]> git.proxmox.com Git - rustc.git/blob - src/liballoc/string.rs
New upstream version 1.45.0+dfsg1
[rustc.git] / src / liballoc / string.rs
1 //! A UTF-8 encoded, growable string.
2 //!
3 //! This module contains the [`String`] type, a trait for converting
4 //! [`ToString`]s, and several error types that may result from working with
5 //! [`String`]s.
6 //!
7 //! [`ToString`]: trait.ToString.html
8 //!
9 //! # Examples
10 //!
11 //! There are multiple ways to create a new [`String`] from a string literal:
12 //!
13 //! ```
14 //! let s = "Hello".to_string();
15 //!
16 //! let s = String::from("world");
17 //! let s: String = "also this".into();
18 //! ```
19 //!
20 //! You can create a new [`String`] from an existing one by concatenating with
21 //! `+`:
22 //!
23 //! [`String`]: struct.String.html
24 //!
25 //! ```
26 //! let s = "Hello".to_string();
27 //!
28 //! let message = s + " world!";
29 //! ```
30 //!
31 //! If you have a vector of valid UTF-8 bytes, you can make a [`String`] out of
32 //! it. You can do the reverse too.
33 //!
34 //! ```
35 //! let sparkle_heart = vec![240, 159, 146, 150];
36 //!
37 //! // We know these bytes are valid, so we'll use `unwrap()`.
38 //! let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
39 //!
40 //! assert_eq!("💖", sparkle_heart);
41 //!
42 //! let bytes = sparkle_heart.into_bytes();
43 //!
44 //! assert_eq!(bytes, [240, 159, 146, 150]);
45 //! ```
46
47 #![stable(feature = "rust1", since = "1.0.0")]
48
49 use core::char::{decode_utf16, REPLACEMENT_CHARACTER};
50 use core::fmt;
51 use core::hash;
52 use core::iter::{FromIterator, FusedIterator};
53 use core::ops::Bound::{Excluded, Included, Unbounded};
54 use core::ops::{self, Add, AddAssign, Index, IndexMut, RangeBounds};
55 use core::ptr;
56 use core::str::{lossy, pattern::Pattern};
57
58 use crate::borrow::{Cow, ToOwned};
59 use crate::boxed::Box;
60 use crate::collections::TryReserveError;
61 use crate::str::{self, from_boxed_utf8_unchecked, Chars, FromStr, Utf8Error};
62 use crate::vec::Vec;
63
64 /// A UTF-8 encoded, growable string.
65 ///
66 /// The `String` type is the most common string type that has ownership over the
67 /// contents of the string. It has a close relationship with its borrowed
68 /// counterpart, the primitive [`str`].
69 ///
70 /// [`str`]: ../../std/primitive.str.html
71 ///
72 /// # Examples
73 ///
74 /// You can create a `String` from a literal string with [`String::from`]:
75 ///
76 /// ```
77 /// let hello = String::from("Hello, world!");
78 /// ```
79 ///
80 /// You can append a [`char`] to a `String` with the [`push`] method, and
81 /// append a [`&str`] with the [`push_str`] method:
82 ///
83 /// ```
84 /// let mut hello = String::from("Hello, ");
85 ///
86 /// hello.push('w');
87 /// hello.push_str("orld!");
88 /// ```
89 ///
90 /// [`String::from`]: #method.from
91 /// [`char`]: ../../std/primitive.char.html
92 /// [`push`]: #method.push
93 /// [`push_str`]: #method.push_str
94 ///
95 /// If you have a vector of UTF-8 bytes, you can create a `String` from it with
96 /// the [`from_utf8`] method:
97 ///
98 /// ```
99 /// // some bytes, in a vector
100 /// let sparkle_heart = vec![240, 159, 146, 150];
101 ///
102 /// // We know these bytes are valid, so we'll use `unwrap()`.
103 /// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
104 ///
105 /// assert_eq!("💖", sparkle_heart);
106 /// ```
107 ///
108 /// [`from_utf8`]: #method.from_utf8
109 ///
110 /// # UTF-8
111 ///
112 /// `String`s are always valid UTF-8. This has a few implications, the first of
113 /// which is that if you need a non-UTF-8 string, consider [`OsString`]. It is
114 /// similar, but without the UTF-8 constraint. The second implication is that
115 /// you cannot index into a `String`:
116 ///
117 /// ```compile_fail,E0277
118 /// let s = "hello";
119 ///
120 /// println!("The first letter of s is {}", s[0]); // ERROR!!!
121 /// ```
122 ///
123 /// [`OsString`]: ../../std/ffi/struct.OsString.html
124 ///
125 /// Indexing is intended to be a constant-time operation, but UTF-8 encoding
126 /// does not allow us to do this. Furthermore, it's not clear what sort of
127 /// thing the index should return: a byte, a codepoint, or a grapheme cluster.
128 /// The [`bytes`] and [`chars`] methods return iterators over the first
129 /// two, respectively.
130 ///
131 /// [`bytes`]: #method.bytes
132 /// [`chars`]: #method.chars
133 ///
134 /// # Deref
135 ///
136 /// `String`s implement [`Deref`]`<Target=str>`, and so inherit all of [`str`]'s
137 /// methods. In addition, this means that you can pass a `String` to a
138 /// function which takes a [`&str`] by using an ampersand (`&`):
139 ///
140 /// ```
141 /// fn takes_str(s: &str) { }
142 ///
143 /// let s = String::from("Hello");
144 ///
145 /// takes_str(&s);
146 /// ```
147 ///
148 /// This will create a [`&str`] from the `String` and pass it in. This
149 /// conversion is very inexpensive, and so generally, functions will accept
150 /// [`&str`]s as arguments unless they need a `String` for some specific
151 /// reason.
152 ///
153 /// In certain cases Rust doesn't have enough information to make this
154 /// conversion, known as [`Deref`] coercion. In the following example a string
155 /// slice [`&'a str`][`&str`] implements the trait `TraitExample`, and the function
156 /// `example_func` takes anything that implements the trait. In this case Rust
157 /// would need to make two implicit conversions, which Rust doesn't have the
158 /// means to do. For that reason, the following example will not compile.
159 ///
160 /// ```compile_fail,E0277
161 /// trait TraitExample {}
162 ///
163 /// impl<'a> TraitExample for &'a str {}
164 ///
165 /// fn example_func<A: TraitExample>(example_arg: A) {}
166 ///
167 /// let example_string = String::from("example_string");
168 /// example_func(&example_string);
169 /// ```
170 ///
171 /// There are two options that would work instead. The first would be to
172 /// change the line `example_func(&example_string);` to
173 /// `example_func(example_string.as_str());`, using the method [`as_str()`]
174 /// to explicitly extract the string slice containing the string. The second
175 /// way changes `example_func(&example_string);` to
176 /// `example_func(&*example_string);`. In this case we are dereferencing a
177 /// `String` to a [`str`][`&str`], then referencing the [`str`][`&str`] back to
178 /// [`&str`]. The second way is more idiomatic, however both work to do the
179 /// conversion explicitly rather than relying on the implicit conversion.
180 ///
181 /// # Representation
182 ///
183 /// A `String` is made up of three components: a pointer to some bytes, a
184 /// length, and a capacity. The pointer points to an internal buffer `String`
185 /// uses to store its data. The length is the number of bytes currently stored
186 /// in the buffer, and the capacity is the size of the buffer in bytes. As such,
187 /// the length will always be less than or equal to the capacity.
188 ///
189 /// This buffer is always stored on the heap.
190 ///
191 /// You can look at these with the [`as_ptr`], [`len`], and [`capacity`]
192 /// methods:
193 ///
194 /// ```
195 /// use std::mem;
196 ///
197 /// let story = String::from("Once upon a time...");
198 ///
199 // FIXME Update this when vec_into_raw_parts is stabilized
200 /// // Prevent automatically dropping the String's data
201 /// let mut story = mem::ManuallyDrop::new(story);
202 ///
203 /// let ptr = story.as_mut_ptr();
204 /// let len = story.len();
205 /// let capacity = story.capacity();
206 ///
207 /// // story has nineteen bytes
208 /// assert_eq!(19, len);
209 ///
210 /// // We can re-build a String out of ptr, len, and capacity. This is all
211 /// // unsafe because we are responsible for making sure the components are
212 /// // valid:
213 /// let s = unsafe { String::from_raw_parts(ptr, len, capacity) } ;
214 ///
215 /// assert_eq!(String::from("Once upon a time..."), s);
216 /// ```
217 ///
218 /// [`as_ptr`]: #method.as_ptr
219 /// [`len`]: #method.len
220 /// [`capacity`]: #method.capacity
221 ///
222 /// If a `String` has enough capacity, adding elements to it will not
223 /// re-allocate. For example, consider this program:
224 ///
225 /// ```
226 /// let mut s = String::new();
227 ///
228 /// println!("{}", s.capacity());
229 ///
230 /// for _ in 0..5 {
231 /// s.push_str("hello");
232 /// println!("{}", s.capacity());
233 /// }
234 /// ```
235 ///
236 /// This will output the following:
237 ///
238 /// ```text
239 /// 0
240 /// 5
241 /// 10
242 /// 20
243 /// 20
244 /// 40
245 /// ```
246 ///
247 /// At first, we have no memory allocated at all, but as we append to the
248 /// string, it increases its capacity appropriately. If we instead use the
249 /// [`with_capacity`] method to allocate the correct capacity initially:
250 ///
251 /// ```
252 /// let mut s = String::with_capacity(25);
253 ///
254 /// println!("{}", s.capacity());
255 ///
256 /// for _ in 0..5 {
257 /// s.push_str("hello");
258 /// println!("{}", s.capacity());
259 /// }
260 /// ```
261 ///
262 /// [`with_capacity`]: #method.with_capacity
263 ///
264 /// We end up with a different output:
265 ///
266 /// ```text
267 /// 25
268 /// 25
269 /// 25
270 /// 25
271 /// 25
272 /// 25
273 /// ```
274 ///
275 /// Here, there's no need to allocate more memory inside the loop.
276 ///
277 /// [`&str`]: ../../std/primitive.str.html
278 /// [`Deref`]: ../../std/ops/trait.Deref.html
279 /// [`as_str()`]: struct.String.html#method.as_str
280 #[derive(PartialOrd, Eq, Ord)]
281 #[cfg_attr(not(test), rustc_diagnostic_item = "string_type")]
282 #[stable(feature = "rust1", since = "1.0.0")]
283 pub struct String {
284 vec: Vec<u8>,
285 }
286
287 /// A possible error value when converting a `String` from a UTF-8 byte vector.
288 ///
289 /// This type is the error type for the [`from_utf8`] method on [`String`]. It
290 /// is designed in such a way to carefully avoid reallocations: the
291 /// [`into_bytes`] method will give back the byte vector that was used in the
292 /// conversion attempt.
293 ///
294 /// [`from_utf8`]: struct.String.html#method.from_utf8
295 /// [`String`]: struct.String.html
296 /// [`into_bytes`]: struct.FromUtf8Error.html#method.into_bytes
297 ///
298 /// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
299 /// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
300 /// an analogue to `FromUtf8Error`, and you can get one from a `FromUtf8Error`
301 /// through the [`utf8_error`] method.
302 ///
303 /// [`Utf8Error`]: ../../std/str/struct.Utf8Error.html
304 /// [`std::str`]: ../../std/str/index.html
305 /// [`u8`]: ../../std/primitive.u8.html
306 /// [`&str`]: ../../std/primitive.str.html
307 /// [`utf8_error`]: #method.utf8_error
308 ///
309 /// # Examples
310 ///
311 /// Basic usage:
312 ///
313 /// ```
314 /// // some invalid bytes, in a vector
315 /// let bytes = vec![0, 159];
316 ///
317 /// let value = String::from_utf8(bytes);
318 ///
319 /// assert!(value.is_err());
320 /// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
321 /// ```
322 #[stable(feature = "rust1", since = "1.0.0")]
323 #[derive(Debug, Clone, PartialEq, Eq)]
324 pub struct FromUtf8Error {
325 bytes: Vec<u8>,
326 error: Utf8Error,
327 }
328
329 /// A possible error value when converting a `String` from a UTF-16 byte slice.
330 ///
331 /// This type is the error type for the [`from_utf16`] method on [`String`].
332 ///
333 /// [`from_utf16`]: struct.String.html#method.from_utf16
334 /// [`String`]: struct.String.html
335 ///
336 /// # Examples
337 ///
338 /// Basic usage:
339 ///
340 /// ```
341 /// // 𝄞mu<invalid>ic
342 /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
343 /// 0xD800, 0x0069, 0x0063];
344 ///
345 /// assert!(String::from_utf16(v).is_err());
346 /// ```
347 #[stable(feature = "rust1", since = "1.0.0")]
348 #[derive(Debug)]
349 pub struct FromUtf16Error(());
350
351 impl String {
352 /// Creates a new empty `String`.
353 ///
354 /// Given that the `String` is empty, this will not allocate any initial
355 /// buffer. While that means that this initial operation is very
356 /// inexpensive, it may cause excessive allocation later when you add
357 /// data. If you have an idea of how much data the `String` will hold,
358 /// consider the [`with_capacity`] method to prevent excessive
359 /// re-allocation.
360 ///
361 /// [`with_capacity`]: #method.with_capacity
362 ///
363 /// # Examples
364 ///
365 /// Basic usage:
366 ///
367 /// ```
368 /// let s = String::new();
369 /// ```
370 #[inline]
371 #[rustc_const_stable(feature = "const_string_new", since = "1.32.0")]
372 #[stable(feature = "rust1", since = "1.0.0")]
373 pub const fn new() -> String {
374 String { vec: Vec::new() }
375 }
376
377 /// Creates a new empty `String` with a particular capacity.
378 ///
379 /// `String`s have an internal buffer to hold their data. The capacity is
380 /// the length of that buffer, and can be queried with the [`capacity`]
381 /// method. This method creates an empty `String`, but one with an initial
382 /// buffer that can hold `capacity` bytes. This is useful when you may be
383 /// appending a bunch of data to the `String`, reducing the number of
384 /// reallocations it needs to do.
385 ///
386 /// [`capacity`]: #method.capacity
387 ///
388 /// If the given capacity is `0`, no allocation will occur, and this method
389 /// is identical to the [`new`] method.
390 ///
391 /// [`new`]: #method.new
392 ///
393 /// # Examples
394 ///
395 /// Basic usage:
396 ///
397 /// ```
398 /// let mut s = String::with_capacity(10);
399 ///
400 /// // The String contains no chars, even though it has capacity for more
401 /// assert_eq!(s.len(), 0);
402 ///
403 /// // These are all done without reallocating...
404 /// let cap = s.capacity();
405 /// for _ in 0..10 {
406 /// s.push('a');
407 /// }
408 ///
409 /// assert_eq!(s.capacity(), cap);
410 ///
411 /// // ...but this may make the string reallocate
412 /// s.push('a');
413 /// ```
414 #[inline]
415 #[stable(feature = "rust1", since = "1.0.0")]
416 pub fn with_capacity(capacity: usize) -> String {
417 String { vec: Vec::with_capacity(capacity) }
418 }
419
420 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
421 // required for this method definition, is not available. Since we don't
422 // require this method for testing purposes, I'll just stub it
423 // NB see the slice::hack module in slice.rs for more information
424 #[inline]
425 #[cfg(test)]
426 pub fn from_str(_: &str) -> String {
427 panic!("not available with cfg(test)");
428 }
429
430 /// Converts a vector of bytes to a `String`.
431 ///
432 /// A string ([`String`]) is made of bytes ([`u8`]), and a vector of bytes
433 /// ([`Vec<u8>`]) is made of bytes, so this function converts between the
434 /// two. Not all byte slices are valid `String`s, however: `String`
435 /// requires that it is valid UTF-8. `from_utf8()` checks to ensure that
436 /// the bytes are valid UTF-8, and then does the conversion.
437 ///
438 /// If you are sure that the byte slice is valid UTF-8, and you don't want
439 /// to incur the overhead of the validity check, there is an unsafe version
440 /// of this function, [`from_utf8_unchecked`], which has the same behavior
441 /// but skips the check.
442 ///
443 /// This method will take care to not copy the vector, for efficiency's
444 /// sake.
445 ///
446 /// If you need a [`&str`] instead of a `String`, consider
447 /// [`str::from_utf8`].
448 ///
449 /// The inverse of this method is [`into_bytes`].
450 ///
451 /// # Errors
452 ///
453 /// Returns [`Err`] if the slice is not UTF-8 with a description as to why the
454 /// provided bytes are not UTF-8. The vector you moved in is also included.
455 ///
456 /// # Examples
457 ///
458 /// Basic usage:
459 ///
460 /// ```
461 /// // some bytes, in a vector
462 /// let sparkle_heart = vec![240, 159, 146, 150];
463 ///
464 /// // We know these bytes are valid, so we'll use `unwrap()`.
465 /// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
466 ///
467 /// assert_eq!("💖", sparkle_heart);
468 /// ```
469 ///
470 /// Incorrect bytes:
471 ///
472 /// ```
473 /// // some invalid bytes, in a vector
474 /// let sparkle_heart = vec![0, 159, 146, 150];
475 ///
476 /// assert!(String::from_utf8(sparkle_heart).is_err());
477 /// ```
478 ///
479 /// See the docs for [`FromUtf8Error`] for more details on what you can do
480 /// with this error.
481 ///
482 /// [`from_utf8_unchecked`]: struct.String.html#method.from_utf8_unchecked
483 /// [`String`]: struct.String.html
484 /// [`u8`]: ../../std/primitive.u8.html
485 /// [`Vec<u8>`]: ../../std/vec/struct.Vec.html
486 /// [`&str`]: ../../std/primitive.str.html
487 /// [`str::from_utf8`]: ../../std/str/fn.from_utf8.html
488 /// [`into_bytes`]: struct.String.html#method.into_bytes
489 /// [`FromUtf8Error`]: struct.FromUtf8Error.html
490 /// [`Err`]: ../../std/result/enum.Result.html#variant.Err
491 #[inline]
492 #[stable(feature = "rust1", since = "1.0.0")]
493 pub fn from_utf8(vec: Vec<u8>) -> Result<String, FromUtf8Error> {
494 match str::from_utf8(&vec) {
495 Ok(..) => Ok(String { vec }),
496 Err(e) => Err(FromUtf8Error { bytes: vec, error: e }),
497 }
498 }
499
500 /// Converts a slice of bytes to a string, including invalid characters.
501 ///
502 /// Strings are made of bytes ([`u8`]), and a slice of bytes
503 /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts
504 /// between the two. Not all byte slices are valid strings, however: strings
505 /// are required to be valid UTF-8. During this conversion,
506 /// `from_utf8_lossy()` will replace any invalid UTF-8 sequences with
507 /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD], which looks like this: �
508 ///
509 /// [`u8`]: ../../std/primitive.u8.html
510 /// [byteslice]: ../../std/primitive.slice.html
511 /// [U+FFFD]: ../char/constant.REPLACEMENT_CHARACTER.html
512 ///
513 /// If you are sure that the byte slice is valid UTF-8, and you don't want
514 /// to incur the overhead of the conversion, there is an unsafe version
515 /// of this function, [`from_utf8_unchecked`], which has the same behavior
516 /// but skips the checks.
517 ///
518 /// [`from_utf8_unchecked`]: struct.String.html#method.from_utf8_unchecked
519 ///
520 /// This function returns a [`Cow<'a, str>`]. If our byte slice is invalid
521 /// UTF-8, then we need to insert the replacement characters, which will
522 /// change the size of the string, and hence, require a `String`. But if
523 /// it's already valid UTF-8, we don't need a new allocation. This return
524 /// type allows us to handle both cases.
525 ///
526 /// [`Cow<'a, str>`]: ../../std/borrow/enum.Cow.html
527 ///
528 /// # Examples
529 ///
530 /// Basic usage:
531 ///
532 /// ```
533 /// // some bytes, in a vector
534 /// let sparkle_heart = vec![240, 159, 146, 150];
535 ///
536 /// let sparkle_heart = String::from_utf8_lossy(&sparkle_heart);
537 ///
538 /// assert_eq!("💖", sparkle_heart);
539 /// ```
540 ///
541 /// Incorrect bytes:
542 ///
543 /// ```
544 /// // some invalid bytes
545 /// let input = b"Hello \xF0\x90\x80World";
546 /// let output = String::from_utf8_lossy(input);
547 ///
548 /// assert_eq!("Hello �World", output);
549 /// ```
550 #[stable(feature = "rust1", since = "1.0.0")]
551 pub fn from_utf8_lossy(v: &[u8]) -> Cow<'_, str> {
552 let mut iter = lossy::Utf8Lossy::from_bytes(v).chunks();
553
554 let (first_valid, first_broken) = if let Some(chunk) = iter.next() {
555 let lossy::Utf8LossyChunk { valid, broken } = chunk;
556 if valid.len() == v.len() {
557 debug_assert!(broken.is_empty());
558 return Cow::Borrowed(valid);
559 }
560 (valid, broken)
561 } else {
562 return Cow::Borrowed("");
563 };
564
565 const REPLACEMENT: &str = "\u{FFFD}";
566
567 let mut res = String::with_capacity(v.len());
568 res.push_str(first_valid);
569 if !first_broken.is_empty() {
570 res.push_str(REPLACEMENT);
571 }
572
573 for lossy::Utf8LossyChunk { valid, broken } in iter {
574 res.push_str(valid);
575 if !broken.is_empty() {
576 res.push_str(REPLACEMENT);
577 }
578 }
579
580 Cow::Owned(res)
581 }
582
583 /// Decode a UTF-16 encoded vector `v` into a `String`, returning [`Err`]
584 /// if `v` contains any invalid data.
585 ///
586 /// [`Err`]: ../../std/result/enum.Result.html#variant.Err
587 ///
588 /// # Examples
589 ///
590 /// Basic usage:
591 ///
592 /// ```
593 /// // 𝄞music
594 /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
595 /// 0x0073, 0x0069, 0x0063];
596 /// assert_eq!(String::from("𝄞music"),
597 /// String::from_utf16(v).unwrap());
598 ///
599 /// // 𝄞mu<invalid>ic
600 /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
601 /// 0xD800, 0x0069, 0x0063];
602 /// assert!(String::from_utf16(v).is_err());
603 /// ```
604 #[stable(feature = "rust1", since = "1.0.0")]
605 pub fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error> {
606 // This isn't done via collect::<Result<_, _>>() for performance reasons.
607 // FIXME: the function can be simplified again when #48994 is closed.
608 let mut ret = String::with_capacity(v.len());
609 for c in decode_utf16(v.iter().cloned()) {
610 if let Ok(c) = c {
611 ret.push(c);
612 } else {
613 return Err(FromUtf16Error(()));
614 }
615 }
616 Ok(ret)
617 }
618
619 /// Decode a UTF-16 encoded slice `v` into a `String`, replacing
620 /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
621 ///
622 /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
623 /// `from_utf16_lossy` returns a `String` since the UTF-16 to UTF-8
624 /// conversion requires a memory allocation.
625 ///
626 /// [`from_utf8_lossy`]: #method.from_utf8_lossy
627 /// [`Cow<'a, str>`]: ../borrow/enum.Cow.html
628 /// [U+FFFD]: ../char/constant.REPLACEMENT_CHARACTER.html
629 ///
630 /// # Examples
631 ///
632 /// Basic usage:
633 ///
634 /// ```
635 /// // 𝄞mus<invalid>ic<invalid>
636 /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
637 /// 0x0073, 0xDD1E, 0x0069, 0x0063,
638 /// 0xD834];
639 ///
640 /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
641 /// String::from_utf16_lossy(v));
642 /// ```
643 #[inline]
644 #[stable(feature = "rust1", since = "1.0.0")]
645 pub fn from_utf16_lossy(v: &[u16]) -> String {
646 decode_utf16(v.iter().cloned()).map(|r| r.unwrap_or(REPLACEMENT_CHARACTER)).collect()
647 }
648
649 /// Decomposes a `String` into its raw components.
650 ///
651 /// Returns the raw pointer to the underlying data, the length of
652 /// the string (in bytes), and the allocated capacity of the data
653 /// (in bytes). These are the same arguments in the same order as
654 /// the arguments to [`from_raw_parts`].
655 ///
656 /// After calling this function, the caller is responsible for the
657 /// memory previously managed by the `String`. The only way to do
658 /// this is to convert the raw pointer, length, and capacity back
659 /// into a `String` with the [`from_raw_parts`] function, allowing
660 /// the destructor to perform the cleanup.
661 ///
662 /// [`from_raw_parts`]: #method.from_raw_parts
663 ///
664 /// # Examples
665 ///
666 /// ```
667 /// #![feature(vec_into_raw_parts)]
668 /// let s = String::from("hello");
669 ///
670 /// let (ptr, len, cap) = s.into_raw_parts();
671 ///
672 /// let rebuilt = unsafe { String::from_raw_parts(ptr, len, cap) };
673 /// assert_eq!(rebuilt, "hello");
674 /// ```
675 #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
676 pub fn into_raw_parts(self) -> (*mut u8, usize, usize) {
677 self.vec.into_raw_parts()
678 }
679
680 /// Creates a new `String` from a length, capacity, and pointer.
681 ///
682 /// # Safety
683 ///
684 /// This is highly unsafe, due to the number of invariants that aren't
685 /// checked:
686 ///
687 /// * The memory at `ptr` needs to have been previously allocated by the
688 /// same allocator the standard library uses, with a required alignment of exactly 1.
689 /// * `length` needs to be less than or equal to `capacity`.
690 /// * `capacity` needs to be the correct value.
691 ///
692 /// Violating these may cause problems like corrupting the allocator's
693 /// internal data structures.
694 ///
695 /// The ownership of `ptr` is effectively transferred to the
696 /// `String` which may then deallocate, reallocate or change the
697 /// contents of memory pointed to by the pointer at will. Ensure
698 /// that nothing else uses the pointer after calling this
699 /// function.
700 ///
701 /// # Examples
702 ///
703 /// Basic usage:
704 ///
705 /// ```
706 /// use std::mem;
707 ///
708 /// unsafe {
709 /// let s = String::from("hello");
710 ///
711 // FIXME Update this when vec_into_raw_parts is stabilized
712 /// // Prevent automatically dropping the String's data
713 /// let mut s = mem::ManuallyDrop::new(s);
714 ///
715 /// let ptr = s.as_mut_ptr();
716 /// let len = s.len();
717 /// let capacity = s.capacity();
718 ///
719 /// let s = String::from_raw_parts(ptr, len, capacity);
720 ///
721 /// assert_eq!(String::from("hello"), s);
722 /// }
723 /// ```
724 #[inline]
725 #[stable(feature = "rust1", since = "1.0.0")]
726 pub unsafe fn from_raw_parts(buf: *mut u8, length: usize, capacity: usize) -> String {
727 String { vec: Vec::from_raw_parts(buf, length, capacity) }
728 }
729
730 /// Converts a vector of bytes to a `String` without checking that the
731 /// string contains valid UTF-8.
732 ///
733 /// See the safe version, [`from_utf8`], for more details.
734 ///
735 /// [`from_utf8`]: struct.String.html#method.from_utf8
736 ///
737 /// # Safety
738 ///
739 /// This function is unsafe because it does not check that the bytes passed
740 /// to it are valid UTF-8. If this constraint is violated, it may cause
741 /// memory unsafety issues with future users of the `String`, as the rest of
742 /// the standard library assumes that `String`s are valid UTF-8.
743 ///
744 /// # Examples
745 ///
746 /// Basic usage:
747 ///
748 /// ```
749 /// // some bytes, in a vector
750 /// let sparkle_heart = vec![240, 159, 146, 150];
751 ///
752 /// let sparkle_heart = unsafe {
753 /// String::from_utf8_unchecked(sparkle_heart)
754 /// };
755 ///
756 /// assert_eq!("💖", sparkle_heart);
757 /// ```
758 #[inline]
759 #[stable(feature = "rust1", since = "1.0.0")]
760 pub unsafe fn from_utf8_unchecked(bytes: Vec<u8>) -> String {
761 String { vec: bytes }
762 }
763
764 /// Converts a `String` into a byte vector.
765 ///
766 /// This consumes the `String`, so we do not need to copy its contents.
767 ///
768 /// # Examples
769 ///
770 /// Basic usage:
771 ///
772 /// ```
773 /// let s = String::from("hello");
774 /// let bytes = s.into_bytes();
775 ///
776 /// assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);
777 /// ```
778 #[inline]
779 #[stable(feature = "rust1", since = "1.0.0")]
780 pub fn into_bytes(self) -> Vec<u8> {
781 self.vec
782 }
783
784 /// Extracts a string slice containing the entire `String`.
785 ///
786 /// # Examples
787 ///
788 /// Basic usage:
789 ///
790 /// ```
791 /// let s = String::from("foo");
792 ///
793 /// assert_eq!("foo", s.as_str());
794 /// ```
795 #[inline]
796 #[stable(feature = "string_as_str", since = "1.7.0")]
797 pub fn as_str(&self) -> &str {
798 self
799 }
800
801 /// Converts a `String` into a mutable string slice.
802 ///
803 /// # Examples
804 ///
805 /// Basic usage:
806 ///
807 /// ```
808 /// let mut s = String::from("foobar");
809 /// let s_mut_str = s.as_mut_str();
810 ///
811 /// s_mut_str.make_ascii_uppercase();
812 ///
813 /// assert_eq!("FOOBAR", s_mut_str);
814 /// ```
815 #[inline]
816 #[stable(feature = "string_as_str", since = "1.7.0")]
817 pub fn as_mut_str(&mut self) -> &mut str {
818 self
819 }
820
821 /// Appends a given string slice onto the end of this `String`.
822 ///
823 /// # Examples
824 ///
825 /// Basic usage:
826 ///
827 /// ```
828 /// let mut s = String::from("foo");
829 ///
830 /// s.push_str("bar");
831 ///
832 /// assert_eq!("foobar", s);
833 /// ```
834 #[inline]
835 #[stable(feature = "rust1", since = "1.0.0")]
836 pub fn push_str(&mut self, string: &str) {
837 self.vec.extend_from_slice(string.as_bytes())
838 }
839
840 /// Returns this `String`'s capacity, in bytes.
841 ///
842 /// # Examples
843 ///
844 /// Basic usage:
845 ///
846 /// ```
847 /// let s = String::with_capacity(10);
848 ///
849 /// assert!(s.capacity() >= 10);
850 /// ```
851 #[inline]
852 #[stable(feature = "rust1", since = "1.0.0")]
853 pub fn capacity(&self) -> usize {
854 self.vec.capacity()
855 }
856
857 /// Ensures that this `String`'s capacity is at least `additional` bytes
858 /// larger than its length.
859 ///
860 /// The capacity may be increased by more than `additional` bytes if it
861 /// chooses, to prevent frequent reallocations.
862 ///
863 /// If you do not want this "at least" behavior, see the [`reserve_exact`]
864 /// method.
865 ///
866 /// # Panics
867 ///
868 /// Panics if the new capacity overflows [`usize`].
869 ///
870 /// [`reserve_exact`]: struct.String.html#method.reserve_exact
871 /// [`usize`]: ../../std/primitive.usize.html
872 ///
873 /// # Examples
874 ///
875 /// Basic usage:
876 ///
877 /// ```
878 /// let mut s = String::new();
879 ///
880 /// s.reserve(10);
881 ///
882 /// assert!(s.capacity() >= 10);
883 /// ```
884 ///
885 /// This may not actually increase the capacity:
886 ///
887 /// ```
888 /// let mut s = String::with_capacity(10);
889 /// s.push('a');
890 /// s.push('b');
891 ///
892 /// // s now has a length of 2 and a capacity of 10
893 /// assert_eq!(2, s.len());
894 /// assert_eq!(10, s.capacity());
895 ///
896 /// // Since we already have an extra 8 capacity, calling this...
897 /// s.reserve(8);
898 ///
899 /// // ... doesn't actually increase.
900 /// assert_eq!(10, s.capacity());
901 /// ```
902 #[inline]
903 #[stable(feature = "rust1", since = "1.0.0")]
904 pub fn reserve(&mut self, additional: usize) {
905 self.vec.reserve(additional)
906 }
907
908 /// Ensures that this `String`'s capacity is `additional` bytes
909 /// larger than its length.
910 ///
911 /// Consider using the [`reserve`] method unless you absolutely know
912 /// better than the allocator.
913 ///
914 /// [`reserve`]: #method.reserve
915 ///
916 /// # Panics
917 ///
918 /// Panics if the new capacity overflows `usize`.
919 ///
920 /// # Examples
921 ///
922 /// Basic usage:
923 ///
924 /// ```
925 /// let mut s = String::new();
926 ///
927 /// s.reserve_exact(10);
928 ///
929 /// assert!(s.capacity() >= 10);
930 /// ```
931 ///
932 /// This may not actually increase the capacity:
933 ///
934 /// ```
935 /// let mut s = String::with_capacity(10);
936 /// s.push('a');
937 /// s.push('b');
938 ///
939 /// // s now has a length of 2 and a capacity of 10
940 /// assert_eq!(2, s.len());
941 /// assert_eq!(10, s.capacity());
942 ///
943 /// // Since we already have an extra 8 capacity, calling this...
944 /// s.reserve_exact(8);
945 ///
946 /// // ... doesn't actually increase.
947 /// assert_eq!(10, s.capacity());
948 /// ```
949 #[inline]
950 #[stable(feature = "rust1", since = "1.0.0")]
951 pub fn reserve_exact(&mut self, additional: usize) {
952 self.vec.reserve_exact(additional)
953 }
954
955 /// Tries to reserve capacity for at least `additional` more elements to be inserted
956 /// in the given `String`. The collection may reserve more space to avoid
957 /// frequent reallocations. After calling `reserve`, capacity will be
958 /// greater than or equal to `self.len() + additional`. Does nothing if
959 /// capacity is already sufficient.
960 ///
961 /// # Errors
962 ///
963 /// If the capacity overflows, or the allocator reports a failure, then an error
964 /// is returned.
965 ///
966 /// # Examples
967 ///
968 /// ```
969 /// #![feature(try_reserve)]
970 /// use std::collections::TryReserveError;
971 ///
972 /// fn process_data(data: &str) -> Result<String, TryReserveError> {
973 /// let mut output = String::new();
974 ///
975 /// // Pre-reserve the memory, exiting if we can't
976 /// output.try_reserve(data.len())?;
977 ///
978 /// // Now we know this can't OOM in the middle of our complex work
979 /// output.push_str(data);
980 ///
981 /// Ok(output)
982 /// }
983 /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
984 /// ```
985 #[unstable(feature = "try_reserve", reason = "new API", issue = "48043")]
986 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
987 self.vec.try_reserve(additional)
988 }
989
990 /// Tries to reserves the minimum capacity for exactly `additional` more elements to
991 /// be inserted in the given `String`. After calling `reserve_exact`,
992 /// capacity will be greater than or equal to `self.len() + additional`.
993 /// Does nothing if the capacity is already sufficient.
994 ///
995 /// Note that the allocator may give the collection more space than it
996 /// requests. Therefore, capacity can not be relied upon to be precisely
997 /// minimal. Prefer `reserve` if future insertions are expected.
998 ///
999 /// # Errors
1000 ///
1001 /// If the capacity overflows, or the allocator reports a failure, then an error
1002 /// is returned.
1003 ///
1004 /// # Examples
1005 ///
1006 /// ```
1007 /// #![feature(try_reserve)]
1008 /// use std::collections::TryReserveError;
1009 ///
1010 /// fn process_data(data: &str) -> Result<String, TryReserveError> {
1011 /// let mut output = String::new();
1012 ///
1013 /// // Pre-reserve the memory, exiting if we can't
1014 /// output.try_reserve(data.len())?;
1015 ///
1016 /// // Now we know this can't OOM in the middle of our complex work
1017 /// output.push_str(data);
1018 ///
1019 /// Ok(output)
1020 /// }
1021 /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
1022 /// ```
1023 #[unstable(feature = "try_reserve", reason = "new API", issue = "48043")]
1024 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1025 self.vec.try_reserve_exact(additional)
1026 }
1027
1028 /// Shrinks the capacity of this `String` to match its length.
1029 ///
1030 /// # Examples
1031 ///
1032 /// Basic usage:
1033 ///
1034 /// ```
1035 /// let mut s = String::from("foo");
1036 ///
1037 /// s.reserve(100);
1038 /// assert!(s.capacity() >= 100);
1039 ///
1040 /// s.shrink_to_fit();
1041 /// assert_eq!(3, s.capacity());
1042 /// ```
1043 #[inline]
1044 #[stable(feature = "rust1", since = "1.0.0")]
1045 pub fn shrink_to_fit(&mut self) {
1046 self.vec.shrink_to_fit()
1047 }
1048
1049 /// Shrinks the capacity of this `String` with a lower bound.
1050 ///
1051 /// The capacity will remain at least as large as both the length
1052 /// and the supplied value.
1053 ///
1054 /// Panics if the current capacity is smaller than the supplied
1055 /// minimum capacity.
1056 ///
1057 /// # Examples
1058 ///
1059 /// ```
1060 /// #![feature(shrink_to)]
1061 /// let mut s = String::from("foo");
1062 ///
1063 /// s.reserve(100);
1064 /// assert!(s.capacity() >= 100);
1065 ///
1066 /// s.shrink_to(10);
1067 /// assert!(s.capacity() >= 10);
1068 /// s.shrink_to(0);
1069 /// assert!(s.capacity() >= 3);
1070 /// ```
1071 #[inline]
1072 #[unstable(feature = "shrink_to", reason = "new API", issue = "56431")]
1073 pub fn shrink_to(&mut self, min_capacity: usize) {
1074 self.vec.shrink_to(min_capacity)
1075 }
1076
1077 /// Appends the given [`char`] to the end of this `String`.
1078 ///
1079 /// [`char`]: ../../std/primitive.char.html
1080 ///
1081 /// # Examples
1082 ///
1083 /// Basic usage:
1084 ///
1085 /// ```
1086 /// let mut s = String::from("abc");
1087 ///
1088 /// s.push('1');
1089 /// s.push('2');
1090 /// s.push('3');
1091 ///
1092 /// assert_eq!("abc123", s);
1093 /// ```
1094 #[inline]
1095 #[stable(feature = "rust1", since = "1.0.0")]
1096 pub fn push(&mut self, ch: char) {
1097 match ch.len_utf8() {
1098 1 => self.vec.push(ch as u8),
1099 _ => self.vec.extend_from_slice(ch.encode_utf8(&mut [0; 4]).as_bytes()),
1100 }
1101 }
1102
1103 /// Returns a byte slice of this `String`'s contents.
1104 ///
1105 /// The inverse of this method is [`from_utf8`].
1106 ///
1107 /// [`from_utf8`]: #method.from_utf8
1108 ///
1109 /// # Examples
1110 ///
1111 /// Basic usage:
1112 ///
1113 /// ```
1114 /// let s = String::from("hello");
1115 ///
1116 /// assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());
1117 /// ```
1118 #[inline]
1119 #[stable(feature = "rust1", since = "1.0.0")]
1120 pub fn as_bytes(&self) -> &[u8] {
1121 &self.vec
1122 }
1123
1124 /// Shortens this `String` to the specified length.
1125 ///
1126 /// If `new_len` is greater than the string's current length, this has no
1127 /// effect.
1128 ///
1129 /// Note that this method has no effect on the allocated capacity
1130 /// of the string
1131 ///
1132 /// # Panics
1133 ///
1134 /// Panics if `new_len` does not lie on a [`char`] boundary.
1135 ///
1136 /// [`char`]: ../../std/primitive.char.html
1137 ///
1138 /// # Examples
1139 ///
1140 /// Basic usage:
1141 ///
1142 /// ```
1143 /// let mut s = String::from("hello");
1144 ///
1145 /// s.truncate(2);
1146 ///
1147 /// assert_eq!("he", s);
1148 /// ```
1149 #[inline]
1150 #[stable(feature = "rust1", since = "1.0.0")]
1151 pub fn truncate(&mut self, new_len: usize) {
1152 if new_len <= self.len() {
1153 assert!(self.is_char_boundary(new_len));
1154 self.vec.truncate(new_len)
1155 }
1156 }
1157
1158 /// Removes the last character from the string buffer and returns it.
1159 ///
1160 /// Returns [`None`] if this `String` is empty.
1161 ///
1162 /// [`None`]: ../../std/option/enum.Option.html#variant.None
1163 ///
1164 /// # Examples
1165 ///
1166 /// Basic usage:
1167 ///
1168 /// ```
1169 /// let mut s = String::from("foo");
1170 ///
1171 /// assert_eq!(s.pop(), Some('o'));
1172 /// assert_eq!(s.pop(), Some('o'));
1173 /// assert_eq!(s.pop(), Some('f'));
1174 ///
1175 /// assert_eq!(s.pop(), None);
1176 /// ```
1177 #[inline]
1178 #[stable(feature = "rust1", since = "1.0.0")]
1179 pub fn pop(&mut self) -> Option<char> {
1180 let ch = self.chars().rev().next()?;
1181 let newlen = self.len() - ch.len_utf8();
1182 unsafe {
1183 self.vec.set_len(newlen);
1184 }
1185 Some(ch)
1186 }
1187
1188 /// Removes a [`char`] from this `String` at a byte position and returns it.
1189 ///
1190 /// This is an `O(n)` operation, as it requires copying every element in the
1191 /// buffer.
1192 ///
1193 /// # Panics
1194 ///
1195 /// Panics if `idx` is larger than or equal to the `String`'s length,
1196 /// or if it does not lie on a [`char`] boundary.
1197 ///
1198 /// [`char`]: ../../std/primitive.char.html
1199 ///
1200 /// # Examples
1201 ///
1202 /// Basic usage:
1203 ///
1204 /// ```
1205 /// let mut s = String::from("foo");
1206 ///
1207 /// assert_eq!(s.remove(0), 'f');
1208 /// assert_eq!(s.remove(1), 'o');
1209 /// assert_eq!(s.remove(0), 'o');
1210 /// ```
1211 #[inline]
1212 #[stable(feature = "rust1", since = "1.0.0")]
1213 pub fn remove(&mut self, idx: usize) -> char {
1214 let ch = match self[idx..].chars().next() {
1215 Some(ch) => ch,
1216 None => panic!("cannot remove a char from the end of a string"),
1217 };
1218
1219 let next = idx + ch.len_utf8();
1220 let len = self.len();
1221 unsafe {
1222 ptr::copy(self.vec.as_ptr().add(next), self.vec.as_mut_ptr().add(idx), len - next);
1223 self.vec.set_len(len - (next - idx));
1224 }
1225 ch
1226 }
1227
1228 /// Retains only the characters specified by the predicate.
1229 ///
1230 /// In other words, remove all characters `c` such that `f(c)` returns `false`.
1231 /// This method operates in place, visiting each character exactly once in the
1232 /// original order, and preserves the order of the retained characters.
1233 ///
1234 /// # Examples
1235 ///
1236 /// ```
1237 /// let mut s = String::from("f_o_ob_ar");
1238 ///
1239 /// s.retain(|c| c != '_');
1240 ///
1241 /// assert_eq!(s, "foobar");
1242 /// ```
1243 ///
1244 /// The exact order may be useful for tracking external state, like an index.
1245 ///
1246 /// ```
1247 /// let mut s = String::from("abcde");
1248 /// let keep = [false, true, true, false, true];
1249 /// let mut i = 0;
1250 /// s.retain(|_| (keep[i], i += 1).0);
1251 /// assert_eq!(s, "bce");
1252 /// ```
1253 #[inline]
1254 #[stable(feature = "string_retain", since = "1.26.0")]
1255 pub fn retain<F>(&mut self, mut f: F)
1256 where
1257 F: FnMut(char) -> bool,
1258 {
1259 let len = self.len();
1260 let mut del_bytes = 0;
1261 let mut idx = 0;
1262
1263 while idx < len {
1264 let ch = unsafe { self.get_unchecked(idx..len).chars().next().unwrap() };
1265 let ch_len = ch.len_utf8();
1266
1267 if !f(ch) {
1268 del_bytes += ch_len;
1269 } else if del_bytes > 0 {
1270 unsafe {
1271 ptr::copy(
1272 self.vec.as_ptr().add(idx),
1273 self.vec.as_mut_ptr().add(idx - del_bytes),
1274 ch_len,
1275 );
1276 }
1277 }
1278
1279 // Point idx to the next char
1280 idx += ch_len;
1281 }
1282
1283 if del_bytes > 0 {
1284 unsafe {
1285 self.vec.set_len(len - del_bytes);
1286 }
1287 }
1288 }
1289
1290 /// Inserts a character into this `String` at a byte position.
1291 ///
1292 /// This is an `O(n)` operation as it requires copying every element in the
1293 /// buffer.
1294 ///
1295 /// # Panics
1296 ///
1297 /// Panics if `idx` is larger than the `String`'s length, or if it does not
1298 /// lie on a [`char`] boundary.
1299 ///
1300 /// [`char`]: ../../std/primitive.char.html
1301 ///
1302 /// # Examples
1303 ///
1304 /// Basic usage:
1305 ///
1306 /// ```
1307 /// let mut s = String::with_capacity(3);
1308 ///
1309 /// s.insert(0, 'f');
1310 /// s.insert(1, 'o');
1311 /// s.insert(2, 'o');
1312 ///
1313 /// assert_eq!("foo", s);
1314 /// ```
1315 #[inline]
1316 #[stable(feature = "rust1", since = "1.0.0")]
1317 pub fn insert(&mut self, idx: usize, ch: char) {
1318 assert!(self.is_char_boundary(idx));
1319 let mut bits = [0; 4];
1320 let bits = ch.encode_utf8(&mut bits).as_bytes();
1321
1322 unsafe {
1323 self.insert_bytes(idx, bits);
1324 }
1325 }
1326
1327 unsafe fn insert_bytes(&mut self, idx: usize, bytes: &[u8]) {
1328 let len = self.len();
1329 let amt = bytes.len();
1330 self.vec.reserve(amt);
1331
1332 ptr::copy(self.vec.as_ptr().add(idx), self.vec.as_mut_ptr().add(idx + amt), len - idx);
1333 ptr::copy(bytes.as_ptr(), self.vec.as_mut_ptr().add(idx), amt);
1334 self.vec.set_len(len + amt);
1335 }
1336
1337 /// Inserts a string slice into this `String` at a byte position.
1338 ///
1339 /// This is an `O(n)` operation as it requires copying every element in the
1340 /// buffer.
1341 ///
1342 /// # Panics
1343 ///
1344 /// Panics if `idx` is larger than the `String`'s length, or if it does not
1345 /// lie on a [`char`] boundary.
1346 ///
1347 /// [`char`]: ../../std/primitive.char.html
1348 ///
1349 /// # Examples
1350 ///
1351 /// Basic usage:
1352 ///
1353 /// ```
1354 /// let mut s = String::from("bar");
1355 ///
1356 /// s.insert_str(0, "foo");
1357 ///
1358 /// assert_eq!("foobar", s);
1359 /// ```
1360 #[inline]
1361 #[stable(feature = "insert_str", since = "1.16.0")]
1362 pub fn insert_str(&mut self, idx: usize, string: &str) {
1363 assert!(self.is_char_boundary(idx));
1364
1365 unsafe {
1366 self.insert_bytes(idx, string.as_bytes());
1367 }
1368 }
1369
1370 /// Returns a mutable reference to the contents of this `String`.
1371 ///
1372 /// # Safety
1373 ///
1374 /// This function is unsafe because it does not check that the bytes passed
1375 /// to it are valid UTF-8. If this constraint is violated, it may cause
1376 /// memory unsafety issues with future users of the `String`, as the rest of
1377 /// the standard library assumes that `String`s are valid UTF-8.
1378 ///
1379 /// # Examples
1380 ///
1381 /// Basic usage:
1382 ///
1383 /// ```
1384 /// let mut s = String::from("hello");
1385 ///
1386 /// unsafe {
1387 /// let vec = s.as_mut_vec();
1388 /// assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);
1389 ///
1390 /// vec.reverse();
1391 /// }
1392 /// assert_eq!(s, "olleh");
1393 /// ```
1394 #[inline]
1395 #[stable(feature = "rust1", since = "1.0.0")]
1396 pub unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8> {
1397 &mut self.vec
1398 }
1399
1400 /// Returns the length of this `String`, in bytes, not [`char`]s or
1401 /// graphemes. In other words, it may not be what a human considers the
1402 /// length of the string.
1403 ///
1404 /// # Examples
1405 ///
1406 /// Basic usage:
1407 ///
1408 /// ```
1409 /// let a = String::from("foo");
1410 /// assert_eq!(a.len(), 3);
1411 ///
1412 /// let fancy_f = String::from("ƒoo");
1413 /// assert_eq!(fancy_f.len(), 4);
1414 /// assert_eq!(fancy_f.chars().count(), 3);
1415 /// ```
1416 #[inline]
1417 #[stable(feature = "rust1", since = "1.0.0")]
1418 pub fn len(&self) -> usize {
1419 self.vec.len()
1420 }
1421
1422 /// Returns `true` if this `String` has a length of zero, and `false` otherwise.
1423 ///
1424 /// # Examples
1425 ///
1426 /// Basic usage:
1427 ///
1428 /// ```
1429 /// let mut v = String::new();
1430 /// assert!(v.is_empty());
1431 ///
1432 /// v.push('a');
1433 /// assert!(!v.is_empty());
1434 /// ```
1435 #[inline]
1436 #[stable(feature = "rust1", since = "1.0.0")]
1437 pub fn is_empty(&self) -> bool {
1438 self.len() == 0
1439 }
1440
1441 /// Splits the string into two at the given index.
1442 ///
1443 /// Returns a newly allocated `String`. `self` contains bytes `[0, at)`, and
1444 /// the returned `String` contains bytes `[at, len)`. `at` must be on the
1445 /// boundary of a UTF-8 code point.
1446 ///
1447 /// Note that the capacity of `self` does not change.
1448 ///
1449 /// # Panics
1450 ///
1451 /// Panics if `at` is not on a `UTF-8` code point boundary, or if it is beyond the last
1452 /// code point of the string.
1453 ///
1454 /// # Examples
1455 ///
1456 /// ```
1457 /// # fn main() {
1458 /// let mut hello = String::from("Hello, World!");
1459 /// let world = hello.split_off(7);
1460 /// assert_eq!(hello, "Hello, ");
1461 /// assert_eq!(world, "World!");
1462 /// # }
1463 /// ```
1464 #[inline]
1465 #[stable(feature = "string_split_off", since = "1.16.0")]
1466 #[must_use = "use `.truncate()` if you don't need the other half"]
1467 pub fn split_off(&mut self, at: usize) -> String {
1468 assert!(self.is_char_boundary(at));
1469 let other = self.vec.split_off(at);
1470 unsafe { String::from_utf8_unchecked(other) }
1471 }
1472
1473 /// Truncates this `String`, removing all contents.
1474 ///
1475 /// While this means the `String` will have a length of zero, it does not
1476 /// touch its capacity.
1477 ///
1478 /// # Examples
1479 ///
1480 /// Basic usage:
1481 ///
1482 /// ```
1483 /// let mut s = String::from("foo");
1484 ///
1485 /// s.clear();
1486 ///
1487 /// assert!(s.is_empty());
1488 /// assert_eq!(0, s.len());
1489 /// assert_eq!(3, s.capacity());
1490 /// ```
1491 #[inline]
1492 #[stable(feature = "rust1", since = "1.0.0")]
1493 pub fn clear(&mut self) {
1494 self.vec.clear()
1495 }
1496
1497 /// Creates a draining iterator that removes the specified range in the `String`
1498 /// and yields the removed `chars`.
1499 ///
1500 /// Note: The element range is removed even if the iterator is not
1501 /// consumed until the end.
1502 ///
1503 /// # Panics
1504 ///
1505 /// Panics if the starting point or end point do not lie on a [`char`]
1506 /// boundary, or if they're out of bounds.
1507 ///
1508 /// [`char`]: ../../std/primitive.char.html
1509 ///
1510 /// # Examples
1511 ///
1512 /// Basic usage:
1513 ///
1514 /// ```
1515 /// let mut s = String::from("α is alpha, β is beta");
1516 /// let beta_offset = s.find('β').unwrap_or(s.len());
1517 ///
1518 /// // Remove the range up until the β from the string
1519 /// let t: String = s.drain(..beta_offset).collect();
1520 /// assert_eq!(t, "α is alpha, ");
1521 /// assert_eq!(s, "β is beta");
1522 ///
1523 /// // A full range clears the string
1524 /// s.drain(..);
1525 /// assert_eq!(s, "");
1526 /// ```
1527 #[stable(feature = "drain", since = "1.6.0")]
1528 pub fn drain<R>(&mut self, range: R) -> Drain<'_>
1529 where
1530 R: RangeBounds<usize>,
1531 {
1532 // Memory safety
1533 //
1534 // The String version of Drain does not have the memory safety issues
1535 // of the vector version. The data is just plain bytes.
1536 // Because the range removal happens in Drop, if the Drain iterator is leaked,
1537 // the removal will not happen.
1538 let len = self.len();
1539 let start = match range.start_bound() {
1540 Included(&n) => n,
1541 Excluded(&n) => n + 1,
1542 Unbounded => 0,
1543 };
1544 let end = match range.end_bound() {
1545 Included(&n) => n + 1,
1546 Excluded(&n) => n,
1547 Unbounded => len,
1548 };
1549
1550 // Take out two simultaneous borrows. The &mut String won't be accessed
1551 // until iteration is over, in Drop.
1552 let self_ptr = self as *mut _;
1553 // slicing does the appropriate bounds checks
1554 let chars_iter = self[start..end].chars();
1555
1556 Drain { start, end, iter: chars_iter, string: self_ptr }
1557 }
1558
1559 /// Removes the specified range in the string,
1560 /// and replaces it with the given string.
1561 /// The given string doesn't need to be the same length as the range.
1562 ///
1563 /// # Panics
1564 ///
1565 /// Panics if the starting point or end point do not lie on a [`char`]
1566 /// boundary, or if they're out of bounds.
1567 ///
1568 /// [`char`]: ../../std/primitive.char.html
1569 /// [`Vec::splice`]: ../../std/vec/struct.Vec.html#method.splice
1570 ///
1571 /// # Examples
1572 ///
1573 /// Basic usage:
1574 ///
1575 /// ```
1576 /// let mut s = String::from("α is alpha, β is beta");
1577 /// let beta_offset = s.find('β').unwrap_or(s.len());
1578 ///
1579 /// // Replace the range up until the β from the string
1580 /// s.replace_range(..beta_offset, "Α is capital alpha; ");
1581 /// assert_eq!(s, "Α is capital alpha; β is beta");
1582 /// ```
1583 #[stable(feature = "splice", since = "1.27.0")]
1584 pub fn replace_range<R>(&mut self, range: R, replace_with: &str)
1585 where
1586 R: RangeBounds<usize>,
1587 {
1588 // Memory safety
1589 //
1590 // Replace_range does not have the memory safety issues of a vector Splice.
1591 // of the vector version. The data is just plain bytes.
1592
1593 match range.start_bound() {
1594 Included(&n) => assert!(self.is_char_boundary(n)),
1595 Excluded(&n) => assert!(self.is_char_boundary(n + 1)),
1596 Unbounded => {}
1597 };
1598 match range.end_bound() {
1599 Included(&n) => assert!(self.is_char_boundary(n + 1)),
1600 Excluded(&n) => assert!(self.is_char_boundary(n)),
1601 Unbounded => {}
1602 };
1603
1604 unsafe { self.as_mut_vec() }.splice(range, replace_with.bytes());
1605 }
1606
1607 /// Converts this `String` into a [`Box`]`<`[`str`]`>`.
1608 ///
1609 /// This will drop any excess capacity.
1610 ///
1611 /// [`Box`]: ../../std/boxed/struct.Box.html
1612 /// [`str`]: ../../std/primitive.str.html
1613 ///
1614 /// # Examples
1615 ///
1616 /// Basic usage:
1617 ///
1618 /// ```
1619 /// let s = String::from("hello");
1620 ///
1621 /// let b = s.into_boxed_str();
1622 /// ```
1623 #[stable(feature = "box_str", since = "1.4.0")]
1624 #[inline]
1625 pub fn into_boxed_str(self) -> Box<str> {
1626 let slice = self.vec.into_boxed_slice();
1627 unsafe { from_boxed_utf8_unchecked(slice) }
1628 }
1629 }
1630
1631 impl FromUtf8Error {
1632 /// Returns a slice of [`u8`]s bytes that were attempted to convert to a `String`.
1633 ///
1634 /// # Examples
1635 ///
1636 /// Basic usage:
1637 ///
1638 /// ```
1639 /// // some invalid bytes, in a vector
1640 /// let bytes = vec![0, 159];
1641 ///
1642 /// let value = String::from_utf8(bytes);
1643 ///
1644 /// assert_eq!(&[0, 159], value.unwrap_err().as_bytes());
1645 /// ```
1646 #[stable(feature = "from_utf8_error_as_bytes", since = "1.26.0")]
1647 pub fn as_bytes(&self) -> &[u8] {
1648 &self.bytes[..]
1649 }
1650
1651 /// Returns the bytes that were attempted to convert to a `String`.
1652 ///
1653 /// This method is carefully constructed to avoid allocation. It will
1654 /// consume the error, moving out the bytes, so that a copy of the bytes
1655 /// does not need to be made.
1656 ///
1657 /// # Examples
1658 ///
1659 /// Basic usage:
1660 ///
1661 /// ```
1662 /// // some invalid bytes, in a vector
1663 /// let bytes = vec![0, 159];
1664 ///
1665 /// let value = String::from_utf8(bytes);
1666 ///
1667 /// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
1668 /// ```
1669 #[stable(feature = "rust1", since = "1.0.0")]
1670 pub fn into_bytes(self) -> Vec<u8> {
1671 self.bytes
1672 }
1673
1674 /// Fetch a `Utf8Error` to get more details about the conversion failure.
1675 ///
1676 /// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
1677 /// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
1678 /// an analogue to `FromUtf8Error`. See its documentation for more details
1679 /// on using it.
1680 ///
1681 /// [`Utf8Error`]: ../../std/str/struct.Utf8Error.html
1682 /// [`std::str`]: ../../std/str/index.html
1683 /// [`u8`]: ../../std/primitive.u8.html
1684 /// [`&str`]: ../../std/primitive.str.html
1685 ///
1686 /// # Examples
1687 ///
1688 /// Basic usage:
1689 ///
1690 /// ```
1691 /// // some invalid bytes, in a vector
1692 /// let bytes = vec![0, 159];
1693 ///
1694 /// let error = String::from_utf8(bytes).unwrap_err().utf8_error();
1695 ///
1696 /// // the first byte is invalid here
1697 /// assert_eq!(1, error.valid_up_to());
1698 /// ```
1699 #[stable(feature = "rust1", since = "1.0.0")]
1700 pub fn utf8_error(&self) -> Utf8Error {
1701 self.error
1702 }
1703 }
1704
1705 #[stable(feature = "rust1", since = "1.0.0")]
1706 impl fmt::Display for FromUtf8Error {
1707 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1708 fmt::Display::fmt(&self.error, f)
1709 }
1710 }
1711
1712 #[stable(feature = "rust1", since = "1.0.0")]
1713 impl fmt::Display for FromUtf16Error {
1714 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1715 fmt::Display::fmt("invalid utf-16: lone surrogate found", f)
1716 }
1717 }
1718
1719 #[stable(feature = "rust1", since = "1.0.0")]
1720 impl Clone for String {
1721 fn clone(&self) -> Self {
1722 String { vec: self.vec.clone() }
1723 }
1724
1725 fn clone_from(&mut self, source: &Self) {
1726 self.vec.clone_from(&source.vec);
1727 }
1728 }
1729
1730 #[stable(feature = "rust1", since = "1.0.0")]
1731 impl FromIterator<char> for String {
1732 fn from_iter<I: IntoIterator<Item = char>>(iter: I) -> String {
1733 let mut buf = String::new();
1734 buf.extend(iter);
1735 buf
1736 }
1737 }
1738
1739 #[stable(feature = "string_from_iter_by_ref", since = "1.17.0")]
1740 impl<'a> FromIterator<&'a char> for String {
1741 fn from_iter<I: IntoIterator<Item = &'a char>>(iter: I) -> String {
1742 let mut buf = String::new();
1743 buf.extend(iter);
1744 buf
1745 }
1746 }
1747
1748 #[stable(feature = "rust1", since = "1.0.0")]
1749 impl<'a> FromIterator<&'a str> for String {
1750 fn from_iter<I: IntoIterator<Item = &'a str>>(iter: I) -> String {
1751 let mut buf = String::new();
1752 buf.extend(iter);
1753 buf
1754 }
1755 }
1756
1757 #[stable(feature = "extend_string", since = "1.4.0")]
1758 impl FromIterator<String> for String {
1759 fn from_iter<I: IntoIterator<Item = String>>(iter: I) -> String {
1760 let mut iterator = iter.into_iter();
1761
1762 // Because we're iterating over `String`s, we can avoid at least
1763 // one allocation by getting the first string from the iterator
1764 // and appending to it all the subsequent strings.
1765 match iterator.next() {
1766 None => String::new(),
1767 Some(mut buf) => {
1768 buf.extend(iterator);
1769 buf
1770 }
1771 }
1772 }
1773 }
1774
1775 #[stable(feature = "herd_cows", since = "1.19.0")]
1776 impl<'a> FromIterator<Cow<'a, str>> for String {
1777 fn from_iter<I: IntoIterator<Item = Cow<'a, str>>>(iter: I) -> String {
1778 let mut iterator = iter.into_iter();
1779
1780 // Because we're iterating over CoWs, we can (potentially) avoid at least
1781 // one allocation by getting the first item and appending to it all the
1782 // subsequent items.
1783 match iterator.next() {
1784 None => String::new(),
1785 Some(cow) => {
1786 let mut buf = cow.into_owned();
1787 buf.extend(iterator);
1788 buf
1789 }
1790 }
1791 }
1792 }
1793
1794 #[stable(feature = "rust1", since = "1.0.0")]
1795 impl Extend<char> for String {
1796 fn extend<I: IntoIterator<Item = char>>(&mut self, iter: I) {
1797 let iterator = iter.into_iter();
1798 let (lower_bound, _) = iterator.size_hint();
1799 self.reserve(lower_bound);
1800 iterator.for_each(move |c| self.push(c));
1801 }
1802
1803 #[inline]
1804 fn extend_one(&mut self, c: char) {
1805 self.push(c);
1806 }
1807
1808 #[inline]
1809 fn extend_reserve(&mut self, additional: usize) {
1810 self.reserve(additional);
1811 }
1812 }
1813
1814 #[stable(feature = "extend_ref", since = "1.2.0")]
1815 impl<'a> Extend<&'a char> for String {
1816 fn extend<I: IntoIterator<Item = &'a char>>(&mut self, iter: I) {
1817 self.extend(iter.into_iter().cloned());
1818 }
1819
1820 #[inline]
1821 fn extend_one(&mut self, &c: &'a char) {
1822 self.push(c);
1823 }
1824
1825 #[inline]
1826 fn extend_reserve(&mut self, additional: usize) {
1827 self.reserve(additional);
1828 }
1829 }
1830
1831 #[stable(feature = "rust1", since = "1.0.0")]
1832 impl<'a> Extend<&'a str> for String {
1833 fn extend<I: IntoIterator<Item = &'a str>>(&mut self, iter: I) {
1834 iter.into_iter().for_each(move |s| self.push_str(s));
1835 }
1836
1837 #[inline]
1838 fn extend_one(&mut self, s: &'a str) {
1839 self.push_str(s);
1840 }
1841 }
1842
1843 #[stable(feature = "extend_string", since = "1.4.0")]
1844 impl Extend<String> for String {
1845 fn extend<I: IntoIterator<Item = String>>(&mut self, iter: I) {
1846 iter.into_iter().for_each(move |s| self.push_str(&s));
1847 }
1848
1849 #[inline]
1850 fn extend_one(&mut self, s: String) {
1851 self.push_str(&s);
1852 }
1853 }
1854
1855 #[stable(feature = "herd_cows", since = "1.19.0")]
1856 impl<'a> Extend<Cow<'a, str>> for String {
1857 fn extend<I: IntoIterator<Item = Cow<'a, str>>>(&mut self, iter: I) {
1858 iter.into_iter().for_each(move |s| self.push_str(&s));
1859 }
1860
1861 #[inline]
1862 fn extend_one(&mut self, s: Cow<'a, str>) {
1863 self.push_str(&s);
1864 }
1865 }
1866
1867 /// A convenience impl that delegates to the impl for `&str`.
1868 ///
1869 /// # Examples
1870 ///
1871 /// ```
1872 /// assert_eq!(String::from("Hello world").find("world"), Some(6));
1873 /// ```
1874 #[unstable(
1875 feature = "pattern",
1876 reason = "API not fully fleshed out and ready to be stabilized",
1877 issue = "27721"
1878 )]
1879 impl<'a, 'b> Pattern<'a> for &'b String {
1880 type Searcher = <&'b str as Pattern<'a>>::Searcher;
1881
1882 fn into_searcher(self, haystack: &'a str) -> <&'b str as Pattern<'a>>::Searcher {
1883 self[..].into_searcher(haystack)
1884 }
1885
1886 #[inline]
1887 fn is_contained_in(self, haystack: &'a str) -> bool {
1888 self[..].is_contained_in(haystack)
1889 }
1890
1891 #[inline]
1892 fn is_prefix_of(self, haystack: &'a str) -> bool {
1893 self[..].is_prefix_of(haystack)
1894 }
1895
1896 #[inline]
1897 fn strip_prefix_of(self, haystack: &'a str) -> Option<&'a str> {
1898 self[..].strip_prefix_of(haystack)
1899 }
1900
1901 #[inline]
1902 fn is_suffix_of(self, haystack: &'a str) -> bool {
1903 self[..].is_suffix_of(haystack)
1904 }
1905
1906 #[inline]
1907 fn strip_suffix_of(self, haystack: &'a str) -> Option<&'a str> {
1908 self[..].strip_suffix_of(haystack)
1909 }
1910 }
1911
1912 #[stable(feature = "rust1", since = "1.0.0")]
1913 impl PartialEq for String {
1914 #[inline]
1915 fn eq(&self, other: &String) -> bool {
1916 PartialEq::eq(&self[..], &other[..])
1917 }
1918 #[inline]
1919 fn ne(&self, other: &String) -> bool {
1920 PartialEq::ne(&self[..], &other[..])
1921 }
1922 }
1923
1924 macro_rules! impl_eq {
1925 ($lhs:ty, $rhs: ty) => {
1926 #[stable(feature = "rust1", since = "1.0.0")]
1927 #[allow(unused_lifetimes)]
1928 impl<'a, 'b> PartialEq<$rhs> for $lhs {
1929 #[inline]
1930 fn eq(&self, other: &$rhs) -> bool {
1931 PartialEq::eq(&self[..], &other[..])
1932 }
1933 #[inline]
1934 fn ne(&self, other: &$rhs) -> bool {
1935 PartialEq::ne(&self[..], &other[..])
1936 }
1937 }
1938
1939 #[stable(feature = "rust1", since = "1.0.0")]
1940 #[allow(unused_lifetimes)]
1941 impl<'a, 'b> PartialEq<$lhs> for $rhs {
1942 #[inline]
1943 fn eq(&self, other: &$lhs) -> bool {
1944 PartialEq::eq(&self[..], &other[..])
1945 }
1946 #[inline]
1947 fn ne(&self, other: &$lhs) -> bool {
1948 PartialEq::ne(&self[..], &other[..])
1949 }
1950 }
1951 };
1952 }
1953
1954 impl_eq! { String, str }
1955 impl_eq! { String, &'a str }
1956 impl_eq! { Cow<'a, str>, str }
1957 impl_eq! { Cow<'a, str>, &'b str }
1958 impl_eq! { Cow<'a, str>, String }
1959
1960 #[stable(feature = "rust1", since = "1.0.0")]
1961 impl Default for String {
1962 /// Creates an empty `String`.
1963 #[inline]
1964 fn default() -> String {
1965 String::new()
1966 }
1967 }
1968
1969 #[stable(feature = "rust1", since = "1.0.0")]
1970 impl fmt::Display for String {
1971 #[inline]
1972 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1973 fmt::Display::fmt(&**self, f)
1974 }
1975 }
1976
1977 #[stable(feature = "rust1", since = "1.0.0")]
1978 impl fmt::Debug for String {
1979 #[inline]
1980 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1981 fmt::Debug::fmt(&**self, f)
1982 }
1983 }
1984
1985 #[stable(feature = "rust1", since = "1.0.0")]
1986 impl hash::Hash for String {
1987 #[inline]
1988 fn hash<H: hash::Hasher>(&self, hasher: &mut H) {
1989 (**self).hash(hasher)
1990 }
1991 }
1992
1993 /// Implements the `+` operator for concatenating two strings.
1994 ///
1995 /// This consumes the `String` on the left-hand side and re-uses its buffer (growing it if
1996 /// necessary). This is done to avoid allocating a new `String` and copying the entire contents on
1997 /// every operation, which would lead to `O(n^2)` running time when building an `n`-byte string by
1998 /// repeated concatenation.
1999 ///
2000 /// The string on the right-hand side is only borrowed; its contents are copied into the returned
2001 /// `String`.
2002 ///
2003 /// # Examples
2004 ///
2005 /// Concatenating two `String`s takes the first by value and borrows the second:
2006 ///
2007 /// ```
2008 /// let a = String::from("hello");
2009 /// let b = String::from(" world");
2010 /// let c = a + &b;
2011 /// // `a` is moved and can no longer be used here.
2012 /// ```
2013 ///
2014 /// If you want to keep using the first `String`, you can clone it and append to the clone instead:
2015 ///
2016 /// ```
2017 /// let a = String::from("hello");
2018 /// let b = String::from(" world");
2019 /// let c = a.clone() + &b;
2020 /// // `a` is still valid here.
2021 /// ```
2022 ///
2023 /// Concatenating `&str` slices can be done by converting the first to a `String`:
2024 ///
2025 /// ```
2026 /// let a = "hello";
2027 /// let b = " world";
2028 /// let c = a.to_string() + b;
2029 /// ```
2030 #[stable(feature = "rust1", since = "1.0.0")]
2031 impl Add<&str> for String {
2032 type Output = String;
2033
2034 #[inline]
2035 fn add(mut self, other: &str) -> String {
2036 self.push_str(other);
2037 self
2038 }
2039 }
2040
2041 /// Implements the `+=` operator for appending to a `String`.
2042 ///
2043 /// This has the same behavior as the [`push_str`][String::push_str] method.
2044 #[stable(feature = "stringaddassign", since = "1.12.0")]
2045 impl AddAssign<&str> for String {
2046 #[inline]
2047 fn add_assign(&mut self, other: &str) {
2048 self.push_str(other);
2049 }
2050 }
2051
2052 #[stable(feature = "rust1", since = "1.0.0")]
2053 impl ops::Index<ops::Range<usize>> for String {
2054 type Output = str;
2055
2056 #[inline]
2057 fn index(&self, index: ops::Range<usize>) -> &str {
2058 &self[..][index]
2059 }
2060 }
2061 #[stable(feature = "rust1", since = "1.0.0")]
2062 impl ops::Index<ops::RangeTo<usize>> for String {
2063 type Output = str;
2064
2065 #[inline]
2066 fn index(&self, index: ops::RangeTo<usize>) -> &str {
2067 &self[..][index]
2068 }
2069 }
2070 #[stable(feature = "rust1", since = "1.0.0")]
2071 impl ops::Index<ops::RangeFrom<usize>> for String {
2072 type Output = str;
2073
2074 #[inline]
2075 fn index(&self, index: ops::RangeFrom<usize>) -> &str {
2076 &self[..][index]
2077 }
2078 }
2079 #[stable(feature = "rust1", since = "1.0.0")]
2080 impl ops::Index<ops::RangeFull> for String {
2081 type Output = str;
2082
2083 #[inline]
2084 fn index(&self, _index: ops::RangeFull) -> &str {
2085 unsafe { str::from_utf8_unchecked(&self.vec) }
2086 }
2087 }
2088 #[stable(feature = "inclusive_range", since = "1.26.0")]
2089 impl ops::Index<ops::RangeInclusive<usize>> for String {
2090 type Output = str;
2091
2092 #[inline]
2093 fn index(&self, index: ops::RangeInclusive<usize>) -> &str {
2094 Index::index(&**self, index)
2095 }
2096 }
2097 #[stable(feature = "inclusive_range", since = "1.26.0")]
2098 impl ops::Index<ops::RangeToInclusive<usize>> for String {
2099 type Output = str;
2100
2101 #[inline]
2102 fn index(&self, index: ops::RangeToInclusive<usize>) -> &str {
2103 Index::index(&**self, index)
2104 }
2105 }
2106
2107 #[stable(feature = "derefmut_for_string", since = "1.3.0")]
2108 impl ops::IndexMut<ops::Range<usize>> for String {
2109 #[inline]
2110 fn index_mut(&mut self, index: ops::Range<usize>) -> &mut str {
2111 &mut self[..][index]
2112 }
2113 }
2114 #[stable(feature = "derefmut_for_string", since = "1.3.0")]
2115 impl ops::IndexMut<ops::RangeTo<usize>> for String {
2116 #[inline]
2117 fn index_mut(&mut self, index: ops::RangeTo<usize>) -> &mut str {
2118 &mut self[..][index]
2119 }
2120 }
2121 #[stable(feature = "derefmut_for_string", since = "1.3.0")]
2122 impl ops::IndexMut<ops::RangeFrom<usize>> for String {
2123 #[inline]
2124 fn index_mut(&mut self, index: ops::RangeFrom<usize>) -> &mut str {
2125 &mut self[..][index]
2126 }
2127 }
2128 #[stable(feature = "derefmut_for_string", since = "1.3.0")]
2129 impl ops::IndexMut<ops::RangeFull> for String {
2130 #[inline]
2131 fn index_mut(&mut self, _index: ops::RangeFull) -> &mut str {
2132 unsafe { str::from_utf8_unchecked_mut(&mut *self.vec) }
2133 }
2134 }
2135 #[stable(feature = "inclusive_range", since = "1.26.0")]
2136 impl ops::IndexMut<ops::RangeInclusive<usize>> for String {
2137 #[inline]
2138 fn index_mut(&mut self, index: ops::RangeInclusive<usize>) -> &mut str {
2139 IndexMut::index_mut(&mut **self, index)
2140 }
2141 }
2142 #[stable(feature = "inclusive_range", since = "1.26.0")]
2143 impl ops::IndexMut<ops::RangeToInclusive<usize>> for String {
2144 #[inline]
2145 fn index_mut(&mut self, index: ops::RangeToInclusive<usize>) -> &mut str {
2146 IndexMut::index_mut(&mut **self, index)
2147 }
2148 }
2149
2150 #[stable(feature = "rust1", since = "1.0.0")]
2151 impl ops::Deref for String {
2152 type Target = str;
2153
2154 #[inline]
2155 fn deref(&self) -> &str {
2156 unsafe { str::from_utf8_unchecked(&self.vec) }
2157 }
2158 }
2159
2160 #[stable(feature = "derefmut_for_string", since = "1.3.0")]
2161 impl ops::DerefMut for String {
2162 #[inline]
2163 fn deref_mut(&mut self) -> &mut str {
2164 unsafe { str::from_utf8_unchecked_mut(&mut *self.vec) }
2165 }
2166 }
2167
2168 /// A type alias for [`Infallible`].
2169 ///
2170 /// This alias exists for backwards compatibility, and may be eventually deprecated.
2171 ///
2172 /// [`Infallible`]: ../../core/convert/enum.Infallible.html
2173 #[stable(feature = "str_parse_error", since = "1.5.0")]
2174 pub type ParseError = core::convert::Infallible;
2175
2176 #[stable(feature = "rust1", since = "1.0.0")]
2177 impl FromStr for String {
2178 type Err = core::convert::Infallible;
2179 #[inline]
2180 fn from_str(s: &str) -> Result<String, Self::Err> {
2181 Ok(String::from(s))
2182 }
2183 }
2184
2185 /// A trait for converting a value to a `String`.
2186 ///
2187 /// This trait is automatically implemented for any type which implements the
2188 /// [`Display`] trait. As such, `ToString` shouldn't be implemented directly:
2189 /// [`Display`] should be implemented instead, and you get the `ToString`
2190 /// implementation for free.
2191 ///
2192 /// [`Display`]: ../../std/fmt/trait.Display.html
2193 #[stable(feature = "rust1", since = "1.0.0")]
2194 pub trait ToString {
2195 /// Converts the given value to a `String`.
2196 ///
2197 /// # Examples
2198 ///
2199 /// Basic usage:
2200 ///
2201 /// ```
2202 /// let i = 5;
2203 /// let five = String::from("5");
2204 ///
2205 /// assert_eq!(five, i.to_string());
2206 /// ```
2207 #[rustc_conversion_suggestion]
2208 #[stable(feature = "rust1", since = "1.0.0")]
2209 fn to_string(&self) -> String;
2210 }
2211
2212 /// # Panics
2213 ///
2214 /// In this implementation, the `to_string` method panics
2215 /// if the `Display` implementation returns an error.
2216 /// This indicates an incorrect `Display` implementation
2217 /// since `fmt::Write for String` never returns an error itself.
2218 #[stable(feature = "rust1", since = "1.0.0")]
2219 impl<T: fmt::Display + ?Sized> ToString for T {
2220 #[inline]
2221 default fn to_string(&self) -> String {
2222 use fmt::Write;
2223 let mut buf = String::new();
2224 buf.write_fmt(format_args!("{}", self))
2225 .expect("a Display implementation returned an error unexpectedly");
2226 buf.shrink_to_fit();
2227 buf
2228 }
2229 }
2230
2231 #[stable(feature = "str_to_string_specialization", since = "1.9.0")]
2232 impl ToString for str {
2233 #[inline]
2234 fn to_string(&self) -> String {
2235 String::from(self)
2236 }
2237 }
2238
2239 #[stable(feature = "cow_str_to_string_specialization", since = "1.17.0")]
2240 impl ToString for Cow<'_, str> {
2241 #[inline]
2242 fn to_string(&self) -> String {
2243 self[..].to_owned()
2244 }
2245 }
2246
2247 #[stable(feature = "string_to_string_specialization", since = "1.17.0")]
2248 impl ToString for String {
2249 #[inline]
2250 fn to_string(&self) -> String {
2251 self.to_owned()
2252 }
2253 }
2254
2255 #[stable(feature = "rust1", since = "1.0.0")]
2256 impl AsRef<str> for String {
2257 #[inline]
2258 fn as_ref(&self) -> &str {
2259 self
2260 }
2261 }
2262
2263 #[stable(feature = "string_as_mut", since = "1.43.0")]
2264 impl AsMut<str> for String {
2265 #[inline]
2266 fn as_mut(&mut self) -> &mut str {
2267 self
2268 }
2269 }
2270
2271 #[stable(feature = "rust1", since = "1.0.0")]
2272 impl AsRef<[u8]> for String {
2273 #[inline]
2274 fn as_ref(&self) -> &[u8] {
2275 self.as_bytes()
2276 }
2277 }
2278
2279 #[stable(feature = "rust1", since = "1.0.0")]
2280 impl From<&str> for String {
2281 #[inline]
2282 fn from(s: &str) -> String {
2283 s.to_owned()
2284 }
2285 }
2286
2287 #[stable(feature = "from_mut_str_for_string", since = "1.44.0")]
2288 impl From<&mut str> for String {
2289 /// Converts a `&mut str` into a `String`.
2290 ///
2291 /// The result is allocated on the heap.
2292 #[inline]
2293 fn from(s: &mut str) -> String {
2294 s.to_owned()
2295 }
2296 }
2297
2298 #[stable(feature = "from_ref_string", since = "1.35.0")]
2299 impl From<&String> for String {
2300 #[inline]
2301 fn from(s: &String) -> String {
2302 s.clone()
2303 }
2304 }
2305
2306 // note: test pulls in libstd, which causes errors here
2307 #[cfg(not(test))]
2308 #[stable(feature = "string_from_box", since = "1.18.0")]
2309 impl From<Box<str>> for String {
2310 /// Converts the given boxed `str` slice to a `String`.
2311 /// It is notable that the `str` slice is owned.
2312 ///
2313 /// # Examples
2314 ///
2315 /// Basic usage:
2316 ///
2317 /// ```
2318 /// let s1: String = String::from("hello world");
2319 /// let s2: Box<str> = s1.into_boxed_str();
2320 /// let s3: String = String::from(s2);
2321 ///
2322 /// assert_eq!("hello world", s3)
2323 /// ```
2324 fn from(s: Box<str>) -> String {
2325 s.into_string()
2326 }
2327 }
2328
2329 #[stable(feature = "box_from_str", since = "1.20.0")]
2330 impl From<String> for Box<str> {
2331 /// Converts the given `String` to a boxed `str` slice that is owned.
2332 ///
2333 /// # Examples
2334 ///
2335 /// Basic usage:
2336 ///
2337 /// ```
2338 /// let s1: String = String::from("hello world");
2339 /// let s2: Box<str> = Box::from(s1);
2340 /// let s3: String = String::from(s2);
2341 ///
2342 /// assert_eq!("hello world", s3)
2343 /// ```
2344 fn from(s: String) -> Box<str> {
2345 s.into_boxed_str()
2346 }
2347 }
2348
2349 #[stable(feature = "string_from_cow_str", since = "1.14.0")]
2350 impl<'a> From<Cow<'a, str>> for String {
2351 fn from(s: Cow<'a, str>) -> String {
2352 s.into_owned()
2353 }
2354 }
2355
2356 #[stable(feature = "rust1", since = "1.0.0")]
2357 impl<'a> From<&'a str> for Cow<'a, str> {
2358 #[inline]
2359 fn from(s: &'a str) -> Cow<'a, str> {
2360 Cow::Borrowed(s)
2361 }
2362 }
2363
2364 #[stable(feature = "rust1", since = "1.0.0")]
2365 impl<'a> From<String> for Cow<'a, str> {
2366 #[inline]
2367 fn from(s: String) -> Cow<'a, str> {
2368 Cow::Owned(s)
2369 }
2370 }
2371
2372 #[stable(feature = "cow_from_string_ref", since = "1.28.0")]
2373 impl<'a> From<&'a String> for Cow<'a, str> {
2374 #[inline]
2375 fn from(s: &'a String) -> Cow<'a, str> {
2376 Cow::Borrowed(s.as_str())
2377 }
2378 }
2379
2380 #[stable(feature = "cow_str_from_iter", since = "1.12.0")]
2381 impl<'a> FromIterator<char> for Cow<'a, str> {
2382 fn from_iter<I: IntoIterator<Item = char>>(it: I) -> Cow<'a, str> {
2383 Cow::Owned(FromIterator::from_iter(it))
2384 }
2385 }
2386
2387 #[stable(feature = "cow_str_from_iter", since = "1.12.0")]
2388 impl<'a, 'b> FromIterator<&'b str> for Cow<'a, str> {
2389 fn from_iter<I: IntoIterator<Item = &'b str>>(it: I) -> Cow<'a, str> {
2390 Cow::Owned(FromIterator::from_iter(it))
2391 }
2392 }
2393
2394 #[stable(feature = "cow_str_from_iter", since = "1.12.0")]
2395 impl<'a> FromIterator<String> for Cow<'a, str> {
2396 fn from_iter<I: IntoIterator<Item = String>>(it: I) -> Cow<'a, str> {
2397 Cow::Owned(FromIterator::from_iter(it))
2398 }
2399 }
2400
2401 #[stable(feature = "from_string_for_vec_u8", since = "1.14.0")]
2402 impl From<String> for Vec<u8> {
2403 /// Converts the given `String` to a vector `Vec` that holds values of type `u8`.
2404 ///
2405 /// # Examples
2406 ///
2407 /// Basic usage:
2408 ///
2409 /// ```
2410 /// let s1 = String::from("hello world");
2411 /// let v1 = Vec::from(s1);
2412 ///
2413 /// for b in v1 {
2414 /// println!("{}", b);
2415 /// }
2416 /// ```
2417 fn from(string: String) -> Vec<u8> {
2418 string.into_bytes()
2419 }
2420 }
2421
2422 #[stable(feature = "rust1", since = "1.0.0")]
2423 impl fmt::Write for String {
2424 #[inline]
2425 fn write_str(&mut self, s: &str) -> fmt::Result {
2426 self.push_str(s);
2427 Ok(())
2428 }
2429
2430 #[inline]
2431 fn write_char(&mut self, c: char) -> fmt::Result {
2432 self.push(c);
2433 Ok(())
2434 }
2435 }
2436
2437 /// A draining iterator for `String`.
2438 ///
2439 /// This struct is created by the [`drain`] method on [`String`]. See its
2440 /// documentation for more.
2441 ///
2442 /// [`drain`]: struct.String.html#method.drain
2443 /// [`String`]: struct.String.html
2444 #[stable(feature = "drain", since = "1.6.0")]
2445 pub struct Drain<'a> {
2446 /// Will be used as &'a mut String in the destructor
2447 string: *mut String,
2448 /// Start of part to remove
2449 start: usize,
2450 /// End of part to remove
2451 end: usize,
2452 /// Current remaining range to remove
2453 iter: Chars<'a>,
2454 }
2455
2456 #[stable(feature = "collection_debug", since = "1.17.0")]
2457 impl fmt::Debug for Drain<'_> {
2458 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2459 f.pad("Drain { .. }")
2460 }
2461 }
2462
2463 #[stable(feature = "drain", since = "1.6.0")]
2464 unsafe impl Sync for Drain<'_> {}
2465 #[stable(feature = "drain", since = "1.6.0")]
2466 unsafe impl Send for Drain<'_> {}
2467
2468 #[stable(feature = "drain", since = "1.6.0")]
2469 impl Drop for Drain<'_> {
2470 fn drop(&mut self) {
2471 unsafe {
2472 // Use Vec::drain. "Reaffirm" the bounds checks to avoid
2473 // panic code being inserted again.
2474 let self_vec = (*self.string).as_mut_vec();
2475 if self.start <= self.end && self.end <= self_vec.len() {
2476 self_vec.drain(self.start..self.end);
2477 }
2478 }
2479 }
2480 }
2481
2482 #[stable(feature = "drain", since = "1.6.0")]
2483 impl Iterator for Drain<'_> {
2484 type Item = char;
2485
2486 #[inline]
2487 fn next(&mut self) -> Option<char> {
2488 self.iter.next()
2489 }
2490
2491 fn size_hint(&self) -> (usize, Option<usize>) {
2492 self.iter.size_hint()
2493 }
2494
2495 #[inline]
2496 fn last(mut self) -> Option<char> {
2497 self.next_back()
2498 }
2499 }
2500
2501 #[stable(feature = "drain", since = "1.6.0")]
2502 impl DoubleEndedIterator for Drain<'_> {
2503 #[inline]
2504 fn next_back(&mut self) -> Option<char> {
2505 self.iter.next_back()
2506 }
2507 }
2508
2509 #[stable(feature = "fused", since = "1.26.0")]
2510 impl FusedIterator for Drain<'_> {}