]> git.proxmox.com Git - rustc.git/blob - src/libcollections/fmt.rs
72d0ca85357a4274ab9bda81b8823ae41fcae20f
[rustc.git] / src / libcollections / fmt.rs
1 // Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Utilities for formatting and printing strings
12 //!
13 //! This module contains the runtime support for the `format!` syntax extension.
14 //! This macro is implemented in the compiler to emit calls to this module in
15 //! order to format arguments at runtime into strings and streams.
16 //!
17 //! # Usage
18 //!
19 //! The `format!` macro is intended to be familiar to those coming from C's
20 //! printf/fprintf functions or Python's `str.format` function. In its current
21 //! revision, the `format!` macro returns a `String` type which is the result of
22 //! the formatting. In the future it will also be able to pass in a stream to
23 //! format arguments directly while performing minimal allocations.
24 //!
25 //! Some examples of the `format!` extension are:
26 //!
27 //! ```
28 //! format!("Hello"); // => "Hello"
29 //! format!("Hello, {}!", "world"); // => "Hello, world!"
30 //! format!("The number is {}", 1); // => "The number is 1"
31 //! format!("{:?}", (3, 4)); // => "(3, 4)"
32 //! format!("{value}", value=4); // => "4"
33 //! format!("{} {}", 1, 2); // => "1 2"
34 //! ```
35 //!
36 //! From these, you can see that the first argument is a format string. It is
37 //! required by the compiler for this to be a string literal; it cannot be a
38 //! variable passed in (in order to perform validity checking). The compiler
39 //! will then parse the format string and determine if the list of arguments
40 //! provided is suitable to pass to this format string.
41 //!
42 //! ## Positional parameters
43 //!
44 //! Each formatting argument is allowed to specify which value argument it's
45 //! referencing, and if omitted it is assumed to be "the next argument". For
46 //! example, the format string `{} {} {}` would take three parameters, and they
47 //! would be formatted in the same order as they're given. The format string
48 //! `{2} {1} {0}`, however, would format arguments in reverse order.
49 //!
50 //! Things can get a little tricky once you start intermingling the two types of
51 //! positional specifiers. The "next argument" specifier can be thought of as an
52 //! iterator over the argument. Each time a "next argument" specifier is seen,
53 //! the iterator advances. This leads to behavior like this:
54 //!
55 //! ```
56 //! format!("{1} {} {0} {}", 1, 2); // => "2 1 1 2"
57 //! ```
58 //!
59 //! The internal iterator over the argument has not been advanced by the time
60 //! the first `{}` is seen, so it prints the first argument. Then upon reaching
61 //! the second `{}`, the iterator has advanced forward to the second argument.
62 //! Essentially, parameters which explicitly name their argument do not affect
63 //! parameters which do not name an argument in terms of positional specifiers.
64 //!
65 //! A format string is required to use all of its arguments, otherwise it is a
66 //! compile-time error. You may refer to the same argument more than once in the
67 //! format string, although it must always be referred to with the same type.
68 //!
69 //! ## Named parameters
70 //!
71 //! Rust itself does not have a Python-like equivalent of named parameters to a
72 //! function, but the `format!` macro is a syntax extension which allows it to
73 //! leverage named parameters. Named parameters are listed at the end of the
74 //! argument list and have the syntax:
75 //!
76 //! ```text
77 //! identifier '=' expression
78 //! ```
79 //!
80 //! For example, the following `format!` expressions all use named argument:
81 //!
82 //! ```
83 //! format!("{argument}", argument = "test"); // => "test"
84 //! format!("{name} {}", 1, name = 2); // => "2 1"
85 //! format!("{a} {c} {b}", a="a", b='b', c=3); // => "a 3 b"
86 //! ```
87 //!
88 //! It is illegal to put positional parameters (those without names) after
89 //! arguments which have names. Like with positional parameters, it is illegal
90 //! to provide named parameters that are unused by the format string.
91 //!
92 //! ## Argument types
93 //!
94 //! Each argument's type is dictated by the format string. It is a requirement
95 //! that every argument is only ever referred to by one type. For example, this
96 //! is an invalid format string:
97 //!
98 //! ```text
99 //! {0:x} {0:o}
100 //! ```
101 //!
102 //! This is invalid because the first argument is both referred to as a
103 //! hexadecimal as well as an
104 //! octal.
105 //!
106 //! There are various parameters which do require a particular type, however. Namely, the `{:.*}`
107 //! syntax, which sets the number of numbers after the decimal in floating-point types:
108 //!
109 //! ```
110 //! let formatted_number = format!("{:.*}", 2, 1.234567);
111 //!
112 //! assert_eq!("1.23", formatted_number)
113 //! ```
114 //!
115 //! If this syntax is used, then the number of characters to print precedes the actual object being
116 //! formatted, and the number of characters must have the type `usize`. Although a `usize` can be
117 //! printed with `{}`, it is illegal to reference an argument as such. For example this is another
118 //! invalid format string:
119 //!
120 //! ```text
121 //! {:.*} {0}
122 //! ```
123 //!
124 //! ## Formatting traits
125 //!
126 //! When requesting that an argument be formatted with a particular type, you
127 //! are actually requesting that an argument ascribes to a particular trait.
128 //! This allows multiple actual types to be formatted via `{:x}` (like `i8` as
129 //! well as `isize`). The current mapping of types to traits is:
130 //!
131 //! * *nothing* ⇒ `Display`
132 //! * `?` ⇒ `Debug`
133 //! * `o` ⇒ `Octal`
134 //! * `x` ⇒ `LowerHex`
135 //! * `X` ⇒ `UpperHex`
136 //! * `p` ⇒ `Pointer`
137 //! * `b` ⇒ `Binary`
138 //! * `e` ⇒ `LowerExp`
139 //! * `E` ⇒ `UpperExp`
140 //!
141 //! What this means is that any type of argument which implements the
142 //! `fmt::Binary` trait can then be formatted with `{:b}`. Implementations
143 //! are provided for these traits for a number of primitive types by the
144 //! standard library as well. If no format is specified (as in `{}` or `{:6}`),
145 //! then the format trait used is the `Display` trait.
146 //!
147 //! When implementing a format trait for your own type, you will have to
148 //! implement a method of the signature:
149 //!
150 //! ```
151 //! # use std::fmt;
152 //! # struct Foo; // our custom type
153 //! # impl fmt::Display for Foo {
154 //! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
155 //! # write!(f, "testing, testing")
156 //! # } }
157 //! ```
158 //!
159 //! Your type will be passed as `self` by-reference, and then the function
160 //! should emit output into the `f.buf` stream. It is up to each format trait
161 //! implementation to correctly adhere to the requested formatting parameters.
162 //! The values of these parameters will be listed in the fields of the
163 //! `Formatter` struct. In order to help with this, the `Formatter` struct also
164 //! provides some helper methods.
165 //!
166 //! Additionally, the return value of this function is `fmt::Result` which is a
167 //! typedef to `Result<(), std::io::Error>` (also known as `std::io::Result<()>`).
168 //! Formatting implementations should ensure that they return errors from `write!`
169 //! correctly (propagating errors upward).
170 //!
171 //! An example of implementing the formatting traits would look
172 //! like:
173 //!
174 //! ```
175 //! # #![feature(fmt_flags)]
176 //! use std::fmt;
177 //!
178 //! #[derive(Debug)]
179 //! struct Vector2D {
180 //! x: isize,
181 //! y: isize,
182 //! }
183 //!
184 //! impl fmt::Display for Vector2D {
185 //! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
186 //! // The `f` value implements the `Write` trait, which is what the
187 //! // write! macro is expecting. Note that this formatting ignores the
188 //! // various flags provided to format strings.
189 //! write!(f, "({}, {})", self.x, self.y)
190 //! }
191 //! }
192 //!
193 //! // Different traits allow different forms of output of a type. The meaning
194 //! // of this format is to print the magnitude of a vector.
195 //! impl fmt::Binary for Vector2D {
196 //! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
197 //! let magnitude = (self.x * self.x + self.y * self.y) as f64;
198 //! let magnitude = magnitude.sqrt();
199 //!
200 //! // Respect the formatting flags by using the helper method
201 //! // `pad_integral` on the Formatter object. See the method
202 //! // documentation for details, and the function `pad` can be used
203 //! // to pad strings.
204 //! let decimals = f.precision().unwrap_or(3);
205 //! let string = format!("{:.*}", decimals, magnitude);
206 //! f.pad_integral(true, "", &string)
207 //! }
208 //! }
209 //!
210 //! fn main() {
211 //! let myvector = Vector2D { x: 3, y: 4 };
212 //!
213 //! println!("{}", myvector); // => "(3, 4)"
214 //! println!("{:?}", myvector); // => "Vector2D {x: 3, y:4}"
215 //! println!("{:10.3b}", myvector); // => " 5.000"
216 //! }
217 //! ```
218 //!
219 //! ### fmt::Display vs fmt::Debug
220 //!
221 //! These two formatting traits have distinct purposes:
222 //!
223 //! - `fmt::Display` implementations assert that the type can be faithfully
224 //! represented as a UTF-8 string at all times. It is **not** expected that
225 //! all types implement the `Display` trait.
226 //! - `fmt::Debug` implementations should be implemented for **all** public types.
227 //! Output will typically represent the internal state as faithfully as possible.
228 //! The purpose of the `Debug` trait is to facilitate debugging Rust code. In
229 //! most cases, using `#[derive(Debug)]` is sufficient and recommended.
230 //!
231 //! Some examples of the output from both traits:
232 //!
233 //! ```
234 //! assert_eq!(format!("{} {:?}", 3, 4), "3 4");
235 //! assert_eq!(format!("{} {:?}", 'a', 'b'), "a 'b'");
236 //! assert_eq!(format!("{} {:?}", "foo\n", "bar\n"), "foo\n \"bar\\n\"");
237 //! ```
238 //!
239 //! ## Related macros
240 //!
241 //! There are a number of related macros in the `format!` family. The ones that
242 //! are currently implemented are:
243 //!
244 //! ```ignore
245 //! format! // described above
246 //! write! // first argument is a &mut io::Write, the destination
247 //! writeln! // same as write but appends a newline
248 //! print! // the format string is printed to the standard output
249 //! println! // same as print but appends a newline
250 //! format_args! // described below.
251 //! ```
252 //!
253 //! ### `write!`
254 //!
255 //! This and `writeln` are two macros which are used to emit the format string
256 //! to a specified stream. This is used to prevent intermediate allocations of
257 //! format strings and instead directly write the output. Under the hood, this
258 //! function is actually invoking the `write` function defined in this module.
259 //! Example usage is:
260 //!
261 //! ```
262 //! # #![allow(unused_must_use)]
263 //! use std::io::Write;
264 //! let mut w = Vec::new();
265 //! write!(&mut w, "Hello {}!", "world");
266 //! ```
267 //!
268 //! ### `print!`
269 //!
270 //! This and `println` emit their output to stdout. Similarly to the `write!`
271 //! macro, the goal of these macros is to avoid intermediate allocations when
272 //! printing output. Example usage is:
273 //!
274 //! ```
275 //! print!("Hello {}!", "world");
276 //! println!("I have a newline {}", "character at the end");
277 //! ```
278 //!
279 //! ### `format_args!`
280 //!
281 //! This is a curious macro which is used to safely pass around
282 //! an opaque object describing the format string. This object
283 //! does not require any heap allocations to create, and it only
284 //! references information on the stack. Under the hood, all of
285 //! the related macros are implemented in terms of this. First
286 //! off, some example usage is:
287 //!
288 //! ```
289 //! use std::fmt;
290 //! use std::io::{self, Write};
291 //!
292 //! fmt::format(format_args!("this returns {}", "String"));
293 //!
294 //! let mut some_writer = io::stdout();
295 //! write!(&mut some_writer, "{}", format_args!("print with a {}", "macro"));
296 //!
297 //! fn my_fmt_fn(args: fmt::Arguments) {
298 //! write!(&mut io::stdout(), "{}", args);
299 //! }
300 //! my_fmt_fn(format_args!("or a {} too", "function"));
301 //! ```
302 //!
303 //! The result of the `format_args!` macro is a value of type `fmt::Arguments`.
304 //! This structure can then be passed to the `write` and `format` functions
305 //! inside this module in order to process the format string.
306 //! The goal of this macro is to even further prevent intermediate allocations
307 //! when dealing formatting strings.
308 //!
309 //! For example, a logging library could use the standard formatting syntax, but
310 //! it would internally pass around this structure until it has been determined
311 //! where output should go to.
312 //!
313 //! # Syntax
314 //!
315 //! The syntax for the formatting language used is drawn from other languages,
316 //! so it should not be too alien. Arguments are formatted with python-like
317 //! syntax, meaning that arguments are surrounded by `{}` instead of the C-like
318 //! `%`. The actual grammar for the formatting syntax is:
319 //!
320 //! ```text
321 //! format_string := <text> [ format <text> ] *
322 //! format := '{' [ argument ] [ ':' format_spec ] '}'
323 //! argument := integer | identifier
324 //!
325 //! format_spec := [[fill]align][sign]['#'][0][width]['.' precision][type]
326 //! fill := character
327 //! align := '<' | '^' | '>'
328 //! sign := '+' | '-'
329 //! width := count
330 //! precision := count | '*'
331 //! type := identifier | ''
332 //! count := parameter | integer
333 //! parameter := integer '$'
334 //! ```
335 //!
336 //! # Formatting Parameters
337 //!
338 //! Each argument being formatted can be transformed by a number of formatting
339 //! parameters (corresponding to `format_spec` in the syntax above). These
340 //! parameters affect the string representation of what's being formatted. This
341 //! syntax draws heavily from Python's, so it may seem a bit familiar.
342 //!
343 //! ## Fill/Alignment
344 //!
345 //! The fill character is provided normally in conjunction with the `width`
346 //! parameter. This indicates that if the value being formatted is smaller than
347 //! `width` some extra characters will be printed around it. The extra
348 //! characters are specified by `fill`, and the alignment can be one of two
349 //! options:
350 //!
351 //! * `<` - the argument is left-aligned in `width` columns
352 //! * `^` - the argument is center-aligned in `width` columns
353 //! * `>` - the argument is right-aligned in `width` columns
354 //!
355 //! Note that alignment may not be implemented by some types. A good way
356 //! to ensure padding is applied is to format your input, then use this
357 //! resulting string to pad your output.
358 //!
359 //! ## Sign/#/0
360 //!
361 //! These can all be interpreted as flags for a particular formatter.
362 //!
363 //! * '+' - This is intended for numeric types and indicates that the sign
364 //! should always be printed. Positive signs are never printed by
365 //! default, and the negative sign is only printed by default for the
366 //! `Signed` trait. This flag indicates that the correct sign (+ or -)
367 //! should always be printed.
368 //! * '-' - Currently not used
369 //! * '#' - This flag is indicates that the "alternate" form of printing should
370 //! be used. For array slices, the alternate form omits the brackets.
371 //! For the integer formatting traits, the alternate forms are:
372 //! * `#x` - precedes the argument with a "0x"
373 //! * `#X` - precedes the argument with a "0x"
374 //! * `#t` - precedes the argument with a "0b"
375 //! * `#o` - precedes the argument with a "0o"
376 //! * '0' - This is used to indicate for integer formats that the padding should
377 //! both be done with a `0` character as well as be sign-aware. A format
378 //! like `{:08}` would yield `00000001` for the integer `1`, while the
379 //! same format would yield `-0000001` for the integer `-1`. Notice that
380 //! the negative version has one fewer zero than the positive version.
381 //!
382 //! ## Width
383 //!
384 //! This is a parameter for the "minimum width" that the format should take up.
385 //! If the value's string does not fill up this many characters, then the
386 //! padding specified by fill/alignment will be used to take up the required
387 //! space.
388 //!
389 //! The default fill/alignment for non-numerics is a space and left-aligned. The
390 //! defaults for numeric formatters is also a space but with right-alignment. If
391 //! the '0' flag is specified for numerics, then the implicit fill character is
392 //! '0'.
393 //!
394 //! The value for the width can also be provided as a `usize` in the list of
395 //! parameters by using the `2$` syntax indicating that the second argument is a
396 //! `usize` specifying the width.
397 //!
398 //! ## Precision
399 //!
400 //! For non-numeric types, this can be considered a "maximum width". If the resulting string is
401 //! longer than this width, then it is truncated down to this many characters and only those are
402 //! emitted.
403 //!
404 //! For integral types, this is ignored.
405 //!
406 //! For floating-point types, this indicates how many digits after the decimal point should be
407 //! printed.
408 //!
409 //! There are three possible ways to specify the desired `precision`:
410 //!
411 //! There are three possible ways to specify the desired `precision`:
412 //! 1. An integer `.N`,
413 //! 2. an integer followed by dollar sign `.N$`, or
414 //! 3. an asterisk `.*`.
415 //!
416 //! The first specification, `.N`, means the integer `N` itself is the precision.
417 //!
418 //! The second, `.N$`, means use format *argument* `N` (which must be a `usize`) as the precision.
419 //!
420 //! Finally, `.*` means that this `{...}` is associated with *two* format inputs rather than one:
421 //! the first input holds the `usize` precision, and the second holds the value to print. Note
422 //! that in this case, if one uses the format string `{<arg>:<spec>.*}`, then the `<arg>` part
423 //! refers to the *value* to print, and the `precision` must come in the input preceding `<arg>`.
424 //!
425 //! For example, these:
426 //!
427 //! ```
428 //! // Hello {arg 0 (x)} is {arg 1 (0.01} with precision specified inline (5)}
429 //! println!("Hello {0} is {1:.5}", "x", 0.01);
430 //!
431 //! // Hello {arg 1 (x)} is {arg 2 (0.01} with precision specified in arg 0 (5)}
432 //! println!("Hello {1} is {2:.0$}", 5, "x", 0.01);
433 //!
434 //! // Hello {arg 0 (x)} is {arg 2 (0.01} with precision specified in arg 1 (5)}
435 //! println!("Hello {0} is {2:.1$}", "x", 5, 0.01);
436 //!
437 //! // Hello {next arg (x)} is {second of next two args (0.01} with precision
438 //! // specified in first of next two args (5)}
439 //! println!("Hello {} is {:.*}", "x", 5, 0.01);
440 //!
441 //! // Hello {next arg (x)} is {arg 2 (0.01} with precision
442 //! // specified in its predecessor (5)}
443 //! println!("Hello {} is {2:.*}", "x", 5, 0.01);
444 //! ```
445 //!
446 //! All print the same thing:
447 //!
448 //! ```text
449 //! Hello x is 0.01000
450 //! ```
451 //!
452 //! While these:
453 //!
454 //! ```
455 //! println!("{}, `{name:.*}` has 3 fractional digits", "Hello", 3, name=1234.56);
456 //! println!("{}, `{name:.*}` has 3 characters", "Hello", 3, name="1234.56");
457 //! ```
458 //!
459 //! print two significantly different things:
460 //!
461 //! ```text
462 //! Hello, `1234.560` has 3 fractional digits
463 //! Hello, `123` has 3 characters
464 //! ```
465 //!
466 //! # Escaping
467 //!
468 //! The literal characters `{` and `}` may be included in a string by preceding
469 //! them with the same character. For example, the `{` character is escaped with
470 //! `{{` and the `}` character is escaped with `}}`.
471
472 #![stable(feature = "rust1", since = "1.0.0")]
473
474 pub use core::fmt::{Formatter, Result, Write, rt};
475 pub use core::fmt::{Octal, Binary};
476 pub use core::fmt::{Display, Debug};
477 pub use core::fmt::{LowerHex, UpperHex, Pointer};
478 pub use core::fmt::{LowerExp, UpperExp};
479 pub use core::fmt::Error;
480 pub use core::fmt::{ArgumentV1, Arguments, write, radix, Radix, RadixFmt};
481
482 use string;
483
484 /// The format function takes a precompiled format string and a list of
485 /// arguments, to return the resulting formatted string.
486 ///
487 /// # Arguments
488 ///
489 /// * args - a structure of arguments generated via the `format_args!` macro.
490 ///
491 /// # Examples
492 ///
493 /// ```
494 /// use std::fmt;
495 ///
496 /// let s = fmt::format(format_args!("Hello, {}!", "world"));
497 /// assert_eq!(s, "Hello, world!".to_string());
498 /// ```
499 #[stable(feature = "rust1", since = "1.0.0")]
500 pub fn format(args: Arguments) -> string::String {
501 let mut output = string::String::new();
502 let _ = output.write_fmt(args);
503 output
504 }