]> git.proxmox.com Git - rustc.git/blob - src/liballoc/vec.rs
New upstream version 1.22.1+dfsg1
[rustc.git] / src / liballoc / vec.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! A contiguous growable array type with heap-allocated contents, written
12 //! `Vec<T>`.
13 //!
14 //! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and
15 //! `O(1)` pop (from the end).
16 //!
17 //! # Examples
18 //!
19 //! You can explicitly create a [`Vec<T>`] with [`new`]:
20 //!
21 //! ```
22 //! let v: Vec<i32> = Vec::new();
23 //! ```
24 //!
25 //! ...or by using the [`vec!`] macro:
26 //!
27 //! ```
28 //! let v: Vec<i32> = vec![];
29 //!
30 //! let v = vec![1, 2, 3, 4, 5];
31 //!
32 //! let v = vec![0; 10]; // ten zeroes
33 //! ```
34 //!
35 //! You can [`push`] values onto the end of a vector (which will grow the vector
36 //! as needed):
37 //!
38 //! ```
39 //! let mut v = vec![1, 2];
40 //!
41 //! v.push(3);
42 //! ```
43 //!
44 //! Popping values works in much the same way:
45 //!
46 //! ```
47 //! let mut v = vec![1, 2];
48 //!
49 //! let two = v.pop();
50 //! ```
51 //!
52 //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
53 //!
54 //! ```
55 //! let mut v = vec![1, 2, 3];
56 //! let three = v[2];
57 //! v[1] = v[1] + 5;
58 //! ```
59 //!
60 //! [`Vec<T>`]: ../../std/vec/struct.Vec.html
61 //! [`new`]: ../../std/vec/struct.Vec.html#method.new
62 //! [`push`]: ../../std/vec/struct.Vec.html#method.push
63 //! [`Index`]: ../../std/ops/trait.Index.html
64 //! [`IndexMut`]: ../../std/ops/trait.IndexMut.html
65 //! [`vec!`]: ../../std/macro.vec.html
66
67 #![stable(feature = "rust1", since = "1.0.0")]
68
69 use core::cmp::Ordering;
70 use core::fmt;
71 use core::hash::{self, Hash};
72 use core::intrinsics::{arith_offset, assume};
73 use core::iter::{FromIterator, FusedIterator, TrustedLen};
74 use core::mem;
75 #[cfg(not(test))]
76 use core::num::Float;
77 use core::ops::{InPlace, Index, IndexMut, Place, Placer};
78 use core::ops;
79 use core::ptr;
80 use core::ptr::Shared;
81 use core::slice;
82
83 use borrow::ToOwned;
84 use borrow::Cow;
85 use boxed::Box;
86 use raw_vec::RawVec;
87 use super::range::RangeArgument;
88 use Bound::{Excluded, Included, Unbounded};
89
90 /// A contiguous growable array type, written `Vec<T>` but pronounced 'vector'.
91 ///
92 /// # Examples
93 ///
94 /// ```
95 /// let mut vec = Vec::new();
96 /// vec.push(1);
97 /// vec.push(2);
98 ///
99 /// assert_eq!(vec.len(), 2);
100 /// assert_eq!(vec[0], 1);
101 ///
102 /// assert_eq!(vec.pop(), Some(2));
103 /// assert_eq!(vec.len(), 1);
104 ///
105 /// vec[0] = 7;
106 /// assert_eq!(vec[0], 7);
107 ///
108 /// vec.extend([1, 2, 3].iter().cloned());
109 ///
110 /// for x in &vec {
111 /// println!("{}", x);
112 /// }
113 /// assert_eq!(vec, [7, 1, 2, 3]);
114 /// ```
115 ///
116 /// The [`vec!`] macro is provided to make initialization more convenient:
117 ///
118 /// ```
119 /// let mut vec = vec![1, 2, 3];
120 /// vec.push(4);
121 /// assert_eq!(vec, [1, 2, 3, 4]);
122 /// ```
123 ///
124 /// It can also initialize each element of a `Vec<T>` with a given value:
125 ///
126 /// ```
127 /// let vec = vec![0; 5];
128 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
129 /// ```
130 ///
131 /// Use a `Vec<T>` as an efficient stack:
132 ///
133 /// ```
134 /// let mut stack = Vec::new();
135 ///
136 /// stack.push(1);
137 /// stack.push(2);
138 /// stack.push(3);
139 ///
140 /// while let Some(top) = stack.pop() {
141 /// // Prints 3, 2, 1
142 /// println!("{}", top);
143 /// }
144 /// ```
145 ///
146 /// # Indexing
147 ///
148 /// The `Vec` type allows to access values by index, because it implements the
149 /// [`Index`] trait. An example will be more explicit:
150 ///
151 /// ```
152 /// let v = vec![0, 2, 4, 6];
153 /// println!("{}", v[1]); // it will display '2'
154 /// ```
155 ///
156 /// However be careful: if you try to access an index which isn't in the `Vec`,
157 /// your software will panic! You cannot do this:
158 ///
159 /// ```should_panic
160 /// let v = vec![0, 2, 4, 6];
161 /// println!("{}", v[6]); // it will panic!
162 /// ```
163 ///
164 /// In conclusion: always check if the index you want to get really exists
165 /// before doing it.
166 ///
167 /// # Slicing
168 ///
169 /// A `Vec` can be mutable. Slices, on the other hand, are read-only objects.
170 /// To get a slice, use `&`. Example:
171 ///
172 /// ```
173 /// fn read_slice(slice: &[usize]) {
174 /// // ...
175 /// }
176 ///
177 /// let v = vec![0, 1];
178 /// read_slice(&v);
179 ///
180 /// // ... and that's all!
181 /// // you can also do it like this:
182 /// let x : &[usize] = &v;
183 /// ```
184 ///
185 /// In Rust, it's more common to pass slices as arguments rather than vectors
186 /// when you just want to provide a read access. The same goes for [`String`] and
187 /// [`&str`].
188 ///
189 /// # Capacity and reallocation
190 ///
191 /// The capacity of a vector is the amount of space allocated for any future
192 /// elements that will be added onto the vector. This is not to be confused with
193 /// the *length* of a vector, which specifies the number of actual elements
194 /// within the vector. If a vector's length exceeds its capacity, its capacity
195 /// will automatically be increased, but its elements will have to be
196 /// reallocated.
197 ///
198 /// For example, a vector with capacity 10 and length 0 would be an empty vector
199 /// with space for 10 more elements. Pushing 10 or fewer elements onto the
200 /// vector will not change its capacity or cause reallocation to occur. However,
201 /// if the vector's length is increased to 11, it will have to reallocate, which
202 /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
203 /// whenever possible to specify how big the vector is expected to get.
204 ///
205 /// # Guarantees
206 ///
207 /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
208 /// about its design. This ensures that it's as low-overhead as possible in
209 /// the general case, and can be correctly manipulated in primitive ways
210 /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
211 /// If additional type parameters are added (e.g. to support custom allocators),
212 /// overriding their defaults may change the behavior.
213 ///
214 /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
215 /// triplet. No more, no less. The order of these fields is completely
216 /// unspecified, and you should use the appropriate methods to modify these.
217 /// The pointer will never be null, so this type is null-pointer-optimized.
218 ///
219 /// However, the pointer may not actually point to allocated memory. In particular,
220 /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
221 /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
222 /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
223 /// types inside a `Vec`, it will not allocate space for them. *Note that in this case
224 /// the `Vec` may not report a [`capacity`] of 0*. `Vec` will allocate if and only
225 /// if [`mem::size_of::<T>`]`() * capacity() > 0`. In general, `Vec`'s allocation
226 /// details are subtle enough that it is strongly recommended that you only
227 /// free memory allocated by a `Vec` by creating a new `Vec` and dropping it.
228 ///
229 /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
230 /// (as defined by the allocator Rust is configured to use by default), and its
231 /// pointer points to [`len`] initialized elements in order (what you would see
232 /// if you coerced it to a slice), followed by [`capacity`]` - `[`len`]
233 /// logically uninitialized elements.
234 ///
235 /// `Vec` will never perform a "small optimization" where elements are actually
236 /// stored on the stack for two reasons:
237 ///
238 /// * It would make it more difficult for unsafe code to correctly manipulate
239 /// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
240 /// only moved, and it would be more difficult to determine if a `Vec` had
241 /// actually allocated memory.
242 ///
243 /// * It would penalize the general case, incurring an additional branch
244 /// on every access.
245 ///
246 /// `Vec` will never automatically shrink itself, even if completely empty. This
247 /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
248 /// and then filling it back up to the same [`len`] should incur no calls to
249 /// the allocator. If you wish to free up unused memory, use
250 /// [`shrink_to_fit`][`shrink_to_fit`].
251 ///
252 /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
253 /// sufficient. [`push`] and [`insert`] *will* (re)allocate if
254 /// [`len`]` == `[`capacity`]. That is, the reported capacity is completely
255 /// accurate, and can be relied on. It can even be used to manually free the memory
256 /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
257 /// when not necessary.
258 ///
259 /// `Vec` does not guarantee any particular growth strategy when reallocating
260 /// when full, nor when [`reserve`] is called. The current strategy is basic
261 /// and it may prove desirable to use a non-constant growth factor. Whatever
262 /// strategy is used will of course guarantee `O(1)` amortized [`push`].
263 ///
264 /// `vec![x; n]`, `vec![a, b, c, d]`, and
265 /// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
266 /// with exactly the requested capacity. If [`len`]` == `[`capacity`],
267 /// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
268 /// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
269 ///
270 /// `Vec` will not specifically overwrite any data that is removed from it,
271 /// but also won't specifically preserve it. Its uninitialized memory is
272 /// scratch space that it may use however it wants. It will generally just do
273 /// whatever is most efficient or otherwise easy to implement. Do not rely on
274 /// removed data to be erased for security purposes. Even if you drop a `Vec`, its
275 /// buffer may simply be reused by another `Vec`. Even if you zero a `Vec`'s memory
276 /// first, that may not actually happen because the optimizer does not consider
277 /// this a side-effect that must be preserved. There is one case which we will
278 /// not break, however: using `unsafe` code to write to the excess capacity,
279 /// and then increasing the length to match, is always valid.
280 ///
281 /// `Vec` does not currently guarantee the order in which elements are dropped
282 /// (the order has changed in the past, and may change again).
283 ///
284 /// [`vec!`]: ../../std/macro.vec.html
285 /// [`Index`]: ../../std/ops/trait.Index.html
286 /// [`String`]: ../../std/string/struct.String.html
287 /// [`&str`]: ../../std/primitive.str.html
288 /// [`Vec::with_capacity`]: ../../std/vec/struct.Vec.html#method.with_capacity
289 /// [`Vec::new`]: ../../std/vec/struct.Vec.html#method.new
290 /// [`shrink_to_fit`]: ../../std/vec/struct.Vec.html#method.shrink_to_fit
291 /// [`capacity`]: ../../std/vec/struct.Vec.html#method.capacity
292 /// [`mem::size_of::<T>`]: ../../std/mem/fn.size_of.html
293 /// [`len`]: ../../std/vec/struct.Vec.html#method.len
294 /// [`push`]: ../../std/vec/struct.Vec.html#method.push
295 /// [`insert`]: ../../std/vec/struct.Vec.html#method.insert
296 /// [`reserve`]: ../../std/vec/struct.Vec.html#method.reserve
297 /// [owned slice]: ../../std/boxed/struct.Box.html
298 #[stable(feature = "rust1", since = "1.0.0")]
299 pub struct Vec<T> {
300 buf: RawVec<T>,
301 len: usize,
302 }
303
304 ////////////////////////////////////////////////////////////////////////////////
305 // Inherent methods
306 ////////////////////////////////////////////////////////////////////////////////
307
308 impl<T> Vec<T> {
309 /// Constructs a new, empty `Vec<T>`.
310 ///
311 /// The vector will not allocate until elements are pushed onto it.
312 ///
313 /// # Examples
314 ///
315 /// ```
316 /// # #![allow(unused_mut)]
317 /// let mut vec: Vec<i32> = Vec::new();
318 /// ```
319 #[inline]
320 #[stable(feature = "rust1", since = "1.0.0")]
321 pub fn new() -> Vec<T> {
322 Vec {
323 buf: RawVec::new(),
324 len: 0,
325 }
326 }
327
328 /// Constructs a new, empty `Vec<T>` with the specified capacity.
329 ///
330 /// The vector will be able to hold exactly `capacity` elements without
331 /// reallocating. If `capacity` is 0, the vector will not allocate.
332 ///
333 /// It is important to note that this function does not specify the *length*
334 /// of the returned vector, but only the *capacity*. For an explanation of
335 /// the difference between length and capacity, see *[Capacity and reallocation]*.
336 ///
337 /// [Capacity and reallocation]: #capacity-and-reallocation
338 ///
339 /// # Examples
340 ///
341 /// ```
342 /// let mut vec = Vec::with_capacity(10);
343 ///
344 /// // The vector contains no items, even though it has capacity for more
345 /// assert_eq!(vec.len(), 0);
346 ///
347 /// // These are all done without reallocating...
348 /// for i in 0..10 {
349 /// vec.push(i);
350 /// }
351 ///
352 /// // ...but this may make the vector reallocate
353 /// vec.push(11);
354 /// ```
355 #[inline]
356 #[stable(feature = "rust1", since = "1.0.0")]
357 pub fn with_capacity(capacity: usize) -> Vec<T> {
358 Vec {
359 buf: RawVec::with_capacity(capacity),
360 len: 0,
361 }
362 }
363
364 /// Creates a `Vec<T>` directly from the raw components of another vector.
365 ///
366 /// # Safety
367 ///
368 /// This is highly unsafe, due to the number of invariants that aren't
369 /// checked:
370 ///
371 /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
372 /// (at least, it's highly likely to be incorrect if it wasn't).
373 /// * `ptr`'s `T` needs to have the same size and alignment as it was allocated with.
374 /// * `length` needs to be less than or equal to `capacity`.
375 /// * `capacity` needs to be the capacity that the pointer was allocated with.
376 ///
377 /// Violating these may cause problems like corrupting the allocator's
378 /// internal data structures. For example it is **not** safe
379 /// to build a `Vec<u8>` from a pointer to a C `char` array and a `size_t`.
380 ///
381 /// The ownership of `ptr` is effectively transferred to the
382 /// `Vec<T>` which may then deallocate, reallocate or change the
383 /// contents of memory pointed to by the pointer at will. Ensure
384 /// that nothing else uses the pointer after calling this
385 /// function.
386 ///
387 /// [`String`]: ../../std/string/struct.String.html
388 ///
389 /// # Examples
390 ///
391 /// ```
392 /// use std::ptr;
393 /// use std::mem;
394 ///
395 /// fn main() {
396 /// let mut v = vec![1, 2, 3];
397 ///
398 /// // Pull out the various important pieces of information about `v`
399 /// let p = v.as_mut_ptr();
400 /// let len = v.len();
401 /// let cap = v.capacity();
402 ///
403 /// unsafe {
404 /// // Cast `v` into the void: no destructor run, so we are in
405 /// // complete control of the allocation to which `p` points.
406 /// mem::forget(v);
407 ///
408 /// // Overwrite memory with 4, 5, 6
409 /// for i in 0..len as isize {
410 /// ptr::write(p.offset(i), 4 + i);
411 /// }
412 ///
413 /// // Put everything back together into a Vec
414 /// let rebuilt = Vec::from_raw_parts(p, len, cap);
415 /// assert_eq!(rebuilt, [4, 5, 6]);
416 /// }
417 /// }
418 /// ```
419 #[stable(feature = "rust1", since = "1.0.0")]
420 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Vec<T> {
421 Vec {
422 buf: RawVec::from_raw_parts(ptr, capacity),
423 len: length,
424 }
425 }
426
427 /// Returns the number of elements the vector can hold without
428 /// reallocating.
429 ///
430 /// # Examples
431 ///
432 /// ```
433 /// let vec: Vec<i32> = Vec::with_capacity(10);
434 /// assert_eq!(vec.capacity(), 10);
435 /// ```
436 #[inline]
437 #[stable(feature = "rust1", since = "1.0.0")]
438 pub fn capacity(&self) -> usize {
439 self.buf.cap()
440 }
441
442 /// Reserves capacity for at least `additional` more elements to be inserted
443 /// in the given `Vec<T>`. The collection may reserve more space to avoid
444 /// frequent reallocations. After calling `reserve`, capacity will be
445 /// greater than or equal to `self.len() + additional`. Does nothing if
446 /// capacity is already sufficient.
447 ///
448 /// # Panics
449 ///
450 /// Panics if the new capacity overflows `usize`.
451 ///
452 /// # Examples
453 ///
454 /// ```
455 /// let mut vec = vec![1];
456 /// vec.reserve(10);
457 /// assert!(vec.capacity() >= 11);
458 /// ```
459 #[stable(feature = "rust1", since = "1.0.0")]
460 pub fn reserve(&mut self, additional: usize) {
461 self.buf.reserve(self.len, additional);
462 }
463
464 /// Reserves the minimum capacity for exactly `additional` more elements to
465 /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
466 /// capacity will be greater than or equal to `self.len() + additional`.
467 /// Does nothing if the capacity is already sufficient.
468 ///
469 /// Note that the allocator may give the collection more space than it
470 /// requests. Therefore capacity can not be relied upon to be precisely
471 /// minimal. Prefer `reserve` if future insertions are expected.
472 ///
473 /// # Panics
474 ///
475 /// Panics if the new capacity overflows `usize`.
476 ///
477 /// # Examples
478 ///
479 /// ```
480 /// let mut vec = vec![1];
481 /// vec.reserve_exact(10);
482 /// assert!(vec.capacity() >= 11);
483 /// ```
484 #[stable(feature = "rust1", since = "1.0.0")]
485 pub fn reserve_exact(&mut self, additional: usize) {
486 self.buf.reserve_exact(self.len, additional);
487 }
488
489 /// Shrinks the capacity of the vector as much as possible.
490 ///
491 /// It will drop down as close as possible to the length but the allocator
492 /// may still inform the vector that there is space for a few more elements.
493 ///
494 /// # Examples
495 ///
496 /// ```
497 /// let mut vec = Vec::with_capacity(10);
498 /// vec.extend([1, 2, 3].iter().cloned());
499 /// assert_eq!(vec.capacity(), 10);
500 /// vec.shrink_to_fit();
501 /// assert!(vec.capacity() >= 3);
502 /// ```
503 #[stable(feature = "rust1", since = "1.0.0")]
504 pub fn shrink_to_fit(&mut self) {
505 self.buf.shrink_to_fit(self.len);
506 }
507
508 /// Converts the vector into [`Box<[T]>`][owned slice].
509 ///
510 /// Note that this will drop any excess capacity.
511 ///
512 /// [owned slice]: ../../std/boxed/struct.Box.html
513 ///
514 /// # Examples
515 ///
516 /// ```
517 /// let v = vec![1, 2, 3];
518 ///
519 /// let slice = v.into_boxed_slice();
520 /// ```
521 ///
522 /// Any excess capacity is removed:
523 ///
524 /// ```
525 /// let mut vec = Vec::with_capacity(10);
526 /// vec.extend([1, 2, 3].iter().cloned());
527 ///
528 /// assert_eq!(vec.capacity(), 10);
529 /// let slice = vec.into_boxed_slice();
530 /// assert_eq!(slice.into_vec().capacity(), 3);
531 /// ```
532 #[stable(feature = "rust1", since = "1.0.0")]
533 pub fn into_boxed_slice(mut self) -> Box<[T]> {
534 unsafe {
535 self.shrink_to_fit();
536 let buf = ptr::read(&self.buf);
537 mem::forget(self);
538 buf.into_box()
539 }
540 }
541
542 /// Shortens the vector, keeping the first `len` elements and dropping
543 /// the rest.
544 ///
545 /// If `len` is greater than the vector's current length, this has no
546 /// effect.
547 ///
548 /// The [`drain`] method can emulate `truncate`, but causes the excess
549 /// elements to be returned instead of dropped.
550 ///
551 /// Note that this method has no effect on the allocated capacity
552 /// of the vector.
553 ///
554 /// # Examples
555 ///
556 /// Truncating a five element vector to two elements:
557 ///
558 /// ```
559 /// let mut vec = vec![1, 2, 3, 4, 5];
560 /// vec.truncate(2);
561 /// assert_eq!(vec, [1, 2]);
562 /// ```
563 ///
564 /// No truncation occurs when `len` is greater than the vector's current
565 /// length:
566 ///
567 /// ```
568 /// let mut vec = vec![1, 2, 3];
569 /// vec.truncate(8);
570 /// assert_eq!(vec, [1, 2, 3]);
571 /// ```
572 ///
573 /// Truncating when `len == 0` is equivalent to calling the [`clear`]
574 /// method.
575 ///
576 /// ```
577 /// let mut vec = vec![1, 2, 3];
578 /// vec.truncate(0);
579 /// assert_eq!(vec, []);
580 /// ```
581 ///
582 /// [`clear`]: #method.clear
583 /// [`drain`]: #method.drain
584 #[stable(feature = "rust1", since = "1.0.0")]
585 pub fn truncate(&mut self, len: usize) {
586 unsafe {
587 // drop any extra elements
588 while len < self.len {
589 // decrement len before the drop_in_place(), so a panic on Drop
590 // doesn't re-drop the just-failed value.
591 self.len -= 1;
592 let len = self.len;
593 ptr::drop_in_place(self.get_unchecked_mut(len));
594 }
595 }
596 }
597
598 /// Extracts a slice containing the entire vector.
599 ///
600 /// Equivalent to `&s[..]`.
601 ///
602 /// # Examples
603 ///
604 /// ```
605 /// use std::io::{self, Write};
606 /// let buffer = vec![1, 2, 3, 5, 8];
607 /// io::sink().write(buffer.as_slice()).unwrap();
608 /// ```
609 #[inline]
610 #[stable(feature = "vec_as_slice", since = "1.7.0")]
611 pub fn as_slice(&self) -> &[T] {
612 self
613 }
614
615 /// Extracts a mutable slice of the entire vector.
616 ///
617 /// Equivalent to `&mut s[..]`.
618 ///
619 /// # Examples
620 ///
621 /// ```
622 /// use std::io::{self, Read};
623 /// let mut buffer = vec![0; 3];
624 /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
625 /// ```
626 #[inline]
627 #[stable(feature = "vec_as_slice", since = "1.7.0")]
628 pub fn as_mut_slice(&mut self) -> &mut [T] {
629 self
630 }
631
632 /// Sets the length of a vector.
633 ///
634 /// This will explicitly set the size of the vector, without actually
635 /// modifying its buffers, so it is up to the caller to ensure that the
636 /// vector is actually the specified size.
637 ///
638 /// # Examples
639 ///
640 /// ```
641 /// use std::ptr;
642 ///
643 /// let mut vec = vec!['r', 'u', 's', 't'];
644 ///
645 /// unsafe {
646 /// ptr::drop_in_place(&mut vec[3]);
647 /// vec.set_len(3);
648 /// }
649 /// assert_eq!(vec, ['r', 'u', 's']);
650 /// ```
651 ///
652 /// In this example, there is a memory leak since the memory locations
653 /// owned by the inner vectors were not freed prior to the `set_len` call:
654 ///
655 /// ```
656 /// let mut vec = vec![vec![1, 0, 0],
657 /// vec![0, 1, 0],
658 /// vec![0, 0, 1]];
659 /// unsafe {
660 /// vec.set_len(0);
661 /// }
662 /// ```
663 ///
664 /// In this example, the vector gets expanded from zero to four items
665 /// without any memory allocations occurring, resulting in vector
666 /// values of unallocated memory:
667 ///
668 /// ```
669 /// let mut vec: Vec<char> = Vec::new();
670 ///
671 /// unsafe {
672 /// vec.set_len(4);
673 /// }
674 /// ```
675 #[inline]
676 #[stable(feature = "rust1", since = "1.0.0")]
677 pub unsafe fn set_len(&mut self, len: usize) {
678 self.len = len;
679 }
680
681 /// Removes an element from the vector and returns it.
682 ///
683 /// The removed element is replaced by the last element of the vector.
684 ///
685 /// This does not preserve ordering, but is O(1).
686 ///
687 /// # Panics
688 ///
689 /// Panics if `index` is out of bounds.
690 ///
691 /// # Examples
692 ///
693 /// ```
694 /// let mut v = vec!["foo", "bar", "baz", "qux"];
695 ///
696 /// assert_eq!(v.swap_remove(1), "bar");
697 /// assert_eq!(v, ["foo", "qux", "baz"]);
698 ///
699 /// assert_eq!(v.swap_remove(0), "foo");
700 /// assert_eq!(v, ["baz", "qux"]);
701 /// ```
702 #[inline]
703 #[stable(feature = "rust1", since = "1.0.0")]
704 pub fn swap_remove(&mut self, index: usize) -> T {
705 let length = self.len();
706 self.swap(index, length - 1);
707 self.pop().unwrap()
708 }
709
710 /// Inserts an element at position `index` within the vector, shifting all
711 /// elements after it to the right.
712 ///
713 /// # Panics
714 ///
715 /// Panics if `index` is out of bounds.
716 ///
717 /// # Examples
718 ///
719 /// ```
720 /// let mut vec = vec![1, 2, 3];
721 /// vec.insert(1, 4);
722 /// assert_eq!(vec, [1, 4, 2, 3]);
723 /// vec.insert(4, 5);
724 /// assert_eq!(vec, [1, 4, 2, 3, 5]);
725 /// ```
726 #[stable(feature = "rust1", since = "1.0.0")]
727 pub fn insert(&mut self, index: usize, element: T) {
728 let len = self.len();
729 assert!(index <= len);
730
731 // space for the new element
732 if len == self.buf.cap() {
733 self.buf.double();
734 }
735
736 unsafe {
737 // infallible
738 // The spot to put the new value
739 {
740 let p = self.as_mut_ptr().offset(index as isize);
741 // Shift everything over to make space. (Duplicating the
742 // `index`th element into two consecutive places.)
743 ptr::copy(p, p.offset(1), len - index);
744 // Write it in, overwriting the first copy of the `index`th
745 // element.
746 ptr::write(p, element);
747 }
748 self.set_len(len + 1);
749 }
750 }
751
752 /// Removes and returns the element at position `index` within the vector,
753 /// shifting all elements after it to the left.
754 ///
755 /// # Panics
756 ///
757 /// Panics if `index` is out of bounds.
758 ///
759 /// # Examples
760 ///
761 /// ```
762 /// let mut v = vec![1, 2, 3];
763 /// assert_eq!(v.remove(1), 2);
764 /// assert_eq!(v, [1, 3]);
765 /// ```
766 #[stable(feature = "rust1", since = "1.0.0")]
767 pub fn remove(&mut self, index: usize) -> T {
768 let len = self.len();
769 assert!(index < len);
770 unsafe {
771 // infallible
772 let ret;
773 {
774 // the place we are taking from.
775 let ptr = self.as_mut_ptr().offset(index as isize);
776 // copy it out, unsafely having a copy of the value on
777 // the stack and in the vector at the same time.
778 ret = ptr::read(ptr);
779
780 // Shift everything down to fill in that spot.
781 ptr::copy(ptr.offset(1), ptr, len - index - 1);
782 }
783 self.set_len(len - 1);
784 ret
785 }
786 }
787
788 /// Retains only the elements specified by the predicate.
789 ///
790 /// In other words, remove all elements `e` such that `f(&e)` returns `false`.
791 /// This method operates in place and preserves the order of the retained
792 /// elements.
793 ///
794 /// # Examples
795 ///
796 /// ```
797 /// let mut vec = vec![1, 2, 3, 4];
798 /// vec.retain(|&x| x%2 == 0);
799 /// assert_eq!(vec, [2, 4]);
800 /// ```
801 #[stable(feature = "rust1", since = "1.0.0")]
802 pub fn retain<F>(&mut self, mut f: F)
803 where F: FnMut(&T) -> bool
804 {
805 let len = self.len();
806 let mut del = 0;
807 {
808 let v = &mut **self;
809
810 for i in 0..len {
811 if !f(&v[i]) {
812 del += 1;
813 } else if del > 0 {
814 v.swap(i - del, i);
815 }
816 }
817 }
818 if del > 0 {
819 self.truncate(len - del);
820 }
821 }
822
823 /// Removes all but the first of consecutive elements in the vector that resolve to the same
824 /// key.
825 ///
826 /// If the vector is sorted, this removes all duplicates.
827 ///
828 /// # Examples
829 ///
830 /// ```
831 /// let mut vec = vec![10, 20, 21, 30, 20];
832 ///
833 /// vec.dedup_by_key(|i| *i / 10);
834 ///
835 /// assert_eq!(vec, [10, 20, 30, 20]);
836 /// ```
837 #[stable(feature = "dedup_by", since = "1.16.0")]
838 #[inline]
839 pub fn dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq {
840 self.dedup_by(|a, b| key(a) == key(b))
841 }
842
843 /// Removes all but the first of consecutive elements in the vector satisfying a given equality
844 /// relation.
845 ///
846 /// The `same_bucket` function is passed references to two elements from the vector, and
847 /// returns `true` if the elements compare equal, or `false` if they do not. The elements are
848 /// passed in opposite order from their order in the vector, so if `same_bucket(a, b)` returns
849 /// `true`, `a` is removed.
850 ///
851 /// If the vector is sorted, this removes all duplicates.
852 ///
853 /// # Examples
854 ///
855 /// ```
856 /// use std::ascii::AsciiExt;
857 ///
858 /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
859 ///
860 /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
861 ///
862 /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
863 /// ```
864 #[stable(feature = "dedup_by", since = "1.16.0")]
865 pub fn dedup_by<F>(&mut self, mut same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool {
866 unsafe {
867 // Although we have a mutable reference to `self`, we cannot make
868 // *arbitrary* changes. The `same_bucket` calls could panic, so we
869 // must ensure that the vector is in a valid state at all time.
870 //
871 // The way that we handle this is by using swaps; we iterate
872 // over all the elements, swapping as we go so that at the end
873 // the elements we wish to keep are in the front, and those we
874 // wish to reject are at the back. We can then truncate the
875 // vector. This operation is still O(n).
876 //
877 // Example: We start in this state, where `r` represents "next
878 // read" and `w` represents "next_write`.
879 //
880 // r
881 // +---+---+---+---+---+---+
882 // | 0 | 1 | 1 | 2 | 3 | 3 |
883 // +---+---+---+---+---+---+
884 // w
885 //
886 // Comparing self[r] against self[w-1], this is not a duplicate, so
887 // we swap self[r] and self[w] (no effect as r==w) and then increment both
888 // r and w, leaving us with:
889 //
890 // r
891 // +---+---+---+---+---+---+
892 // | 0 | 1 | 1 | 2 | 3 | 3 |
893 // +---+---+---+---+---+---+
894 // w
895 //
896 // Comparing self[r] against self[w-1], this value is a duplicate,
897 // so we increment `r` but leave everything else unchanged:
898 //
899 // r
900 // +---+---+---+---+---+---+
901 // | 0 | 1 | 1 | 2 | 3 | 3 |
902 // +---+---+---+---+---+---+
903 // w
904 //
905 // Comparing self[r] against self[w-1], this is not a duplicate,
906 // so swap self[r] and self[w] and advance r and w:
907 //
908 // r
909 // +---+---+---+---+---+---+
910 // | 0 | 1 | 2 | 1 | 3 | 3 |
911 // +---+---+---+---+---+---+
912 // w
913 //
914 // Not a duplicate, repeat:
915 //
916 // r
917 // +---+---+---+---+---+---+
918 // | 0 | 1 | 2 | 3 | 1 | 3 |
919 // +---+---+---+---+---+---+
920 // w
921 //
922 // Duplicate, advance r. End of vec. Truncate to w.
923
924 let ln = self.len();
925 if ln <= 1 {
926 return;
927 }
928
929 // Avoid bounds checks by using raw pointers.
930 let p = self.as_mut_ptr();
931 let mut r: usize = 1;
932 let mut w: usize = 1;
933
934 while r < ln {
935 let p_r = p.offset(r as isize);
936 let p_wm1 = p.offset((w - 1) as isize);
937 if !same_bucket(&mut *p_r, &mut *p_wm1) {
938 if r != w {
939 let p_w = p_wm1.offset(1);
940 mem::swap(&mut *p_r, &mut *p_w);
941 }
942 w += 1;
943 }
944 r += 1;
945 }
946
947 self.truncate(w);
948 }
949 }
950
951 /// Appends an element to the back of a collection.
952 ///
953 /// # Panics
954 ///
955 /// Panics if the number of elements in the vector overflows a `usize`.
956 ///
957 /// # Examples
958 ///
959 /// ```
960 /// let mut vec = vec![1, 2];
961 /// vec.push(3);
962 /// assert_eq!(vec, [1, 2, 3]);
963 /// ```
964 #[inline]
965 #[stable(feature = "rust1", since = "1.0.0")]
966 pub fn push(&mut self, value: T) {
967 // This will panic or abort if we would allocate > isize::MAX bytes
968 // or if the length increment would overflow for zero-sized types.
969 if self.len == self.buf.cap() {
970 self.buf.double();
971 }
972 unsafe {
973 let end = self.as_mut_ptr().offset(self.len as isize);
974 ptr::write(end, value);
975 self.len += 1;
976 }
977 }
978
979 /// Returns a place for insertion at the back of the `Vec`.
980 ///
981 /// Using this method with placement syntax is equivalent to [`push`](#method.push),
982 /// but may be more efficient.
983 ///
984 /// # Examples
985 ///
986 /// ```
987 /// #![feature(collection_placement)]
988 /// #![feature(placement_in_syntax)]
989 ///
990 /// let mut vec = vec![1, 2];
991 /// vec.place_back() <- 3;
992 /// vec.place_back() <- 4;
993 /// assert_eq!(&vec, &[1, 2, 3, 4]);
994 /// ```
995 #[unstable(feature = "collection_placement",
996 reason = "placement protocol is subject to change",
997 issue = "30172")]
998 pub fn place_back(&mut self) -> PlaceBack<T> {
999 PlaceBack { vec: self }
1000 }
1001
1002 /// Removes the last element from a vector and returns it, or [`None`] if it
1003 /// is empty.
1004 ///
1005 /// [`None`]: ../../std/option/enum.Option.html#variant.None
1006 ///
1007 /// # Examples
1008 ///
1009 /// ```
1010 /// let mut vec = vec![1, 2, 3];
1011 /// assert_eq!(vec.pop(), Some(3));
1012 /// assert_eq!(vec, [1, 2]);
1013 /// ```
1014 #[inline]
1015 #[stable(feature = "rust1", since = "1.0.0")]
1016 pub fn pop(&mut self) -> Option<T> {
1017 if self.len == 0 {
1018 None
1019 } else {
1020 unsafe {
1021 self.len -= 1;
1022 Some(ptr::read(self.get_unchecked(self.len())))
1023 }
1024 }
1025 }
1026
1027 /// Moves all the elements of `other` into `Self`, leaving `other` empty.
1028 ///
1029 /// # Panics
1030 ///
1031 /// Panics if the number of elements in the vector overflows a `usize`.
1032 ///
1033 /// # Examples
1034 ///
1035 /// ```
1036 /// let mut vec = vec![1, 2, 3];
1037 /// let mut vec2 = vec![4, 5, 6];
1038 /// vec.append(&mut vec2);
1039 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
1040 /// assert_eq!(vec2, []);
1041 /// ```
1042 #[inline]
1043 #[stable(feature = "append", since = "1.4.0")]
1044 pub fn append(&mut self, other: &mut Self) {
1045 unsafe {
1046 self.append_elements(other.as_slice() as _);
1047 other.set_len(0);
1048 }
1049 }
1050
1051 /// Appends elements to `Self` from other buffer.
1052 #[inline]
1053 unsafe fn append_elements(&mut self, other: *const [T]) {
1054 let count = (*other).len();
1055 self.reserve(count);
1056 let len = self.len();
1057 ptr::copy_nonoverlapping(other as *const T, self.get_unchecked_mut(len), count);
1058 self.len += count;
1059 }
1060
1061 /// Creates a draining iterator that removes the specified range in the vector
1062 /// and yields the removed items.
1063 ///
1064 /// Note 1: The element range is removed even if the iterator is only
1065 /// partially consumed or not consumed at all.
1066 ///
1067 /// Note 2: It is unspecified how many elements are removed from the vector
1068 /// if the `Drain` value is leaked.
1069 ///
1070 /// # Panics
1071 ///
1072 /// Panics if the starting point is greater than the end point or if
1073 /// the end point is greater than the length of the vector.
1074 ///
1075 /// # Examples
1076 ///
1077 /// ```
1078 /// let mut v = vec![1, 2, 3];
1079 /// let u: Vec<_> = v.drain(1..).collect();
1080 /// assert_eq!(v, &[1]);
1081 /// assert_eq!(u, &[2, 3]);
1082 ///
1083 /// // A full range clears the vector
1084 /// v.drain(..);
1085 /// assert_eq!(v, &[]);
1086 /// ```
1087 #[stable(feature = "drain", since = "1.6.0")]
1088 pub fn drain<R>(&mut self, range: R) -> Drain<T>
1089 where R: RangeArgument<usize>
1090 {
1091 // Memory safety
1092 //
1093 // When the Drain is first created, it shortens the length of
1094 // the source vector to make sure no uninitalized or moved-from elements
1095 // are accessible at all if the Drain's destructor never gets to run.
1096 //
1097 // Drain will ptr::read out the values to remove.
1098 // When finished, remaining tail of the vec is copied back to cover
1099 // the hole, and the vector length is restored to the new length.
1100 //
1101 let len = self.len();
1102 let start = match range.start() {
1103 Included(&n) => n,
1104 Excluded(&n) => n + 1,
1105 Unbounded => 0,
1106 };
1107 let end = match range.end() {
1108 Included(&n) => n + 1,
1109 Excluded(&n) => n,
1110 Unbounded => len,
1111 };
1112 assert!(start <= end);
1113 assert!(end <= len);
1114
1115 unsafe {
1116 // set self.vec length's to start, to be safe in case Drain is leaked
1117 self.set_len(start);
1118 // Use the borrow in the IterMut to indicate borrowing behavior of the
1119 // whole Drain iterator (like &mut T).
1120 let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().offset(start as isize),
1121 end - start);
1122 Drain {
1123 tail_start: end,
1124 tail_len: len - end,
1125 iter: range_slice.iter(),
1126 vec: Shared::from(self),
1127 }
1128 }
1129 }
1130
1131 /// Clears the vector, removing all values.
1132 ///
1133 /// Note that this method has no effect on the allocated capacity
1134 /// of the vector.
1135 ///
1136 /// # Examples
1137 ///
1138 /// ```
1139 /// let mut v = vec![1, 2, 3];
1140 ///
1141 /// v.clear();
1142 ///
1143 /// assert!(v.is_empty());
1144 /// ```
1145 #[inline]
1146 #[stable(feature = "rust1", since = "1.0.0")]
1147 pub fn clear(&mut self) {
1148 self.truncate(0)
1149 }
1150
1151 /// Returns the number of elements in the vector, also referred to
1152 /// as its 'length'.
1153 ///
1154 /// # Examples
1155 ///
1156 /// ```
1157 /// let a = vec![1, 2, 3];
1158 /// assert_eq!(a.len(), 3);
1159 /// ```
1160 #[inline]
1161 #[stable(feature = "rust1", since = "1.0.0")]
1162 pub fn len(&self) -> usize {
1163 self.len
1164 }
1165
1166 /// Returns `true` if the vector contains no elements.
1167 ///
1168 /// # Examples
1169 ///
1170 /// ```
1171 /// let mut v = Vec::new();
1172 /// assert!(v.is_empty());
1173 ///
1174 /// v.push(1);
1175 /// assert!(!v.is_empty());
1176 /// ```
1177 #[stable(feature = "rust1", since = "1.0.0")]
1178 pub fn is_empty(&self) -> bool {
1179 self.len() == 0
1180 }
1181
1182 /// Splits the collection into two at the given index.
1183 ///
1184 /// Returns a newly allocated `Self`. `self` contains elements `[0, at)`,
1185 /// and the returned `Self` contains elements `[at, len)`.
1186 ///
1187 /// Note that the capacity of `self` does not change.
1188 ///
1189 /// # Panics
1190 ///
1191 /// Panics if `at > len`.
1192 ///
1193 /// # Examples
1194 ///
1195 /// ```
1196 /// let mut vec = vec![1,2,3];
1197 /// let vec2 = vec.split_off(1);
1198 /// assert_eq!(vec, [1]);
1199 /// assert_eq!(vec2, [2, 3]);
1200 /// ```
1201 #[inline]
1202 #[stable(feature = "split_off", since = "1.4.0")]
1203 pub fn split_off(&mut self, at: usize) -> Self {
1204 assert!(at <= self.len(), "`at` out of bounds");
1205
1206 let other_len = self.len - at;
1207 let mut other = Vec::with_capacity(other_len);
1208
1209 // Unsafely `set_len` and copy items to `other`.
1210 unsafe {
1211 self.set_len(at);
1212 other.set_len(other_len);
1213
1214 ptr::copy_nonoverlapping(self.as_ptr().offset(at as isize),
1215 other.as_mut_ptr(),
1216 other.len());
1217 }
1218 other
1219 }
1220 }
1221
1222 impl<T: Clone> Vec<T> {
1223 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
1224 ///
1225 /// If `new_len` is greater than `len`, the `Vec` is extended by the
1226 /// difference, with each additional slot filled with `value`.
1227 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
1228 ///
1229 /// This method requires `Clone` to clone the passed value. If you'd
1230 /// rather create a value with `Default` instead, see [`resize_default`].
1231 ///
1232 /// # Examples
1233 ///
1234 /// ```
1235 /// let mut vec = vec!["hello"];
1236 /// vec.resize(3, "world");
1237 /// assert_eq!(vec, ["hello", "world", "world"]);
1238 ///
1239 /// let mut vec = vec![1, 2, 3, 4];
1240 /// vec.resize(2, 0);
1241 /// assert_eq!(vec, [1, 2]);
1242 /// ```
1243 ///
1244 /// [`resize_default`]: #method.resize_default
1245 #[stable(feature = "vec_resize", since = "1.5.0")]
1246 pub fn resize(&mut self, new_len: usize, value: T) {
1247 let len = self.len();
1248
1249 if new_len > len {
1250 self.extend_with(new_len - len, ExtendElement(value))
1251 } else {
1252 self.truncate(new_len);
1253 }
1254 }
1255
1256 /// Clones and appends all elements in a slice to the `Vec`.
1257 ///
1258 /// Iterates over the slice `other`, clones each element, and then appends
1259 /// it to this `Vec`. The `other` vector is traversed in-order.
1260 ///
1261 /// Note that this function is same as `extend` except that it is
1262 /// specialized to work with slices instead. If and when Rust gets
1263 /// specialization this function will likely be deprecated (but still
1264 /// available).
1265 ///
1266 /// # Examples
1267 ///
1268 /// ```
1269 /// let mut vec = vec![1];
1270 /// vec.extend_from_slice(&[2, 3, 4]);
1271 /// assert_eq!(vec, [1, 2, 3, 4]);
1272 /// ```
1273 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
1274 pub fn extend_from_slice(&mut self, other: &[T]) {
1275 self.spec_extend(other.iter())
1276 }
1277 }
1278
1279 impl<T: Default> Vec<T> {
1280 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
1281 ///
1282 /// If `new_len` is greater than `len`, the `Vec` is extended by the
1283 /// difference, with each additional slot filled with `Default::default()`.
1284 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
1285 ///
1286 /// This method uses `Default` to create new values on every push. If
1287 /// you'd rather `Clone` a given value, use [`resize`].
1288 ///
1289 ///
1290 /// # Examples
1291 ///
1292 /// ```
1293 /// #![feature(vec_resize_default)]
1294 ///
1295 /// let mut vec = vec![1, 2, 3];
1296 /// vec.resize_default(5);
1297 /// assert_eq!(vec, [1, 2, 3, 0, 0]);
1298 ///
1299 /// let mut vec = vec![1, 2, 3, 4];
1300 /// vec.resize_default(2);
1301 /// assert_eq!(vec, [1, 2]);
1302 /// ```
1303 ///
1304 /// [`resize`]: #method.resize
1305 #[unstable(feature = "vec_resize_default", issue = "41758")]
1306 pub fn resize_default(&mut self, new_len: usize) {
1307 let len = self.len();
1308
1309 if new_len > len {
1310 self.extend_with(new_len - len, ExtendDefault);
1311 } else {
1312 self.truncate(new_len);
1313 }
1314 }
1315 }
1316
1317 // This code generalises `extend_with_{element,default}`.
1318 trait ExtendWith<T> {
1319 fn next(&self) -> T;
1320 fn last(self) -> T;
1321 }
1322
1323 struct ExtendElement<T>(T);
1324 impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
1325 fn next(&self) -> T { self.0.clone() }
1326 fn last(self) -> T { self.0 }
1327 }
1328
1329 struct ExtendDefault;
1330 impl<T: Default> ExtendWith<T> for ExtendDefault {
1331 fn next(&self) -> T { Default::default() }
1332 fn last(self) -> T { Default::default() }
1333 }
1334 impl<T> Vec<T> {
1335 /// Extend the vector by `n` values, using the given generator.
1336 fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, value: E) {
1337 self.reserve(n);
1338
1339 unsafe {
1340 let mut ptr = self.as_mut_ptr().offset(self.len() as isize);
1341 // Use SetLenOnDrop to work around bug where compiler
1342 // may not realize the store through `ptr` through self.set_len()
1343 // don't alias.
1344 let mut local_len = SetLenOnDrop::new(&mut self.len);
1345
1346 // Write all elements except the last one
1347 for _ in 1..n {
1348 ptr::write(ptr, value.next());
1349 ptr = ptr.offset(1);
1350 // Increment the length in every step in case next() panics
1351 local_len.increment_len(1);
1352 }
1353
1354 if n > 0 {
1355 // We can write the last element directly without cloning needlessly
1356 ptr::write(ptr, value.last());
1357 local_len.increment_len(1);
1358 }
1359
1360 // len set by scope guard
1361 }
1362 }
1363 }
1364
1365 // Set the length of the vec when the `SetLenOnDrop` value goes out of scope.
1366 //
1367 // The idea is: The length field in SetLenOnDrop is a local variable
1368 // that the optimizer will see does not alias with any stores through the Vec's data
1369 // pointer. This is a workaround for alias analysis issue #32155
1370 struct SetLenOnDrop<'a> {
1371 len: &'a mut usize,
1372 local_len: usize,
1373 }
1374
1375 impl<'a> SetLenOnDrop<'a> {
1376 #[inline]
1377 fn new(len: &'a mut usize) -> Self {
1378 SetLenOnDrop { local_len: *len, len: len }
1379 }
1380
1381 #[inline]
1382 fn increment_len(&mut self, increment: usize) {
1383 self.local_len += increment;
1384 }
1385 }
1386
1387 impl<'a> Drop for SetLenOnDrop<'a> {
1388 #[inline]
1389 fn drop(&mut self) {
1390 *self.len = self.local_len;
1391 }
1392 }
1393
1394 impl<T: PartialEq> Vec<T> {
1395 /// Removes consecutive repeated elements in the vector.
1396 ///
1397 /// If the vector is sorted, this removes all duplicates.
1398 ///
1399 /// # Examples
1400 ///
1401 /// ```
1402 /// let mut vec = vec![1, 2, 2, 3, 2];
1403 ///
1404 /// vec.dedup();
1405 ///
1406 /// assert_eq!(vec, [1, 2, 3, 2]);
1407 /// ```
1408 #[stable(feature = "rust1", since = "1.0.0")]
1409 #[inline]
1410 pub fn dedup(&mut self) {
1411 self.dedup_by(|a, b| a == b)
1412 }
1413
1414 /// Removes the first instance of `item` from the vector if the item exists.
1415 ///
1416 /// # Examples
1417 ///
1418 /// ```
1419 /// # #![feature(vec_remove_item)]
1420 /// let mut vec = vec![1, 2, 3, 1];
1421 ///
1422 /// vec.remove_item(&1);
1423 ///
1424 /// assert_eq!(vec, vec![2, 3, 1]);
1425 /// ```
1426 #[unstable(feature = "vec_remove_item", reason = "recently added", issue = "40062")]
1427 pub fn remove_item(&mut self, item: &T) -> Option<T> {
1428 let pos = match self.iter().position(|x| *x == *item) {
1429 Some(x) => x,
1430 None => return None,
1431 };
1432 Some(self.remove(pos))
1433 }
1434 }
1435
1436 ////////////////////////////////////////////////////////////////////////////////
1437 // Internal methods and functions
1438 ////////////////////////////////////////////////////////////////////////////////
1439
1440 #[doc(hidden)]
1441 #[stable(feature = "rust1", since = "1.0.0")]
1442 pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
1443 <T as SpecFromElem>::from_elem(elem, n)
1444 }
1445
1446 // Specialization trait used for Vec::from_elem
1447 trait SpecFromElem: Sized {
1448 fn from_elem(elem: Self, n: usize) -> Vec<Self>;
1449 }
1450
1451 impl<T: Clone> SpecFromElem for T {
1452 default fn from_elem(elem: Self, n: usize) -> Vec<Self> {
1453 let mut v = Vec::with_capacity(n);
1454 v.extend_with(n, ExtendElement(elem));
1455 v
1456 }
1457 }
1458
1459 impl SpecFromElem for u8 {
1460 #[inline]
1461 fn from_elem(elem: u8, n: usize) -> Vec<u8> {
1462 if elem == 0 {
1463 return Vec {
1464 buf: RawVec::with_capacity_zeroed(n),
1465 len: n,
1466 }
1467 }
1468 unsafe {
1469 let mut v = Vec::with_capacity(n);
1470 ptr::write_bytes(v.as_mut_ptr(), elem, n);
1471 v.set_len(n);
1472 v
1473 }
1474 }
1475 }
1476
1477 macro_rules! impl_spec_from_elem {
1478 ($t: ty, $is_zero: expr) => {
1479 impl SpecFromElem for $t {
1480 #[inline]
1481 fn from_elem(elem: $t, n: usize) -> Vec<$t> {
1482 if $is_zero(elem) {
1483 return Vec {
1484 buf: RawVec::with_capacity_zeroed(n),
1485 len: n,
1486 }
1487 }
1488 let mut v = Vec::with_capacity(n);
1489 v.extend_with(n, ExtendElement(elem));
1490 v
1491 }
1492 }
1493 };
1494 }
1495
1496 impl_spec_from_elem!(i8, |x| x == 0);
1497 impl_spec_from_elem!(i16, |x| x == 0);
1498 impl_spec_from_elem!(i32, |x| x == 0);
1499 impl_spec_from_elem!(i64, |x| x == 0);
1500 impl_spec_from_elem!(i128, |x| x == 0);
1501 impl_spec_from_elem!(isize, |x| x == 0);
1502
1503 impl_spec_from_elem!(u16, |x| x == 0);
1504 impl_spec_from_elem!(u32, |x| x == 0);
1505 impl_spec_from_elem!(u64, |x| x == 0);
1506 impl_spec_from_elem!(u128, |x| x == 0);
1507 impl_spec_from_elem!(usize, |x| x == 0);
1508
1509 impl_spec_from_elem!(f32, |x: f32| x == 0. && x.is_sign_positive());
1510 impl_spec_from_elem!(f64, |x: f64| x == 0. && x.is_sign_positive());
1511
1512 ////////////////////////////////////////////////////////////////////////////////
1513 // Common trait implementations for Vec
1514 ////////////////////////////////////////////////////////////////////////////////
1515
1516 #[stable(feature = "rust1", since = "1.0.0")]
1517 impl<T: Clone> Clone for Vec<T> {
1518 #[cfg(not(test))]
1519 fn clone(&self) -> Vec<T> {
1520 <[T]>::to_vec(&**self)
1521 }
1522
1523 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
1524 // required for this method definition, is not available. Instead use the
1525 // `slice::to_vec` function which is only available with cfg(test)
1526 // NB see the slice::hack module in slice.rs for more information
1527 #[cfg(test)]
1528 fn clone(&self) -> Vec<T> {
1529 ::slice::to_vec(&**self)
1530 }
1531
1532 fn clone_from(&mut self, other: &Vec<T>) {
1533 other.as_slice().clone_into(self);
1534 }
1535 }
1536
1537 #[stable(feature = "rust1", since = "1.0.0")]
1538 impl<T: Hash> Hash for Vec<T> {
1539 #[inline]
1540 fn hash<H: hash::Hasher>(&self, state: &mut H) {
1541 Hash::hash(&**self, state)
1542 }
1543 }
1544
1545 #[stable(feature = "rust1", since = "1.0.0")]
1546 impl<T> Index<usize> for Vec<T> {
1547 type Output = T;
1548
1549 #[inline]
1550 fn index(&self, index: usize) -> &T {
1551 // NB built-in indexing via `&[T]`
1552 &(**self)[index]
1553 }
1554 }
1555
1556 #[stable(feature = "rust1", since = "1.0.0")]
1557 impl<T> IndexMut<usize> for Vec<T> {
1558 #[inline]
1559 fn index_mut(&mut self, index: usize) -> &mut T {
1560 // NB built-in indexing via `&mut [T]`
1561 &mut (**self)[index]
1562 }
1563 }
1564
1565
1566 #[stable(feature = "rust1", since = "1.0.0")]
1567 impl<T> ops::Index<ops::Range<usize>> for Vec<T> {
1568 type Output = [T];
1569
1570 #[inline]
1571 fn index(&self, index: ops::Range<usize>) -> &[T] {
1572 Index::index(&**self, index)
1573 }
1574 }
1575 #[stable(feature = "rust1", since = "1.0.0")]
1576 impl<T> ops::Index<ops::RangeTo<usize>> for Vec<T> {
1577 type Output = [T];
1578
1579 #[inline]
1580 fn index(&self, index: ops::RangeTo<usize>) -> &[T] {
1581 Index::index(&**self, index)
1582 }
1583 }
1584 #[stable(feature = "rust1", since = "1.0.0")]
1585 impl<T> ops::Index<ops::RangeFrom<usize>> for Vec<T> {
1586 type Output = [T];
1587
1588 #[inline]
1589 fn index(&self, index: ops::RangeFrom<usize>) -> &[T] {
1590 Index::index(&**self, index)
1591 }
1592 }
1593 #[stable(feature = "rust1", since = "1.0.0")]
1594 impl<T> ops::Index<ops::RangeFull> for Vec<T> {
1595 type Output = [T];
1596
1597 #[inline]
1598 fn index(&self, _index: ops::RangeFull) -> &[T] {
1599 self
1600 }
1601 }
1602 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1603 impl<T> ops::Index<ops::RangeInclusive<usize>> for Vec<T> {
1604 type Output = [T];
1605
1606 #[inline]
1607 fn index(&self, index: ops::RangeInclusive<usize>) -> &[T] {
1608 Index::index(&**self, index)
1609 }
1610 }
1611 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1612 impl<T> ops::Index<ops::RangeToInclusive<usize>> for Vec<T> {
1613 type Output = [T];
1614
1615 #[inline]
1616 fn index(&self, index: ops::RangeToInclusive<usize>) -> &[T] {
1617 Index::index(&**self, index)
1618 }
1619 }
1620
1621 #[stable(feature = "rust1", since = "1.0.0")]
1622 impl<T> ops::IndexMut<ops::Range<usize>> for Vec<T> {
1623 #[inline]
1624 fn index_mut(&mut self, index: ops::Range<usize>) -> &mut [T] {
1625 IndexMut::index_mut(&mut **self, index)
1626 }
1627 }
1628 #[stable(feature = "rust1", since = "1.0.0")]
1629 impl<T> ops::IndexMut<ops::RangeTo<usize>> for Vec<T> {
1630 #[inline]
1631 fn index_mut(&mut self, index: ops::RangeTo<usize>) -> &mut [T] {
1632 IndexMut::index_mut(&mut **self, index)
1633 }
1634 }
1635 #[stable(feature = "rust1", since = "1.0.0")]
1636 impl<T> ops::IndexMut<ops::RangeFrom<usize>> for Vec<T> {
1637 #[inline]
1638 fn index_mut(&mut self, index: ops::RangeFrom<usize>) -> &mut [T] {
1639 IndexMut::index_mut(&mut **self, index)
1640 }
1641 }
1642 #[stable(feature = "rust1", since = "1.0.0")]
1643 impl<T> ops::IndexMut<ops::RangeFull> for Vec<T> {
1644 #[inline]
1645 fn index_mut(&mut self, _index: ops::RangeFull) -> &mut [T] {
1646 self
1647 }
1648 }
1649 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1650 impl<T> ops::IndexMut<ops::RangeInclusive<usize>> for Vec<T> {
1651 #[inline]
1652 fn index_mut(&mut self, index: ops::RangeInclusive<usize>) -> &mut [T] {
1653 IndexMut::index_mut(&mut **self, index)
1654 }
1655 }
1656 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1657 impl<T> ops::IndexMut<ops::RangeToInclusive<usize>> for Vec<T> {
1658 #[inline]
1659 fn index_mut(&mut self, index: ops::RangeToInclusive<usize>) -> &mut [T] {
1660 IndexMut::index_mut(&mut **self, index)
1661 }
1662 }
1663
1664 #[stable(feature = "rust1", since = "1.0.0")]
1665 impl<T> ops::Deref for Vec<T> {
1666 type Target = [T];
1667
1668 fn deref(&self) -> &[T] {
1669 unsafe {
1670 let p = self.buf.ptr();
1671 assume(!p.is_null());
1672 slice::from_raw_parts(p, self.len)
1673 }
1674 }
1675 }
1676
1677 #[stable(feature = "rust1", since = "1.0.0")]
1678 impl<T> ops::DerefMut for Vec<T> {
1679 fn deref_mut(&mut self) -> &mut [T] {
1680 unsafe {
1681 let ptr = self.buf.ptr();
1682 assume(!ptr.is_null());
1683 slice::from_raw_parts_mut(ptr, self.len)
1684 }
1685 }
1686 }
1687
1688 #[stable(feature = "rust1", since = "1.0.0")]
1689 impl<T> FromIterator<T> for Vec<T> {
1690 #[inline]
1691 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
1692 <Self as SpecExtend<T, I::IntoIter>>::from_iter(iter.into_iter())
1693 }
1694 }
1695
1696 #[stable(feature = "rust1", since = "1.0.0")]
1697 impl<T> IntoIterator for Vec<T> {
1698 type Item = T;
1699 type IntoIter = IntoIter<T>;
1700
1701 /// Creates a consuming iterator, that is, one that moves each value out of
1702 /// the vector (from start to end). The vector cannot be used after calling
1703 /// this.
1704 ///
1705 /// # Examples
1706 ///
1707 /// ```
1708 /// let v = vec!["a".to_string(), "b".to_string()];
1709 /// for s in v.into_iter() {
1710 /// // s has type String, not &String
1711 /// println!("{}", s);
1712 /// }
1713 /// ```
1714 #[inline]
1715 fn into_iter(mut self) -> IntoIter<T> {
1716 unsafe {
1717 let begin = self.as_mut_ptr();
1718 assume(!begin.is_null());
1719 let end = if mem::size_of::<T>() == 0 {
1720 arith_offset(begin as *const i8, self.len() as isize) as *const T
1721 } else {
1722 begin.offset(self.len() as isize) as *const T
1723 };
1724 let cap = self.buf.cap();
1725 mem::forget(self);
1726 IntoIter {
1727 buf: Shared::new_unchecked(begin),
1728 cap,
1729 ptr: begin,
1730 end,
1731 }
1732 }
1733 }
1734 }
1735
1736 #[stable(feature = "rust1", since = "1.0.0")]
1737 impl<'a, T> IntoIterator for &'a Vec<T> {
1738 type Item = &'a T;
1739 type IntoIter = slice::Iter<'a, T>;
1740
1741 fn into_iter(self) -> slice::Iter<'a, T> {
1742 self.iter()
1743 }
1744 }
1745
1746 #[stable(feature = "rust1", since = "1.0.0")]
1747 impl<'a, T> IntoIterator for &'a mut Vec<T> {
1748 type Item = &'a mut T;
1749 type IntoIter = slice::IterMut<'a, T>;
1750
1751 fn into_iter(self) -> slice::IterMut<'a, T> {
1752 self.iter_mut()
1753 }
1754 }
1755
1756 #[stable(feature = "rust1", since = "1.0.0")]
1757 impl<T> Extend<T> for Vec<T> {
1758 #[inline]
1759 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
1760 <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
1761 }
1762 }
1763
1764 // Specialization trait used for Vec::from_iter and Vec::extend
1765 trait SpecExtend<T, I> {
1766 fn from_iter(iter: I) -> Self;
1767 fn spec_extend(&mut self, iter: I);
1768 }
1769
1770 impl<T, I> SpecExtend<T, I> for Vec<T>
1771 where I: Iterator<Item=T>,
1772 {
1773 default fn from_iter(mut iterator: I) -> Self {
1774 // Unroll the first iteration, as the vector is going to be
1775 // expanded on this iteration in every case when the iterable is not
1776 // empty, but the loop in extend_desugared() is not going to see the
1777 // vector being full in the few subsequent loop iterations.
1778 // So we get better branch prediction.
1779 let mut vector = match iterator.next() {
1780 None => return Vec::new(),
1781 Some(element) => {
1782 let (lower, _) = iterator.size_hint();
1783 let mut vector = Vec::with_capacity(lower.saturating_add(1));
1784 unsafe {
1785 ptr::write(vector.get_unchecked_mut(0), element);
1786 vector.set_len(1);
1787 }
1788 vector
1789 }
1790 };
1791 <Vec<T> as SpecExtend<T, I>>::spec_extend(&mut vector, iterator);
1792 vector
1793 }
1794
1795 default fn spec_extend(&mut self, iter: I) {
1796 self.extend_desugared(iter)
1797 }
1798 }
1799
1800 impl<T, I> SpecExtend<T, I> for Vec<T>
1801 where I: TrustedLen<Item=T>,
1802 {
1803 default fn from_iter(iterator: I) -> Self {
1804 let mut vector = Vec::new();
1805 vector.spec_extend(iterator);
1806 vector
1807 }
1808
1809 default fn spec_extend(&mut self, iterator: I) {
1810 // This is the case for a TrustedLen iterator.
1811 let (low, high) = iterator.size_hint();
1812 if let Some(high_value) = high {
1813 debug_assert_eq!(low, high_value,
1814 "TrustedLen iterator's size hint is not exact: {:?}",
1815 (low, high));
1816 }
1817 if let Some(additional) = high {
1818 self.reserve(additional);
1819 unsafe {
1820 let mut ptr = self.as_mut_ptr().offset(self.len() as isize);
1821 let mut local_len = SetLenOnDrop::new(&mut self.len);
1822 for element in iterator {
1823 ptr::write(ptr, element);
1824 ptr = ptr.offset(1);
1825 // NB can't overflow since we would have had to alloc the address space
1826 local_len.increment_len(1);
1827 }
1828 }
1829 } else {
1830 self.extend_desugared(iterator)
1831 }
1832 }
1833 }
1834
1835 impl<T> SpecExtend<T, IntoIter<T>> for Vec<T> {
1836 fn from_iter(iterator: IntoIter<T>) -> Self {
1837 // A common case is passing a vector into a function which immediately
1838 // re-collects into a vector. We can short circuit this if the IntoIter
1839 // has not been advanced at all.
1840 if iterator.buf.as_ptr() as *const _ == iterator.ptr {
1841 unsafe {
1842 let vec = Vec::from_raw_parts(iterator.buf.as_ptr(),
1843 iterator.len(),
1844 iterator.cap);
1845 mem::forget(iterator);
1846 vec
1847 }
1848 } else {
1849 let mut vector = Vec::new();
1850 vector.spec_extend(iterator);
1851 vector
1852 }
1853 }
1854
1855 fn spec_extend(&mut self, mut iterator: IntoIter<T>) {
1856 unsafe {
1857 self.append_elements(iterator.as_slice() as _);
1858 }
1859 iterator.ptr = iterator.end;
1860 }
1861 }
1862
1863 impl<'a, T: 'a, I> SpecExtend<&'a T, I> for Vec<T>
1864 where I: Iterator<Item=&'a T>,
1865 T: Clone,
1866 {
1867 default fn from_iter(iterator: I) -> Self {
1868 SpecExtend::from_iter(iterator.cloned())
1869 }
1870
1871 default fn spec_extend(&mut self, iterator: I) {
1872 self.spec_extend(iterator.cloned())
1873 }
1874 }
1875
1876 impl<'a, T: 'a> SpecExtend<&'a T, slice::Iter<'a, T>> for Vec<T>
1877 where T: Copy,
1878 {
1879 fn spec_extend(&mut self, iterator: slice::Iter<'a, T>) {
1880 let slice = iterator.as_slice();
1881 self.reserve(slice.len());
1882 unsafe {
1883 let len = self.len();
1884 self.set_len(len + slice.len());
1885 self.get_unchecked_mut(len..).copy_from_slice(slice);
1886 }
1887 }
1888 }
1889
1890 impl<T> Vec<T> {
1891 fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
1892 // This is the case for a general iterator.
1893 //
1894 // This function should be the moral equivalent of:
1895 //
1896 // for item in iterator {
1897 // self.push(item);
1898 // }
1899 while let Some(element) = iterator.next() {
1900 let len = self.len();
1901 if len == self.capacity() {
1902 let (lower, _) = iterator.size_hint();
1903 self.reserve(lower.saturating_add(1));
1904 }
1905 unsafe {
1906 ptr::write(self.get_unchecked_mut(len), element);
1907 // NB can't overflow since we would have had to alloc the address space
1908 self.set_len(len + 1);
1909 }
1910 }
1911 }
1912
1913 /// Creates a splicing iterator that replaces the specified range in the vector
1914 /// with the given `replace_with` iterator and yields the removed items.
1915 /// `replace_with` does not need to be the same length as `range`.
1916 ///
1917 /// Note 1: The element range is removed even if the iterator is not
1918 /// consumed until the end.
1919 ///
1920 /// Note 2: It is unspecified how many elements are removed from the vector,
1921 /// if the `Splice` value is leaked.
1922 ///
1923 /// Note 3: The input iterator `replace_with` is only consumed
1924 /// when the `Splice` value is dropped.
1925 ///
1926 /// Note 4: This is optimal if:
1927 ///
1928 /// * The tail (elements in the vector after `range`) is empty,
1929 /// * or `replace_with` yields fewer elements than `range`’s length
1930 /// * or the lower bound of its `size_hint()` is exact.
1931 ///
1932 /// Otherwise, a temporary vector is allocated and the tail is moved twice.
1933 ///
1934 /// # Panics
1935 ///
1936 /// Panics if the starting point is greater than the end point or if
1937 /// the end point is greater than the length of the vector.
1938 ///
1939 /// # Examples
1940 ///
1941 /// ```
1942 /// let mut v = vec![1, 2, 3];
1943 /// let new = [7, 8];
1944 /// let u: Vec<_> = v.splice(..2, new.iter().cloned()).collect();
1945 /// assert_eq!(v, &[7, 8, 3]);
1946 /// assert_eq!(u, &[1, 2]);
1947 /// ```
1948 #[inline]
1949 #[stable(feature = "vec_splice", since = "1.21.0")]
1950 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<I::IntoIter>
1951 where R: RangeArgument<usize>, I: IntoIterator<Item=T>
1952 {
1953 Splice {
1954 drain: self.drain(range),
1955 replace_with: replace_with.into_iter(),
1956 }
1957 }
1958
1959 /// Creates an iterator which uses a closure to determine if an element should be removed.
1960 ///
1961 /// If the closure returns true, then the element is removed and yielded.
1962 /// If the closure returns false, it will try again, and call the closure
1963 /// on the next element, seeing if it passes the test.
1964 ///
1965 /// Using this method is equivalent to the following code:
1966 ///
1967 /// ```
1968 /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
1969 /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
1970 /// let mut i = 0;
1971 /// while i != vec.len() {
1972 /// if some_predicate(&mut vec[i]) {
1973 /// let val = vec.remove(i);
1974 /// // your code here
1975 /// } else {
1976 /// i += 1;
1977 /// }
1978 /// }
1979 ///
1980 /// # assert_eq!(vec, vec![1, 4, 5]);
1981 /// ```
1982 ///
1983 /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
1984 /// because it can backshift the elements of the array in bulk.
1985 ///
1986 /// Note that `drain_filter` also lets you mutate every element in the filter closure,
1987 /// regardless of whether you choose to keep or remove it.
1988 ///
1989 ///
1990 /// # Examples
1991 ///
1992 /// Splitting an array into evens and odds, reusing the original allocation:
1993 ///
1994 /// ```
1995 /// #![feature(drain_filter)]
1996 /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
1997 ///
1998 /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
1999 /// let odds = numbers;
2000 ///
2001 /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
2002 /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
2003 /// ```
2004 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
2005 pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<T, F>
2006 where F: FnMut(&mut T) -> bool,
2007 {
2008 let old_len = self.len();
2009
2010 // Guard against us getting leaked (leak amplification)
2011 unsafe { self.set_len(0); }
2012
2013 DrainFilter {
2014 vec: self,
2015 idx: 0,
2016 del: 0,
2017 old_len,
2018 pred: filter,
2019 }
2020 }
2021 }
2022
2023 /// Extend implementation that copies elements out of references before pushing them onto the Vec.
2024 ///
2025 /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
2026 /// append the entire slice at once.
2027 ///
2028 /// [`copy_from_slice`]: ../../std/primitive.slice.html#method.copy_from_slice
2029 #[stable(feature = "extend_ref", since = "1.2.0")]
2030 impl<'a, T: 'a + Copy> Extend<&'a T> for Vec<T> {
2031 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
2032 self.spec_extend(iter.into_iter())
2033 }
2034 }
2035
2036 macro_rules! __impl_slice_eq1 {
2037 ($Lhs: ty, $Rhs: ty) => {
2038 __impl_slice_eq1! { $Lhs, $Rhs, Sized }
2039 };
2040 ($Lhs: ty, $Rhs: ty, $Bound: ident) => {
2041 #[stable(feature = "rust1", since = "1.0.0")]
2042 impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq<B> {
2043 #[inline]
2044 fn eq(&self, other: &$Rhs) -> bool { self[..] == other[..] }
2045 #[inline]
2046 fn ne(&self, other: &$Rhs) -> bool { self[..] != other[..] }
2047 }
2048 }
2049 }
2050
2051 __impl_slice_eq1! { Vec<A>, Vec<B> }
2052 __impl_slice_eq1! { Vec<A>, &'b [B] }
2053 __impl_slice_eq1! { Vec<A>, &'b mut [B] }
2054 __impl_slice_eq1! { Cow<'a, [A]>, &'b [B], Clone }
2055 __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B], Clone }
2056 __impl_slice_eq1! { Cow<'a, [A]>, Vec<B>, Clone }
2057
2058 macro_rules! array_impls {
2059 ($($N: expr)+) => {
2060 $(
2061 // NOTE: some less important impls are omitted to reduce code bloat
2062 __impl_slice_eq1! { Vec<A>, [B; $N] }
2063 __impl_slice_eq1! { Vec<A>, &'b [B; $N] }
2064 // __impl_slice_eq1! { Vec<A>, &'b mut [B; $N] }
2065 // __impl_slice_eq1! { Cow<'a, [A]>, [B; $N], Clone }
2066 // __impl_slice_eq1! { Cow<'a, [A]>, &'b [B; $N], Clone }
2067 // __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B; $N], Clone }
2068 )+
2069 }
2070 }
2071
2072 array_impls! {
2073 0 1 2 3 4 5 6 7 8 9
2074 10 11 12 13 14 15 16 17 18 19
2075 20 21 22 23 24 25 26 27 28 29
2076 30 31 32
2077 }
2078
2079 /// Implements comparison of vectors, lexicographically.
2080 #[stable(feature = "rust1", since = "1.0.0")]
2081 impl<T: PartialOrd> PartialOrd for Vec<T> {
2082 #[inline]
2083 fn partial_cmp(&self, other: &Vec<T>) -> Option<Ordering> {
2084 PartialOrd::partial_cmp(&**self, &**other)
2085 }
2086 }
2087
2088 #[stable(feature = "rust1", since = "1.0.0")]
2089 impl<T: Eq> Eq for Vec<T> {}
2090
2091 /// Implements ordering of vectors, lexicographically.
2092 #[stable(feature = "rust1", since = "1.0.0")]
2093 impl<T: Ord> Ord for Vec<T> {
2094 #[inline]
2095 fn cmp(&self, other: &Vec<T>) -> Ordering {
2096 Ord::cmp(&**self, &**other)
2097 }
2098 }
2099
2100 #[stable(feature = "rust1", since = "1.0.0")]
2101 unsafe impl<#[may_dangle] T> Drop for Vec<T> {
2102 fn drop(&mut self) {
2103 unsafe {
2104 // use drop for [T]
2105 ptr::drop_in_place(&mut self[..]);
2106 }
2107 // RawVec handles deallocation
2108 }
2109 }
2110
2111 #[stable(feature = "rust1", since = "1.0.0")]
2112 impl<T> Default for Vec<T> {
2113 /// Creates an empty `Vec<T>`.
2114 fn default() -> Vec<T> {
2115 Vec::new()
2116 }
2117 }
2118
2119 #[stable(feature = "rust1", since = "1.0.0")]
2120 impl<T: fmt::Debug> fmt::Debug for Vec<T> {
2121 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
2122 fmt::Debug::fmt(&**self, f)
2123 }
2124 }
2125
2126 #[stable(feature = "rust1", since = "1.0.0")]
2127 impl<T> AsRef<Vec<T>> for Vec<T> {
2128 fn as_ref(&self) -> &Vec<T> {
2129 self
2130 }
2131 }
2132
2133 #[stable(feature = "vec_as_mut", since = "1.5.0")]
2134 impl<T> AsMut<Vec<T>> for Vec<T> {
2135 fn as_mut(&mut self) -> &mut Vec<T> {
2136 self
2137 }
2138 }
2139
2140 #[stable(feature = "rust1", since = "1.0.0")]
2141 impl<T> AsRef<[T]> for Vec<T> {
2142 fn as_ref(&self) -> &[T] {
2143 self
2144 }
2145 }
2146
2147 #[stable(feature = "vec_as_mut", since = "1.5.0")]
2148 impl<T> AsMut<[T]> for Vec<T> {
2149 fn as_mut(&mut self) -> &mut [T] {
2150 self
2151 }
2152 }
2153
2154 #[stable(feature = "rust1", since = "1.0.0")]
2155 impl<'a, T: Clone> From<&'a [T]> for Vec<T> {
2156 #[cfg(not(test))]
2157 fn from(s: &'a [T]) -> Vec<T> {
2158 s.to_vec()
2159 }
2160 #[cfg(test)]
2161 fn from(s: &'a [T]) -> Vec<T> {
2162 ::slice::to_vec(s)
2163 }
2164 }
2165
2166 #[stable(feature = "vec_from_mut", since = "1.19.0")]
2167 impl<'a, T: Clone> From<&'a mut [T]> for Vec<T> {
2168 #[cfg(not(test))]
2169 fn from(s: &'a mut [T]) -> Vec<T> {
2170 s.to_vec()
2171 }
2172 #[cfg(test)]
2173 fn from(s: &'a mut [T]) -> Vec<T> {
2174 ::slice::to_vec(s)
2175 }
2176 }
2177
2178 #[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
2179 impl<'a, T> From<Cow<'a, [T]>> for Vec<T> where [T]: ToOwned<Owned=Vec<T>> {
2180 fn from(s: Cow<'a, [T]>) -> Vec<T> {
2181 s.into_owned()
2182 }
2183 }
2184
2185 // note: test pulls in libstd, which causes errors here
2186 #[cfg(not(test))]
2187 #[stable(feature = "vec_from_box", since = "1.18.0")]
2188 impl<T> From<Box<[T]>> for Vec<T> {
2189 fn from(s: Box<[T]>) -> Vec<T> {
2190 s.into_vec()
2191 }
2192 }
2193
2194 // note: test pulls in libstd, which causes errors here
2195 #[cfg(not(test))]
2196 #[stable(feature = "box_from_vec", since = "1.20.0")]
2197 impl<T> From<Vec<T>> for Box<[T]> {
2198 fn from(v: Vec<T>) -> Box<[T]> {
2199 v.into_boxed_slice()
2200 }
2201 }
2202
2203 #[stable(feature = "rust1", since = "1.0.0")]
2204 impl<'a> From<&'a str> for Vec<u8> {
2205 fn from(s: &'a str) -> Vec<u8> {
2206 From::from(s.as_bytes())
2207 }
2208 }
2209
2210 ////////////////////////////////////////////////////////////////////////////////
2211 // Clone-on-write
2212 ////////////////////////////////////////////////////////////////////////////////
2213
2214 #[stable(feature = "cow_from_vec", since = "1.8.0")]
2215 impl<'a, T: Clone> From<&'a [T]> for Cow<'a, [T]> {
2216 fn from(s: &'a [T]) -> Cow<'a, [T]> {
2217 Cow::Borrowed(s)
2218 }
2219 }
2220
2221 #[stable(feature = "cow_from_vec", since = "1.8.0")]
2222 impl<'a, T: Clone> From<Vec<T>> for Cow<'a, [T]> {
2223 fn from(v: Vec<T>) -> Cow<'a, [T]> {
2224 Cow::Owned(v)
2225 }
2226 }
2227
2228 #[stable(feature = "rust1", since = "1.0.0")]
2229 impl<'a, T> FromIterator<T> for Cow<'a, [T]> where T: Clone {
2230 fn from_iter<I: IntoIterator<Item = T>>(it: I) -> Cow<'a, [T]> {
2231 Cow::Owned(FromIterator::from_iter(it))
2232 }
2233 }
2234
2235 ////////////////////////////////////////////////////////////////////////////////
2236 // Iterators
2237 ////////////////////////////////////////////////////////////////////////////////
2238
2239 /// An iterator that moves out of a vector.
2240 ///
2241 /// This `struct` is created by the `into_iter` method on [`Vec`][`Vec`] (provided
2242 /// by the [`IntoIterator`] trait).
2243 ///
2244 /// [`Vec`]: struct.Vec.html
2245 /// [`IntoIterator`]: ../../std/iter/trait.IntoIterator.html
2246 #[stable(feature = "rust1", since = "1.0.0")]
2247 pub struct IntoIter<T> {
2248 buf: Shared<T>,
2249 cap: usize,
2250 ptr: *const T,
2251 end: *const T,
2252 }
2253
2254 #[stable(feature = "vec_intoiter_debug", since = "1.13.0")]
2255 impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
2256 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
2257 f.debug_tuple("IntoIter")
2258 .field(&self.as_slice())
2259 .finish()
2260 }
2261 }
2262
2263 impl<T> IntoIter<T> {
2264 /// Returns the remaining items of this iterator as a slice.
2265 ///
2266 /// # Examples
2267 ///
2268 /// ```
2269 /// let vec = vec!['a', 'b', 'c'];
2270 /// let mut into_iter = vec.into_iter();
2271 /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
2272 /// let _ = into_iter.next().unwrap();
2273 /// assert_eq!(into_iter.as_slice(), &['b', 'c']);
2274 /// ```
2275 #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
2276 pub fn as_slice(&self) -> &[T] {
2277 unsafe {
2278 slice::from_raw_parts(self.ptr, self.len())
2279 }
2280 }
2281
2282 /// Returns the remaining items of this iterator as a mutable slice.
2283 ///
2284 /// # Examples
2285 ///
2286 /// ```
2287 /// let vec = vec!['a', 'b', 'c'];
2288 /// let mut into_iter = vec.into_iter();
2289 /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
2290 /// into_iter.as_mut_slice()[2] = 'z';
2291 /// assert_eq!(into_iter.next().unwrap(), 'a');
2292 /// assert_eq!(into_iter.next().unwrap(), 'b');
2293 /// assert_eq!(into_iter.next().unwrap(), 'z');
2294 /// ```
2295 #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
2296 pub fn as_mut_slice(&mut self) -> &mut [T] {
2297 unsafe {
2298 slice::from_raw_parts_mut(self.ptr as *mut T, self.len())
2299 }
2300 }
2301 }
2302
2303 #[stable(feature = "rust1", since = "1.0.0")]
2304 unsafe impl<T: Send> Send for IntoIter<T> {}
2305 #[stable(feature = "rust1", since = "1.0.0")]
2306 unsafe impl<T: Sync> Sync for IntoIter<T> {}
2307
2308 #[stable(feature = "rust1", since = "1.0.0")]
2309 impl<T> Iterator for IntoIter<T> {
2310 type Item = T;
2311
2312 #[inline]
2313 fn next(&mut self) -> Option<T> {
2314 unsafe {
2315 if self.ptr as *const _ == self.end {
2316 None
2317 } else {
2318 if mem::size_of::<T>() == 0 {
2319 // purposefully don't use 'ptr.offset' because for
2320 // vectors with 0-size elements this would return the
2321 // same pointer.
2322 self.ptr = arith_offset(self.ptr as *const i8, 1) as *mut T;
2323
2324 // Use a non-null pointer value
2325 // (self.ptr might be null because of wrapping)
2326 Some(ptr::read(1 as *mut T))
2327 } else {
2328 let old = self.ptr;
2329 self.ptr = self.ptr.offset(1);
2330
2331 Some(ptr::read(old))
2332 }
2333 }
2334 }
2335 }
2336
2337 #[inline]
2338 fn size_hint(&self) -> (usize, Option<usize>) {
2339 let exact = match self.ptr.offset_to(self.end) {
2340 Some(x) => x as usize,
2341 None => (self.end as usize).wrapping_sub(self.ptr as usize),
2342 };
2343 (exact, Some(exact))
2344 }
2345
2346 #[inline]
2347 fn count(self) -> usize {
2348 self.len()
2349 }
2350 }
2351
2352 #[stable(feature = "rust1", since = "1.0.0")]
2353 impl<T> DoubleEndedIterator for IntoIter<T> {
2354 #[inline]
2355 fn next_back(&mut self) -> Option<T> {
2356 unsafe {
2357 if self.end == self.ptr {
2358 None
2359 } else {
2360 if mem::size_of::<T>() == 0 {
2361 // See above for why 'ptr.offset' isn't used
2362 self.end = arith_offset(self.end as *const i8, -1) as *mut T;
2363
2364 // Use a non-null pointer value
2365 // (self.end might be null because of wrapping)
2366 Some(ptr::read(1 as *mut T))
2367 } else {
2368 self.end = self.end.offset(-1);
2369
2370 Some(ptr::read(self.end))
2371 }
2372 }
2373 }
2374 }
2375 }
2376
2377 #[stable(feature = "rust1", since = "1.0.0")]
2378 impl<T> ExactSizeIterator for IntoIter<T> {
2379 fn is_empty(&self) -> bool {
2380 self.ptr == self.end
2381 }
2382 }
2383
2384 #[unstable(feature = "fused", issue = "35602")]
2385 impl<T> FusedIterator for IntoIter<T> {}
2386
2387 #[unstable(feature = "trusted_len", issue = "37572")]
2388 unsafe impl<T> TrustedLen for IntoIter<T> {}
2389
2390 #[stable(feature = "vec_into_iter_clone", since = "1.8.0")]
2391 impl<T: Clone> Clone for IntoIter<T> {
2392 fn clone(&self) -> IntoIter<T> {
2393 self.as_slice().to_owned().into_iter()
2394 }
2395 }
2396
2397 #[stable(feature = "rust1", since = "1.0.0")]
2398 unsafe impl<#[may_dangle] T> Drop for IntoIter<T> {
2399 fn drop(&mut self) {
2400 // destroy the remaining elements
2401 for _x in self.by_ref() {}
2402
2403 // RawVec handles deallocation
2404 let _ = unsafe { RawVec::from_raw_parts(self.buf.as_ptr(), self.cap) };
2405 }
2406 }
2407
2408 /// A draining iterator for `Vec<T>`.
2409 ///
2410 /// This `struct` is created by the [`drain`] method on [`Vec`].
2411 ///
2412 /// [`drain`]: struct.Vec.html#method.drain
2413 /// [`Vec`]: struct.Vec.html
2414 #[stable(feature = "drain", since = "1.6.0")]
2415 pub struct Drain<'a, T: 'a> {
2416 /// Index of tail to preserve
2417 tail_start: usize,
2418 /// Length of tail
2419 tail_len: usize,
2420 /// Current remaining range to remove
2421 iter: slice::Iter<'a, T>,
2422 vec: Shared<Vec<T>>,
2423 }
2424
2425 #[stable(feature = "collection_debug", since = "1.17.0")]
2426 impl<'a, T: 'a + fmt::Debug> fmt::Debug for Drain<'a, T> {
2427 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
2428 f.debug_tuple("Drain")
2429 .field(&self.iter.as_slice())
2430 .finish()
2431 }
2432 }
2433
2434 #[stable(feature = "drain", since = "1.6.0")]
2435 unsafe impl<'a, T: Sync> Sync for Drain<'a, T> {}
2436 #[stable(feature = "drain", since = "1.6.0")]
2437 unsafe impl<'a, T: Send> Send for Drain<'a, T> {}
2438
2439 #[stable(feature = "drain", since = "1.6.0")]
2440 impl<'a, T> Iterator for Drain<'a, T> {
2441 type Item = T;
2442
2443 #[inline]
2444 fn next(&mut self) -> Option<T> {
2445 self.iter.next().map(|elt| unsafe { ptr::read(elt as *const _) })
2446 }
2447
2448 fn size_hint(&self) -> (usize, Option<usize>) {
2449 self.iter.size_hint()
2450 }
2451 }
2452
2453 #[stable(feature = "drain", since = "1.6.0")]
2454 impl<'a, T> DoubleEndedIterator for Drain<'a, T> {
2455 #[inline]
2456 fn next_back(&mut self) -> Option<T> {
2457 self.iter.next_back().map(|elt| unsafe { ptr::read(elt as *const _) })
2458 }
2459 }
2460
2461 #[stable(feature = "drain", since = "1.6.0")]
2462 impl<'a, T> Drop for Drain<'a, T> {
2463 fn drop(&mut self) {
2464 // exhaust self first
2465 while let Some(_) = self.next() {}
2466
2467 if self.tail_len > 0 {
2468 unsafe {
2469 let source_vec = self.vec.as_mut();
2470 // memmove back untouched tail, update to new length
2471 let start = source_vec.len();
2472 let tail = self.tail_start;
2473 let src = source_vec.as_ptr().offset(tail as isize);
2474 let dst = source_vec.as_mut_ptr().offset(start as isize);
2475 ptr::copy(src, dst, self.tail_len);
2476 source_vec.set_len(start + self.tail_len);
2477 }
2478 }
2479 }
2480 }
2481
2482
2483 #[stable(feature = "drain", since = "1.6.0")]
2484 impl<'a, T> ExactSizeIterator for Drain<'a, T> {
2485 fn is_empty(&self) -> bool {
2486 self.iter.is_empty()
2487 }
2488 }
2489
2490 #[unstable(feature = "fused", issue = "35602")]
2491 impl<'a, T> FusedIterator for Drain<'a, T> {}
2492
2493 /// A place for insertion at the back of a `Vec`.
2494 ///
2495 /// See [`Vec::place_back`](struct.Vec.html#method.place_back) for details.
2496 #[must_use = "places do nothing unless written to with `<-` syntax"]
2497 #[unstable(feature = "collection_placement",
2498 reason = "struct name and placement protocol are subject to change",
2499 issue = "30172")]
2500 #[derive(Debug)]
2501 pub struct PlaceBack<'a, T: 'a> {
2502 vec: &'a mut Vec<T>,
2503 }
2504
2505 #[unstable(feature = "collection_placement",
2506 reason = "placement protocol is subject to change",
2507 issue = "30172")]
2508 impl<'a, T> Placer<T> for PlaceBack<'a, T> {
2509 type Place = PlaceBack<'a, T>;
2510
2511 fn make_place(self) -> Self {
2512 // This will panic or abort if we would allocate > isize::MAX bytes
2513 // or if the length increment would overflow for zero-sized types.
2514 if self.vec.len == self.vec.buf.cap() {
2515 self.vec.buf.double();
2516 }
2517 self
2518 }
2519 }
2520
2521 #[unstable(feature = "collection_placement",
2522 reason = "placement protocol is subject to change",
2523 issue = "30172")]
2524 impl<'a, T> Place<T> for PlaceBack<'a, T> {
2525 fn pointer(&mut self) -> *mut T {
2526 unsafe { self.vec.as_mut_ptr().offset(self.vec.len as isize) }
2527 }
2528 }
2529
2530 #[unstable(feature = "collection_placement",
2531 reason = "placement protocol is subject to change",
2532 issue = "30172")]
2533 impl<'a, T> InPlace<T> for PlaceBack<'a, T> {
2534 type Owner = &'a mut T;
2535
2536 unsafe fn finalize(mut self) -> &'a mut T {
2537 let ptr = self.pointer();
2538 self.vec.len += 1;
2539 &mut *ptr
2540 }
2541 }
2542
2543
2544 /// A splicing iterator for `Vec`.
2545 ///
2546 /// This struct is created by the [`splice()`] method on [`Vec`]. See its
2547 /// documentation for more.
2548 ///
2549 /// [`splice()`]: struct.Vec.html#method.splice
2550 /// [`Vec`]: struct.Vec.html
2551 #[derive(Debug)]
2552 #[stable(feature = "vec_splice", since = "1.21.0")]
2553 pub struct Splice<'a, I: Iterator + 'a> {
2554 drain: Drain<'a, I::Item>,
2555 replace_with: I,
2556 }
2557
2558 #[stable(feature = "vec_splice", since = "1.21.0")]
2559 impl<'a, I: Iterator> Iterator for Splice<'a, I> {
2560 type Item = I::Item;
2561
2562 fn next(&mut self) -> Option<Self::Item> {
2563 self.drain.next()
2564 }
2565
2566 fn size_hint(&self) -> (usize, Option<usize>) {
2567 self.drain.size_hint()
2568 }
2569 }
2570
2571 #[stable(feature = "vec_splice", since = "1.21.0")]
2572 impl<'a, I: Iterator> DoubleEndedIterator for Splice<'a, I> {
2573 fn next_back(&mut self) -> Option<Self::Item> {
2574 self.drain.next_back()
2575 }
2576 }
2577
2578 #[stable(feature = "vec_splice", since = "1.21.0")]
2579 impl<'a, I: Iterator> ExactSizeIterator for Splice<'a, I> {}
2580
2581
2582 #[stable(feature = "vec_splice", since = "1.21.0")]
2583 impl<'a, I: Iterator> Drop for Splice<'a, I> {
2584 fn drop(&mut self) {
2585 // exhaust drain first
2586 while let Some(_) = self.drain.next() {}
2587
2588
2589 unsafe {
2590 if self.drain.tail_len == 0 {
2591 self.drain.vec.as_mut().extend(self.replace_with.by_ref());
2592 return
2593 }
2594
2595 // First fill the range left by drain().
2596 if !self.drain.fill(&mut self.replace_with) {
2597 return
2598 }
2599
2600 // There may be more elements. Use the lower bound as an estimate.
2601 // FIXME: Is the upper bound a better guess? Or something else?
2602 let (lower_bound, _upper_bound) = self.replace_with.size_hint();
2603 if lower_bound > 0 {
2604 self.drain.move_tail(lower_bound);
2605 if !self.drain.fill(&mut self.replace_with) {
2606 return
2607 }
2608 }
2609
2610 // Collect any remaining elements.
2611 // This is a zero-length vector which does not allocate if `lower_bound` was exact.
2612 let mut collected = self.replace_with.by_ref().collect::<Vec<I::Item>>().into_iter();
2613 // Now we have an exact count.
2614 if collected.len() > 0 {
2615 self.drain.move_tail(collected.len());
2616 let filled = self.drain.fill(&mut collected);
2617 debug_assert!(filled);
2618 debug_assert_eq!(collected.len(), 0);
2619 }
2620 }
2621 // Let `Drain::drop` move the tail back if necessary and restore `vec.len`.
2622 }
2623 }
2624
2625 /// Private helper methods for `Splice::drop`
2626 impl<'a, T> Drain<'a, T> {
2627 /// The range from `self.vec.len` to `self.tail_start` contains elements
2628 /// that have been moved out.
2629 /// Fill that range as much as possible with new elements from the `replace_with` iterator.
2630 /// Return whether we filled the entire range. (`replace_with.next()` didn’t return `None`.)
2631 unsafe fn fill<I: Iterator<Item=T>>(&mut self, replace_with: &mut I) -> bool {
2632 let vec = self.vec.as_mut();
2633 let range_start = vec.len;
2634 let range_end = self.tail_start;
2635 let range_slice = slice::from_raw_parts_mut(
2636 vec.as_mut_ptr().offset(range_start as isize),
2637 range_end - range_start);
2638
2639 for place in range_slice {
2640 if let Some(new_item) = replace_with.next() {
2641 ptr::write(place, new_item);
2642 vec.len += 1;
2643 } else {
2644 return false
2645 }
2646 }
2647 true
2648 }
2649
2650 /// Make room for inserting more elements before the tail.
2651 unsafe fn move_tail(&mut self, extra_capacity: usize) {
2652 let vec = self.vec.as_mut();
2653 let used_capacity = self.tail_start + self.tail_len;
2654 vec.buf.reserve(used_capacity, extra_capacity);
2655
2656 let new_tail_start = self.tail_start + extra_capacity;
2657 let src = vec.as_ptr().offset(self.tail_start as isize);
2658 let dst = vec.as_mut_ptr().offset(new_tail_start as isize);
2659 ptr::copy(src, dst, self.tail_len);
2660 self.tail_start = new_tail_start;
2661 }
2662 }
2663
2664 /// An iterator produced by calling `drain_filter` on Vec.
2665 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
2666 #[derive(Debug)]
2667 pub struct DrainFilter<'a, T: 'a, F>
2668 where F: FnMut(&mut T) -> bool,
2669 {
2670 vec: &'a mut Vec<T>,
2671 idx: usize,
2672 del: usize,
2673 old_len: usize,
2674 pred: F,
2675 }
2676
2677 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
2678 impl<'a, T, F> Iterator for DrainFilter<'a, T, F>
2679 where F: FnMut(&mut T) -> bool,
2680 {
2681 type Item = T;
2682
2683 fn next(&mut self) -> Option<T> {
2684 unsafe {
2685 while self.idx != self.old_len {
2686 let i = self.idx;
2687 self.idx += 1;
2688 let v = slice::from_raw_parts_mut(self.vec.as_mut_ptr(), self.old_len);
2689 if (self.pred)(&mut v[i]) {
2690 self.del += 1;
2691 return Some(ptr::read(&v[i]));
2692 } else if self.del > 0 {
2693 let del = self.del;
2694 let src: *const T = &v[i];
2695 let dst: *mut T = &mut v[i - del];
2696 // This is safe because self.vec has length 0
2697 // thus its elements will not have Drop::drop
2698 // called on them in the event of a panic.
2699 ptr::copy_nonoverlapping(src, dst, 1);
2700 }
2701 }
2702 None
2703 }
2704 }
2705
2706 fn size_hint(&self) -> (usize, Option<usize>) {
2707 (0, Some(self.old_len - self.idx))
2708 }
2709 }
2710
2711 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
2712 impl<'a, T, F> Drop for DrainFilter<'a, T, F>
2713 where F: FnMut(&mut T) -> bool,
2714 {
2715 fn drop(&mut self) {
2716 for _ in self.by_ref() { }
2717
2718 unsafe {
2719 self.vec.set_len(self.old_len - self.del);
2720 }
2721 }
2722 }