.sort_by_cached_key(|k| k.to_string());
321 /// assert!(v == [-3, -5, 2, 32, 4]);
322 /// ```
323 ///
324 /// [pdqsort]: https://github.com/orlp/pdqsort
325 #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")]
326 #[inline]
327 pub fn sort_by_cached_key<K, F>(&mut self, f: F)
328 where F: FnMut(&T) -> K, K: Ord
329 {
330 // Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
331 macro_rules! sort_by_key {
332 ($t:ty, $slice:ident, $f:ident) => ({
333 let mut indices: Vec<_> =
334 $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect();
335 // The elements of `indices` are unique, as they are indexed, so any sort will be
336 // stable with respect to the original slice. We use `sort_unstable` here because
337 // it requires less memory allocation.
338 indices.sort_unstable();
339 for i in 0..$slice.len() {
340 let mut index = indices[i].1;
341 while (index as usize) < i {
342 index = indices[index as usize].1;
343 }
344 indices[i].1 = index;
345 $slice.swap(i, index as usize);
346 }
347 })
348 }
349
350 let sz_u8 = mem::size_of::<(K, u8)>();
351 let sz_u16 = mem::size_of::<(K, u16)>();
352 let sz_u32 = mem::size_of::<(K, u32)>();
353 let sz_usize = mem::size_of::<(K, usize)>();
354
355 let len = self.len();
356 if len < 2 { return }
357 if sz_u8 < sz_u16 && len <= ( u8::MAX as usize) { return sort_by_key!( u8, self, f) }
358 if sz_u16 < sz_u32 && len <= (u16::MAX as usize) { return sort_by_key!(u16, self, f) }
359 if sz_u32 < sz_usize && len <= (u32::MAX as usize) { return sort_by_key!(u32, self, f) }
360 sort_by_key!(usize, self, f)
361 }
362
363 /// Copies `self` into a new `Vec`.
364 ///
365 /// # Examples
366 ///
367 /// ```
368 /// let s = [10, 40, 30];
369 /// let x = s.to_vec();
370 /// // Here, `s` and `x` can be modified independently.
371 /// ```
372 #[rustc_conversion_suggestion]
373 #[stable(feature = "rust1", since = "1.0.0")]
374 #[inline]
375 pub fn to_vec(&self) -> Vec<T>
376 where T: Clone
377 {
378 // N.B., see the `hack` module in this file for more details.
379 hack::to_vec(self)
380 }
381
382 /// Converts `self` into a vector without clones or allocation.
383 ///
384 /// The resulting vector can be converted back into a box via
385 /// `Vec<T>`'s `into_boxed_slice` method.
386 ///
387 /// # Examples
388 ///
389 /// ```
390 /// let s: Box<[i32]> = Box::new([10, 40, 30]);
391 /// let x = s.into_vec();
392 /// // `s` cannot be used anymore because it has been converted into `x`.
393 ///
394 /// assert_eq!(x, vec![10, 40, 30]);
395 /// ```
396 #[stable(feature = "rust1", since = "1.0.0")]
397 #[inline]
398 pub fn into_vec(self: Box<Self>) -> Vec<T> {
399 // N.B., see the `hack` module in this file for more details.
400 hack::into_vec(self)
401 }
402
403 /// Creates a vector by repeating a slice `n` times.
404 ///
405 /// # Panics
406 ///
407 /// This function will panic if the capacity would overflow.
408 ///
409 /// # Examples
410 ///
411 /// Basic usage:
412 ///
413 /// ```
414 /// #![feature(repeat_generic_slice)]
415 ///
416 /// fn main() {
417 /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
418 /// }
419 /// ```
420 ///
421 /// A panic upon overflow:
422 ///
423 /// ```should_panic
424 /// #![feature(repeat_generic_slice)]
425 /// fn main() {
426 /// // this will panic at runtime
427 /// b"0123456789abcdef".repeat(usize::max_value());
428 /// }
429 /// ```
430 #[unstable(feature = "repeat_generic_slice",
431 reason = "it's on str, why not on slice?",
432 issue = "48784")]
433 pub fn repeat(&self, n: usize) -> Vec<T> where T: Copy {
434 if n == 0 {
435 return Vec::new();
436 }
437
438 // If `n` is larger than zero, it can be split as
439 // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
440 // `2^expn` is the number represented by the leftmost '1' bit of `n`,
441 // and `rem` is the remaining part of `n`.
442
443 // Using `Vec` to access `set_len()`.
444 let mut buf = Vec::with_capacity(self.len().checked_mul(n).expect("capacity overflow"));
445
446 // `2^expn` repetition is done by doubling `buf` `expn`-times.
447 buf.extend(self);
448 {
449 let mut m = n >> 1;
450 // If `m > 0`, there are remaining bits up to the leftmost '1'.
451 while m > 0 {
452 // `buf.extend(buf)`:
453 unsafe {
454 ptr::copy_nonoverlapping(
455 buf.as_ptr(),
456 (buf.as_mut_ptr() as *mut T).add(buf.len()),
457 buf.len(),
458 );
459 // `buf` has capacity of `self.len() * n`.
460 let buf_len = buf.len();
461 buf.set_len(buf_len * 2);
462 }
463
464 m >>= 1;
465 }
466 }
467
468 // `rem` (`= n - 2^expn`) repetition is done by copying
469 // first `rem` repetitions from `buf` itself.
470 let rem_len = self.len() * n - buf.len(); // `self.len() * rem`
471 if rem_len > 0 {
472 // `buf.extend(buf[0 .. rem_len])`:
473 unsafe {
474 // This is non-overlapping since `2^expn > rem`.
475 ptr::copy_nonoverlapping(
476 buf.as_ptr(),
477 (buf.as_mut_ptr() as *mut T).add(buf.len()),
478 rem_len,
479 );
480 // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
481 let buf_cap = buf.capacity();
482 buf.set_len(buf_cap);
483 }
484 }
485 buf
486 }
487
488 /// Flattens a slice of `T` into a single value `Self::Output`.
489 ///
490 /// # Examples
491 ///
492 /// ```
493 /// assert_eq!(["hello", "world"].concat(), "helloworld");
494 /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
495 /// ```
496 #[stable(feature = "rust1", since = "1.0.0")]
497 pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output
498 where Self: Concat<Item>
499 {
500 Concat::concat(self)
501 }
502
503 /// Flattens a slice of `T` into a single value `Self::Output`, placing a
504 /// given separator between each.
505 ///
506 /// # Examples
507 ///
508 /// ```
509 /// assert_eq!(["hello", "world"].join(" "), "hello world");
510 /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
511 /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
512 /// ```
513 #[stable(feature = "rename_connect_to_join", since = "1.3.0")]
514 pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
515 where Self: Join<Separator>
516 {
517 Join::join(self, sep)
518 }
519
520 /// Flattens a slice of `T` into a single value `Self::Output`, placing a
521 /// given separator between each.
522 ///
523 /// # Examples
524 ///
525 /// ```
526 /// # #![allow(deprecated)]
527 /// assert_eq!(["hello", "world"].connect(" "), "hello world");
528 /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
529 /// ```
530 #[stable(feature = "rust1", since = "1.0.0")]
531 #[rustc_deprecated(since = "1.3.0", reason = "renamed to join")]
532 pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
533 where Self: Join<Separator>
534 {
535 Join::join(self, sep)
536 }
537
538 }
539
540 #[lang = "slice_u8_alloc"]
541 #[cfg(not(test))]
542 impl [u8] {
543 /// Returns a vector containing a copy of this slice where each byte
544 /// is mapped to its ASCII upper case equivalent.
545 ///
546 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
547 /// but non-ASCII letters are unchanged.
548 ///
549 /// To uppercase the value in-place, use [`make_ascii_uppercase`].
550 ///
551 /// [`make_ascii_uppercase`]: #method.make_ascii_uppercase
552 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
553 #[inline]
554 pub fn to_ascii_uppercase(&self) -> Vec<u8> {
555 let mut me = self.to_vec();
556 me.make_ascii_uppercase();
557 me
558 }
559
560 /// Returns a vector containing a copy of this slice where each byte
561 /// is mapped to its ASCII lower case equivalent.
562 ///
563 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
564 /// but non-ASCII letters are unchanged.
565 ///
566 /// To lowercase the value in-place, use [`make_ascii_lowercase`].
567 ///
568 /// [`make_ascii_lowercase`]: #method.make_ascii_lowercase
569 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
570 #[inline]
571 pub fn to_ascii_lowercase(&self) -> Vec<u8> {
572 let mut me = self.to_vec();
573 me.make_ascii_lowercase();
574 me
575 }
576 }
577
578 ////////////////////////////////////////////////////////////////////////////////
579 // Extension traits for slices over specific kinds of data
580 ////////////////////////////////////////////////////////////////////////////////
581
582 /// Helper trait for [`[T]::concat`](../../std/primitive.slice.html#method.concat).
583 ///
584 /// Note: the `Item` type parameter is not used in this trait,
585 /// but it allows impls to be more generic.
586 /// Without it, we get this error:
587 ///
588 /// ```error
589 /// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica
590 /// --> src/liballoc/slice.rs:608:6
591 /// |
592 /// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] {
593 /// | ^ unconstrained type parameter
594 /// ```
595 ///
596 /// This is because there could exist `V` types with multiple `Borrow<[_]>` impls,
597 /// such that multiple `T` types would apply:
598 ///
599 /// ```
600 /// # #[allow(dead_code)]
601 /// pub struct Foo(Vec<u32>, Vec<String>);
602 ///
603 /// impl std::borrow::Borrow<[u32]> for Foo {
604 /// fn borrow(&self) -> &[u32] { &self.0 }
605 /// }
606 ///
607 /// impl std::borrow::Borrow<[String]> for Foo {
608 /// fn borrow(&self) -> &[String] { &self.1 }
609 /// }
610 /// ```
611 #[unstable(feature = "slice_concat_trait", issue = "27747")]
612 pub trait Concat<Item: ?Sized> {
613 #[unstable(feature = "slice_concat_trait", issue = "27747")]
614 /// The resulting type after concatenation
615 type Output;
616
617 /// Implementation of [`[T]::concat`](../../std/primitive.slice.html#method.concat)
618 #[unstable(feature = "slice_concat_trait", issue = "27747")]
619 fn concat(slice: &Self) -> Self::Output;
620 }
621
622 /// Helper trait for [`[T]::join`](../../std/primitive.slice.html#method.join)
623 #[unstable(feature = "slice_concat_trait", issue = "27747")]
624 pub trait Join<Separator> {
625 #[unstable(feature = "slice_concat_trait", issue = "27747")]
626 /// The resulting type after concatenation
627 type Output;
628
629 /// Implementation of [`[T]::join`](../../std/primitive.slice.html#method.join)
630 #[unstable(feature = "slice_concat_trait", issue = "27747")]
631 fn join(slice: &Self, sep: Separator) -> Self::Output;
632 }
633
634 #[unstable(feature = "slice_concat_ext", issue = "27747")]
635 impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] {
636 type Output = Vec<T>;
637
638 fn concat(slice: &Self) -> Vec<T> {
639 let size = slice.iter().map(|slice| slice.borrow().len()).sum();
640 let mut result = Vec::with_capacity(size);
641 for v in slice {
642 result.extend_from_slice(v.borrow())
643 }
644 result
645 }
646 }
647
648 #[unstable(feature = "slice_concat_ext", issue = "27747")]
649 impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] {
650 type Output = Vec<T>;
651
652 fn join(slice: &Self, sep: &T) -> Vec<T> {
653 let mut iter = slice.iter();
654 let first = match iter.next() {
655 Some(first) => first,
656 None => return vec![],
657 };
658 let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() + slice.len() - 1;
659 let mut result = Vec::with_capacity(size);
660 result.extend_from_slice(first.borrow());
661
662 for v in iter {
663 result.push(sep.clone());
664 result.extend_from_slice(v.borrow())
665 }
666 result
667 }
668 }
669
670 #[unstable(feature = "slice_concat_ext", issue = "27747")]
671 impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] {
672 type Output = Vec<T>;
673
674 fn join(slice: &Self, sep: &[T]) -> Vec<T> {
675 let mut iter = slice.iter();
676 let first = match iter.next() {
677 Some(first) => first,
678 None => return vec![],
679 };
680 let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() +
681 sep.len() * (slice.len() - 1);
682 let mut result = Vec::with_capacity(size);
683 result.extend_from_slice(first.borrow());
684
685 for v in iter {
686 result.extend_from_slice(sep);
687 result.extend_from_slice(v.borrow())
688 }
689 result
690 }
691 }
692
693 ////////////////////////////////////////////////////////////////////////////////
694 // Standard trait implementations for slices
695 ////////////////////////////////////////////////////////////////////////////////
696
697 #[stable(feature = "rust1", since = "1.0.0")]
698 impl<T> Borrow<[T]> for Vec<T> {
699 fn borrow(&self) -> &[T] {
700 &self[..]
701 }
702 }
703
704 #[stable(feature = "rust1", since = "1.0.0")]
705 impl<T> BorrowMut<[T]> for Vec<T> {
706 fn borrow_mut(&mut self) -> &mut [T] {
707 &mut self[..]
708 }
709 }
710
711 #[stable(feature = "rust1", since = "1.0.0")]
712 impl<T: Clone> ToOwned for [T] {
713 type Owned = Vec<T>;
714 #[cfg(not(test))]
715 fn to_owned(&self) -> Vec<T> {
716 self.to_vec()
717 }
718
719 #[cfg(test)]
720 fn to_owned(&self) -> Vec<T> {
721 hack::to_vec(self)
722 }
723
724 fn clone_into(&self, target: &mut Vec<T>) {
725 // drop anything in target that will not be overwritten
726 target.truncate(self.len());
727 let len = target.len();
728
729 // reuse the contained values' allocations/resources.
730 target.clone_from_slice(&self[..len]);
731
732 // target.len <= self.len due to the truncate above, so the
733 // slice here is always in-bounds.
734 target.extend_from_slice(&self[len..]);
735 }
736 }
737
738 ////////////////////////////////////////////////////////////////////////////////
739 // Sorting
740 ////////////////////////////////////////////////////////////////////////////////
741
742 /// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted.
743 ///
744 /// This is the integral subroutine of insertion sort.
745 fn insert_head<T, F>(v: &mut [T], is_less: &mut F)
746 where F: FnMut(&T, &T) -> bool
747 {
748 if v.len() >= 2 && is_less(&v[1], &v[0]) {
749 unsafe {
750 // There are three ways to implement insertion here:
751 //
752 // 1. Swap adjacent elements until the first one gets to its final destination.
753 // However, this way we copy data around more than is necessary. If elements are big
754 // structures (costly to copy), this method will be slow.
755 //
756 // 2. Iterate until the right place for the first element is found. Then shift the
757 // elements succeeding it to make room for it and finally place it into the
758 // remaining hole. This is a good method.
759 //
760 // 3. Copy the first element into a temporary variable. Iterate until the right place
761 // for it is found. As we go along, copy every traversed element into the slot
762 // preceding it. Finally, copy data from the temporary variable into the remaining
763 // hole. This method is very good. Benchmarks demonstrated slightly better
764 // performance than with the 2nd method.
765 //
766 // All methods were benchmarked, and the 3rd showed best results. So we chose that one.
767 let mut tmp = mem::ManuallyDrop::new(ptr::read(&v[0]));
768
769 // Intermediate state of the insertion process is always tracked by `hole`, which
770 // serves two purposes:
771 // 1. Protects integrity of `v` from panics in `is_less`.
772 // 2. Fills the remaining hole in `v` in the end.
773 //
774 // Panic safety:
775 //
776 // If `is_less` panics at any point during the process, `hole` will get dropped and
777 // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it
778 // initially held exactly once.
779 let mut hole = InsertionHole {
780 src: &mut *tmp,
781 dest: &mut v[1],
782 };
783 ptr::copy_nonoverlapping(&v[1], &mut v[0], 1);
784
785 for i in 2..v.len() {
786 if !is_less(&v[i], &*tmp) {
787 break;
788 }
789 ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1);
790 hole.dest = &mut v[i];
791 }
792 // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
793 }
794 }
795
796 // When dropped, copies from `src` into `dest`.
797 struct InsertionHole<T> {
798 src: *mut T,
799 dest: *mut T,
800 }
801
802 impl<T> Drop for InsertionHole<T> {
803 fn drop(&mut self) {
804 unsafe { ptr::copy_nonoverlapping(self.src, self.dest, 1); }
805 }
806 }
807 }
808
809 /// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and
810 /// stores the result into `v[..]`.
811 ///
812 /// # Safety
813 ///
814 /// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough
815 /// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type.
816 unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F)
817 where F: FnMut(&T, &T) -> bool
818 {
819 let len = v.len();
820 let v = v.as_mut_ptr();
821 let v_mid = v.add(mid);
822 let v_end = v.add(len);
823
824 // The merge process first copies the shorter run into `buf`. Then it traces the newly copied
825 // run and the longer run forwards (or backwards), comparing their next unconsumed elements and
826 // copying the lesser (or greater) one into `v`.
827 //
828 // As soon as the shorter run is fully consumed, the process is done. If the longer run gets
829 // consumed first, then we must copy whatever is left of the shorter run into the remaining
830 // hole in `v`.
831 //
832 // Intermediate state of the process is always tracked by `hole`, which serves two purposes:
833 // 1. Protects integrity of `v` from panics in `is_less`.
834 // 2. Fills the remaining hole in `v` if the longer run gets consumed first.
835 //
836 // Panic safety:
837 //
838 // If `is_less` panics at any point during the process, `hole` will get dropped and fill the
839 // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every
840 // object it initially held exactly once.
841 let mut hole;
842
843 if mid <= len - mid {
844 // The left run is shorter.
845 ptr::copy_nonoverlapping(v, buf, mid);
846 hole = MergeHole {
847 start: buf,
848 end: buf.add(mid),
849 dest: v,
850 };
851
852 // Initially, these pointers point to the beginnings of their arrays.
853 let left = &mut hole.start;
854 let mut right = v_mid;
855 let out = &mut hole.dest;
856
857 while *left < hole.end && right < v_end {
858 // Consume the lesser side.
859 // If equal, prefer the left run to maintain stability.
860 let to_copy = if is_less(&*right, &**left) {
861 get_and_increment(&mut right)
862 } else {
863 get_and_increment(left)
864 };
865 ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1);
866 }
867 } else {
868 // The right run is shorter.
869 ptr::copy_nonoverlapping(v_mid, buf, len - mid);
870 hole = MergeHole {
871 start: buf,
872 end: buf.add(len - mid),
873 dest: v_mid,
874 };
875
876 // Initially, these pointers point past the ends of their arrays.
877 let left = &mut hole.dest;
878 let right = &mut hole.end;
879 let mut out = v_end;
880
881 while v < *left && buf < *right {
882 // Consume the greater side.
883 // If equal, prefer the right run to maintain stability.
884 let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) {
885 decrement_and_get(left)
886 } else {
887 decrement_and_get(right)
888 };
889 ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1);
890 }
891 }
892 // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of
893 // it will now be copied into the hole in `v`.
894
895 unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T {
896 let old = *ptr;
897 *ptr = ptr.offset(1);
898 old
899 }
900
901 unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T {
902 *ptr = ptr.offset(-1);
903 *ptr
904 }
905
906 // When dropped, copies the range `start..end` into `dest..`.
907 struct MergeHole<T> {
908 start: *mut T,
909 end: *mut T,
910 dest: *mut T,
911 }
912
913 impl<T> Drop for MergeHole<T> {
914 fn drop(&mut self) {
915 // `T` is not a zero-sized type, so it's okay to divide by its size.
916 let len = (self.end as usize - self.start as usize) / mem::size_of::<T>();
917 unsafe { ptr::copy_nonoverlapping(self.start, self.dest, len); }
918 }
919 }
920 }
921
922 /// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail
923 /// [here](http://svn.python.org/projects/python/trunk/Objects/listsort.txt).
924 ///
925 /// The algorithm identifies strictly descending and non-descending subsequences, which are called
926 /// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed
927 /// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are
928 /// satisfied:
929 ///
930 /// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len`
931 /// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len`
932 ///
933 /// The invariants ensure that the total running time is `O(n log n)` worst-case.
934 fn merge_sort<T, F>(v: &mut [T], mut is_less: F)
935 where F: FnMut(&T, &T) -> bool
936 {
937 // Slices of up to this length get sorted using insertion sort.
938 const MAX_INSERTION: usize = 20;
939 // Very short runs are extended using insertion sort to span at least this many elements.
940 const MIN_RUN: usize = 10;
941
942 // Sorting has no meaningful behavior on zero-sized types.
943 if size_of::<T>() == 0 {
944 return;
945 }
946
947 let len = v.len();
948
949 // Short arrays get sorted in-place via insertion sort to avoid allocations.
950 if len <= MAX_INSERTION {
951 if len >= 2 {
952 for i in (0..len-1).rev() {
953 insert_head(&mut v[i..], &mut is_less);
954 }
955 }
956 return;
957 }
958
959 // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it
960 // shallow copies of the contents of `v` without risking the dtors running on copies if
961 // `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run,
962 // which will always have length at most `len / 2`.
963 let mut buf = Vec::with_capacity(len / 2);
964
965 // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a
966 // strange decision, but consider the fact that merges more often go in the opposite direction
967 // (forwards). According to benchmarks, merging forwards is slightly faster than merging
968 // backwards. To conclude, identifying runs by traversing backwards improves performance.
969 let mut runs = vec![];
970 let mut end = len;
971 while end > 0 {
972 // Find the next natural run, and reverse it if it's strictly descending.
973 let mut start = end - 1;
974 if start > 0 {
975 start -= 1;
976 unsafe {
977 if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) {
978 while start > 0 && is_less(v.get_unchecked(start),
979 v.get_unchecked(start - 1)) {
980 start -= 1;
981 }
982 v[start..end].reverse();
983 } else {
984 while start > 0 && !is_less(v.get_unchecked(start),
985 v.get_unchecked(start - 1)) {
986 start -= 1;
987 }
988 }
989 }
990 }
991
992 // Insert some more elements into the run if it's too short. Insertion sort is faster than
993 // merge sort on short sequences, so this significantly improves performance.
994 while start > 0 && end - start < MIN_RUN {
995 start -= 1;
996 insert_head(&mut v[start..end], &mut is_less);
997 }
998
999 // Push this run onto the stack.
1000 runs.push(Run {
1001 start,
1002 len: end - start,
1003 });
1004 end = start;
1005
1006 // Merge some pairs of adjacent runs to satisfy the invariants.
1007 while let Some(r) = collapse(&runs) {
1008 let left = runs[r + 1];
1009 let right = runs[r];
1010 unsafe {
1011 merge(&mut v[left.start .. right.start + right.len], left.len, buf.as_mut_ptr(),
1012 &mut is_less);
1013 }
1014 runs[r] = Run {
1015 start: left.start,
1016 len: left.len + right.len,
1017 };
1018 runs.remove(r + 1);
1019 }
1020 }
1021
1022 // Finally, exactly one run must remain in the stack.
1023 debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len);
1024
1025 // Examines the stack of runs and identifies the next pair of runs to merge. More specifically,
1026 // if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the
1027 // algorithm should continue building a new run instead, `None` is returned.
1028 //
1029 // TimSort is infamous for its buggy implementations, as described here:
1030 // http://envisage-project.eu/timsort-specification-and-verification/
1031 //
1032 // The gist of the story is: we must enforce the invariants on the top four runs on the stack.
1033 // Enforcing them on just top three is not sufficient to ensure that the invariants will still
1034 // hold for *all* runs in the stack.
1035 //
1036 // This function correctly checks invariants for the top four runs. Additionally, if the top
1037 // run starts at index 0, it will always demand a merge operation until the stack is fully
1038 // collapsed, in order to complete the sort.
1039 #[inline]
1040 fn collapse(runs: &[Run]) -> Option<usize> {
1041 let n = runs.len();
1042 if n >= 2 && (runs[n - 1].start == 0 ||
1043 runs[n - 2].len <= runs[n - 1].len ||
1044 (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len) ||
1045 (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len)) {
1046 if n >= 3 && runs[n - 3].len < runs[n - 1].len {
1047 Some(n - 3)
1048 } else {
1049 Some(n - 2)
1050 }
1051 } else {
1052 None
1053 }
1054 }
1055
1056 #[derive(Clone, Copy)]
1057 struct Run {
1058 start: usize,
1059 len: usize,
1060 }
1061 }