]> git.proxmox.com Git - rustc.git/blob - src/liballoc/sync.rs
New upstream version 1.43.0+dfsg1
[rustc.git] / src / liballoc / sync.rs
1 #![stable(feature = "rust1", since = "1.0.0")]
2
3 //! Thread-safe reference-counting pointers.
4 //!
5 //! See the [`Arc<T>`][arc] documentation for more details.
6 //!
7 //! [arc]: struct.Arc.html
8
9 use core::any::Any;
10 use core::array::LengthAtMost32;
11 use core::borrow;
12 use core::cmp::Ordering;
13 use core::convert::{From, TryFrom};
14 use core::fmt;
15 use core::hash::{Hash, Hasher};
16 use core::intrinsics::abort;
17 use core::iter;
18 use core::marker::{PhantomData, Unpin, Unsize};
19 use core::mem::{self, align_of, align_of_val, size_of_val};
20 use core::ops::{CoerceUnsized, Deref, DispatchFromDyn, Receiver};
21 use core::pin::Pin;
22 use core::ptr::{self, NonNull};
23 use core::slice::{self, from_raw_parts_mut};
24 use core::sync::atomic;
25 use core::sync::atomic::Ordering::{Acquire, Relaxed, Release, SeqCst};
26 use core::{isize, usize};
27
28 use crate::alloc::{box_free, handle_alloc_error, AllocRef, Global, Layout};
29 use crate::boxed::Box;
30 use crate::rc::is_dangling;
31 use crate::string::String;
32 use crate::vec::Vec;
33
34 #[cfg(test)]
35 mod tests;
36
37 /// A soft limit on the amount of references that may be made to an `Arc`.
38 ///
39 /// Going above this limit will abort your program (although not
40 /// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
41 const MAX_REFCOUNT: usize = (isize::MAX) as usize;
42
43 /// A thread-safe reference-counting pointer. 'Arc' stands for 'Atomically
44 /// Reference Counted'.
45 ///
46 /// The type `Arc<T>` provides shared ownership of a value of type `T`,
47 /// allocated in the heap. Invoking [`clone`][clone] on `Arc` produces
48 /// a new `Arc` instance, which points to the same allocation on the heap as the
49 /// source `Arc`, while increasing a reference count. When the last `Arc`
50 /// pointer to a given allocation is destroyed, the value stored in that allocation (often
51 /// referred to as "inner value") is also dropped.
52 ///
53 /// Shared references in Rust disallow mutation by default, and `Arc` is no
54 /// exception: you cannot generally obtain a mutable reference to something
55 /// inside an `Arc`. If you need to mutate through an `Arc`, use
56 /// [`Mutex`][mutex], [`RwLock`][rwlock], or one of the [`Atomic`][atomic]
57 /// types.
58 ///
59 /// ## Thread Safety
60 ///
61 /// Unlike [`Rc<T>`], `Arc<T>` uses atomic operations for its reference
62 /// counting. This means that it is thread-safe. The disadvantage is that
63 /// atomic operations are more expensive than ordinary memory accesses. If you
64 /// are not sharing reference-counted allocations between threads, consider using
65 /// [`Rc<T>`] for lower overhead. [`Rc<T>`] is a safe default, because the
66 /// compiler will catch any attempt to send an [`Rc<T>`] between threads.
67 /// However, a library might choose `Arc<T>` in order to give library consumers
68 /// more flexibility.
69 ///
70 /// `Arc<T>` will implement [`Send`] and [`Sync`] as long as the `T` implements
71 /// [`Send`] and [`Sync`]. Why can't you put a non-thread-safe type `T` in an
72 /// `Arc<T>` to make it thread-safe? This may be a bit counter-intuitive at
73 /// first: after all, isn't the point of `Arc<T>` thread safety? The key is
74 /// this: `Arc<T>` makes it thread safe to have multiple ownership of the same
75 /// data, but it doesn't add thread safety to its data. Consider
76 /// `Arc<`[`RefCell<T>`]`>`. [`RefCell<T>`] isn't [`Sync`], and if `Arc<T>` was always
77 /// [`Send`], `Arc<`[`RefCell<T>`]`>` would be as well. But then we'd have a problem:
78 /// [`RefCell<T>`] is not thread safe; it keeps track of the borrowing count using
79 /// non-atomic operations.
80 ///
81 /// In the end, this means that you may need to pair `Arc<T>` with some sort of
82 /// [`std::sync`] type, usually [`Mutex<T>`][mutex].
83 ///
84 /// ## Breaking cycles with `Weak`
85 ///
86 /// The [`downgrade`][downgrade] method can be used to create a non-owning
87 /// [`Weak`][weak] pointer. A [`Weak`][weak] pointer can be [`upgrade`][upgrade]d
88 /// to an `Arc`, but this will return [`None`] if the value stored in the allocation has
89 /// already been dropped. In other words, `Weak` pointers do not keep the value
90 /// inside the allocation alive; however, they *do* keep the allocation
91 /// (the backing store for the value) alive.
92 ///
93 /// A cycle between `Arc` pointers will never be deallocated. For this reason,
94 /// [`Weak`][weak] is used to break cycles. For example, a tree could have
95 /// strong `Arc` pointers from parent nodes to children, and [`Weak`][weak]
96 /// pointers from children back to their parents.
97 ///
98 /// # Cloning references
99 ///
100 /// Creating a new reference from an existing reference counted pointer is done using the
101 /// `Clone` trait implemented for [`Arc<T>`][arc] and [`Weak<T>`][weak].
102 ///
103 /// ```
104 /// use std::sync::Arc;
105 /// let foo = Arc::new(vec![1.0, 2.0, 3.0]);
106 /// // The two syntaxes below are equivalent.
107 /// let a = foo.clone();
108 /// let b = Arc::clone(&foo);
109 /// // a, b, and foo are all Arcs that point to the same memory location
110 /// ```
111 ///
112 /// ## `Deref` behavior
113 ///
114 /// `Arc<T>` automatically dereferences to `T` (via the [`Deref`][deref] trait),
115 /// so you can call `T`'s methods on a value of type `Arc<T>`. To avoid name
116 /// clashes with `T`'s methods, the methods of `Arc<T>` itself are associated
117 /// functions, called using function-like syntax:
118 ///
119 /// ```
120 /// use std::sync::Arc;
121 /// let my_arc = Arc::new(());
122 ///
123 /// Arc::downgrade(&my_arc);
124 /// ```
125 ///
126 /// [`Weak<T>`][weak] does not auto-dereference to `T`, because the inner value may have
127 /// already been dropped.
128 ///
129 /// [arc]: struct.Arc.html
130 /// [weak]: struct.Weak.html
131 /// [`Rc<T>`]: ../../std/rc/struct.Rc.html
132 /// [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
133 /// [mutex]: ../../std/sync/struct.Mutex.html
134 /// [rwlock]: ../../std/sync/struct.RwLock.html
135 /// [atomic]: ../../std/sync/atomic/index.html
136 /// [`Send`]: ../../std/marker/trait.Send.html
137 /// [`Sync`]: ../../std/marker/trait.Sync.html
138 /// [deref]: ../../std/ops/trait.Deref.html
139 /// [downgrade]: struct.Arc.html#method.downgrade
140 /// [upgrade]: struct.Weak.html#method.upgrade
141 /// [`None`]: ../../std/option/enum.Option.html#variant.None
142 /// [`RefCell<T>`]: ../../std/cell/struct.RefCell.html
143 /// [`std::sync`]: ../../std/sync/index.html
144 /// [`Arc::clone(&from)`]: #method.clone
145 ///
146 /// # Examples
147 ///
148 /// Sharing some immutable data between threads:
149 ///
150 // Note that we **do not** run these tests here. The windows builders get super
151 // unhappy if a thread outlives the main thread and then exits at the same time
152 // (something deadlocks) so we just avoid this entirely by not running these
153 // tests.
154 /// ```no_run
155 /// use std::sync::Arc;
156 /// use std::thread;
157 ///
158 /// let five = Arc::new(5);
159 ///
160 /// for _ in 0..10 {
161 /// let five = Arc::clone(&five);
162 ///
163 /// thread::spawn(move || {
164 /// println!("{:?}", five);
165 /// });
166 /// }
167 /// ```
168 ///
169 /// Sharing a mutable [`AtomicUsize`]:
170 ///
171 /// [`AtomicUsize`]: ../../std/sync/atomic/struct.AtomicUsize.html
172 ///
173 /// ```no_run
174 /// use std::sync::Arc;
175 /// use std::sync::atomic::{AtomicUsize, Ordering};
176 /// use std::thread;
177 ///
178 /// let val = Arc::new(AtomicUsize::new(5));
179 ///
180 /// for _ in 0..10 {
181 /// let val = Arc::clone(&val);
182 ///
183 /// thread::spawn(move || {
184 /// let v = val.fetch_add(1, Ordering::SeqCst);
185 /// println!("{:?}", v);
186 /// });
187 /// }
188 /// ```
189 ///
190 /// See the [`rc` documentation][rc_examples] for more examples of reference
191 /// counting in general.
192 ///
193 /// [rc_examples]: ../../std/rc/index.html#examples
194 #[cfg_attr(not(test), lang = "arc")]
195 #[stable(feature = "rust1", since = "1.0.0")]
196 pub struct Arc<T: ?Sized> {
197 ptr: NonNull<ArcInner<T>>,
198 phantom: PhantomData<ArcInner<T>>,
199 }
200
201 #[stable(feature = "rust1", since = "1.0.0")]
202 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
203 #[stable(feature = "rust1", since = "1.0.0")]
204 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
205
206 #[unstable(feature = "coerce_unsized", issue = "27732")]
207 impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Arc<U>> for Arc<T> {}
208
209 #[unstable(feature = "dispatch_from_dyn", issue = "none")]
210 impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Arc<U>> for Arc<T> {}
211
212 impl<T: ?Sized> Arc<T> {
213 fn from_inner(ptr: NonNull<ArcInner<T>>) -> Self {
214 Self { ptr, phantom: PhantomData }
215 }
216
217 unsafe fn from_ptr(ptr: *mut ArcInner<T>) -> Self {
218 Self::from_inner(NonNull::new_unchecked(ptr))
219 }
220 }
221
222 /// `Weak` is a version of [`Arc`] that holds a non-owning reference to the
223 /// managed allocation. The allocation is accessed by calling [`upgrade`] on the `Weak`
224 /// pointer, which returns an [`Option`]`<`[`Arc`]`<T>>`.
225 ///
226 /// Since a `Weak` reference does not count towards ownership, it will not
227 /// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
228 /// guarantees about the value still being present. Thus it may return [`None`]
229 /// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
230 /// itself (the backing store) from being deallocated.
231 ///
232 /// A `Weak` pointer is useful for keeping a temporary reference to the allocation
233 /// managed by [`Arc`] without preventing its inner value from being dropped. It is also used to
234 /// prevent circular references between [`Arc`] pointers, since mutual owning references
235 /// would never allow either [`Arc`] to be dropped. For example, a tree could
236 /// have strong [`Arc`] pointers from parent nodes to children, and `Weak`
237 /// pointers from children back to their parents.
238 ///
239 /// The typical way to obtain a `Weak` pointer is to call [`Arc::downgrade`].
240 ///
241 /// [`Arc`]: struct.Arc.html
242 /// [`Arc::downgrade`]: struct.Arc.html#method.downgrade
243 /// [`upgrade`]: struct.Weak.html#method.upgrade
244 /// [`Option`]: ../../std/option/enum.Option.html
245 /// [`None`]: ../../std/option/enum.Option.html#variant.None
246 #[stable(feature = "arc_weak", since = "1.4.0")]
247 pub struct Weak<T: ?Sized> {
248 // This is a `NonNull` to allow optimizing the size of this type in enums,
249 // but it is not necessarily a valid pointer.
250 // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
251 // to allocate space on the heap. That's not a value a real pointer
252 // will ever have because RcBox has alignment at least 2.
253 ptr: NonNull<ArcInner<T>>,
254 }
255
256 #[stable(feature = "arc_weak", since = "1.4.0")]
257 unsafe impl<T: ?Sized + Sync + Send> Send for Weak<T> {}
258 #[stable(feature = "arc_weak", since = "1.4.0")]
259 unsafe impl<T: ?Sized + Sync + Send> Sync for Weak<T> {}
260
261 #[unstable(feature = "coerce_unsized", issue = "27732")]
262 impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Weak<U>> for Weak<T> {}
263 #[unstable(feature = "dispatch_from_dyn", issue = "none")]
264 impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
265
266 #[stable(feature = "arc_weak", since = "1.4.0")]
267 impl<T: ?Sized + fmt::Debug> fmt::Debug for Weak<T> {
268 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
269 write!(f, "(Weak)")
270 }
271 }
272
273 struct ArcInner<T: ?Sized> {
274 strong: atomic::AtomicUsize,
275
276 // the value usize::MAX acts as a sentinel for temporarily "locking" the
277 // ability to upgrade weak pointers or downgrade strong ones; this is used
278 // to avoid races in `make_mut` and `get_mut`.
279 weak: atomic::AtomicUsize,
280
281 data: T,
282 }
283
284 unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
285 unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
286
287 impl<T> Arc<T> {
288 /// Constructs a new `Arc<T>`.
289 ///
290 /// # Examples
291 ///
292 /// ```
293 /// use std::sync::Arc;
294 ///
295 /// let five = Arc::new(5);
296 /// ```
297 #[inline]
298 #[stable(feature = "rust1", since = "1.0.0")]
299 pub fn new(data: T) -> Arc<T> {
300 // Start the weak pointer count as 1 which is the weak pointer that's
301 // held by all the strong pointers (kinda), see std/rc.rs for more info
302 let x: Box<_> = box ArcInner {
303 strong: atomic::AtomicUsize::new(1),
304 weak: atomic::AtomicUsize::new(1),
305 data,
306 };
307 Self::from_inner(Box::into_raw_non_null(x))
308 }
309
310 /// Constructs a new `Arc` with uninitialized contents.
311 ///
312 /// # Examples
313 ///
314 /// ```
315 /// #![feature(new_uninit)]
316 /// #![feature(get_mut_unchecked)]
317 ///
318 /// use std::sync::Arc;
319 ///
320 /// let mut five = Arc::<u32>::new_uninit();
321 ///
322 /// let five = unsafe {
323 /// // Deferred initialization:
324 /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
325 ///
326 /// five.assume_init()
327 /// };
328 ///
329 /// assert_eq!(*five, 5)
330 /// ```
331 #[unstable(feature = "new_uninit", issue = "63291")]
332 pub fn new_uninit() -> Arc<mem::MaybeUninit<T>> {
333 unsafe {
334 Arc::from_ptr(Arc::allocate_for_layout(Layout::new::<T>(), |mem| {
335 mem as *mut ArcInner<mem::MaybeUninit<T>>
336 }))
337 }
338 }
339
340 /// Constructs a new `Arc` with uninitialized contents, with the memory
341 /// being filled with `0` bytes.
342 ///
343 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
344 /// of this method.
345 ///
346 /// # Examples
347 ///
348 /// ```
349 /// #![feature(new_uninit)]
350 ///
351 /// use std::sync::Arc;
352 ///
353 /// let zero = Arc::<u32>::new_zeroed();
354 /// let zero = unsafe { zero.assume_init() };
355 ///
356 /// assert_eq!(*zero, 0)
357 /// ```
358 ///
359 /// [zeroed]: ../../std/mem/union.MaybeUninit.html#method.zeroed
360 #[unstable(feature = "new_uninit", issue = "63291")]
361 pub fn new_zeroed() -> Arc<mem::MaybeUninit<T>> {
362 unsafe {
363 let mut uninit = Self::new_uninit();
364 ptr::write_bytes::<T>(Arc::get_mut_unchecked(&mut uninit).as_mut_ptr(), 0, 1);
365 uninit
366 }
367 }
368
369 /// Constructs a new `Pin<Arc<T>>`. If `T` does not implement `Unpin`, then
370 /// `data` will be pinned in memory and unable to be moved.
371 #[stable(feature = "pin", since = "1.33.0")]
372 pub fn pin(data: T) -> Pin<Arc<T>> {
373 unsafe { Pin::new_unchecked(Arc::new(data)) }
374 }
375
376 /// Returns the inner value, if the `Arc` has exactly one strong reference.
377 ///
378 /// Otherwise, an [`Err`][result] is returned with the same `Arc` that was
379 /// passed in.
380 ///
381 /// This will succeed even if there are outstanding weak references.
382 ///
383 /// [result]: ../../std/result/enum.Result.html
384 ///
385 /// # Examples
386 ///
387 /// ```
388 /// use std::sync::Arc;
389 ///
390 /// let x = Arc::new(3);
391 /// assert_eq!(Arc::try_unwrap(x), Ok(3));
392 ///
393 /// let x = Arc::new(4);
394 /// let _y = Arc::clone(&x);
395 /// assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);
396 /// ```
397 #[inline]
398 #[stable(feature = "arc_unique", since = "1.4.0")]
399 pub fn try_unwrap(this: Self) -> Result<T, Self> {
400 // See `drop` for why all these atomics are like this
401 if this.inner().strong.compare_exchange(1, 0, Release, Relaxed).is_err() {
402 return Err(this);
403 }
404
405 atomic::fence(Acquire);
406
407 unsafe {
408 let elem = ptr::read(&this.ptr.as_ref().data);
409
410 // Make a weak pointer to clean up the implicit strong-weak reference
411 let _weak = Weak { ptr: this.ptr };
412 mem::forget(this);
413
414 Ok(elem)
415 }
416 }
417 }
418
419 impl<T> Arc<[T]> {
420 /// Constructs a new reference-counted slice with uninitialized contents.
421 ///
422 /// # Examples
423 ///
424 /// ```
425 /// #![feature(new_uninit)]
426 /// #![feature(get_mut_unchecked)]
427 ///
428 /// use std::sync::Arc;
429 ///
430 /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
431 ///
432 /// let values = unsafe {
433 /// // Deferred initialization:
434 /// Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
435 /// Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
436 /// Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
437 ///
438 /// values.assume_init()
439 /// };
440 ///
441 /// assert_eq!(*values, [1, 2, 3])
442 /// ```
443 #[unstable(feature = "new_uninit", issue = "63291")]
444 pub fn new_uninit_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
445 unsafe { Arc::from_ptr(Arc::allocate_for_slice(len)) }
446 }
447 }
448
449 impl<T> Arc<mem::MaybeUninit<T>> {
450 /// Converts to `Arc<T>`.
451 ///
452 /// # Safety
453 ///
454 /// As with [`MaybeUninit::assume_init`],
455 /// it is up to the caller to guarantee that the inner value
456 /// really is in an initialized state.
457 /// Calling this when the content is not yet fully initialized
458 /// causes immediate undefined behavior.
459 ///
460 /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
461 ///
462 /// # Examples
463 ///
464 /// ```
465 /// #![feature(new_uninit)]
466 /// #![feature(get_mut_unchecked)]
467 ///
468 /// use std::sync::Arc;
469 ///
470 /// let mut five = Arc::<u32>::new_uninit();
471 ///
472 /// let five = unsafe {
473 /// // Deferred initialization:
474 /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
475 ///
476 /// five.assume_init()
477 /// };
478 ///
479 /// assert_eq!(*five, 5)
480 /// ```
481 #[unstable(feature = "new_uninit", issue = "63291")]
482 #[inline]
483 pub unsafe fn assume_init(self) -> Arc<T> {
484 Arc::from_inner(mem::ManuallyDrop::new(self).ptr.cast())
485 }
486 }
487
488 impl<T> Arc<[mem::MaybeUninit<T>]> {
489 /// Converts to `Arc<[T]>`.
490 ///
491 /// # Safety
492 ///
493 /// As with [`MaybeUninit::assume_init`],
494 /// it is up to the caller to guarantee that the inner value
495 /// really is in an initialized state.
496 /// Calling this when the content is not yet fully initialized
497 /// causes immediate undefined behavior.
498 ///
499 /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
500 ///
501 /// # Examples
502 ///
503 /// ```
504 /// #![feature(new_uninit)]
505 /// #![feature(get_mut_unchecked)]
506 ///
507 /// use std::sync::Arc;
508 ///
509 /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
510 ///
511 /// let values = unsafe {
512 /// // Deferred initialization:
513 /// Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
514 /// Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
515 /// Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
516 ///
517 /// values.assume_init()
518 /// };
519 ///
520 /// assert_eq!(*values, [1, 2, 3])
521 /// ```
522 #[unstable(feature = "new_uninit", issue = "63291")]
523 #[inline]
524 pub unsafe fn assume_init(self) -> Arc<[T]> {
525 Arc::from_ptr(mem::ManuallyDrop::new(self).ptr.as_ptr() as _)
526 }
527 }
528
529 impl<T: ?Sized> Arc<T> {
530 /// Consumes the `Arc`, returning the wrapped pointer.
531 ///
532 /// To avoid a memory leak the pointer must be converted back to an `Arc` using
533 /// [`Arc::from_raw`][from_raw].
534 ///
535 /// [from_raw]: struct.Arc.html#method.from_raw
536 ///
537 /// # Examples
538 ///
539 /// ```
540 /// use std::sync::Arc;
541 ///
542 /// let x = Arc::new("hello".to_owned());
543 /// let x_ptr = Arc::into_raw(x);
544 /// assert_eq!(unsafe { &*x_ptr }, "hello");
545 /// ```
546 #[stable(feature = "rc_raw", since = "1.17.0")]
547 pub fn into_raw(this: Self) -> *const T {
548 let ptr: *mut ArcInner<T> = NonNull::as_ptr(this.ptr);
549 let fake_ptr = ptr as *mut T;
550 mem::forget(this);
551
552 // SAFETY: This cannot go through Deref::deref.
553 // Instead, we manually offset the pointer rather than manifesting a reference.
554 // This is so that the returned pointer retains the same provenance as our pointer.
555 // This is required so that e.g. `get_mut` can write through the pointer
556 // after the Arc is recovered through `from_raw`.
557 unsafe {
558 let offset = data_offset(&(*ptr).data);
559 set_data_ptr(fake_ptr, (ptr as *mut u8).offset(offset))
560 }
561 }
562
563 /// Constructs an `Arc` from a raw pointer.
564 ///
565 /// The raw pointer must have been previously returned by a call to a
566 /// [`Arc::into_raw`][into_raw].
567 ///
568 /// This function is unsafe because improper use may lead to memory problems. For example, a
569 /// double-free may occur if the function is called twice on the same raw pointer.
570 ///
571 /// [into_raw]: struct.Arc.html#method.into_raw
572 ///
573 /// # Examples
574 ///
575 /// ```
576 /// use std::sync::Arc;
577 ///
578 /// let x = Arc::new("hello".to_owned());
579 /// let x_ptr = Arc::into_raw(x);
580 ///
581 /// unsafe {
582 /// // Convert back to an `Arc` to prevent leak.
583 /// let x = Arc::from_raw(x_ptr);
584 /// assert_eq!(&*x, "hello");
585 ///
586 /// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
587 /// }
588 ///
589 /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
590 /// ```
591 #[stable(feature = "rc_raw", since = "1.17.0")]
592 pub unsafe fn from_raw(ptr: *const T) -> Self {
593 let offset = data_offset(ptr);
594
595 // Reverse the offset to find the original ArcInner.
596 let fake_ptr = ptr as *mut ArcInner<T>;
597 let arc_ptr = set_data_ptr(fake_ptr, (ptr as *mut u8).offset(-offset));
598
599 Self::from_ptr(arc_ptr)
600 }
601
602 /// Consumes the `Arc`, returning the wrapped pointer as `NonNull<T>`.
603 ///
604 /// # Examples
605 ///
606 /// ```
607 /// #![feature(rc_into_raw_non_null)]
608 ///
609 /// use std::sync::Arc;
610 ///
611 /// let x = Arc::new("hello".to_owned());
612 /// let ptr = Arc::into_raw_non_null(x);
613 /// let deref = unsafe { ptr.as_ref() };
614 /// assert_eq!(deref, "hello");
615 /// ```
616 #[unstable(feature = "rc_into_raw_non_null", issue = "47336")]
617 #[inline]
618 pub fn into_raw_non_null(this: Self) -> NonNull<T> {
619 // safe because Arc guarantees its pointer is non-null
620 unsafe { NonNull::new_unchecked(Arc::into_raw(this) as *mut _) }
621 }
622
623 /// Creates a new [`Weak`][weak] pointer to this allocation.
624 ///
625 /// [weak]: struct.Weak.html
626 ///
627 /// # Examples
628 ///
629 /// ```
630 /// use std::sync::Arc;
631 ///
632 /// let five = Arc::new(5);
633 ///
634 /// let weak_five = Arc::downgrade(&five);
635 /// ```
636 #[stable(feature = "arc_weak", since = "1.4.0")]
637 pub fn downgrade(this: &Self) -> Weak<T> {
638 // This Relaxed is OK because we're checking the value in the CAS
639 // below.
640 let mut cur = this.inner().weak.load(Relaxed);
641
642 loop {
643 // check if the weak counter is currently "locked"; if so, spin.
644 if cur == usize::MAX {
645 cur = this.inner().weak.load(Relaxed);
646 continue;
647 }
648
649 // NOTE: this code currently ignores the possibility of overflow
650 // into usize::MAX; in general both Rc and Arc need to be adjusted
651 // to deal with overflow.
652
653 // Unlike with Clone(), we need this to be an Acquire read to
654 // synchronize with the write coming from `is_unique`, so that the
655 // events prior to that write happen before this read.
656 match this.inner().weak.compare_exchange_weak(cur, cur + 1, Acquire, Relaxed) {
657 Ok(_) => {
658 // Make sure we do not create a dangling Weak
659 debug_assert!(!is_dangling(this.ptr));
660 return Weak { ptr: this.ptr };
661 }
662 Err(old) => cur = old,
663 }
664 }
665 }
666
667 /// Gets the number of [`Weak`][weak] pointers to this allocation.
668 ///
669 /// [weak]: struct.Weak.html
670 ///
671 /// # Safety
672 ///
673 /// This method by itself is safe, but using it correctly requires extra care.
674 /// Another thread can change the weak count at any time,
675 /// including potentially between calling this method and acting on the result.
676 ///
677 /// # Examples
678 ///
679 /// ```
680 /// use std::sync::Arc;
681 ///
682 /// let five = Arc::new(5);
683 /// let _weak_five = Arc::downgrade(&five);
684 ///
685 /// // This assertion is deterministic because we haven't shared
686 /// // the `Arc` or `Weak` between threads.
687 /// assert_eq!(1, Arc::weak_count(&five));
688 /// ```
689 #[inline]
690 #[stable(feature = "arc_counts", since = "1.15.0")]
691 pub fn weak_count(this: &Self) -> usize {
692 let cnt = this.inner().weak.load(SeqCst);
693 // If the weak count is currently locked, the value of the
694 // count was 0 just before taking the lock.
695 if cnt == usize::MAX { 0 } else { cnt - 1 }
696 }
697
698 /// Gets the number of strong (`Arc`) pointers to this allocation.
699 ///
700 /// # Safety
701 ///
702 /// This method by itself is safe, but using it correctly requires extra care.
703 /// Another thread can change the strong count at any time,
704 /// including potentially between calling this method and acting on the result.
705 ///
706 /// # Examples
707 ///
708 /// ```
709 /// use std::sync::Arc;
710 ///
711 /// let five = Arc::new(5);
712 /// let _also_five = Arc::clone(&five);
713 ///
714 /// // This assertion is deterministic because we haven't shared
715 /// // the `Arc` between threads.
716 /// assert_eq!(2, Arc::strong_count(&five));
717 /// ```
718 #[inline]
719 #[stable(feature = "arc_counts", since = "1.15.0")]
720 pub fn strong_count(this: &Self) -> usize {
721 this.inner().strong.load(SeqCst)
722 }
723
724 #[inline]
725 fn inner(&self) -> &ArcInner<T> {
726 // This unsafety is ok because while this arc is alive we're guaranteed
727 // that the inner pointer is valid. Furthermore, we know that the
728 // `ArcInner` structure itself is `Sync` because the inner data is
729 // `Sync` as well, so we're ok loaning out an immutable pointer to these
730 // contents.
731 unsafe { self.ptr.as_ref() }
732 }
733
734 // Non-inlined part of `drop`.
735 #[inline(never)]
736 unsafe fn drop_slow(&mut self) {
737 // Destroy the data at this time, even though we may not free the box
738 // allocation itself (there may still be weak pointers lying around).
739 ptr::drop_in_place(&mut self.ptr.as_mut().data);
740
741 if self.inner().weak.fetch_sub(1, Release) == 1 {
742 atomic::fence(Acquire);
743 Global.dealloc(self.ptr.cast(), Layout::for_value(self.ptr.as_ref()))
744 }
745 }
746
747 #[inline]
748 #[stable(feature = "ptr_eq", since = "1.17.0")]
749 /// Returns `true` if the two `Arc`s point to the same allocation
750 /// (in a vein similar to [`ptr::eq`]).
751 ///
752 /// # Examples
753 ///
754 /// ```
755 /// use std::sync::Arc;
756 ///
757 /// let five = Arc::new(5);
758 /// let same_five = Arc::clone(&five);
759 /// let other_five = Arc::new(5);
760 ///
761 /// assert!(Arc::ptr_eq(&five, &same_five));
762 /// assert!(!Arc::ptr_eq(&five, &other_five));
763 /// ```
764 ///
765 /// [`ptr::eq`]: ../../std/ptr/fn.eq.html
766 pub fn ptr_eq(this: &Self, other: &Self) -> bool {
767 this.ptr.as_ptr() == other.ptr.as_ptr()
768 }
769 }
770
771 impl<T: ?Sized> Arc<T> {
772 /// Allocates an `ArcInner<T>` with sufficient space for
773 /// a possibly-unsized inner value where the value has the layout provided.
774 ///
775 /// The function `mem_to_arcinner` is called with the data pointer
776 /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
777 unsafe fn allocate_for_layout(
778 value_layout: Layout,
779 mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
780 ) -> *mut ArcInner<T> {
781 // Calculate layout using the given value layout.
782 // Previously, layout was calculated on the expression
783 // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned
784 // reference (see #54908).
785 let layout = Layout::new::<ArcInner<()>>().extend(value_layout).unwrap().0.pad_to_align();
786
787 let (mem, _) = Global.alloc(layout).unwrap_or_else(|_| handle_alloc_error(layout));
788
789 // Initialize the ArcInner
790 let inner = mem_to_arcinner(mem.as_ptr());
791 debug_assert_eq!(Layout::for_value(&*inner), layout);
792
793 ptr::write(&mut (*inner).strong, atomic::AtomicUsize::new(1));
794 ptr::write(&mut (*inner).weak, atomic::AtomicUsize::new(1));
795
796 inner
797 }
798
799 /// Allocates an `ArcInner<T>` with sufficient space for an unsized inner value.
800 unsafe fn allocate_for_ptr(ptr: *const T) -> *mut ArcInner<T> {
801 // Allocate for the `ArcInner<T>` using the given value.
802 Self::allocate_for_layout(Layout::for_value(&*ptr), |mem| {
803 set_data_ptr(ptr as *mut T, mem) as *mut ArcInner<T>
804 })
805 }
806
807 fn from_box(v: Box<T>) -> Arc<T> {
808 unsafe {
809 let box_unique = Box::into_unique(v);
810 let bptr = box_unique.as_ptr();
811
812 let value_size = size_of_val(&*bptr);
813 let ptr = Self::allocate_for_ptr(bptr);
814
815 // Copy value as bytes
816 ptr::copy_nonoverlapping(
817 bptr as *const T as *const u8,
818 &mut (*ptr).data as *mut _ as *mut u8,
819 value_size,
820 );
821
822 // Free the allocation without dropping its contents
823 box_free(box_unique);
824
825 Self::from_ptr(ptr)
826 }
827 }
828 }
829
830 impl<T> Arc<[T]> {
831 /// Allocates an `ArcInner<[T]>` with the given length.
832 unsafe fn allocate_for_slice(len: usize) -> *mut ArcInner<[T]> {
833 Self::allocate_for_layout(Layout::array::<T>(len).unwrap(), |mem| {
834 ptr::slice_from_raw_parts_mut(mem as *mut T, len) as *mut ArcInner<[T]>
835 })
836 }
837 }
838
839 /// Sets the data pointer of a `?Sized` raw pointer.
840 ///
841 /// For a slice/trait object, this sets the `data` field and leaves the rest
842 /// unchanged. For a sized raw pointer, this simply sets the pointer.
843 unsafe fn set_data_ptr<T: ?Sized, U>(mut ptr: *mut T, data: *mut U) -> *mut T {
844 ptr::write(&mut ptr as *mut _ as *mut *mut u8, data as *mut u8);
845 ptr
846 }
847
848 impl<T> Arc<[T]> {
849 /// Copy elements from slice into newly allocated Arc<[T]>
850 ///
851 /// Unsafe because the caller must either take ownership or bind `T: Copy`.
852 unsafe fn copy_from_slice(v: &[T]) -> Arc<[T]> {
853 let ptr = Self::allocate_for_slice(v.len());
854
855 ptr::copy_nonoverlapping(v.as_ptr(), &mut (*ptr).data as *mut [T] as *mut T, v.len());
856
857 Self::from_ptr(ptr)
858 }
859
860 /// Constructs an `Arc<[T]>` from an iterator known to be of a certain size.
861 ///
862 /// Behavior is undefined should the size be wrong.
863 unsafe fn from_iter_exact(iter: impl iter::Iterator<Item = T>, len: usize) -> Arc<[T]> {
864 // Panic guard while cloning T elements.
865 // In the event of a panic, elements that have been written
866 // into the new ArcInner will be dropped, then the memory freed.
867 struct Guard<T> {
868 mem: NonNull<u8>,
869 elems: *mut T,
870 layout: Layout,
871 n_elems: usize,
872 }
873
874 impl<T> Drop for Guard<T> {
875 fn drop(&mut self) {
876 unsafe {
877 let slice = from_raw_parts_mut(self.elems, self.n_elems);
878 ptr::drop_in_place(slice);
879
880 Global.dealloc(self.mem.cast(), self.layout);
881 }
882 }
883 }
884
885 let ptr = Self::allocate_for_slice(len);
886
887 let mem = ptr as *mut _ as *mut u8;
888 let layout = Layout::for_value(&*ptr);
889
890 // Pointer to first element
891 let elems = &mut (*ptr).data as *mut [T] as *mut T;
892
893 let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
894
895 for (i, item) in iter.enumerate() {
896 ptr::write(elems.add(i), item);
897 guard.n_elems += 1;
898 }
899
900 // All clear. Forget the guard so it doesn't free the new ArcInner.
901 mem::forget(guard);
902
903 Self::from_ptr(ptr)
904 }
905 }
906
907 /// Specialization trait used for `From<&[T]>`.
908 trait ArcFromSlice<T> {
909 fn from_slice(slice: &[T]) -> Self;
910 }
911
912 impl<T: Clone> ArcFromSlice<T> for Arc<[T]> {
913 #[inline]
914 default fn from_slice(v: &[T]) -> Self {
915 unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
916 }
917 }
918
919 impl<T: Copy> ArcFromSlice<T> for Arc<[T]> {
920 #[inline]
921 fn from_slice(v: &[T]) -> Self {
922 unsafe { Arc::copy_from_slice(v) }
923 }
924 }
925
926 #[stable(feature = "rust1", since = "1.0.0")]
927 impl<T: ?Sized> Clone for Arc<T> {
928 /// Makes a clone of the `Arc` pointer.
929 ///
930 /// This creates another pointer to the same allocation, increasing the
931 /// strong reference count.
932 ///
933 /// # Examples
934 ///
935 /// ```
936 /// use std::sync::Arc;
937 ///
938 /// let five = Arc::new(5);
939 ///
940 /// let _ = Arc::clone(&five);
941 /// ```
942 #[inline]
943 fn clone(&self) -> Arc<T> {
944 // Using a relaxed ordering is alright here, as knowledge of the
945 // original reference prevents other threads from erroneously deleting
946 // the object.
947 //
948 // As explained in the [Boost documentation][1], Increasing the
949 // reference counter can always be done with memory_order_relaxed: New
950 // references to an object can only be formed from an existing
951 // reference, and passing an existing reference from one thread to
952 // another must already provide any required synchronization.
953 //
954 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
955 let old_size = self.inner().strong.fetch_add(1, Relaxed);
956
957 // However we need to guard against massive refcounts in case someone
958 // is `mem::forget`ing Arcs. If we don't do this the count can overflow
959 // and users will use-after free. We racily saturate to `isize::MAX` on
960 // the assumption that there aren't ~2 billion threads incrementing
961 // the reference count at once. This branch will never be taken in
962 // any realistic program.
963 //
964 // We abort because such a program is incredibly degenerate, and we
965 // don't care to support it.
966 if old_size > MAX_REFCOUNT {
967 unsafe {
968 abort();
969 }
970 }
971
972 Self::from_inner(self.ptr)
973 }
974 }
975
976 #[stable(feature = "rust1", since = "1.0.0")]
977 impl<T: ?Sized> Deref for Arc<T> {
978 type Target = T;
979
980 #[inline]
981 fn deref(&self) -> &T {
982 &self.inner().data
983 }
984 }
985
986 #[unstable(feature = "receiver_trait", issue = "none")]
987 impl<T: ?Sized> Receiver for Arc<T> {}
988
989 impl<T: Clone> Arc<T> {
990 /// Makes a mutable reference into the given `Arc`.
991 ///
992 /// If there are other `Arc` or [`Weak`][weak] pointers to the same allocation,
993 /// then `make_mut` will create a new allocation and invoke [`clone`][clone] on the inner value
994 /// to ensure unique ownership. This is also referred to as clone-on-write.
995 ///
996 /// Note that this differs from the behavior of [`Rc::make_mut`] which disassociates
997 /// any remaining `Weak` pointers.
998 ///
999 /// See also [`get_mut`][get_mut], which will fail rather than cloning.
1000 ///
1001 /// [weak]: struct.Weak.html
1002 /// [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
1003 /// [get_mut]: struct.Arc.html#method.get_mut
1004 /// [`Rc::make_mut`]: ../rc/struct.Rc.html#method.make_mut
1005 ///
1006 /// # Examples
1007 ///
1008 /// ```
1009 /// use std::sync::Arc;
1010 ///
1011 /// let mut data = Arc::new(5);
1012 ///
1013 /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
1014 /// let mut other_data = Arc::clone(&data); // Won't clone inner data
1015 /// *Arc::make_mut(&mut data) += 1; // Clones inner data
1016 /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
1017 /// *Arc::make_mut(&mut other_data) *= 2; // Won't clone anything
1018 ///
1019 /// // Now `data` and `other_data` point to different allocations.
1020 /// assert_eq!(*data, 8);
1021 /// assert_eq!(*other_data, 12);
1022 /// ```
1023 #[inline]
1024 #[stable(feature = "arc_unique", since = "1.4.0")]
1025 pub fn make_mut(this: &mut Self) -> &mut T {
1026 // Note that we hold both a strong reference and a weak reference.
1027 // Thus, releasing our strong reference only will not, by itself, cause
1028 // the memory to be deallocated.
1029 //
1030 // Use Acquire to ensure that we see any writes to `weak` that happen
1031 // before release writes (i.e., decrements) to `strong`. Since we hold a
1032 // weak count, there's no chance the ArcInner itself could be
1033 // deallocated.
1034 if this.inner().strong.compare_exchange(1, 0, Acquire, Relaxed).is_err() {
1035 // Another strong pointer exists; clone
1036 *this = Arc::new((**this).clone());
1037 } else if this.inner().weak.load(Relaxed) != 1 {
1038 // Relaxed suffices in the above because this is fundamentally an
1039 // optimization: we are always racing with weak pointers being
1040 // dropped. Worst case, we end up allocated a new Arc unnecessarily.
1041
1042 // We removed the last strong ref, but there are additional weak
1043 // refs remaining. We'll move the contents to a new Arc, and
1044 // invalidate the other weak refs.
1045
1046 // Note that it is not possible for the read of `weak` to yield
1047 // usize::MAX (i.e., locked), since the weak count can only be
1048 // locked by a thread with a strong reference.
1049
1050 // Materialize our own implicit weak pointer, so that it can clean
1051 // up the ArcInner as needed.
1052 let weak = Weak { ptr: this.ptr };
1053
1054 // mark the data itself as already deallocated
1055 unsafe {
1056 // there is no data race in the implicit write caused by `read`
1057 // here (due to zeroing) because data is no longer accessed by
1058 // other threads (due to there being no more strong refs at this
1059 // point).
1060 let mut swap = Arc::new(ptr::read(&weak.ptr.as_ref().data));
1061 mem::swap(this, &mut swap);
1062 mem::forget(swap);
1063 }
1064 } else {
1065 // We were the sole reference of either kind; bump back up the
1066 // strong ref count.
1067 this.inner().strong.store(1, Release);
1068 }
1069
1070 // As with `get_mut()`, the unsafety is ok because our reference was
1071 // either unique to begin with, or became one upon cloning the contents.
1072 unsafe { &mut this.ptr.as_mut().data }
1073 }
1074 }
1075
1076 impl<T: ?Sized> Arc<T> {
1077 /// Returns a mutable reference into the given `Arc`, if there are
1078 /// no other `Arc` or [`Weak`][weak] pointers to the same allocation.
1079 ///
1080 /// Returns [`None`][option] otherwise, because it is not safe to
1081 /// mutate a shared value.
1082 ///
1083 /// See also [`make_mut`][make_mut], which will [`clone`][clone]
1084 /// the inner value when there are other pointers.
1085 ///
1086 /// [weak]: struct.Weak.html
1087 /// [option]: ../../std/option/enum.Option.html
1088 /// [make_mut]: struct.Arc.html#method.make_mut
1089 /// [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
1090 ///
1091 /// # Examples
1092 ///
1093 /// ```
1094 /// use std::sync::Arc;
1095 ///
1096 /// let mut x = Arc::new(3);
1097 /// *Arc::get_mut(&mut x).unwrap() = 4;
1098 /// assert_eq!(*x, 4);
1099 ///
1100 /// let _y = Arc::clone(&x);
1101 /// assert!(Arc::get_mut(&mut x).is_none());
1102 /// ```
1103 #[inline]
1104 #[stable(feature = "arc_unique", since = "1.4.0")]
1105 pub fn get_mut(this: &mut Self) -> Option<&mut T> {
1106 if this.is_unique() {
1107 // This unsafety is ok because we're guaranteed that the pointer
1108 // returned is the *only* pointer that will ever be returned to T. Our
1109 // reference count is guaranteed to be 1 at this point, and we required
1110 // the Arc itself to be `mut`, so we're returning the only possible
1111 // reference to the inner data.
1112 unsafe { Some(Arc::get_mut_unchecked(this)) }
1113 } else {
1114 None
1115 }
1116 }
1117
1118 /// Returns a mutable reference into the given `Arc`,
1119 /// without any check.
1120 ///
1121 /// See also [`get_mut`], which is safe and does appropriate checks.
1122 ///
1123 /// [`get_mut`]: struct.Arc.html#method.get_mut
1124 ///
1125 /// # Safety
1126 ///
1127 /// Any other `Arc` or [`Weak`] pointers to the same allocation must not be dereferenced
1128 /// for the duration of the returned borrow.
1129 /// This is trivially the case if no such pointers exist,
1130 /// for example immediately after `Arc::new`.
1131 ///
1132 /// # Examples
1133 ///
1134 /// ```
1135 /// #![feature(get_mut_unchecked)]
1136 ///
1137 /// use std::sync::Arc;
1138 ///
1139 /// let mut x = Arc::new(String::new());
1140 /// unsafe {
1141 /// Arc::get_mut_unchecked(&mut x).push_str("foo")
1142 /// }
1143 /// assert_eq!(*x, "foo");
1144 /// ```
1145 #[inline]
1146 #[unstable(feature = "get_mut_unchecked", issue = "63292")]
1147 pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
1148 &mut this.ptr.as_mut().data
1149 }
1150
1151 /// Determine whether this is the unique reference (including weak refs) to
1152 /// the underlying data.
1153 ///
1154 /// Note that this requires locking the weak ref count.
1155 fn is_unique(&mut self) -> bool {
1156 // lock the weak pointer count if we appear to be the sole weak pointer
1157 // holder.
1158 //
1159 // The acquire label here ensures a happens-before relationship with any
1160 // writes to `strong` (in particular in `Weak::upgrade`) prior to decrements
1161 // of the `weak` count (via `Weak::drop`, which uses release). If the upgraded
1162 // weak ref was never dropped, the CAS here will fail so we do not care to synchronize.
1163 if self.inner().weak.compare_exchange(1, usize::MAX, Acquire, Relaxed).is_ok() {
1164 // This needs to be an `Acquire` to synchronize with the decrement of the `strong`
1165 // counter in `drop` -- the only access that happens when any but the last reference
1166 // is being dropped.
1167 let unique = self.inner().strong.load(Acquire) == 1;
1168
1169 // The release write here synchronizes with a read in `downgrade`,
1170 // effectively preventing the above read of `strong` from happening
1171 // after the write.
1172 self.inner().weak.store(1, Release); // release the lock
1173 unique
1174 } else {
1175 false
1176 }
1177 }
1178 }
1179
1180 #[stable(feature = "rust1", since = "1.0.0")]
1181 unsafe impl<#[may_dangle] T: ?Sized> Drop for Arc<T> {
1182 /// Drops the `Arc`.
1183 ///
1184 /// This will decrement the strong reference count. If the strong reference
1185 /// count reaches zero then the only other references (if any) are
1186 /// [`Weak`], so we `drop` the inner value.
1187 ///
1188 /// # Examples
1189 ///
1190 /// ```
1191 /// use std::sync::Arc;
1192 ///
1193 /// struct Foo;
1194 ///
1195 /// impl Drop for Foo {
1196 /// fn drop(&mut self) {
1197 /// println!("dropped!");
1198 /// }
1199 /// }
1200 ///
1201 /// let foo = Arc::new(Foo);
1202 /// let foo2 = Arc::clone(&foo);
1203 ///
1204 /// drop(foo); // Doesn't print anything
1205 /// drop(foo2); // Prints "dropped!"
1206 /// ```
1207 ///
1208 /// [`Weak`]: ../../std/sync/struct.Weak.html
1209 #[inline]
1210 fn drop(&mut self) {
1211 // Because `fetch_sub` is already atomic, we do not need to synchronize
1212 // with other threads unless we are going to delete the object. This
1213 // same logic applies to the below `fetch_sub` to the `weak` count.
1214 if self.inner().strong.fetch_sub(1, Release) != 1 {
1215 return;
1216 }
1217
1218 // This fence is needed to prevent reordering of use of the data and
1219 // deletion of the data. Because it is marked `Release`, the decreasing
1220 // of the reference count synchronizes with this `Acquire` fence. This
1221 // means that use of the data happens before decreasing the reference
1222 // count, which happens before this fence, which happens before the
1223 // deletion of the data.
1224 //
1225 // As explained in the [Boost documentation][1],
1226 //
1227 // > It is important to enforce any possible access to the object in one
1228 // > thread (through an existing reference) to *happen before* deleting
1229 // > the object in a different thread. This is achieved by a "release"
1230 // > operation after dropping a reference (any access to the object
1231 // > through this reference must obviously happened before), and an
1232 // > "acquire" operation before deleting the object.
1233 //
1234 // In particular, while the contents of an Arc are usually immutable, it's
1235 // possible to have interior writes to something like a Mutex<T>. Since a
1236 // Mutex is not acquired when it is deleted, we can't rely on its
1237 // synchronization logic to make writes in thread A visible to a destructor
1238 // running in thread B.
1239 //
1240 // Also note that the Acquire fence here could probably be replaced with an
1241 // Acquire load, which could improve performance in highly-contended
1242 // situations. See [2].
1243 //
1244 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
1245 // [2]: (https://github.com/rust-lang/rust/pull/41714)
1246 atomic::fence(Acquire);
1247
1248 unsafe {
1249 self.drop_slow();
1250 }
1251 }
1252 }
1253
1254 impl Arc<dyn Any + Send + Sync> {
1255 #[inline]
1256 #[stable(feature = "rc_downcast", since = "1.29.0")]
1257 /// Attempt to downcast the `Arc<dyn Any + Send + Sync>` to a concrete type.
1258 ///
1259 /// # Examples
1260 ///
1261 /// ```
1262 /// use std::any::Any;
1263 /// use std::sync::Arc;
1264 ///
1265 /// fn print_if_string(value: Arc<dyn Any + Send + Sync>) {
1266 /// if let Ok(string) = value.downcast::<String>() {
1267 /// println!("String ({}): {}", string.len(), string);
1268 /// }
1269 /// }
1270 ///
1271 /// let my_string = "Hello World".to_string();
1272 /// print_if_string(Arc::new(my_string));
1273 /// print_if_string(Arc::new(0i8));
1274 /// ```
1275 pub fn downcast<T>(self) -> Result<Arc<T>, Self>
1276 where
1277 T: Any + Send + Sync + 'static,
1278 {
1279 if (*self).is::<T>() {
1280 let ptr = self.ptr.cast::<ArcInner<T>>();
1281 mem::forget(self);
1282 Ok(Arc::from_inner(ptr))
1283 } else {
1284 Err(self)
1285 }
1286 }
1287 }
1288
1289 impl<T> Weak<T> {
1290 /// Constructs a new `Weak<T>`, without allocating any memory.
1291 /// Calling [`upgrade`] on the return value always gives [`None`].
1292 ///
1293 /// [`upgrade`]: struct.Weak.html#method.upgrade
1294 /// [`None`]: ../../std/option/enum.Option.html#variant.None
1295 ///
1296 /// # Examples
1297 ///
1298 /// ```
1299 /// use std::sync::Weak;
1300 ///
1301 /// let empty: Weak<i64> = Weak::new();
1302 /// assert!(empty.upgrade().is_none());
1303 /// ```
1304 #[stable(feature = "downgraded_weak", since = "1.10.0")]
1305 pub fn new() -> Weak<T> {
1306 Weak { ptr: NonNull::new(usize::MAX as *mut ArcInner<T>).expect("MAX is not 0") }
1307 }
1308
1309 /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
1310 ///
1311 /// The pointer is valid only if there are some strong references. The pointer may be dangling
1312 /// or even [`null`] otherwise.
1313 ///
1314 /// # Examples
1315 ///
1316 /// ```
1317 /// #![feature(weak_into_raw)]
1318 ///
1319 /// use std::sync::Arc;
1320 /// use std::ptr;
1321 ///
1322 /// let strong = Arc::new("hello".to_owned());
1323 /// let weak = Arc::downgrade(&strong);
1324 /// // Both point to the same object
1325 /// assert!(ptr::eq(&*strong, weak.as_raw()));
1326 /// // The strong here keeps it alive, so we can still access the object.
1327 /// assert_eq!("hello", unsafe { &*weak.as_raw() });
1328 ///
1329 /// drop(strong);
1330 /// // But not any more. We can do weak.as_raw(), but accessing the pointer would lead to
1331 /// // undefined behaviour.
1332 /// // assert_eq!("hello", unsafe { &*weak.as_raw() });
1333 /// ```
1334 ///
1335 /// [`null`]: ../../std/ptr/fn.null.html
1336 #[unstable(feature = "weak_into_raw", issue = "60728")]
1337 pub fn as_raw(&self) -> *const T {
1338 match self.inner() {
1339 None => ptr::null(),
1340 Some(inner) => {
1341 let offset = data_offset_sized::<T>();
1342 let ptr = inner as *const ArcInner<T>;
1343 // Note: while the pointer we create may already point to dropped value, the
1344 // allocation still lives (it must hold the weak point as long as we are alive).
1345 // Therefore, the offset is OK to do, it won't get out of the allocation.
1346 let ptr = unsafe { (ptr as *const u8).offset(offset) };
1347 ptr as *const T
1348 }
1349 }
1350 }
1351
1352 /// Consumes the `Weak<T>` and turns it into a raw pointer.
1353 ///
1354 /// This converts the weak pointer into a raw pointer, preserving the original weak count. It
1355 /// can be turned back into the `Weak<T>` with [`from_raw`].
1356 ///
1357 /// The same restrictions of accessing the target of the pointer as with
1358 /// [`as_raw`] apply.
1359 ///
1360 /// # Examples
1361 ///
1362 /// ```
1363 /// #![feature(weak_into_raw)]
1364 ///
1365 /// use std::sync::{Arc, Weak};
1366 ///
1367 /// let strong = Arc::new("hello".to_owned());
1368 /// let weak = Arc::downgrade(&strong);
1369 /// let raw = weak.into_raw();
1370 ///
1371 /// assert_eq!(1, Arc::weak_count(&strong));
1372 /// assert_eq!("hello", unsafe { &*raw });
1373 ///
1374 /// drop(unsafe { Weak::from_raw(raw) });
1375 /// assert_eq!(0, Arc::weak_count(&strong));
1376 /// ```
1377 ///
1378 /// [`from_raw`]: struct.Weak.html#method.from_raw
1379 /// [`as_raw`]: struct.Weak.html#method.as_raw
1380 #[unstable(feature = "weak_into_raw", issue = "60728")]
1381 pub fn into_raw(self) -> *const T {
1382 let result = self.as_raw();
1383 mem::forget(self);
1384 result
1385 }
1386
1387 /// Converts a raw pointer previously created by [`into_raw`] back into
1388 /// `Weak<T>`.
1389 ///
1390 /// This can be used to safely get a strong reference (by calling [`upgrade`]
1391 /// later) or to deallocate the weak count by dropping the `Weak<T>`.
1392 ///
1393 /// It takes ownership of one weak count (with the exception of pointers created by [`new`],
1394 /// as these don't have any corresponding weak count).
1395 ///
1396 /// # Safety
1397 ///
1398 /// The pointer must have originated from the [`into_raw`] (or [`as_raw'], provided there was
1399 /// a corresponding [`forget`] on the `Weak<T>`) and must still own its potential weak reference
1400 /// count.
1401 ///
1402 /// It is allowed for the strong count to be 0 at the time of calling this, but the weak count
1403 /// must be non-zero or the pointer must have originated from a dangling `Weak<T>` (one created
1404 /// by [`new`]).
1405 ///
1406 /// # Examples
1407 ///
1408 /// ```
1409 /// #![feature(weak_into_raw)]
1410 ///
1411 /// use std::sync::{Arc, Weak};
1412 ///
1413 /// let strong = Arc::new("hello".to_owned());
1414 ///
1415 /// let raw_1 = Arc::downgrade(&strong).into_raw();
1416 /// let raw_2 = Arc::downgrade(&strong).into_raw();
1417 ///
1418 /// assert_eq!(2, Arc::weak_count(&strong));
1419 ///
1420 /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
1421 /// assert_eq!(1, Arc::weak_count(&strong));
1422 ///
1423 /// drop(strong);
1424 ///
1425 /// // Decrement the last weak count.
1426 /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
1427 /// ```
1428 ///
1429 /// [`as_raw`]: struct.Weak.html#method.as_raw
1430 /// [`new`]: struct.Weak.html#method.new
1431 /// [`into_raw`]: struct.Weak.html#method.into_raw
1432 /// [`upgrade`]: struct.Weak.html#method.upgrade
1433 /// [`Weak`]: struct.Weak.html
1434 /// [`Arc`]: struct.Arc.html
1435 /// [`forget`]: ../../std/mem/fn.forget.html
1436 #[unstable(feature = "weak_into_raw", issue = "60728")]
1437 pub unsafe fn from_raw(ptr: *const T) -> Self {
1438 if ptr.is_null() {
1439 Self::new()
1440 } else {
1441 // See Arc::from_raw for details
1442 let offset = data_offset(ptr);
1443 let fake_ptr = ptr as *mut ArcInner<T>;
1444 let ptr = set_data_ptr(fake_ptr, (ptr as *mut u8).offset(-offset));
1445 Weak { ptr: NonNull::new(ptr).expect("Invalid pointer passed to from_raw") }
1446 }
1447 }
1448 }
1449
1450 impl<T: ?Sized> Weak<T> {
1451 /// Attempts to upgrade the `Weak` pointer to an [`Arc`], delaying
1452 /// dropping of the inner value if successful.
1453 ///
1454 /// Returns [`None`] if the inner value has since been dropped.
1455 ///
1456 /// [`Arc`]: struct.Arc.html
1457 /// [`None`]: ../../std/option/enum.Option.html#variant.None
1458 ///
1459 /// # Examples
1460 ///
1461 /// ```
1462 /// use std::sync::Arc;
1463 ///
1464 /// let five = Arc::new(5);
1465 ///
1466 /// let weak_five = Arc::downgrade(&five);
1467 ///
1468 /// let strong_five: Option<Arc<_>> = weak_five.upgrade();
1469 /// assert!(strong_five.is_some());
1470 ///
1471 /// // Destroy all strong pointers.
1472 /// drop(strong_five);
1473 /// drop(five);
1474 ///
1475 /// assert!(weak_five.upgrade().is_none());
1476 /// ```
1477 #[stable(feature = "arc_weak", since = "1.4.0")]
1478 pub fn upgrade(&self) -> Option<Arc<T>> {
1479 // We use a CAS loop to increment the strong count instead of a
1480 // fetch_add because once the count hits 0 it must never be above 0.
1481 let inner = self.inner()?;
1482
1483 // Relaxed load because any write of 0 that we can observe
1484 // leaves the field in a permanently zero state (so a
1485 // "stale" read of 0 is fine), and any other value is
1486 // confirmed via the CAS below.
1487 let mut n = inner.strong.load(Relaxed);
1488
1489 loop {
1490 if n == 0 {
1491 return None;
1492 }
1493
1494 // See comments in `Arc::clone` for why we do this (for `mem::forget`).
1495 if n > MAX_REFCOUNT {
1496 unsafe {
1497 abort();
1498 }
1499 }
1500
1501 // Relaxed is valid for the same reason it is on Arc's Clone impl
1502 match inner.strong.compare_exchange_weak(n, n + 1, Relaxed, Relaxed) {
1503 Ok(_) => return Some(Arc::from_inner(self.ptr)), // null checked above
1504 Err(old) => n = old,
1505 }
1506 }
1507 }
1508
1509 /// Gets the number of strong (`Arc`) pointers pointing to this allocation.
1510 ///
1511 /// If `self` was created using [`Weak::new`], this will return 0.
1512 ///
1513 /// [`Weak::new`]: #method.new
1514 #[stable(feature = "weak_counts", since = "1.41.0")]
1515 pub fn strong_count(&self) -> usize {
1516 if let Some(inner) = self.inner() { inner.strong.load(SeqCst) } else { 0 }
1517 }
1518
1519 /// Gets an approximation of the number of `Weak` pointers pointing to this
1520 /// allocation.
1521 ///
1522 /// If `self` was created using [`Weak::new`], or if there are no remaining
1523 /// strong pointers, this will return 0.
1524 ///
1525 /// # Accuracy
1526 ///
1527 /// Due to implementation details, the returned value can be off by 1 in
1528 /// either direction when other threads are manipulating any `Arc`s or
1529 /// `Weak`s pointing to the same allocation.
1530 ///
1531 /// [`Weak::new`]: #method.new
1532 #[stable(feature = "weak_counts", since = "1.41.0")]
1533 pub fn weak_count(&self) -> usize {
1534 self.inner()
1535 .map(|inner| {
1536 let weak = inner.weak.load(SeqCst);
1537 let strong = inner.strong.load(SeqCst);
1538 if strong == 0 {
1539 0
1540 } else {
1541 // Since we observed that there was at least one strong pointer
1542 // after reading the weak count, we know that the implicit weak
1543 // reference (present whenever any strong references are alive)
1544 // was still around when we observed the weak count, and can
1545 // therefore safely subtract it.
1546 weak - 1
1547 }
1548 })
1549 .unwrap_or(0)
1550 }
1551
1552 /// Returns `None` when the pointer is dangling and there is no allocated `ArcInner`,
1553 /// (i.e., when this `Weak` was created by `Weak::new`).
1554 #[inline]
1555 fn inner(&self) -> Option<&ArcInner<T>> {
1556 if is_dangling(self.ptr) { None } else { Some(unsafe { self.ptr.as_ref() }) }
1557 }
1558
1559 /// Returns `true` if the two `Weak`s point to the same allocation (similar to
1560 /// [`ptr::eq`]), or if both don't point to any allocation
1561 /// (because they were created with `Weak::new()`).
1562 ///
1563 /// # Notes
1564 ///
1565 /// Since this compares pointers it means that `Weak::new()` will equal each
1566 /// other, even though they don't point to any allocation.
1567 ///
1568 /// # Examples
1569 ///
1570 /// ```
1571 /// use std::sync::Arc;
1572 ///
1573 /// let first_rc = Arc::new(5);
1574 /// let first = Arc::downgrade(&first_rc);
1575 /// let second = Arc::downgrade(&first_rc);
1576 ///
1577 /// assert!(first.ptr_eq(&second));
1578 ///
1579 /// let third_rc = Arc::new(5);
1580 /// let third = Arc::downgrade(&third_rc);
1581 ///
1582 /// assert!(!first.ptr_eq(&third));
1583 /// ```
1584 ///
1585 /// Comparing `Weak::new`.
1586 ///
1587 /// ```
1588 /// use std::sync::{Arc, Weak};
1589 ///
1590 /// let first = Weak::new();
1591 /// let second = Weak::new();
1592 /// assert!(first.ptr_eq(&second));
1593 ///
1594 /// let third_rc = Arc::new(());
1595 /// let third = Arc::downgrade(&third_rc);
1596 /// assert!(!first.ptr_eq(&third));
1597 /// ```
1598 ///
1599 /// [`ptr::eq`]: ../../std/ptr/fn.eq.html
1600 #[inline]
1601 #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
1602 pub fn ptr_eq(&self, other: &Self) -> bool {
1603 self.ptr.as_ptr() == other.ptr.as_ptr()
1604 }
1605 }
1606
1607 #[stable(feature = "arc_weak", since = "1.4.0")]
1608 impl<T: ?Sized> Clone for Weak<T> {
1609 /// Makes a clone of the `Weak` pointer that points to the same allocation.
1610 ///
1611 /// # Examples
1612 ///
1613 /// ```
1614 /// use std::sync::{Arc, Weak};
1615 ///
1616 /// let weak_five = Arc::downgrade(&Arc::new(5));
1617 ///
1618 /// let _ = Weak::clone(&weak_five);
1619 /// ```
1620 #[inline]
1621 fn clone(&self) -> Weak<T> {
1622 let inner = if let Some(inner) = self.inner() {
1623 inner
1624 } else {
1625 return Weak { ptr: self.ptr };
1626 };
1627 // See comments in Arc::clone() for why this is relaxed. This can use a
1628 // fetch_add (ignoring the lock) because the weak count is only locked
1629 // where are *no other* weak pointers in existence. (So we can't be
1630 // running this code in that case).
1631 let old_size = inner.weak.fetch_add(1, Relaxed);
1632
1633 // See comments in Arc::clone() for why we do this (for mem::forget).
1634 if old_size > MAX_REFCOUNT {
1635 unsafe {
1636 abort();
1637 }
1638 }
1639
1640 Weak { ptr: self.ptr }
1641 }
1642 }
1643
1644 #[stable(feature = "downgraded_weak", since = "1.10.0")]
1645 impl<T> Default for Weak<T> {
1646 /// Constructs a new `Weak<T>`, without allocating memory.
1647 /// Calling [`upgrade`] on the return value always
1648 /// gives [`None`].
1649 ///
1650 /// [`None`]: ../../std/option/enum.Option.html#variant.None
1651 /// [`upgrade`]: ../../std/sync/struct.Weak.html#method.upgrade
1652 ///
1653 /// # Examples
1654 ///
1655 /// ```
1656 /// use std::sync::Weak;
1657 ///
1658 /// let empty: Weak<i64> = Default::default();
1659 /// assert!(empty.upgrade().is_none());
1660 /// ```
1661 fn default() -> Weak<T> {
1662 Weak::new()
1663 }
1664 }
1665
1666 #[stable(feature = "arc_weak", since = "1.4.0")]
1667 impl<T: ?Sized> Drop for Weak<T> {
1668 /// Drops the `Weak` pointer.
1669 ///
1670 /// # Examples
1671 ///
1672 /// ```
1673 /// use std::sync::{Arc, Weak};
1674 ///
1675 /// struct Foo;
1676 ///
1677 /// impl Drop for Foo {
1678 /// fn drop(&mut self) {
1679 /// println!("dropped!");
1680 /// }
1681 /// }
1682 ///
1683 /// let foo = Arc::new(Foo);
1684 /// let weak_foo = Arc::downgrade(&foo);
1685 /// let other_weak_foo = Weak::clone(&weak_foo);
1686 ///
1687 /// drop(weak_foo); // Doesn't print anything
1688 /// drop(foo); // Prints "dropped!"
1689 ///
1690 /// assert!(other_weak_foo.upgrade().is_none());
1691 /// ```
1692 fn drop(&mut self) {
1693 // If we find out that we were the last weak pointer, then its time to
1694 // deallocate the data entirely. See the discussion in Arc::drop() about
1695 // the memory orderings
1696 //
1697 // It's not necessary to check for the locked state here, because the
1698 // weak count can only be locked if there was precisely one weak ref,
1699 // meaning that drop could only subsequently run ON that remaining weak
1700 // ref, which can only happen after the lock is released.
1701 let inner = if let Some(inner) = self.inner() { inner } else { return };
1702
1703 if inner.weak.fetch_sub(1, Release) == 1 {
1704 atomic::fence(Acquire);
1705 unsafe { Global.dealloc(self.ptr.cast(), Layout::for_value(self.ptr.as_ref())) }
1706 }
1707 }
1708 }
1709
1710 #[stable(feature = "rust1", since = "1.0.0")]
1711 trait ArcEqIdent<T: ?Sized + PartialEq> {
1712 fn eq(&self, other: &Arc<T>) -> bool;
1713 fn ne(&self, other: &Arc<T>) -> bool;
1714 }
1715
1716 #[stable(feature = "rust1", since = "1.0.0")]
1717 impl<T: ?Sized + PartialEq> ArcEqIdent<T> for Arc<T> {
1718 #[inline]
1719 default fn eq(&self, other: &Arc<T>) -> bool {
1720 **self == **other
1721 }
1722 #[inline]
1723 default fn ne(&self, other: &Arc<T>) -> bool {
1724 **self != **other
1725 }
1726 }
1727
1728 /// We're doing this specialization here, and not as a more general optimization on `&T`, because it
1729 /// would otherwise add a cost to all equality checks on refs. We assume that `Arc`s are used to
1730 /// store large values, that are slow to clone, but also heavy to check for equality, causing this
1731 /// cost to pay off more easily. It's also more likely to have two `Arc` clones, that point to
1732 /// the same value, than two `&T`s.
1733 ///
1734 /// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
1735 #[stable(feature = "rust1", since = "1.0.0")]
1736 impl<T: ?Sized + Eq> ArcEqIdent<T> for Arc<T> {
1737 #[inline]
1738 fn eq(&self, other: &Arc<T>) -> bool {
1739 Arc::ptr_eq(self, other) || **self == **other
1740 }
1741
1742 #[inline]
1743 fn ne(&self, other: &Arc<T>) -> bool {
1744 !Arc::ptr_eq(self, other) && **self != **other
1745 }
1746 }
1747
1748 #[stable(feature = "rust1", since = "1.0.0")]
1749 impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
1750 /// Equality for two `Arc`s.
1751 ///
1752 /// Two `Arc`s are equal if their inner values are equal, even if they are
1753 /// stored in different allocation.
1754 ///
1755 /// If `T` also implements `Eq` (implying reflexivity of equality),
1756 /// two `Arc`s that point to the same allocation are always equal.
1757 ///
1758 /// # Examples
1759 ///
1760 /// ```
1761 /// use std::sync::Arc;
1762 ///
1763 /// let five = Arc::new(5);
1764 ///
1765 /// assert!(five == Arc::new(5));
1766 /// ```
1767 #[inline]
1768 fn eq(&self, other: &Arc<T>) -> bool {
1769 ArcEqIdent::eq(self, other)
1770 }
1771
1772 /// Inequality for two `Arc`s.
1773 ///
1774 /// Two `Arc`s are unequal if their inner values are unequal.
1775 ///
1776 /// If `T` also implements `Eq` (implying reflexivity of equality),
1777 /// two `Arc`s that point to the same value are never unequal.
1778 ///
1779 /// # Examples
1780 ///
1781 /// ```
1782 /// use std::sync::Arc;
1783 ///
1784 /// let five = Arc::new(5);
1785 ///
1786 /// assert!(five != Arc::new(6));
1787 /// ```
1788 #[inline]
1789 fn ne(&self, other: &Arc<T>) -> bool {
1790 ArcEqIdent::ne(self, other)
1791 }
1792 }
1793
1794 #[stable(feature = "rust1", since = "1.0.0")]
1795 impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
1796 /// Partial comparison for two `Arc`s.
1797 ///
1798 /// The two are compared by calling `partial_cmp()` on their inner values.
1799 ///
1800 /// # Examples
1801 ///
1802 /// ```
1803 /// use std::sync::Arc;
1804 /// use std::cmp::Ordering;
1805 ///
1806 /// let five = Arc::new(5);
1807 ///
1808 /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6)));
1809 /// ```
1810 fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
1811 (**self).partial_cmp(&**other)
1812 }
1813
1814 /// Less-than comparison for two `Arc`s.
1815 ///
1816 /// The two are compared by calling `<` on their inner values.
1817 ///
1818 /// # Examples
1819 ///
1820 /// ```
1821 /// use std::sync::Arc;
1822 ///
1823 /// let five = Arc::new(5);
1824 ///
1825 /// assert!(five < Arc::new(6));
1826 /// ```
1827 fn lt(&self, other: &Arc<T>) -> bool {
1828 *(*self) < *(*other)
1829 }
1830
1831 /// 'Less than or equal to' comparison for two `Arc`s.
1832 ///
1833 /// The two are compared by calling `<=` on their inner values.
1834 ///
1835 /// # Examples
1836 ///
1837 /// ```
1838 /// use std::sync::Arc;
1839 ///
1840 /// let five = Arc::new(5);
1841 ///
1842 /// assert!(five <= Arc::new(5));
1843 /// ```
1844 fn le(&self, other: &Arc<T>) -> bool {
1845 *(*self) <= *(*other)
1846 }
1847
1848 /// Greater-than comparison for two `Arc`s.
1849 ///
1850 /// The two are compared by calling `>` on their inner values.
1851 ///
1852 /// # Examples
1853 ///
1854 /// ```
1855 /// use std::sync::Arc;
1856 ///
1857 /// let five = Arc::new(5);
1858 ///
1859 /// assert!(five > Arc::new(4));
1860 /// ```
1861 fn gt(&self, other: &Arc<T>) -> bool {
1862 *(*self) > *(*other)
1863 }
1864
1865 /// 'Greater than or equal to' comparison for two `Arc`s.
1866 ///
1867 /// The two are compared by calling `>=` on their inner values.
1868 ///
1869 /// # Examples
1870 ///
1871 /// ```
1872 /// use std::sync::Arc;
1873 ///
1874 /// let five = Arc::new(5);
1875 ///
1876 /// assert!(five >= Arc::new(5));
1877 /// ```
1878 fn ge(&self, other: &Arc<T>) -> bool {
1879 *(*self) >= *(*other)
1880 }
1881 }
1882 #[stable(feature = "rust1", since = "1.0.0")]
1883 impl<T: ?Sized + Ord> Ord for Arc<T> {
1884 /// Comparison for two `Arc`s.
1885 ///
1886 /// The two are compared by calling `cmp()` on their inner values.
1887 ///
1888 /// # Examples
1889 ///
1890 /// ```
1891 /// use std::sync::Arc;
1892 /// use std::cmp::Ordering;
1893 ///
1894 /// let five = Arc::new(5);
1895 ///
1896 /// assert_eq!(Ordering::Less, five.cmp(&Arc::new(6)));
1897 /// ```
1898 fn cmp(&self, other: &Arc<T>) -> Ordering {
1899 (**self).cmp(&**other)
1900 }
1901 }
1902 #[stable(feature = "rust1", since = "1.0.0")]
1903 impl<T: ?Sized + Eq> Eq for Arc<T> {}
1904
1905 #[stable(feature = "rust1", since = "1.0.0")]
1906 impl<T: ?Sized + fmt::Display> fmt::Display for Arc<T> {
1907 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1908 fmt::Display::fmt(&**self, f)
1909 }
1910 }
1911
1912 #[stable(feature = "rust1", since = "1.0.0")]
1913 impl<T: ?Sized + fmt::Debug> fmt::Debug for Arc<T> {
1914 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1915 fmt::Debug::fmt(&**self, f)
1916 }
1917 }
1918
1919 #[stable(feature = "rust1", since = "1.0.0")]
1920 impl<T: ?Sized> fmt::Pointer for Arc<T> {
1921 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1922 fmt::Pointer::fmt(&(&**self as *const T), f)
1923 }
1924 }
1925
1926 #[stable(feature = "rust1", since = "1.0.0")]
1927 impl<T: Default> Default for Arc<T> {
1928 /// Creates a new `Arc<T>`, with the `Default` value for `T`.
1929 ///
1930 /// # Examples
1931 ///
1932 /// ```
1933 /// use std::sync::Arc;
1934 ///
1935 /// let x: Arc<i32> = Default::default();
1936 /// assert_eq!(*x, 0);
1937 /// ```
1938 fn default() -> Arc<T> {
1939 Arc::new(Default::default())
1940 }
1941 }
1942
1943 #[stable(feature = "rust1", since = "1.0.0")]
1944 impl<T: ?Sized + Hash> Hash for Arc<T> {
1945 fn hash<H: Hasher>(&self, state: &mut H) {
1946 (**self).hash(state)
1947 }
1948 }
1949
1950 #[stable(feature = "from_for_ptrs", since = "1.6.0")]
1951 impl<T> From<T> for Arc<T> {
1952 fn from(t: T) -> Self {
1953 Arc::new(t)
1954 }
1955 }
1956
1957 #[stable(feature = "shared_from_slice", since = "1.21.0")]
1958 impl<T: Clone> From<&[T]> for Arc<[T]> {
1959 #[inline]
1960 fn from(v: &[T]) -> Arc<[T]> {
1961 <Self as ArcFromSlice<T>>::from_slice(v)
1962 }
1963 }
1964
1965 #[stable(feature = "shared_from_slice", since = "1.21.0")]
1966 impl From<&str> for Arc<str> {
1967 #[inline]
1968 fn from(v: &str) -> Arc<str> {
1969 let arc = Arc::<[u8]>::from(v.as_bytes());
1970 unsafe { Arc::from_raw(Arc::into_raw(arc) as *const str) }
1971 }
1972 }
1973
1974 #[stable(feature = "shared_from_slice", since = "1.21.0")]
1975 impl From<String> for Arc<str> {
1976 #[inline]
1977 fn from(v: String) -> Arc<str> {
1978 Arc::from(&v[..])
1979 }
1980 }
1981
1982 #[stable(feature = "shared_from_slice", since = "1.21.0")]
1983 impl<T: ?Sized> From<Box<T>> for Arc<T> {
1984 #[inline]
1985 fn from(v: Box<T>) -> Arc<T> {
1986 Arc::from_box(v)
1987 }
1988 }
1989
1990 #[stable(feature = "shared_from_slice", since = "1.21.0")]
1991 impl<T> From<Vec<T>> for Arc<[T]> {
1992 #[inline]
1993 fn from(mut v: Vec<T>) -> Arc<[T]> {
1994 unsafe {
1995 let arc = Arc::copy_from_slice(&v);
1996
1997 // Allow the Vec to free its memory, but not destroy its contents
1998 v.set_len(0);
1999
2000 arc
2001 }
2002 }
2003 }
2004
2005 #[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
2006 impl<T, const N: usize> TryFrom<Arc<[T]>> for Arc<[T; N]>
2007 where
2008 [T; N]: LengthAtMost32,
2009 {
2010 type Error = Arc<[T]>;
2011
2012 fn try_from(boxed_slice: Arc<[T]>) -> Result<Self, Self::Error> {
2013 if boxed_slice.len() == N {
2014 Ok(unsafe { Arc::from_raw(Arc::into_raw(boxed_slice) as *mut [T; N]) })
2015 } else {
2016 Err(boxed_slice)
2017 }
2018 }
2019 }
2020
2021 #[stable(feature = "shared_from_iter", since = "1.37.0")]
2022 impl<T> iter::FromIterator<T> for Arc<[T]> {
2023 /// Takes each element in the `Iterator` and collects it into an `Arc<[T]>`.
2024 ///
2025 /// # Performance characteristics
2026 ///
2027 /// ## The general case
2028 ///
2029 /// In the general case, collecting into `Arc<[T]>` is done by first
2030 /// collecting into a `Vec<T>`. That is, when writing the following:
2031 ///
2032 /// ```rust
2033 /// # use std::sync::Arc;
2034 /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
2035 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2036 /// ```
2037 ///
2038 /// this behaves as if we wrote:
2039 ///
2040 /// ```rust
2041 /// # use std::sync::Arc;
2042 /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
2043 /// .collect::<Vec<_>>() // The first set of allocations happens here.
2044 /// .into(); // A second allocation for `Arc<[T]>` happens here.
2045 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2046 /// ```
2047 ///
2048 /// This will allocate as many times as needed for constructing the `Vec<T>`
2049 /// and then it will allocate once for turning the `Vec<T>` into the `Arc<[T]>`.
2050 ///
2051 /// ## Iterators of known length
2052 ///
2053 /// When your `Iterator` implements `TrustedLen` and is of an exact size,
2054 /// a single allocation will be made for the `Arc<[T]>`. For example:
2055 ///
2056 /// ```rust
2057 /// # use std::sync::Arc;
2058 /// let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
2059 /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
2060 /// ```
2061 fn from_iter<I: iter::IntoIterator<Item = T>>(iter: I) -> Self {
2062 ArcFromIter::from_iter(iter.into_iter())
2063 }
2064 }
2065
2066 /// Specialization trait used for collecting into `Arc<[T]>`.
2067 trait ArcFromIter<T, I> {
2068 fn from_iter(iter: I) -> Self;
2069 }
2070
2071 impl<T, I: Iterator<Item = T>> ArcFromIter<T, I> for Arc<[T]> {
2072 default fn from_iter(iter: I) -> Self {
2073 iter.collect::<Vec<T>>().into()
2074 }
2075 }
2076
2077 impl<T, I: iter::TrustedLen<Item = T>> ArcFromIter<T, I> for Arc<[T]> {
2078 default fn from_iter(iter: I) -> Self {
2079 // This is the case for a `TrustedLen` iterator.
2080 let (low, high) = iter.size_hint();
2081 if let Some(high) = high {
2082 debug_assert_eq!(
2083 low,
2084 high,
2085 "TrustedLen iterator's size hint is not exact: {:?}",
2086 (low, high)
2087 );
2088
2089 unsafe {
2090 // SAFETY: We need to ensure that the iterator has an exact length and we have.
2091 Arc::from_iter_exact(iter, low)
2092 }
2093 } else {
2094 // Fall back to normal implementation.
2095 iter.collect::<Vec<T>>().into()
2096 }
2097 }
2098 }
2099
2100 impl<'a, T: 'a + Clone> ArcFromIter<&'a T, slice::Iter<'a, T>> for Arc<[T]> {
2101 fn from_iter(iter: slice::Iter<'a, T>) -> Self {
2102 // Delegate to `impl<T: Clone> From<&[T]> for Arc<[T]>`.
2103 //
2104 // In the case that `T: Copy`, we get to use `ptr::copy_nonoverlapping`
2105 // which is even more performant.
2106 //
2107 // In the fall-back case we have `T: Clone`. This is still better
2108 // than the `TrustedLen` implementation as slices have a known length
2109 // and so we get to avoid calling `size_hint` and avoid the branching.
2110 iter.as_slice().into()
2111 }
2112 }
2113
2114 #[stable(feature = "rust1", since = "1.0.0")]
2115 impl<T: ?Sized> borrow::Borrow<T> for Arc<T> {
2116 fn borrow(&self) -> &T {
2117 &**self
2118 }
2119 }
2120
2121 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2122 impl<T: ?Sized> AsRef<T> for Arc<T> {
2123 fn as_ref(&self) -> &T {
2124 &**self
2125 }
2126 }
2127
2128 #[stable(feature = "pin", since = "1.33.0")]
2129 impl<T: ?Sized> Unpin for Arc<T> {}
2130
2131 /// Computes the offset of the data field within `ArcInner`.
2132 unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> isize {
2133 // Align the unsized value to the end of the `ArcInner`.
2134 // Because it is `?Sized`, it will always be the last field in memory.
2135 // Note: This is a detail of the current implementation of the compiler,
2136 // and is not a guaranteed language detail. Do not rely on it outside of std.
2137 data_offset_align(align_of_val(&*ptr))
2138 }
2139
2140 /// Computes the offset of the data field within `ArcInner`.
2141 ///
2142 /// Unlike [`data_offset`], this doesn't need the pointer, but it works only on `T: Sized`.
2143 fn data_offset_sized<T>() -> isize {
2144 data_offset_align(align_of::<T>())
2145 }
2146
2147 #[inline]
2148 fn data_offset_align(align: usize) -> isize {
2149 let layout = Layout::new::<ArcInner<()>>();
2150 (layout.size() + layout.padding_needed_for(align)) as isize
2151 }