]> git.proxmox.com Git - rustc.git/blob - src/libcollections/binary_heap.rs
New upstream version 1.17.0+dfsg1
[rustc.git] / src / libcollections / binary_heap.rs
1 // Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! A priority queue implemented with a binary heap.
12 //!
13 //! Insertion and popping the largest element have `O(log n)` time complexity.
14 //! Checking the largest element is `O(1)`. Converting a vector to a binary heap
15 //! can be done in-place, and has `O(n)` complexity. A binary heap can also be
16 //! converted to a sorted vector in-place, allowing it to be used for an `O(n
17 //! log n)` in-place heapsort.
18 //!
19 //! # Examples
20 //!
21 //! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
22 //! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
23 //! It shows how to use `BinaryHeap` with custom types.
24 //!
25 //! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
26 //! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem
27 //! [dir_graph]: http://en.wikipedia.org/wiki/Directed_graph
28 //!
29 //! ```
30 //! use std::cmp::Ordering;
31 //! use std::collections::BinaryHeap;
32 //! use std::usize;
33 //!
34 //! #[derive(Copy, Clone, Eq, PartialEq)]
35 //! struct State {
36 //! cost: usize,
37 //! position: usize,
38 //! }
39 //!
40 //! // The priority queue depends on `Ord`.
41 //! // Explicitly implement the trait so the queue becomes a min-heap
42 //! // instead of a max-heap.
43 //! impl Ord for State {
44 //! fn cmp(&self, other: &State) -> Ordering {
45 //! // Notice that the we flip the ordering here
46 //! other.cost.cmp(&self.cost)
47 //! }
48 //! }
49 //!
50 //! // `PartialOrd` needs to be implemented as well.
51 //! impl PartialOrd for State {
52 //! fn partial_cmp(&self, other: &State) -> Option<Ordering> {
53 //! Some(self.cmp(other))
54 //! }
55 //! }
56 //!
57 //! // Each node is represented as an `usize`, for a shorter implementation.
58 //! struct Edge {
59 //! node: usize,
60 //! cost: usize,
61 //! }
62 //!
63 //! // Dijkstra's shortest path algorithm.
64 //!
65 //! // Start at `start` and use `dist` to track the current shortest distance
66 //! // to each node. This implementation isn't memory-efficient as it may leave duplicate
67 //! // nodes in the queue. It also uses `usize::MAX` as a sentinel value,
68 //! // for a simpler implementation.
69 //! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> {
70 //! // dist[node] = current shortest distance from `start` to `node`
71 //! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
72 //!
73 //! let mut heap = BinaryHeap::new();
74 //!
75 //! // We're at `start`, with a zero cost
76 //! dist[start] = 0;
77 //! heap.push(State { cost: 0, position: start });
78 //!
79 //! // Examine the frontier with lower cost nodes first (min-heap)
80 //! while let Some(State { cost, position }) = heap.pop() {
81 //! // Alternatively we could have continued to find all shortest paths
82 //! if position == goal { return Some(cost); }
83 //!
84 //! // Important as we may have already found a better way
85 //! if cost > dist[position] { continue; }
86 //!
87 //! // For each node we can reach, see if we can find a way with
88 //! // a lower cost going through this node
89 //! for edge in &adj_list[position] {
90 //! let next = State { cost: cost + edge.cost, position: edge.node };
91 //!
92 //! // If so, add it to the frontier and continue
93 //! if next.cost < dist[next.position] {
94 //! heap.push(next);
95 //! // Relaxation, we have now found a better way
96 //! dist[next.position] = next.cost;
97 //! }
98 //! }
99 //! }
100 //!
101 //! // Goal not reachable
102 //! None
103 //! }
104 //!
105 //! fn main() {
106 //! // This is the directed graph we're going to use.
107 //! // The node numbers correspond to the different states,
108 //! // and the edge weights symbolize the cost of moving
109 //! // from one node to another.
110 //! // Note that the edges are one-way.
111 //! //
112 //! // 7
113 //! // +-----------------+
114 //! // | |
115 //! // v 1 2 | 2
116 //! // 0 -----> 1 -----> 3 ---> 4
117 //! // | ^ ^ ^
118 //! // | | 1 | |
119 //! // | | | 3 | 1
120 //! // +------> 2 -------+ |
121 //! // 10 | |
122 //! // +---------------+
123 //! //
124 //! // The graph is represented as an adjacency list where each index,
125 //! // corresponding to a node value, has a list of outgoing edges.
126 //! // Chosen for its efficiency.
127 //! let graph = vec![
128 //! // Node 0
129 //! vec![Edge { node: 2, cost: 10 },
130 //! Edge { node: 1, cost: 1 }],
131 //! // Node 1
132 //! vec![Edge { node: 3, cost: 2 }],
133 //! // Node 2
134 //! vec![Edge { node: 1, cost: 1 },
135 //! Edge { node: 3, cost: 3 },
136 //! Edge { node: 4, cost: 1 }],
137 //! // Node 3
138 //! vec![Edge { node: 0, cost: 7 },
139 //! Edge { node: 4, cost: 2 }],
140 //! // Node 4
141 //! vec![]];
142 //!
143 //! assert_eq!(shortest_path(&graph, 0, 1), Some(1));
144 //! assert_eq!(shortest_path(&graph, 0, 3), Some(3));
145 //! assert_eq!(shortest_path(&graph, 3, 0), Some(7));
146 //! assert_eq!(shortest_path(&graph, 0, 4), Some(5));
147 //! assert_eq!(shortest_path(&graph, 4, 0), None);
148 //! }
149 //! ```
150
151 #![allow(missing_docs)]
152 #![stable(feature = "rust1", since = "1.0.0")]
153
154 use core::ops::{Deref, DerefMut, Place, Placer, InPlace};
155 use core::iter::{FromIterator, FusedIterator};
156 use core::mem::{swap, size_of};
157 use core::ptr;
158 use core::fmt;
159
160 use slice;
161 use vec::{self, Vec};
162
163 use super::SpecExtend;
164
165 /// A priority queue implemented with a binary heap.
166 ///
167 /// This will be a max-heap.
168 ///
169 /// It is a logic error for an item to be modified in such a way that the
170 /// item's ordering relative to any other item, as determined by the `Ord`
171 /// trait, changes while it is in the heap. This is normally only possible
172 /// through `Cell`, `RefCell`, global state, I/O, or unsafe code.
173 ///
174 /// # Examples
175 ///
176 /// ```
177 /// use std::collections::BinaryHeap;
178 ///
179 /// // Type inference lets us omit an explicit type signature (which
180 /// // would be `BinaryHeap<i32>` in this example).
181 /// let mut heap = BinaryHeap::new();
182 ///
183 /// // We can use peek to look at the next item in the heap. In this case,
184 /// // there's no items in there yet so we get None.
185 /// assert_eq!(heap.peek(), None);
186 ///
187 /// // Let's add some scores...
188 /// heap.push(1);
189 /// heap.push(5);
190 /// heap.push(2);
191 ///
192 /// // Now peek shows the most important item in the heap.
193 /// assert_eq!(heap.peek(), Some(&5));
194 ///
195 /// // We can check the length of a heap.
196 /// assert_eq!(heap.len(), 3);
197 ///
198 /// // We can iterate over the items in the heap, although they are returned in
199 /// // a random order.
200 /// for x in &heap {
201 /// println!("{}", x);
202 /// }
203 ///
204 /// // If we instead pop these scores, they should come back in order.
205 /// assert_eq!(heap.pop(), Some(5));
206 /// assert_eq!(heap.pop(), Some(2));
207 /// assert_eq!(heap.pop(), Some(1));
208 /// assert_eq!(heap.pop(), None);
209 ///
210 /// // We can clear the heap of any remaining items.
211 /// heap.clear();
212 ///
213 /// // The heap should now be empty.
214 /// assert!(heap.is_empty())
215 /// ```
216 #[stable(feature = "rust1", since = "1.0.0")]
217 pub struct BinaryHeap<T> {
218 data: Vec<T>,
219 }
220
221 /// A container object that represents the result of the [`peek_mut()`] method
222 /// on `BinaryHeap`. See its documentation for details.
223 ///
224 /// [`peek_mut()`]: struct.BinaryHeap.html#method.peek_mut
225 #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
226 pub struct PeekMut<'a, T: 'a + Ord> {
227 heap: &'a mut BinaryHeap<T>,
228 sift: bool,
229 }
230
231 #[stable(feature = "collection_debug", since = "1.17.0")]
232 impl<'a, T: Ord + fmt::Debug> fmt::Debug for PeekMut<'a, T> {
233 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
234 f.debug_tuple("PeekMut")
235 .field(&self.heap.data[0])
236 .finish()
237 }
238 }
239
240 #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
241 impl<'a, T: Ord> Drop for PeekMut<'a, T> {
242 fn drop(&mut self) {
243 if self.sift {
244 self.heap.sift_down(0);
245 }
246 }
247 }
248
249 #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
250 impl<'a, T: Ord> Deref for PeekMut<'a, T> {
251 type Target = T;
252 fn deref(&self) -> &T {
253 &self.heap.data[0]
254 }
255 }
256
257 #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
258 impl<'a, T: Ord> DerefMut for PeekMut<'a, T> {
259 fn deref_mut(&mut self) -> &mut T {
260 &mut self.heap.data[0]
261 }
262 }
263
264 impl<'a, T: Ord> PeekMut<'a, T> {
265 /// Removes the peeked value from the heap and returns it.
266 #[unstable(feature = "binary_heap_peek_mut_pop", issue = "38863")]
267 pub fn pop(mut this: PeekMut<'a, T>) -> T {
268 let value = this.heap.pop().unwrap();
269 this.sift = false;
270 value
271 }
272 }
273
274 #[stable(feature = "rust1", since = "1.0.0")]
275 impl<T: Clone> Clone for BinaryHeap<T> {
276 fn clone(&self) -> Self {
277 BinaryHeap { data: self.data.clone() }
278 }
279
280 fn clone_from(&mut self, source: &Self) {
281 self.data.clone_from(&source.data);
282 }
283 }
284
285 #[stable(feature = "rust1", since = "1.0.0")]
286 impl<T: Ord> Default for BinaryHeap<T> {
287 /// Creates an empty `BinaryHeap<T>`.
288 #[inline]
289 fn default() -> BinaryHeap<T> {
290 BinaryHeap::new()
291 }
292 }
293
294 #[stable(feature = "binaryheap_debug", since = "1.4.0")]
295 impl<T: fmt::Debug + Ord> fmt::Debug for BinaryHeap<T> {
296 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
297 f.debug_list().entries(self.iter()).finish()
298 }
299 }
300
301 impl<T: Ord> BinaryHeap<T> {
302 /// Creates an empty `BinaryHeap` as a max-heap.
303 ///
304 /// # Examples
305 ///
306 /// Basic usage:
307 ///
308 /// ```
309 /// use std::collections::BinaryHeap;
310 /// let mut heap = BinaryHeap::new();
311 /// heap.push(4);
312 /// ```
313 #[stable(feature = "rust1", since = "1.0.0")]
314 pub fn new() -> BinaryHeap<T> {
315 BinaryHeap { data: vec![] }
316 }
317
318 /// Creates an empty `BinaryHeap` with a specific capacity.
319 /// This preallocates enough memory for `capacity` elements,
320 /// so that the `BinaryHeap` does not have to be reallocated
321 /// until it contains at least that many values.
322 ///
323 /// # Examples
324 ///
325 /// Basic usage:
326 ///
327 /// ```
328 /// use std::collections::BinaryHeap;
329 /// let mut heap = BinaryHeap::with_capacity(10);
330 /// heap.push(4);
331 /// ```
332 #[stable(feature = "rust1", since = "1.0.0")]
333 pub fn with_capacity(capacity: usize) -> BinaryHeap<T> {
334 BinaryHeap { data: Vec::with_capacity(capacity) }
335 }
336
337 /// Returns an iterator visiting all values in the underlying vector, in
338 /// arbitrary order.
339 ///
340 /// # Examples
341 ///
342 /// Basic usage:
343 ///
344 /// ```
345 /// use std::collections::BinaryHeap;
346 /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]);
347 ///
348 /// // Print 1, 2, 3, 4 in arbitrary order
349 /// for x in heap.iter() {
350 /// println!("{}", x);
351 /// }
352 /// ```
353 #[stable(feature = "rust1", since = "1.0.0")]
354 pub fn iter(&self) -> Iter<T> {
355 Iter { iter: self.data.iter() }
356 }
357
358 /// Returns the greatest item in the binary heap, or `None` if it is empty.
359 ///
360 /// # Examples
361 ///
362 /// Basic usage:
363 ///
364 /// ```
365 /// use std::collections::BinaryHeap;
366 /// let mut heap = BinaryHeap::new();
367 /// assert_eq!(heap.peek(), None);
368 ///
369 /// heap.push(1);
370 /// heap.push(5);
371 /// heap.push(2);
372 /// assert_eq!(heap.peek(), Some(&5));
373 ///
374 /// ```
375 #[stable(feature = "rust1", since = "1.0.0")]
376 pub fn peek(&self) -> Option<&T> {
377 self.data.get(0)
378 }
379
380 /// Returns a mutable reference to the greatest item in the binary heap, or
381 /// `None` if it is empty.
382 ///
383 /// Note: If the `PeekMut` value is leaked, the heap may be in an
384 /// inconsistent state.
385 ///
386 /// # Examples
387 ///
388 /// Basic usage:
389 ///
390 /// ```
391 /// use std::collections::BinaryHeap;
392 /// let mut heap = BinaryHeap::new();
393 /// assert!(heap.peek_mut().is_none());
394 ///
395 /// heap.push(1);
396 /// heap.push(5);
397 /// heap.push(2);
398 /// {
399 /// let mut val = heap.peek_mut().unwrap();
400 /// *val = 0;
401 /// }
402 /// assert_eq!(heap.peek(), Some(&2));
403 /// ```
404 #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
405 pub fn peek_mut(&mut self) -> Option<PeekMut<T>> {
406 if self.is_empty() {
407 None
408 } else {
409 Some(PeekMut {
410 heap: self,
411 sift: true,
412 })
413 }
414 }
415
416 /// Returns the number of elements the binary heap can hold without reallocating.
417 ///
418 /// # Examples
419 ///
420 /// Basic usage:
421 ///
422 /// ```
423 /// use std::collections::BinaryHeap;
424 /// let mut heap = BinaryHeap::with_capacity(100);
425 /// assert!(heap.capacity() >= 100);
426 /// heap.push(4);
427 /// ```
428 #[stable(feature = "rust1", since = "1.0.0")]
429 pub fn capacity(&self) -> usize {
430 self.data.capacity()
431 }
432
433 /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
434 /// given `BinaryHeap`. Does nothing if the capacity is already sufficient.
435 ///
436 /// Note that the allocator may give the collection more space than it requests. Therefore
437 /// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future
438 /// insertions are expected.
439 ///
440 /// # Panics
441 ///
442 /// Panics if the new capacity overflows `usize`.
443 ///
444 /// # Examples
445 ///
446 /// Basic usage:
447 ///
448 /// ```
449 /// use std::collections::BinaryHeap;
450 /// let mut heap = BinaryHeap::new();
451 /// heap.reserve_exact(100);
452 /// assert!(heap.capacity() >= 100);
453 /// heap.push(4);
454 /// ```
455 #[stable(feature = "rust1", since = "1.0.0")]
456 pub fn reserve_exact(&mut self, additional: usize) {
457 self.data.reserve_exact(additional);
458 }
459
460 /// Reserves capacity for at least `additional` more elements to be inserted in the
461 /// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations.
462 ///
463 /// # Panics
464 ///
465 /// Panics if the new capacity overflows `usize`.
466 ///
467 /// # Examples
468 ///
469 /// Basic usage:
470 ///
471 /// ```
472 /// use std::collections::BinaryHeap;
473 /// let mut heap = BinaryHeap::new();
474 /// heap.reserve(100);
475 /// assert!(heap.capacity() >= 100);
476 /// heap.push(4);
477 /// ```
478 #[stable(feature = "rust1", since = "1.0.0")]
479 pub fn reserve(&mut self, additional: usize) {
480 self.data.reserve(additional);
481 }
482
483 /// Discards as much additional capacity as possible.
484 ///
485 /// # Examples
486 ///
487 /// Basic usage:
488 ///
489 /// ```
490 /// use std::collections::BinaryHeap;
491 /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
492 ///
493 /// assert!(heap.capacity() >= 100);
494 /// heap.shrink_to_fit();
495 /// assert!(heap.capacity() == 0);
496 /// ```
497 #[stable(feature = "rust1", since = "1.0.0")]
498 pub fn shrink_to_fit(&mut self) {
499 self.data.shrink_to_fit();
500 }
501
502 /// Removes the greatest item from the binary heap and returns it, or `None` if it
503 /// is empty.
504 ///
505 /// # Examples
506 ///
507 /// Basic usage:
508 ///
509 /// ```
510 /// use std::collections::BinaryHeap;
511 /// let mut heap = BinaryHeap::from(vec![1, 3]);
512 ///
513 /// assert_eq!(heap.pop(), Some(3));
514 /// assert_eq!(heap.pop(), Some(1));
515 /// assert_eq!(heap.pop(), None);
516 /// ```
517 #[stable(feature = "rust1", since = "1.0.0")]
518 pub fn pop(&mut self) -> Option<T> {
519 self.data.pop().map(|mut item| {
520 if !self.is_empty() {
521 swap(&mut item, &mut self.data[0]);
522 self.sift_down_to_bottom(0);
523 }
524 item
525 })
526 }
527
528 /// Pushes an item onto the binary heap.
529 ///
530 /// # Examples
531 ///
532 /// Basic usage:
533 ///
534 /// ```
535 /// use std::collections::BinaryHeap;
536 /// let mut heap = BinaryHeap::new();
537 /// heap.push(3);
538 /// heap.push(5);
539 /// heap.push(1);
540 ///
541 /// assert_eq!(heap.len(), 3);
542 /// assert_eq!(heap.peek(), Some(&5));
543 /// ```
544 #[stable(feature = "rust1", since = "1.0.0")]
545 pub fn push(&mut self, item: T) {
546 let old_len = self.len();
547 self.data.push(item);
548 self.sift_up(0, old_len);
549 }
550
551 /// Pushes an item onto the binary heap, then pops the greatest item off the queue in
552 /// an optimized fashion.
553 ///
554 /// # Examples
555 ///
556 /// Basic usage:
557 ///
558 /// ```
559 /// #![feature(binary_heap_extras)]
560 /// #![allow(deprecated)]
561 ///
562 /// use std::collections::BinaryHeap;
563 /// let mut heap = BinaryHeap::new();
564 /// heap.push(1);
565 /// heap.push(5);
566 ///
567 /// assert_eq!(heap.push_pop(3), 5);
568 /// assert_eq!(heap.push_pop(9), 9);
569 /// assert_eq!(heap.len(), 2);
570 /// assert_eq!(heap.peek(), Some(&3));
571 /// ```
572 #[unstable(feature = "binary_heap_extras",
573 reason = "needs to be audited",
574 issue = "28147")]
575 #[rustc_deprecated(since = "1.13.0", reason = "use `peek_mut` instead")]
576 pub fn push_pop(&mut self, mut item: T) -> T {
577 match self.data.get_mut(0) {
578 None => return item,
579 Some(top) => {
580 if *top > item {
581 swap(&mut item, top);
582 } else {
583 return item;
584 }
585 }
586 }
587
588 self.sift_down(0);
589 item
590 }
591
592 /// Pops the greatest item off the binary heap, then pushes an item onto the queue in
593 /// an optimized fashion. The push is done regardless of whether the binary heap
594 /// was empty.
595 ///
596 /// # Examples
597 ///
598 /// Basic usage:
599 ///
600 /// ```
601 /// #![feature(binary_heap_extras)]
602 /// #![allow(deprecated)]
603 ///
604 /// use std::collections::BinaryHeap;
605 /// let mut heap = BinaryHeap::new();
606 ///
607 /// assert_eq!(heap.replace(1), None);
608 /// assert_eq!(heap.replace(3), Some(1));
609 /// assert_eq!(heap.len(), 1);
610 /// assert_eq!(heap.peek(), Some(&3));
611 /// ```
612 #[unstable(feature = "binary_heap_extras",
613 reason = "needs to be audited",
614 issue = "28147")]
615 #[rustc_deprecated(since = "1.13.0", reason = "use `peek_mut` instead")]
616 pub fn replace(&mut self, mut item: T) -> Option<T> {
617 if !self.is_empty() {
618 swap(&mut item, &mut self.data[0]);
619 self.sift_down(0);
620 Some(item)
621 } else {
622 self.push(item);
623 None
624 }
625 }
626
627 /// Consumes the `BinaryHeap` and returns the underlying vector
628 /// in arbitrary order.
629 ///
630 /// # Examples
631 ///
632 /// Basic usage:
633 ///
634 /// ```
635 /// use std::collections::BinaryHeap;
636 /// let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5, 6, 7]);
637 /// let vec = heap.into_vec();
638 ///
639 /// // Will print in some order
640 /// for x in vec {
641 /// println!("{}", x);
642 /// }
643 /// ```
644 #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
645 pub fn into_vec(self) -> Vec<T> {
646 self.into()
647 }
648
649 /// Consumes the `BinaryHeap` and returns a vector in sorted
650 /// (ascending) order.
651 ///
652 /// # Examples
653 ///
654 /// Basic usage:
655 ///
656 /// ```
657 /// use std::collections::BinaryHeap;
658 ///
659 /// let mut heap = BinaryHeap::from(vec![1, 2, 4, 5, 7]);
660 /// heap.push(6);
661 /// heap.push(3);
662 ///
663 /// let vec = heap.into_sorted_vec();
664 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
665 /// ```
666 #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
667 pub fn into_sorted_vec(mut self) -> Vec<T> {
668 let mut end = self.len();
669 while end > 1 {
670 end -= 1;
671 self.data.swap(0, end);
672 self.sift_down_range(0, end);
673 }
674 self.into_vec()
675 }
676
677 // The implementations of sift_up and sift_down use unsafe blocks in
678 // order to move an element out of the vector (leaving behind a
679 // hole), shift along the others and move the removed element back into the
680 // vector at the final location of the hole.
681 // The `Hole` type is used to represent this, and make sure
682 // the hole is filled back at the end of its scope, even on panic.
683 // Using a hole reduces the constant factor compared to using swaps,
684 // which involves twice as many moves.
685 fn sift_up(&mut self, start: usize, pos: usize) -> usize {
686 unsafe {
687 // Take out the value at `pos` and create a hole.
688 let mut hole = Hole::new(&mut self.data, pos);
689
690 while hole.pos() > start {
691 let parent = (hole.pos() - 1) / 2;
692 if hole.element() <= hole.get(parent) {
693 break;
694 }
695 hole.move_to(parent);
696 }
697 hole.pos()
698 }
699 }
700
701 /// Take an element at `pos` and move it down the heap,
702 /// while its children are larger.
703 fn sift_down_range(&mut self, pos: usize, end: usize) {
704 unsafe {
705 let mut hole = Hole::new(&mut self.data, pos);
706 let mut child = 2 * pos + 1;
707 while child < end {
708 let right = child + 1;
709 // compare with the greater of the two children
710 if right < end && !(hole.get(child) > hole.get(right)) {
711 child = right;
712 }
713 // if we are already in order, stop.
714 if hole.element() >= hole.get(child) {
715 break;
716 }
717 hole.move_to(child);
718 child = 2 * hole.pos() + 1;
719 }
720 }
721 }
722
723 fn sift_down(&mut self, pos: usize) {
724 let len = self.len();
725 self.sift_down_range(pos, len);
726 }
727
728 /// Take an element at `pos` and move it all the way down the heap,
729 /// then sift it up to its position.
730 ///
731 /// Note: This is faster when the element is known to be large / should
732 /// be closer to the bottom.
733 fn sift_down_to_bottom(&mut self, mut pos: usize) {
734 let end = self.len();
735 let start = pos;
736 unsafe {
737 let mut hole = Hole::new(&mut self.data, pos);
738 let mut child = 2 * pos + 1;
739 while child < end {
740 let right = child + 1;
741 // compare with the greater of the two children
742 if right < end && !(hole.get(child) > hole.get(right)) {
743 child = right;
744 }
745 hole.move_to(child);
746 child = 2 * hole.pos() + 1;
747 }
748 pos = hole.pos;
749 }
750 self.sift_up(start, pos);
751 }
752
753 /// Returns the length of the binary heap.
754 ///
755 /// # Examples
756 ///
757 /// Basic usage:
758 ///
759 /// ```
760 /// use std::collections::BinaryHeap;
761 /// let heap = BinaryHeap::from(vec![1, 3]);
762 ///
763 /// assert_eq!(heap.len(), 2);
764 /// ```
765 #[stable(feature = "rust1", since = "1.0.0")]
766 pub fn len(&self) -> usize {
767 self.data.len()
768 }
769
770 /// Checks if the binary heap is empty.
771 ///
772 /// # Examples
773 ///
774 /// Basic usage:
775 ///
776 /// ```
777 /// use std::collections::BinaryHeap;
778 /// let mut heap = BinaryHeap::new();
779 ///
780 /// assert!(heap.is_empty());
781 ///
782 /// heap.push(3);
783 /// heap.push(5);
784 /// heap.push(1);
785 ///
786 /// assert!(!heap.is_empty());
787 /// ```
788 #[stable(feature = "rust1", since = "1.0.0")]
789 pub fn is_empty(&self) -> bool {
790 self.len() == 0
791 }
792
793 /// Clears the binary heap, returning an iterator over the removed elements.
794 ///
795 /// The elements are removed in arbitrary order.
796 ///
797 /// # Examples
798 ///
799 /// Basic usage:
800 ///
801 /// ```
802 /// use std::collections::BinaryHeap;
803 /// let mut heap = BinaryHeap::from(vec![1, 3]);
804 ///
805 /// assert!(!heap.is_empty());
806 ///
807 /// for x in heap.drain() {
808 /// println!("{}", x);
809 /// }
810 ///
811 /// assert!(heap.is_empty());
812 /// ```
813 #[inline]
814 #[stable(feature = "drain", since = "1.6.0")]
815 pub fn drain(&mut self) -> Drain<T> {
816 Drain { iter: self.data.drain(..) }
817 }
818
819 /// Drops all items from the binary heap.
820 ///
821 /// # Examples
822 ///
823 /// Basic usage:
824 ///
825 /// ```
826 /// use std::collections::BinaryHeap;
827 /// let mut heap = BinaryHeap::from(vec![1, 3]);
828 ///
829 /// assert!(!heap.is_empty());
830 ///
831 /// heap.clear();
832 ///
833 /// assert!(heap.is_empty());
834 /// ```
835 #[stable(feature = "rust1", since = "1.0.0")]
836 pub fn clear(&mut self) {
837 self.drain();
838 }
839
840 fn rebuild(&mut self) {
841 let mut n = self.len() / 2;
842 while n > 0 {
843 n -= 1;
844 self.sift_down(n);
845 }
846 }
847
848 /// Moves all the elements of `other` into `self`, leaving `other` empty.
849 ///
850 /// # Examples
851 ///
852 /// Basic usage:
853 ///
854 /// ```
855 /// use std::collections::BinaryHeap;
856 ///
857 /// let v = vec![-10, 1, 2, 3, 3];
858 /// let mut a = BinaryHeap::from(v);
859 ///
860 /// let v = vec![-20, 5, 43];
861 /// let mut b = BinaryHeap::from(v);
862 ///
863 /// a.append(&mut b);
864 ///
865 /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
866 /// assert!(b.is_empty());
867 /// ```
868 #[stable(feature = "binary_heap_append", since = "1.11.0")]
869 pub fn append(&mut self, other: &mut Self) {
870 if self.len() < other.len() {
871 swap(self, other);
872 }
873
874 if other.is_empty() {
875 return;
876 }
877
878 #[inline(always)]
879 fn log2_fast(x: usize) -> usize {
880 8 * size_of::<usize>() - (x.leading_zeros() as usize) - 1
881 }
882
883 // `rebuild` takes O(len1 + len2) operations
884 // and about 2 * (len1 + len2) comparisons in the worst case
885 // while `extend` takes O(len2 * log_2(len1)) operations
886 // and about 1 * len2 * log_2(len1) comparisons in the worst case,
887 // assuming len1 >= len2.
888 #[inline]
889 fn better_to_rebuild(len1: usize, len2: usize) -> bool {
890 2 * (len1 + len2) < len2 * log2_fast(len1)
891 }
892
893 if better_to_rebuild(self.len(), other.len()) {
894 self.data.append(&mut other.data);
895 self.rebuild();
896 } else {
897 self.extend(other.drain());
898 }
899 }
900 }
901
902 /// Hole represents a hole in a slice i.e. an index without valid value
903 /// (because it was moved from or duplicated).
904 /// In drop, `Hole` will restore the slice by filling the hole
905 /// position with the value that was originally removed.
906 struct Hole<'a, T: 'a> {
907 data: &'a mut [T],
908 /// `elt` is always `Some` from new until drop.
909 elt: Option<T>,
910 pos: usize,
911 }
912
913 impl<'a, T> Hole<'a, T> {
914 /// Create a new Hole at index `pos`.
915 ///
916 /// Unsafe because pos must be within the data slice.
917 #[inline]
918 unsafe fn new(data: &'a mut [T], pos: usize) -> Self {
919 debug_assert!(pos < data.len());
920 let elt = ptr::read(&data[pos]);
921 Hole {
922 data: data,
923 elt: Some(elt),
924 pos: pos,
925 }
926 }
927
928 #[inline]
929 fn pos(&self) -> usize {
930 self.pos
931 }
932
933 /// Return a reference to the element removed
934 #[inline]
935 fn element(&self) -> &T {
936 self.elt.as_ref().unwrap()
937 }
938
939 /// Return a reference to the element at `index`.
940 ///
941 /// Unsafe because index must be within the data slice and not equal to pos.
942 #[inline]
943 unsafe fn get(&self, index: usize) -> &T {
944 debug_assert!(index != self.pos);
945 debug_assert!(index < self.data.len());
946 self.data.get_unchecked(index)
947 }
948
949 /// Move hole to new location
950 ///
951 /// Unsafe because index must be within the data slice and not equal to pos.
952 #[inline]
953 unsafe fn move_to(&mut self, index: usize) {
954 debug_assert!(index != self.pos);
955 debug_assert!(index < self.data.len());
956 let index_ptr: *const _ = self.data.get_unchecked(index);
957 let hole_ptr = self.data.get_unchecked_mut(self.pos);
958 ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
959 self.pos = index;
960 }
961 }
962
963 impl<'a, T> Drop for Hole<'a, T> {
964 #[inline]
965 fn drop(&mut self) {
966 // fill the hole again
967 unsafe {
968 let pos = self.pos;
969 ptr::write(self.data.get_unchecked_mut(pos), self.elt.take().unwrap());
970 }
971 }
972 }
973
974 /// `BinaryHeap` iterator.
975 #[stable(feature = "rust1", since = "1.0.0")]
976 pub struct Iter<'a, T: 'a> {
977 iter: slice::Iter<'a, T>,
978 }
979
980 #[stable(feature = "collection_debug", since = "1.17.0")]
981 impl<'a, T: 'a + fmt::Debug> fmt::Debug for Iter<'a, T> {
982 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
983 f.debug_tuple("Iter")
984 .field(&self.iter.as_slice())
985 .finish()
986 }
987 }
988
989 // FIXME(#19839) Remove in favor of `#[derive(Clone)]`
990 #[stable(feature = "rust1", since = "1.0.0")]
991 impl<'a, T> Clone for Iter<'a, T> {
992 fn clone(&self) -> Iter<'a, T> {
993 Iter { iter: self.iter.clone() }
994 }
995 }
996
997 #[stable(feature = "rust1", since = "1.0.0")]
998 impl<'a, T> Iterator for Iter<'a, T> {
999 type Item = &'a T;
1000
1001 #[inline]
1002 fn next(&mut self) -> Option<&'a T> {
1003 self.iter.next()
1004 }
1005
1006 #[inline]
1007 fn size_hint(&self) -> (usize, Option<usize>) {
1008 self.iter.size_hint()
1009 }
1010 }
1011
1012 #[stable(feature = "rust1", since = "1.0.0")]
1013 impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1014 #[inline]
1015 fn next_back(&mut self) -> Option<&'a T> {
1016 self.iter.next_back()
1017 }
1018 }
1019
1020 #[stable(feature = "rust1", since = "1.0.0")]
1021 impl<'a, T> ExactSizeIterator for Iter<'a, T> {
1022 fn is_empty(&self) -> bool {
1023 self.iter.is_empty()
1024 }
1025 }
1026
1027 #[unstable(feature = "fused", issue = "35602")]
1028 impl<'a, T> FusedIterator for Iter<'a, T> {}
1029
1030 /// An iterator that moves out of a `BinaryHeap`.
1031 #[stable(feature = "rust1", since = "1.0.0")]
1032 #[derive(Clone)]
1033 pub struct IntoIter<T> {
1034 iter: vec::IntoIter<T>,
1035 }
1036
1037 #[stable(feature = "collection_debug", since = "1.17.0")]
1038 impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
1039 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1040 f.debug_tuple("IntoIter")
1041 .field(&self.iter.as_slice())
1042 .finish()
1043 }
1044 }
1045
1046 #[stable(feature = "rust1", since = "1.0.0")]
1047 impl<T> Iterator for IntoIter<T> {
1048 type Item = T;
1049
1050 #[inline]
1051 fn next(&mut self) -> Option<T> {
1052 self.iter.next()
1053 }
1054
1055 #[inline]
1056 fn size_hint(&self) -> (usize, Option<usize>) {
1057 self.iter.size_hint()
1058 }
1059 }
1060
1061 #[stable(feature = "rust1", since = "1.0.0")]
1062 impl<T> DoubleEndedIterator for IntoIter<T> {
1063 #[inline]
1064 fn next_back(&mut self) -> Option<T> {
1065 self.iter.next_back()
1066 }
1067 }
1068
1069 #[stable(feature = "rust1", since = "1.0.0")]
1070 impl<T> ExactSizeIterator for IntoIter<T> {
1071 fn is_empty(&self) -> bool {
1072 self.iter.is_empty()
1073 }
1074 }
1075
1076 #[unstable(feature = "fused", issue = "35602")]
1077 impl<T> FusedIterator for IntoIter<T> {}
1078
1079 /// An iterator that drains a `BinaryHeap`.
1080 #[stable(feature = "drain", since = "1.6.0")]
1081 #[derive(Debug)]
1082 pub struct Drain<'a, T: 'a> {
1083 iter: vec::Drain<'a, T>,
1084 }
1085
1086 #[stable(feature = "drain", since = "1.6.0")]
1087 impl<'a, T: 'a> Iterator for Drain<'a, T> {
1088 type Item = T;
1089
1090 #[inline]
1091 fn next(&mut self) -> Option<T> {
1092 self.iter.next()
1093 }
1094
1095 #[inline]
1096 fn size_hint(&self) -> (usize, Option<usize>) {
1097 self.iter.size_hint()
1098 }
1099 }
1100
1101 #[stable(feature = "drain", since = "1.6.0")]
1102 impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> {
1103 #[inline]
1104 fn next_back(&mut self) -> Option<T> {
1105 self.iter.next_back()
1106 }
1107 }
1108
1109 #[stable(feature = "drain", since = "1.6.0")]
1110 impl<'a, T: 'a> ExactSizeIterator for Drain<'a, T> {
1111 fn is_empty(&self) -> bool {
1112 self.iter.is_empty()
1113 }
1114 }
1115
1116 #[unstable(feature = "fused", issue = "35602")]
1117 impl<'a, T: 'a> FusedIterator for Drain<'a, T> {}
1118
1119 #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
1120 impl<T: Ord> From<Vec<T>> for BinaryHeap<T> {
1121 fn from(vec: Vec<T>) -> BinaryHeap<T> {
1122 let mut heap = BinaryHeap { data: vec };
1123 heap.rebuild();
1124 heap
1125 }
1126 }
1127
1128 #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
1129 impl<T> From<BinaryHeap<T>> for Vec<T> {
1130 fn from(heap: BinaryHeap<T>) -> Vec<T> {
1131 heap.data
1132 }
1133 }
1134
1135 #[stable(feature = "rust1", since = "1.0.0")]
1136 impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
1137 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> {
1138 BinaryHeap::from(iter.into_iter().collect::<Vec<_>>())
1139 }
1140 }
1141
1142 #[stable(feature = "rust1", since = "1.0.0")]
1143 impl<T: Ord> IntoIterator for BinaryHeap<T> {
1144 type Item = T;
1145 type IntoIter = IntoIter<T>;
1146
1147 /// Creates a consuming iterator, that is, one that moves each value out of
1148 /// the binary heap in arbitrary order. The binary heap cannot be used
1149 /// after calling this.
1150 ///
1151 /// # Examples
1152 ///
1153 /// Basic usage:
1154 ///
1155 /// ```
1156 /// use std::collections::BinaryHeap;
1157 /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]);
1158 ///
1159 /// // Print 1, 2, 3, 4 in arbitrary order
1160 /// for x in heap.into_iter() {
1161 /// // x has type i32, not &i32
1162 /// println!("{}", x);
1163 /// }
1164 /// ```
1165 fn into_iter(self) -> IntoIter<T> {
1166 IntoIter { iter: self.data.into_iter() }
1167 }
1168 }
1169
1170 #[stable(feature = "rust1", since = "1.0.0")]
1171 impl<'a, T> IntoIterator for &'a BinaryHeap<T>
1172 where T: Ord
1173 {
1174 type Item = &'a T;
1175 type IntoIter = Iter<'a, T>;
1176
1177 fn into_iter(self) -> Iter<'a, T> {
1178 self.iter()
1179 }
1180 }
1181
1182 #[stable(feature = "rust1", since = "1.0.0")]
1183 impl<T: Ord> Extend<T> for BinaryHeap<T> {
1184 #[inline]
1185 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
1186 <Self as SpecExtend<I>>::spec_extend(self, iter);
1187 }
1188 }
1189
1190 impl<T: Ord, I: IntoIterator<Item = T>> SpecExtend<I> for BinaryHeap<T> {
1191 default fn spec_extend(&mut self, iter: I) {
1192 self.extend_desugared(iter.into_iter());
1193 }
1194 }
1195
1196 impl<T: Ord> SpecExtend<BinaryHeap<T>> for BinaryHeap<T> {
1197 fn spec_extend(&mut self, ref mut other: BinaryHeap<T>) {
1198 self.append(other);
1199 }
1200 }
1201
1202 impl<T: Ord> BinaryHeap<T> {
1203 fn extend_desugared<I: IntoIterator<Item = T>>(&mut self, iter: I) {
1204 let iterator = iter.into_iter();
1205 let (lower, _) = iterator.size_hint();
1206
1207 self.reserve(lower);
1208
1209 for elem in iterator {
1210 self.push(elem);
1211 }
1212 }
1213 }
1214
1215 #[stable(feature = "extend_ref", since = "1.2.0")]
1216 impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinaryHeap<T> {
1217 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
1218 self.extend(iter.into_iter().cloned());
1219 }
1220 }
1221
1222 #[unstable(feature = "collection_placement",
1223 reason = "placement protocol is subject to change",
1224 issue = "30172")]
1225 pub struct BinaryHeapPlace<'a, T: 'a>
1226 where T: Clone + Ord {
1227 heap: *mut BinaryHeap<T>,
1228 place: vec::PlaceBack<'a, T>,
1229 }
1230
1231 #[unstable(feature = "collection_placement",
1232 reason = "placement protocol is subject to change",
1233 issue = "30172")]
1234 impl<'a, T: Clone + Ord + fmt::Debug> fmt::Debug for BinaryHeapPlace<'a, T> {
1235 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1236 f.debug_tuple("BinaryHeapPlace")
1237 .field(&self.place)
1238 .finish()
1239 }
1240 }
1241
1242 #[unstable(feature = "collection_placement",
1243 reason = "placement protocol is subject to change",
1244 issue = "30172")]
1245 impl<'a, T: 'a> Placer<T> for &'a mut BinaryHeap<T>
1246 where T: Clone + Ord {
1247 type Place = BinaryHeapPlace<'a, T>;
1248
1249 fn make_place(self) -> Self::Place {
1250 let ptr = self as *mut BinaryHeap<T>;
1251 let place = Placer::make_place(self.data.place_back());
1252 BinaryHeapPlace {
1253 heap: ptr,
1254 place: place,
1255 }
1256 }
1257 }
1258
1259 #[unstable(feature = "collection_placement",
1260 reason = "placement protocol is subject to change",
1261 issue = "30172")]
1262 impl<'a, T> Place<T> for BinaryHeapPlace<'a, T>
1263 where T: Clone + Ord {
1264 fn pointer(&mut self) -> *mut T {
1265 self.place.pointer()
1266 }
1267 }
1268
1269 #[unstable(feature = "collection_placement",
1270 reason = "placement protocol is subject to change",
1271 issue = "30172")]
1272 impl<'a, T> InPlace<T> for BinaryHeapPlace<'a, T>
1273 where T: Clone + Ord {
1274 type Owner = &'a T;
1275
1276 unsafe fn finalize(self) -> &'a T {
1277 self.place.finalize();
1278
1279 let heap: &mut BinaryHeap<T> = &mut *self.heap;
1280 let len = heap.len();
1281 let i = heap.sift_up(0, len - 1);
1282 heap.data.get_unchecked(i)
1283 }
1284 }