]> git.proxmox.com Git - rustc.git/blob - src/libcollections/slice.rs
New upstream version 1.18.0+dfsg1
[rustc.git] / src / libcollections / slice.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! A dynamically-sized view into a contiguous sequence, `[T]`.
12 //!
13 //! Slices are a view into a block of memory represented as a pointer and a
14 //! length.
15 //!
16 //! ```
17 //! // slicing a Vec
18 //! let vec = vec![1, 2, 3];
19 //! let int_slice = &vec[..];
20 //! // coercing an array to a slice
21 //! let str_slice: &[&str] = &["one", "two", "three"];
22 //! ```
23 //!
24 //! Slices are either mutable or shared. The shared slice type is `&[T]`,
25 //! while the mutable slice type is `&mut [T]`, where `T` represents the element
26 //! type. For example, you can mutate the block of memory that a mutable slice
27 //! points to:
28 //!
29 //! ```
30 //! let x = &mut [1, 2, 3];
31 //! x[1] = 7;
32 //! assert_eq!(x, &[1, 7, 3]);
33 //! ```
34 //!
35 //! Here are some of the things this module contains:
36 //!
37 //! ## Structs
38 //!
39 //! There are several structs that are useful for slices, such as [`Iter`], which
40 //! represents iteration over a slice.
41 //!
42 //! ## Trait Implementations
43 //!
44 //! There are several implementations of common traits for slices. Some examples
45 //! include:
46 //!
47 //! * [`Clone`]
48 //! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`].
49 //! * [`Hash`] - for slices whose element type is [`Hash`].
50 //!
51 //! ## Iteration
52 //!
53 //! The slices implement `IntoIterator`. The iterator yields references to the
54 //! slice elements.
55 //!
56 //! ```
57 //! let numbers = &[0, 1, 2];
58 //! for n in numbers {
59 //! println!("{} is a number!", n);
60 //! }
61 //! ```
62 //!
63 //! The mutable slice yields mutable references to the elements:
64 //!
65 //! ```
66 //! let mut scores = [7, 8, 9];
67 //! for score in &mut scores[..] {
68 //! *score += 1;
69 //! }
70 //! ```
71 //!
72 //! This iterator yields mutable references to the slice's elements, so while
73 //! the element type of the slice is `i32`, the element type of the iterator is
74 //! `&mut i32`.
75 //!
76 //! * [`.iter`] and [`.iter_mut`] are the explicit methods to return the default
77 //! iterators.
78 //! * Further methods that return iterators are [`.split`], [`.splitn`],
79 //! [`.chunks`], [`.windows`] and more.
80 //!
81 //! *[See also the slice primitive type](../../std/primitive.slice.html).*
82 //!
83 //! [`Clone`]: ../../std/clone/trait.Clone.html
84 //! [`Eq`]: ../../std/cmp/trait.Eq.html
85 //! [`Ord`]: ../../std/cmp/trait.Ord.html
86 //! [`Iter`]: struct.Iter.html
87 //! [`Hash`]: ../../std/hash/trait.Hash.html
88 //! [`.iter`]: ../../std/primitive.slice.html#method.iter
89 //! [`.iter_mut`]: ../../std/primitive.slice.html#method.iter_mut
90 //! [`.split`]: ../../std/primitive.slice.html#method.split
91 //! [`.splitn`]: ../../std/primitive.slice.html#method.splitn
92 //! [`.chunks`]: ../../std/primitive.slice.html#method.chunks
93 //! [`.windows`]: ../../std/primitive.slice.html#method.windows
94 #![stable(feature = "rust1", since = "1.0.0")]
95
96 // Many of the usings in this module are only used in the test configuration.
97 // It's cleaner to just turn off the unused_imports warning than to fix them.
98 #![cfg_attr(test, allow(unused_imports, dead_code))]
99
100 use alloc::boxed::Box;
101 use core::cmp::Ordering::{self, Less};
102 use core::mem::size_of;
103 use core::mem;
104 use core::ptr;
105 use core::slice as core_slice;
106
107 use borrow::{Borrow, BorrowMut, ToOwned};
108 use vec::Vec;
109
110 #[stable(feature = "rust1", since = "1.0.0")]
111 pub use core::slice::{Chunks, Windows};
112 #[stable(feature = "rust1", since = "1.0.0")]
113 pub use core::slice::{Iter, IterMut};
114 #[stable(feature = "rust1", since = "1.0.0")]
115 pub use core::slice::{SplitMut, ChunksMut, Split};
116 #[stable(feature = "rust1", since = "1.0.0")]
117 pub use core::slice::{SplitN, RSplitN, SplitNMut, RSplitNMut};
118 #[unstable(feature = "slice_rsplit", issue = "41020")]
119 pub use core::slice::{RSplit, RSplitMut};
120 #[stable(feature = "rust1", since = "1.0.0")]
121 pub use core::slice::{from_raw_parts, from_raw_parts_mut};
122 #[unstable(feature = "slice_get_slice", issue = "35729")]
123 pub use core::slice::SliceIndex;
124
125 ////////////////////////////////////////////////////////////////////////////////
126 // Basic slice extension methods
127 ////////////////////////////////////////////////////////////////////////////////
128
129 // HACK(japaric) needed for the implementation of `vec!` macro during testing
130 // NB see the hack module in this file for more details
131 #[cfg(test)]
132 pub use self::hack::into_vec;
133
134 // HACK(japaric) needed for the implementation of `Vec::clone` during testing
135 // NB see the hack module in this file for more details
136 #[cfg(test)]
137 pub use self::hack::to_vec;
138
139 // HACK(japaric): With cfg(test) `impl [T]` is not available, these three
140 // functions are actually methods that are in `impl [T]` but not in
141 // `core::slice::SliceExt` - we need to supply these functions for the
142 // `test_permutations` test
143 mod hack {
144 use alloc::boxed::Box;
145 use core::mem;
146
147 #[cfg(test)]
148 use string::ToString;
149 use vec::Vec;
150
151 pub fn into_vec<T>(mut b: Box<[T]>) -> Vec<T> {
152 unsafe {
153 let xs = Vec::from_raw_parts(b.as_mut_ptr(), b.len(), b.len());
154 mem::forget(b);
155 xs
156 }
157 }
158
159 #[inline]
160 pub fn to_vec<T>(s: &[T]) -> Vec<T>
161 where T: Clone
162 {
163 let mut vector = Vec::with_capacity(s.len());
164 vector.extend_from_slice(s);
165 vector
166 }
167 }
168
169 #[lang = "slice"]
170 #[cfg(not(test))]
171 impl<T> [T] {
172 /// Returns the number of elements in the slice.
173 ///
174 /// # Example
175 ///
176 /// ```
177 /// let a = [1, 2, 3];
178 /// assert_eq!(a.len(), 3);
179 /// ```
180 #[stable(feature = "rust1", since = "1.0.0")]
181 #[inline]
182 pub fn len(&self) -> usize {
183 core_slice::SliceExt::len(self)
184 }
185
186 /// Returns `true` if the slice has a length of 0.
187 ///
188 /// # Example
189 ///
190 /// ```
191 /// let a = [1, 2, 3];
192 /// assert!(!a.is_empty());
193 /// ```
194 #[stable(feature = "rust1", since = "1.0.0")]
195 #[inline]
196 pub fn is_empty(&self) -> bool {
197 core_slice::SliceExt::is_empty(self)
198 }
199
200 /// Returns the first element of the slice, or `None` if it is empty.
201 ///
202 /// # Examples
203 ///
204 /// ```
205 /// let v = [10, 40, 30];
206 /// assert_eq!(Some(&10), v.first());
207 ///
208 /// let w: &[i32] = &[];
209 /// assert_eq!(None, w.first());
210 /// ```
211 #[stable(feature = "rust1", since = "1.0.0")]
212 #[inline]
213 pub fn first(&self) -> Option<&T> {
214 core_slice::SliceExt::first(self)
215 }
216
217 /// Returns a mutable pointer to the first element of the slice, or `None` if it is empty.
218 ///
219 /// # Examples
220 ///
221 /// ```
222 /// let x = &mut [0, 1, 2];
223 ///
224 /// if let Some(first) = x.first_mut() {
225 /// *first = 5;
226 /// }
227 /// assert_eq!(x, &[5, 1, 2]);
228 /// ```
229 #[stable(feature = "rust1", since = "1.0.0")]
230 #[inline]
231 pub fn first_mut(&mut self) -> Option<&mut T> {
232 core_slice::SliceExt::first_mut(self)
233 }
234
235 /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
236 ///
237 /// # Examples
238 ///
239 /// ```
240 /// let x = &[0, 1, 2];
241 ///
242 /// if let Some((first, elements)) = x.split_first() {
243 /// assert_eq!(first, &0);
244 /// assert_eq!(elements, &[1, 2]);
245 /// }
246 /// ```
247 #[stable(feature = "slice_splits", since = "1.5.0")]
248 #[inline]
249 pub fn split_first(&self) -> Option<(&T, &[T])> {
250 core_slice::SliceExt::split_first(self)
251 }
252
253 /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
254 ///
255 /// # Examples
256 ///
257 /// ```
258 /// let x = &mut [0, 1, 2];
259 ///
260 /// if let Some((first, elements)) = x.split_first_mut() {
261 /// *first = 3;
262 /// elements[0] = 4;
263 /// elements[1] = 5;
264 /// }
265 /// assert_eq!(x, &[3, 4, 5]);
266 /// ```
267 #[stable(feature = "slice_splits", since = "1.5.0")]
268 #[inline]
269 pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
270 core_slice::SliceExt::split_first_mut(self)
271 }
272
273 /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
274 ///
275 /// # Examples
276 ///
277 /// ```
278 /// let x = &[0, 1, 2];
279 ///
280 /// if let Some((last, elements)) = x.split_last() {
281 /// assert_eq!(last, &2);
282 /// assert_eq!(elements, &[0, 1]);
283 /// }
284 /// ```
285 #[stable(feature = "slice_splits", since = "1.5.0")]
286 #[inline]
287 pub fn split_last(&self) -> Option<(&T, &[T])> {
288 core_slice::SliceExt::split_last(self)
289
290 }
291
292 /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
293 ///
294 /// # Examples
295 ///
296 /// ```
297 /// let x = &mut [0, 1, 2];
298 ///
299 /// if let Some((last, elements)) = x.split_last_mut() {
300 /// *last = 3;
301 /// elements[0] = 4;
302 /// elements[1] = 5;
303 /// }
304 /// assert_eq!(x, &[4, 5, 3]);
305 /// ```
306 #[stable(feature = "slice_splits", since = "1.5.0")]
307 #[inline]
308 pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
309 core_slice::SliceExt::split_last_mut(self)
310 }
311
312 /// Returns the last element of the slice, or `None` if it is empty.
313 ///
314 /// # Examples
315 ///
316 /// ```
317 /// let v = [10, 40, 30];
318 /// assert_eq!(Some(&30), v.last());
319 ///
320 /// let w: &[i32] = &[];
321 /// assert_eq!(None, w.last());
322 /// ```
323 #[stable(feature = "rust1", since = "1.0.0")]
324 #[inline]
325 pub fn last(&self) -> Option<&T> {
326 core_slice::SliceExt::last(self)
327 }
328
329 /// Returns a mutable pointer to the last item in the slice.
330 ///
331 /// # Examples
332 ///
333 /// ```
334 /// let x = &mut [0, 1, 2];
335 ///
336 /// if let Some(last) = x.last_mut() {
337 /// *last = 10;
338 /// }
339 /// assert_eq!(x, &[0, 1, 10]);
340 /// ```
341 #[stable(feature = "rust1", since = "1.0.0")]
342 #[inline]
343 pub fn last_mut(&mut self) -> Option<&mut T> {
344 core_slice::SliceExt::last_mut(self)
345 }
346
347 /// Returns a reference to an element or subslice depending on the type of
348 /// index.
349 ///
350 /// - If given a position, returns a reference to the element at that
351 /// position or `None` if out of bounds.
352 /// - If given a range, returns the subslice corresponding to that range,
353 /// or `None` if out of bounds.
354 ///
355 /// # Examples
356 ///
357 /// ```
358 /// let v = [10, 40, 30];
359 /// assert_eq!(Some(&40), v.get(1));
360 /// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
361 /// assert_eq!(None, v.get(3));
362 /// assert_eq!(None, v.get(0..4));
363 /// ```
364 #[stable(feature = "rust1", since = "1.0.0")]
365 #[inline]
366 pub fn get<I>(&self, index: I) -> Option<&I::Output>
367 where I: SliceIndex<Self>
368 {
369 core_slice::SliceExt::get(self, index)
370 }
371
372 /// Returns a mutable reference to an element or subslice depending on the
373 /// type of index (see [`get`]) or `None` if the index is out of bounds.
374 ///
375 /// [`get`]: #method.get
376 ///
377 /// # Examples
378 ///
379 /// ```
380 /// let x = &mut [0, 1, 2];
381 ///
382 /// if let Some(elem) = x.get_mut(1) {
383 /// *elem = 42;
384 /// }
385 /// assert_eq!(x, &[0, 42, 2]);
386 /// ```
387 #[stable(feature = "rust1", since = "1.0.0")]
388 #[inline]
389 pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
390 where I: SliceIndex<Self>
391 {
392 core_slice::SliceExt::get_mut(self, index)
393 }
394
395 /// Returns a reference to an element or subslice, without doing bounds
396 /// checking. So use it very carefully!
397 ///
398 /// # Examples
399 ///
400 /// ```
401 /// let x = &[1, 2, 4];
402 ///
403 /// unsafe {
404 /// assert_eq!(x.get_unchecked(1), &2);
405 /// }
406 /// ```
407 #[stable(feature = "rust1", since = "1.0.0")]
408 #[inline]
409 pub unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
410 where I: SliceIndex<Self>
411 {
412 core_slice::SliceExt::get_unchecked(self, index)
413 }
414
415 /// Returns a mutable reference to an element or subslice, without doing
416 /// bounds checking. So use it very carefully!
417 ///
418 /// # Examples
419 ///
420 /// ```
421 /// let x = &mut [1, 2, 4];
422 ///
423 /// unsafe {
424 /// let elem = x.get_unchecked_mut(1);
425 /// *elem = 13;
426 /// }
427 /// assert_eq!(x, &[1, 13, 4]);
428 /// ```
429 #[stable(feature = "rust1", since = "1.0.0")]
430 #[inline]
431 pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
432 where I: SliceIndex<Self>
433 {
434 core_slice::SliceExt::get_unchecked_mut(self, index)
435 }
436
437 /// Returns a raw pointer to the slice's buffer.
438 ///
439 /// The caller must ensure that the slice outlives the pointer this
440 /// function returns, or else it will end up pointing to garbage.
441 ///
442 /// Modifying the container referenced by this slice may cause its buffer
443 /// to be reallocated, which would also make any pointers to it invalid.
444 ///
445 /// # Examples
446 ///
447 /// ```
448 /// let x = &[1, 2, 4];
449 /// let x_ptr = x.as_ptr();
450 ///
451 /// unsafe {
452 /// for i in 0..x.len() {
453 /// assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize));
454 /// }
455 /// }
456 /// ```
457 #[stable(feature = "rust1", since = "1.0.0")]
458 #[inline]
459 pub fn as_ptr(&self) -> *const T {
460 core_slice::SliceExt::as_ptr(self)
461 }
462
463 /// Returns an unsafe mutable pointer to the slice's buffer.
464 ///
465 /// The caller must ensure that the slice outlives the pointer this
466 /// function returns, or else it will end up pointing to garbage.
467 ///
468 /// Modifying the container referenced by this slice may cause its buffer
469 /// to be reallocated, which would also make any pointers to it invalid.
470 ///
471 /// # Examples
472 ///
473 /// ```
474 /// let x = &mut [1, 2, 4];
475 /// let x_ptr = x.as_mut_ptr();
476 ///
477 /// unsafe {
478 /// for i in 0..x.len() {
479 /// *x_ptr.offset(i as isize) += 2;
480 /// }
481 /// }
482 /// assert_eq!(x, &[3, 4, 6]);
483 /// ```
484 #[stable(feature = "rust1", since = "1.0.0")]
485 #[inline]
486 pub fn as_mut_ptr(&mut self) -> *mut T {
487 core_slice::SliceExt::as_mut_ptr(self)
488 }
489
490 /// Swaps two elements in the slice.
491 ///
492 /// # Arguments
493 ///
494 /// * a - The index of the first element
495 /// * b - The index of the second element
496 ///
497 /// # Panics
498 ///
499 /// Panics if `a` or `b` are out of bounds.
500 ///
501 /// # Examples
502 ///
503 /// ```
504 /// let mut v = ["a", "b", "c", "d"];
505 /// v.swap(1, 3);
506 /// assert!(v == ["a", "d", "c", "b"]);
507 /// ```
508 #[stable(feature = "rust1", since = "1.0.0")]
509 #[inline]
510 pub fn swap(&mut self, a: usize, b: usize) {
511 core_slice::SliceExt::swap(self, a, b)
512 }
513
514 /// Reverses the order of elements in the slice, in place.
515 ///
516 /// # Example
517 ///
518 /// ```
519 /// let mut v = [1, 2, 3];
520 /// v.reverse();
521 /// assert!(v == [3, 2, 1]);
522 /// ```
523 #[stable(feature = "rust1", since = "1.0.0")]
524 #[inline]
525 pub fn reverse(&mut self) {
526 core_slice::SliceExt::reverse(self)
527 }
528
529 /// Returns an iterator over the slice.
530 ///
531 /// # Examples
532 ///
533 /// ```
534 /// let x = &[1, 2, 4];
535 /// let mut iterator = x.iter();
536 ///
537 /// assert_eq!(iterator.next(), Some(&1));
538 /// assert_eq!(iterator.next(), Some(&2));
539 /// assert_eq!(iterator.next(), Some(&4));
540 /// assert_eq!(iterator.next(), None);
541 /// ```
542 #[stable(feature = "rust1", since = "1.0.0")]
543 #[inline]
544 pub fn iter(&self) -> Iter<T> {
545 core_slice::SliceExt::iter(self)
546 }
547
548 /// Returns an iterator that allows modifying each value.
549 ///
550 /// # Examples
551 ///
552 /// ```
553 /// let x = &mut [1, 2, 4];
554 /// for elem in x.iter_mut() {
555 /// *elem += 2;
556 /// }
557 /// assert_eq!(x, &[3, 4, 6]);
558 /// ```
559 #[stable(feature = "rust1", since = "1.0.0")]
560 #[inline]
561 pub fn iter_mut(&mut self) -> IterMut<T> {
562 core_slice::SliceExt::iter_mut(self)
563 }
564
565 /// Returns an iterator over all contiguous windows of length
566 /// `size`. The windows overlap. If the slice is shorter than
567 /// `size`, the iterator returns no values.
568 ///
569 /// # Panics
570 ///
571 /// Panics if `size` is 0.
572 ///
573 /// # Example
574 ///
575 /// ```
576 /// let slice = ['r', 'u', 's', 't'];
577 /// let mut iter = slice.windows(2);
578 /// assert_eq!(iter.next().unwrap(), &['r', 'u']);
579 /// assert_eq!(iter.next().unwrap(), &['u', 's']);
580 /// assert_eq!(iter.next().unwrap(), &['s', 't']);
581 /// assert!(iter.next().is_none());
582 /// ```
583 ///
584 /// If the slice is shorter than `size`:
585 ///
586 /// ```
587 /// let slice = ['f', 'o', 'o'];
588 /// let mut iter = slice.windows(4);
589 /// assert!(iter.next().is_none());
590 /// ```
591 #[stable(feature = "rust1", since = "1.0.0")]
592 #[inline]
593 pub fn windows(&self, size: usize) -> Windows<T> {
594 core_slice::SliceExt::windows(self, size)
595 }
596
597 /// Returns an iterator over `size` elements of the slice at a
598 /// time. The chunks are slices and do not overlap. If `size` does
599 /// not divide the length of the slice, then the last chunk will
600 /// not have length `size`.
601 ///
602 /// # Panics
603 ///
604 /// Panics if `size` is 0.
605 ///
606 /// # Example
607 ///
608 /// ```
609 /// let slice = ['l', 'o', 'r', 'e', 'm'];
610 /// let mut iter = slice.chunks(2);
611 /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
612 /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
613 /// assert_eq!(iter.next().unwrap(), &['m']);
614 /// assert!(iter.next().is_none());
615 /// ```
616 #[stable(feature = "rust1", since = "1.0.0")]
617 #[inline]
618 pub fn chunks(&self, size: usize) -> Chunks<T> {
619 core_slice::SliceExt::chunks(self, size)
620 }
621
622 /// Returns an iterator over `chunk_size` elements of the slice at a time.
623 /// The chunks are mutable slices, and do not overlap. If `chunk_size` does
624 /// not divide the length of the slice, then the last chunk will not
625 /// have length `chunk_size`.
626 ///
627 /// # Panics
628 ///
629 /// Panics if `chunk_size` is 0.
630 ///
631 /// # Examples
632 ///
633 /// ```
634 /// let v = &mut [0, 0, 0, 0, 0];
635 /// let mut count = 1;
636 ///
637 /// for chunk in v.chunks_mut(2) {
638 /// for elem in chunk.iter_mut() {
639 /// *elem += count;
640 /// }
641 /// count += 1;
642 /// }
643 /// assert_eq!(v, &[1, 1, 2, 2, 3]);
644 /// ```
645 #[stable(feature = "rust1", since = "1.0.0")]
646 #[inline]
647 pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T> {
648 core_slice::SliceExt::chunks_mut(self, chunk_size)
649 }
650
651 /// Divides one slice into two at an index.
652 ///
653 /// The first will contain all indices from `[0, mid)` (excluding
654 /// the index `mid` itself) and the second will contain all
655 /// indices from `[mid, len)` (excluding the index `len` itself).
656 ///
657 /// # Panics
658 ///
659 /// Panics if `mid > len`.
660 ///
661 /// # Examples
662 ///
663 /// ```
664 /// let v = [10, 40, 30, 20, 50];
665 /// let (v1, v2) = v.split_at(2);
666 /// assert_eq!([10, 40], v1);
667 /// assert_eq!([30, 20, 50], v2);
668 /// ```
669 #[stable(feature = "rust1", since = "1.0.0")]
670 #[inline]
671 pub fn split_at(&self, mid: usize) -> (&[T], &[T]) {
672 core_slice::SliceExt::split_at(self, mid)
673 }
674
675 /// Divides one `&mut` into two at an index.
676 ///
677 /// The first will contain all indices from `[0, mid)` (excluding
678 /// the index `mid` itself) and the second will contain all
679 /// indices from `[mid, len)` (excluding the index `len` itself).
680 ///
681 /// # Panics
682 ///
683 /// Panics if `mid > len`.
684 ///
685 /// # Examples
686 ///
687 /// ```
688 /// let mut v = [1, 2, 3, 4, 5, 6];
689 ///
690 /// // scoped to restrict the lifetime of the borrows
691 /// {
692 /// let (left, right) = v.split_at_mut(0);
693 /// assert!(left == []);
694 /// assert!(right == [1, 2, 3, 4, 5, 6]);
695 /// }
696 ///
697 /// {
698 /// let (left, right) = v.split_at_mut(2);
699 /// assert!(left == [1, 2]);
700 /// assert!(right == [3, 4, 5, 6]);
701 /// }
702 ///
703 /// {
704 /// let (left, right) = v.split_at_mut(6);
705 /// assert!(left == [1, 2, 3, 4, 5, 6]);
706 /// assert!(right == []);
707 /// }
708 /// ```
709 #[stable(feature = "rust1", since = "1.0.0")]
710 #[inline]
711 pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
712 core_slice::SliceExt::split_at_mut(self, mid)
713 }
714
715 /// Returns an iterator over subslices separated by elements that match
716 /// `pred`. The matched element is not contained in the subslices.
717 ///
718 /// # Examples
719 ///
720 /// ```
721 /// let slice = [10, 40, 33, 20];
722 /// let mut iter = slice.split(|num| num % 3 == 0);
723 ///
724 /// assert_eq!(iter.next().unwrap(), &[10, 40]);
725 /// assert_eq!(iter.next().unwrap(), &[20]);
726 /// assert!(iter.next().is_none());
727 /// ```
728 ///
729 /// If the first element is matched, an empty slice will be the first item
730 /// returned by the iterator. Similarly, if the last element in the slice
731 /// is matched, an empty slice will be the last item returned by the
732 /// iterator:
733 ///
734 /// ```
735 /// let slice = [10, 40, 33];
736 /// let mut iter = slice.split(|num| num % 3 == 0);
737 ///
738 /// assert_eq!(iter.next().unwrap(), &[10, 40]);
739 /// assert_eq!(iter.next().unwrap(), &[]);
740 /// assert!(iter.next().is_none());
741 /// ```
742 ///
743 /// If two matched elements are directly adjacent, an empty slice will be
744 /// present between them:
745 ///
746 /// ```
747 /// let slice = [10, 6, 33, 20];
748 /// let mut iter = slice.split(|num| num % 3 == 0);
749 ///
750 /// assert_eq!(iter.next().unwrap(), &[10]);
751 /// assert_eq!(iter.next().unwrap(), &[]);
752 /// assert_eq!(iter.next().unwrap(), &[20]);
753 /// assert!(iter.next().is_none());
754 /// ```
755 #[stable(feature = "rust1", since = "1.0.0")]
756 #[inline]
757 pub fn split<F>(&self, pred: F) -> Split<T, F>
758 where F: FnMut(&T) -> bool
759 {
760 core_slice::SliceExt::split(self, pred)
761 }
762
763 /// Returns an iterator over mutable subslices separated by elements that
764 /// match `pred`. The matched element is not contained in the subslices.
765 ///
766 /// # Examples
767 ///
768 /// ```
769 /// let mut v = [10, 40, 30, 20, 60, 50];
770 ///
771 /// for group in v.split_mut(|num| *num % 3 == 0) {
772 /// group[0] = 1;
773 /// }
774 /// assert_eq!(v, [1, 40, 30, 1, 60, 1]);
775 /// ```
776 #[stable(feature = "rust1", since = "1.0.0")]
777 #[inline]
778 pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F>
779 where F: FnMut(&T) -> bool
780 {
781 core_slice::SliceExt::split_mut(self, pred)
782 }
783
784 /// Returns an iterator over subslices separated by elements that match
785 /// `pred`, starting at the end of the slice and working backwards.
786 /// The matched element is not contained in the subslices.
787 ///
788 /// # Examples
789 ///
790 /// ```
791 /// #![feature(slice_rsplit)]
792 ///
793 /// let slice = [11, 22, 33, 0, 44, 55];
794 /// let mut iter = slice.rsplit(|num| *num == 0);
795 ///
796 /// assert_eq!(iter.next().unwrap(), &[44, 55]);
797 /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
798 /// assert_eq!(iter.next(), None);
799 /// ```
800 ///
801 /// As with `split()`, if the first or last element is matched, an empty
802 /// slice will be the first (or last) item returned by the iterator.
803 ///
804 /// ```
805 /// #![feature(slice_rsplit)]
806 ///
807 /// let v = &[0, 1, 1, 2, 3, 5, 8];
808 /// let mut it = v.rsplit(|n| *n % 2 == 0);
809 /// assert_eq!(it.next().unwrap(), &[]);
810 /// assert_eq!(it.next().unwrap(), &[3, 5]);
811 /// assert_eq!(it.next().unwrap(), &[1, 1]);
812 /// assert_eq!(it.next().unwrap(), &[]);
813 /// assert_eq!(it.next(), None);
814 /// ```
815 #[unstable(feature = "slice_rsplit", issue = "41020")]
816 #[inline]
817 pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F>
818 where F: FnMut(&T) -> bool
819 {
820 core_slice::SliceExt::rsplit(self, pred)
821 }
822
823 /// Returns an iterator over mutable subslices separated by elements that
824 /// match `pred`, starting at the end of the slice and working
825 /// backwards. The matched element is not contained in the subslices.
826 ///
827 /// # Examples
828 ///
829 /// ```
830 /// #![feature(slice_rsplit)]
831 ///
832 /// let mut v = [100, 400, 300, 200, 600, 500];
833 ///
834 /// let mut count = 0;
835 /// for group in v.rsplit_mut(|num| *num % 3 == 0) {
836 /// count += 1;
837 /// group[0] = count;
838 /// }
839 /// assert_eq!(v, [3, 400, 300, 2, 600, 1]);
840 /// ```
841 ///
842 #[unstable(feature = "slice_rsplit", issue = "41020")]
843 #[inline]
844 pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<T, F>
845 where F: FnMut(&T) -> bool
846 {
847 core_slice::SliceExt::rsplit_mut(self, pred)
848 }
849
850 /// Returns an iterator over subslices separated by elements that match
851 /// `pred`, limited to returning at most `n` items. The matched element is
852 /// not contained in the subslices.
853 ///
854 /// The last element returned, if any, will contain the remainder of the
855 /// slice.
856 ///
857 /// # Examples
858 ///
859 /// Print the slice split once by numbers divisible by 3 (i.e. `[10, 40]`,
860 /// `[20, 60, 50]`):
861 ///
862 /// ```
863 /// let v = [10, 40, 30, 20, 60, 50];
864 ///
865 /// for group in v.splitn(2, |num| *num % 3 == 0) {
866 /// println!("{:?}", group);
867 /// }
868 /// ```
869 #[stable(feature = "rust1", since = "1.0.0")]
870 #[inline]
871 pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F>
872 where F: FnMut(&T) -> bool
873 {
874 core_slice::SliceExt::splitn(self, n, pred)
875 }
876
877 /// Returns an iterator over subslices separated by elements that match
878 /// `pred`, limited to returning at most `n` items. The matched element is
879 /// not contained in the subslices.
880 ///
881 /// The last element returned, if any, will contain the remainder of the
882 /// slice.
883 ///
884 /// # Examples
885 ///
886 /// ```
887 /// let mut v = [10, 40, 30, 20, 60, 50];
888 ///
889 /// for group in v.splitn_mut(2, |num| *num % 3 == 0) {
890 /// group[0] = 1;
891 /// }
892 /// assert_eq!(v, [1, 40, 30, 1, 60, 50]);
893 /// ```
894 #[stable(feature = "rust1", since = "1.0.0")]
895 #[inline]
896 pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F>
897 where F: FnMut(&T) -> bool
898 {
899 core_slice::SliceExt::splitn_mut(self, n, pred)
900 }
901
902 /// Returns an iterator over subslices separated by elements that match
903 /// `pred` limited to returning at most `n` items. This starts at the end of
904 /// the slice and works backwards. The matched element is not contained in
905 /// the subslices.
906 ///
907 /// The last element returned, if any, will contain the remainder of the
908 /// slice.
909 ///
910 /// # Examples
911 ///
912 /// Print the slice split once, starting from the end, by numbers divisible
913 /// by 3 (i.e. `[50]`, `[10, 40, 30, 20]`):
914 ///
915 /// ```
916 /// let v = [10, 40, 30, 20, 60, 50];
917 ///
918 /// for group in v.rsplitn(2, |num| *num % 3 == 0) {
919 /// println!("{:?}", group);
920 /// }
921 /// ```
922 #[stable(feature = "rust1", since = "1.0.0")]
923 #[inline]
924 pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F>
925 where F: FnMut(&T) -> bool
926 {
927 core_slice::SliceExt::rsplitn(self, n, pred)
928 }
929
930 /// Returns an iterator over subslices separated by elements that match
931 /// `pred` limited to returning at most `n` items. This starts at the end of
932 /// the slice and works backwards. The matched element is not contained in
933 /// the subslices.
934 ///
935 /// The last element returned, if any, will contain the remainder of the
936 /// slice.
937 ///
938 /// # Examples
939 ///
940 /// ```
941 /// let mut s = [10, 40, 30, 20, 60, 50];
942 ///
943 /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
944 /// group[0] = 1;
945 /// }
946 /// assert_eq!(s, [1, 40, 30, 20, 60, 1]);
947 /// ```
948 #[stable(feature = "rust1", since = "1.0.0")]
949 #[inline]
950 pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F>
951 where F: FnMut(&T) -> bool
952 {
953 core_slice::SliceExt::rsplitn_mut(self, n, pred)
954 }
955
956 /// Returns `true` if the slice contains an element with the given value.
957 ///
958 /// # Examples
959 ///
960 /// ```
961 /// let v = [10, 40, 30];
962 /// assert!(v.contains(&30));
963 /// assert!(!v.contains(&50));
964 /// ```
965 #[stable(feature = "rust1", since = "1.0.0")]
966 pub fn contains(&self, x: &T) -> bool
967 where T: PartialEq
968 {
969 core_slice::SliceExt::contains(self, x)
970 }
971
972 /// Returns `true` if `needle` is a prefix of the slice.
973 ///
974 /// # Examples
975 ///
976 /// ```
977 /// let v = [10, 40, 30];
978 /// assert!(v.starts_with(&[10]));
979 /// assert!(v.starts_with(&[10, 40]));
980 /// assert!(!v.starts_with(&[50]));
981 /// assert!(!v.starts_with(&[10, 50]));
982 /// ```
983 ///
984 /// Always returns `true` if `needle` is an empty slice:
985 ///
986 /// ```
987 /// let v = &[10, 40, 30];
988 /// assert!(v.starts_with(&[]));
989 /// let v: &[u8] = &[];
990 /// assert!(v.starts_with(&[]));
991 /// ```
992 #[stable(feature = "rust1", since = "1.0.0")]
993 pub fn starts_with(&self, needle: &[T]) -> bool
994 where T: PartialEq
995 {
996 core_slice::SliceExt::starts_with(self, needle)
997 }
998
999 /// Returns `true` if `needle` is a suffix of the slice.
1000 ///
1001 /// # Examples
1002 ///
1003 /// ```
1004 /// let v = [10, 40, 30];
1005 /// assert!(v.ends_with(&[30]));
1006 /// assert!(v.ends_with(&[40, 30]));
1007 /// assert!(!v.ends_with(&[50]));
1008 /// assert!(!v.ends_with(&[50, 30]));
1009 /// ```
1010 ///
1011 /// Always returns `true` if `needle` is an empty slice:
1012 ///
1013 /// ```
1014 /// let v = &[10, 40, 30];
1015 /// assert!(v.ends_with(&[]));
1016 /// let v: &[u8] = &[];
1017 /// assert!(v.ends_with(&[]));
1018 /// ```
1019 #[stable(feature = "rust1", since = "1.0.0")]
1020 pub fn ends_with(&self, needle: &[T]) -> bool
1021 where T: PartialEq
1022 {
1023 core_slice::SliceExt::ends_with(self, needle)
1024 }
1025
1026 /// Binary searches this sorted slice for a given element.
1027 ///
1028 /// If the value is found then `Ok` is returned, containing the
1029 /// index of the matching element; if the value is not found then
1030 /// `Err` is returned, containing the index where a matching
1031 /// element could be inserted while maintaining sorted order.
1032 ///
1033 /// # Example
1034 ///
1035 /// Looks up a series of four elements. The first is found, with a
1036 /// uniquely determined position; the second and third are not
1037 /// found; the fourth could match any position in `[1, 4]`.
1038 ///
1039 /// ```
1040 /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
1041 ///
1042 /// assert_eq!(s.binary_search(&13), Ok(9));
1043 /// assert_eq!(s.binary_search(&4), Err(7));
1044 /// assert_eq!(s.binary_search(&100), Err(13));
1045 /// let r = s.binary_search(&1);
1046 /// assert!(match r { Ok(1...4) => true, _ => false, });
1047 /// ```
1048 #[stable(feature = "rust1", since = "1.0.0")]
1049 pub fn binary_search(&self, x: &T) -> Result<usize, usize>
1050 where T: Ord
1051 {
1052 core_slice::SliceExt::binary_search(self, x)
1053 }
1054
1055 /// Binary searches this sorted slice with a comparator function.
1056 ///
1057 /// The comparator function should implement an order consistent
1058 /// with the sort order of the underlying slice, returning an
1059 /// order code that indicates whether its argument is `Less`,
1060 /// `Equal` or `Greater` the desired target.
1061 ///
1062 /// If a matching value is found then returns `Ok`, containing
1063 /// the index for the matched element; if no match is found then
1064 /// `Err` is returned, containing the index where a matching
1065 /// element could be inserted while maintaining sorted order.
1066 ///
1067 /// # Example
1068 ///
1069 /// Looks up a series of four elements. The first is found, with a
1070 /// uniquely determined position; the second and third are not
1071 /// found; the fourth could match any position in `[1, 4]`.
1072 ///
1073 /// ```
1074 /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
1075 ///
1076 /// let seek = 13;
1077 /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
1078 /// let seek = 4;
1079 /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
1080 /// let seek = 100;
1081 /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
1082 /// let seek = 1;
1083 /// let r = s.binary_search_by(|probe| probe.cmp(&seek));
1084 /// assert!(match r { Ok(1...4) => true, _ => false, });
1085 /// ```
1086 #[stable(feature = "rust1", since = "1.0.0")]
1087 #[inline]
1088 pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
1089 where F: FnMut(&'a T) -> Ordering
1090 {
1091 core_slice::SliceExt::binary_search_by(self, f)
1092 }
1093
1094 /// Binary searches this sorted slice with a key extraction function.
1095 ///
1096 /// Assumes that the slice is sorted by the key, for instance with
1097 /// [`sort_by_key`] using the same key extraction function.
1098 ///
1099 /// If a matching value is found then returns `Ok`, containing the
1100 /// index for the matched element; if no match is found then `Err`
1101 /// is returned, containing the index where a matching element could
1102 /// be inserted while maintaining sorted order.
1103 ///
1104 /// [`sort_by_key`]: #method.sort_by_key
1105 ///
1106 /// # Examples
1107 ///
1108 /// Looks up a series of four elements in a slice of pairs sorted by
1109 /// their second elements. The first is found, with a uniquely
1110 /// determined position; the second and third are not found; the
1111 /// fourth could match any position in `[1, 4]`.
1112 ///
1113 /// ```
1114 /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
1115 /// (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
1116 /// (1, 21), (2, 34), (4, 55)];
1117 ///
1118 /// assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9));
1119 /// assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7));
1120 /// assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13));
1121 /// let r = s.binary_search_by_key(&1, |&(a,b)| b);
1122 /// assert!(match r { Ok(1...4) => true, _ => false, });
1123 /// ```
1124 #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")]
1125 #[inline]
1126 pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
1127 where F: FnMut(&'a T) -> B,
1128 B: Ord
1129 {
1130 core_slice::SliceExt::binary_search_by_key(self, b, f)
1131 }
1132
1133 /// Sorts the slice.
1134 ///
1135 /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case.
1136 ///
1137 /// # Current implementation
1138 ///
1139 /// The current algorithm is an adaptive, iterative merge sort inspired by
1140 /// [timsort](https://en.wikipedia.org/wiki/Timsort).
1141 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
1142 /// two or more sorted sequences concatenated one after another.
1143 ///
1144 /// Also, it allocates temporary storage half the size of `self`, but for short slices a
1145 /// non-allocating insertion sort is used instead.
1146 ///
1147 /// # Examples
1148 ///
1149 /// ```
1150 /// let mut v = [-5, 4, 1, -3, 2];
1151 ///
1152 /// v.sort();
1153 /// assert!(v == [-5, -3, 1, 2, 4]);
1154 /// ```
1155 #[stable(feature = "rust1", since = "1.0.0")]
1156 #[inline]
1157 pub fn sort(&mut self)
1158 where T: Ord
1159 {
1160 merge_sort(self, |a, b| a.lt(b));
1161 }
1162
1163 /// Sorts the slice with a comparator function.
1164 ///
1165 /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case.
1166 ///
1167 /// # Current implementation
1168 ///
1169 /// The current algorithm is an adaptive, iterative merge sort inspired by
1170 /// [timsort](https://en.wikipedia.org/wiki/Timsort).
1171 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
1172 /// two or more sorted sequences concatenated one after another.
1173 ///
1174 /// Also, it allocates temporary storage half the size of `self`, but for short slices a
1175 /// non-allocating insertion sort is used instead.
1176 ///
1177 /// # Examples
1178 ///
1179 /// ```
1180 /// let mut v = [5, 4, 1, 3, 2];
1181 /// v.sort_by(|a, b| a.cmp(b));
1182 /// assert!(v == [1, 2, 3, 4, 5]);
1183 ///
1184 /// // reverse sorting
1185 /// v.sort_by(|a, b| b.cmp(a));
1186 /// assert!(v == [5, 4, 3, 2, 1]);
1187 /// ```
1188 #[stable(feature = "rust1", since = "1.0.0")]
1189 #[inline]
1190 pub fn sort_by<F>(&mut self, mut compare: F)
1191 where F: FnMut(&T, &T) -> Ordering
1192 {
1193 merge_sort(self, |a, b| compare(a, b) == Less);
1194 }
1195
1196 /// Sorts the slice with a key extraction function.
1197 ///
1198 /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case.
1199 ///
1200 /// # Current implementation
1201 ///
1202 /// The current algorithm is an adaptive, iterative merge sort inspired by
1203 /// [timsort](https://en.wikipedia.org/wiki/Timsort).
1204 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
1205 /// two or more sorted sequences concatenated one after another.
1206 ///
1207 /// Also, it allocates temporary storage half the size of `self`, but for short slices a
1208 /// non-allocating insertion sort is used instead.
1209 ///
1210 /// # Examples
1211 ///
1212 /// ```
1213 /// let mut v = [-5i32, 4, 1, -3, 2];
1214 ///
1215 /// v.sort_by_key(|k| k.abs());
1216 /// assert!(v == [1, 2, -3, 4, -5]);
1217 /// ```
1218 #[stable(feature = "slice_sort_by_key", since = "1.7.0")]
1219 #[inline]
1220 pub fn sort_by_key<B, F>(&mut self, mut f: F)
1221 where F: FnMut(&T) -> B, B: Ord
1222 {
1223 merge_sort(self, |a, b| f(a).lt(&f(b)));
1224 }
1225
1226 /// Sorts the slice, but may not preserve the order of equal elements.
1227 ///
1228 /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
1229 /// and `O(n log n)` worst-case.
1230 ///
1231 /// # Current implementation
1232 ///
1233 /// The current algorithm is based on Orson Peters' [pattern-defeating quicksort][pdqsort],
1234 /// which is a quicksort variant designed to be very fast on certain kinds of patterns,
1235 /// sometimes achieving linear time. It is randomized but deterministic, and falls back to
1236 /// heapsort on degenerate inputs.
1237 ///
1238 /// It is generally faster than stable sorting, except in a few special cases, e.g. when the
1239 /// slice consists of several concatenated sorted sequences.
1240 ///
1241 /// # Examples
1242 ///
1243 /// ```
1244 /// #![feature(sort_unstable)]
1245 ///
1246 /// let mut v = [-5, 4, 1, -3, 2];
1247 ///
1248 /// v.sort_unstable();
1249 /// assert!(v == [-5, -3, 1, 2, 4]);
1250 /// ```
1251 ///
1252 /// [pdqsort]: https://github.com/orlp/pdqsort
1253 // FIXME #40585: Mention `sort_unstable` in the documentation for `sort`.
1254 #[unstable(feature = "sort_unstable", issue = "40585")]
1255 #[inline]
1256 pub fn sort_unstable(&mut self)
1257 where T: Ord
1258 {
1259 core_slice::SliceExt::sort_unstable(self);
1260 }
1261
1262 /// Sorts the slice with a comparator function, but may not preserve the order of equal
1263 /// elements.
1264 ///
1265 /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
1266 /// and `O(n log n)` worst-case.
1267 ///
1268 /// # Current implementation
1269 ///
1270 /// The current algorithm is based on Orson Peters' [pattern-defeating quicksort][pdqsort],
1271 /// which is a quicksort variant designed to be very fast on certain kinds of patterns,
1272 /// sometimes achieving linear time. It is randomized but deterministic, and falls back to
1273 /// heapsort on degenerate inputs.
1274 ///
1275 /// It is generally faster than stable sorting, except in a few special cases, e.g. when the
1276 /// slice consists of several concatenated sorted sequences.
1277 ///
1278 /// # Examples
1279 ///
1280 /// ```
1281 /// #![feature(sort_unstable)]
1282 ///
1283 /// let mut v = [5, 4, 1, 3, 2];
1284 /// v.sort_unstable_by(|a, b| a.cmp(b));
1285 /// assert!(v == [1, 2, 3, 4, 5]);
1286 ///
1287 /// // reverse sorting
1288 /// v.sort_unstable_by(|a, b| b.cmp(a));
1289 /// assert!(v == [5, 4, 3, 2, 1]);
1290 /// ```
1291 ///
1292 /// [pdqsort]: https://github.com/orlp/pdqsort
1293 // FIXME #40585: Mention `sort_unstable_by` in the documentation for `sort_by`.
1294 #[unstable(feature = "sort_unstable", issue = "40585")]
1295 #[inline]
1296 pub fn sort_unstable_by<F>(&mut self, compare: F)
1297 where F: FnMut(&T, &T) -> Ordering
1298 {
1299 core_slice::SliceExt::sort_unstable_by(self, compare);
1300 }
1301
1302 /// Sorts the slice with a key extraction function, but may not preserve the order of equal
1303 /// elements.
1304 ///
1305 /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
1306 /// and `O(n log n)` worst-case.
1307 ///
1308 /// # Current implementation
1309 ///
1310 /// The current algorithm is based on Orson Peters' [pattern-defeating quicksort][pdqsort],
1311 /// which is a quicksort variant designed to be very fast on certain kinds of patterns,
1312 /// sometimes achieving linear time. It is randomized but deterministic, and falls back to
1313 /// heapsort on degenerate inputs.
1314 ///
1315 /// It is generally faster than stable sorting, except in a few special cases, e.g. when the
1316 /// slice consists of several concatenated sorted sequences.
1317 ///
1318 /// # Examples
1319 ///
1320 /// ```
1321 /// #![feature(sort_unstable)]
1322 ///
1323 /// let mut v = [-5i32, 4, 1, -3, 2];
1324 ///
1325 /// v.sort_unstable_by_key(|k| k.abs());
1326 /// assert!(v == [1, 2, -3, 4, -5]);
1327 /// ```
1328 ///
1329 /// [pdqsort]: https://github.com/orlp/pdqsort
1330 // FIXME #40585: Mention `sort_unstable_by_key` in the documentation for `sort_by_key`.
1331 #[unstable(feature = "sort_unstable", issue = "40585")]
1332 #[inline]
1333 pub fn sort_unstable_by_key<B, F>(&mut self, f: F)
1334 where F: FnMut(&T) -> B,
1335 B: Ord
1336 {
1337 core_slice::SliceExt::sort_unstable_by_key(self, f);
1338 }
1339
1340 /// Copies the elements from `src` into `self`.
1341 ///
1342 /// The length of `src` must be the same as `self`.
1343 ///
1344 /// # Panics
1345 ///
1346 /// This function will panic if the two slices have different lengths.
1347 ///
1348 /// # Example
1349 ///
1350 /// ```
1351 /// let mut dst = [0, 0, 0];
1352 /// let src = [1, 2, 3];
1353 ///
1354 /// dst.clone_from_slice(&src);
1355 /// assert!(dst == [1, 2, 3]);
1356 /// ```
1357 #[stable(feature = "clone_from_slice", since = "1.7.0")]
1358 pub fn clone_from_slice(&mut self, src: &[T]) where T: Clone {
1359 core_slice::SliceExt::clone_from_slice(self, src)
1360 }
1361
1362 /// Copies all elements from `src` into `self`, using a memcpy.
1363 ///
1364 /// The length of `src` must be the same as `self`.
1365 ///
1366 /// # Panics
1367 ///
1368 /// This function will panic if the two slices have different lengths.
1369 ///
1370 /// # Example
1371 ///
1372 /// ```
1373 /// let mut dst = [0, 0, 0];
1374 /// let src = [1, 2, 3];
1375 ///
1376 /// dst.copy_from_slice(&src);
1377 /// assert_eq!(src, dst);
1378 /// ```
1379 #[stable(feature = "copy_from_slice", since = "1.9.0")]
1380 pub fn copy_from_slice(&mut self, src: &[T]) where T: Copy {
1381 core_slice::SliceExt::copy_from_slice(self, src)
1382 }
1383
1384 /// Copies `self` into a new `Vec`.
1385 ///
1386 /// # Examples
1387 ///
1388 /// ```
1389 /// let s = [10, 40, 30];
1390 /// let x = s.to_vec();
1391 /// // Here, `s` and `x` can be modified independently.
1392 /// ```
1393 #[stable(feature = "rust1", since = "1.0.0")]
1394 #[inline]
1395 pub fn to_vec(&self) -> Vec<T>
1396 where T: Clone
1397 {
1398 // NB see hack module in this file
1399 hack::to_vec(self)
1400 }
1401
1402 /// Converts `self` into a vector without clones or allocation.
1403 ///
1404 /// # Examples
1405 ///
1406 /// ```
1407 /// let s: Box<[i32]> = Box::new([10, 40, 30]);
1408 /// let x = s.into_vec();
1409 /// // `s` cannot be used anymore because it has been converted into `x`.
1410 ///
1411 /// assert_eq!(x, vec![10, 40, 30]);
1412 /// ```
1413 #[stable(feature = "rust1", since = "1.0.0")]
1414 #[inline]
1415 pub fn into_vec(self: Box<Self>) -> Vec<T> {
1416 // NB see hack module in this file
1417 hack::into_vec(self)
1418 }
1419 }
1420
1421 ////////////////////////////////////////////////////////////////////////////////
1422 // Extension traits for slices over specific kinds of data
1423 ////////////////////////////////////////////////////////////////////////////////
1424 #[unstable(feature = "slice_concat_ext",
1425 reason = "trait should not have to exist",
1426 issue = "27747")]
1427 /// An extension trait for concatenating slices
1428 pub trait SliceConcatExt<T: ?Sized> {
1429 #[unstable(feature = "slice_concat_ext",
1430 reason = "trait should not have to exist",
1431 issue = "27747")]
1432 /// The resulting type after concatenation
1433 type Output;
1434
1435 /// Flattens a slice of `T` into a single value `Self::Output`.
1436 ///
1437 /// # Examples
1438 ///
1439 /// ```
1440 /// assert_eq!(["hello", "world"].concat(), "helloworld");
1441 /// ```
1442 #[stable(feature = "rust1", since = "1.0.0")]
1443 fn concat(&self) -> Self::Output;
1444
1445 /// Flattens a slice of `T` into a single value `Self::Output`, placing a
1446 /// given separator between each.
1447 ///
1448 /// # Examples
1449 ///
1450 /// ```
1451 /// assert_eq!(["hello", "world"].join(" "), "hello world");
1452 /// ```
1453 #[stable(feature = "rename_connect_to_join", since = "1.3.0")]
1454 fn join(&self, sep: &T) -> Self::Output;
1455
1456 #[stable(feature = "rust1", since = "1.0.0")]
1457 #[rustc_deprecated(since = "1.3.0", reason = "renamed to join")]
1458 fn connect(&self, sep: &T) -> Self::Output;
1459 }
1460
1461 #[unstable(feature = "slice_concat_ext",
1462 reason = "trait should not have to exist",
1463 issue = "27747")]
1464 impl<T: Clone, V: Borrow<[T]>> SliceConcatExt<T> for [V] {
1465 type Output = Vec<T>;
1466
1467 fn concat(&self) -> Vec<T> {
1468 let size = self.iter().fold(0, |acc, v| acc + v.borrow().len());
1469 let mut result = Vec::with_capacity(size);
1470 for v in self {
1471 result.extend_from_slice(v.borrow())
1472 }
1473 result
1474 }
1475
1476 fn join(&self, sep: &T) -> Vec<T> {
1477 let size = self.iter().fold(0, |acc, v| acc + v.borrow().len());
1478 let mut result = Vec::with_capacity(size + self.len());
1479 let mut first = true;
1480 for v in self {
1481 if first {
1482 first = false
1483 } else {
1484 result.push(sep.clone())
1485 }
1486 result.extend_from_slice(v.borrow())
1487 }
1488 result
1489 }
1490
1491 fn connect(&self, sep: &T) -> Vec<T> {
1492 self.join(sep)
1493 }
1494 }
1495
1496 ////////////////////////////////////////////////////////////////////////////////
1497 // Standard trait implementations for slices
1498 ////////////////////////////////////////////////////////////////////////////////
1499
1500 #[stable(feature = "rust1", since = "1.0.0")]
1501 impl<T> Borrow<[T]> for Vec<T> {
1502 fn borrow(&self) -> &[T] {
1503 &self[..]
1504 }
1505 }
1506
1507 #[stable(feature = "rust1", since = "1.0.0")]
1508 impl<T> BorrowMut<[T]> for Vec<T> {
1509 fn borrow_mut(&mut self) -> &mut [T] {
1510 &mut self[..]
1511 }
1512 }
1513
1514 #[stable(feature = "rust1", since = "1.0.0")]
1515 impl<T: Clone> ToOwned for [T] {
1516 type Owned = Vec<T>;
1517 #[cfg(not(test))]
1518 fn to_owned(&self) -> Vec<T> {
1519 self.to_vec()
1520 }
1521
1522 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec`, which is required for this method
1523 // definition, is not available. Since we don't require this method for testing purposes, I'll
1524 // just stub it
1525 // NB see the slice::hack module in slice.rs for more information
1526 #[cfg(test)]
1527 fn to_owned(&self) -> Vec<T> {
1528 panic!("not available with cfg(test)")
1529 }
1530
1531 fn clone_into(&self, target: &mut Vec<T>) {
1532 // drop anything in target that will not be overwritten
1533 target.truncate(self.len());
1534 let len = target.len();
1535
1536 // reuse the contained values' allocations/resources.
1537 target.clone_from_slice(&self[..len]);
1538
1539 // target.len <= self.len due to the truncate above, so the
1540 // slice here is always in-bounds.
1541 target.extend_from_slice(&self[len..]);
1542 }
1543 }
1544
1545 ////////////////////////////////////////////////////////////////////////////////
1546 // Sorting
1547 ////////////////////////////////////////////////////////////////////////////////
1548
1549 /// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted.
1550 ///
1551 /// This is the integral subroutine of insertion sort.
1552 fn insert_head<T, F>(v: &mut [T], is_less: &mut F)
1553 where F: FnMut(&T, &T) -> bool
1554 {
1555 if v.len() >= 2 && is_less(&v[1], &v[0]) {
1556 unsafe {
1557 // There are three ways to implement insertion here:
1558 //
1559 // 1. Swap adjacent elements until the first one gets to its final destination.
1560 // However, this way we copy data around more than is necessary. If elements are big
1561 // structures (costly to copy), this method will be slow.
1562 //
1563 // 2. Iterate until the right place for the first element is found. Then shift the
1564 // elements succeeding it to make room for it and finally place it into the
1565 // remaining hole. This is a good method.
1566 //
1567 // 3. Copy the first element into a temporary variable. Iterate until the right place
1568 // for it is found. As we go along, copy every traversed element into the slot
1569 // preceding it. Finally, copy data from the temporary variable into the remaining
1570 // hole. This method is very good. Benchmarks demonstrated slightly better
1571 // performance than with the 2nd method.
1572 //
1573 // All methods were benchmarked, and the 3rd showed best results. So we chose that one.
1574 let mut tmp = mem::ManuallyDrop::new(ptr::read(&v[0]));
1575
1576 // Intermediate state of the insertion process is always tracked by `hole`, which
1577 // serves two purposes:
1578 // 1. Protects integrity of `v` from panics in `is_less`.
1579 // 2. Fills the remaining hole in `v` in the end.
1580 //
1581 // Panic safety:
1582 //
1583 // If `is_less` panics at any point during the process, `hole` will get dropped and
1584 // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it
1585 // initially held exactly once.
1586 let mut hole = InsertionHole {
1587 src: &mut *tmp,
1588 dest: &mut v[1],
1589 };
1590 ptr::copy_nonoverlapping(&v[1], &mut v[0], 1);
1591
1592 for i in 2..v.len() {
1593 if !is_less(&v[i], &*tmp) {
1594 break;
1595 }
1596 ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1);
1597 hole.dest = &mut v[i];
1598 }
1599 // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
1600 }
1601 }
1602
1603 // When dropped, copies from `src` into `dest`.
1604 struct InsertionHole<T> {
1605 src: *mut T,
1606 dest: *mut T,
1607 }
1608
1609 impl<T> Drop for InsertionHole<T> {
1610 fn drop(&mut self) {
1611 unsafe { ptr::copy_nonoverlapping(self.src, self.dest, 1); }
1612 }
1613 }
1614 }
1615
1616 /// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and
1617 /// stores the result into `v[..]`.
1618 ///
1619 /// # Safety
1620 ///
1621 /// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough
1622 /// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type.
1623 unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F)
1624 where F: FnMut(&T, &T) -> bool
1625 {
1626 let len = v.len();
1627 let v = v.as_mut_ptr();
1628 let v_mid = v.offset(mid as isize);
1629 let v_end = v.offset(len as isize);
1630
1631 // The merge process first copies the shorter run into `buf`. Then it traces the newly copied
1632 // run and the longer run forwards (or backwards), comparing their next unconsumed elements and
1633 // copying the lesser (or greater) one into `v`.
1634 //
1635 // As soon as the shorter run is fully consumed, the process is done. If the longer run gets
1636 // consumed first, then we must copy whatever is left of the shorter run into the remaining
1637 // hole in `v`.
1638 //
1639 // Intermediate state of the process is always tracked by `hole`, which serves two purposes:
1640 // 1. Protects integrity of `v` from panics in `is_less`.
1641 // 2. Fills the remaining hole in `v` if the longer run gets consumed first.
1642 //
1643 // Panic safety:
1644 //
1645 // If `is_less` panics at any point during the process, `hole` will get dropped and fill the
1646 // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every
1647 // object it initially held exactly once.
1648 let mut hole;
1649
1650 if mid <= len - mid {
1651 // The left run is shorter.
1652 ptr::copy_nonoverlapping(v, buf, mid);
1653 hole = MergeHole {
1654 start: buf,
1655 end: buf.offset(mid as isize),
1656 dest: v,
1657 };
1658
1659 // Initially, these pointers point to the beginnings of their arrays.
1660 let left = &mut hole.start;
1661 let mut right = v_mid;
1662 let out = &mut hole.dest;
1663
1664 while *left < hole.end && right < v_end {
1665 // Consume the lesser side.
1666 // If equal, prefer the left run to maintain stability.
1667 let to_copy = if is_less(&*right, &**left) {
1668 get_and_increment(&mut right)
1669 } else {
1670 get_and_increment(left)
1671 };
1672 ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1);
1673 }
1674 } else {
1675 // The right run is shorter.
1676 ptr::copy_nonoverlapping(v_mid, buf, len - mid);
1677 hole = MergeHole {
1678 start: buf,
1679 end: buf.offset((len - mid) as isize),
1680 dest: v_mid,
1681 };
1682
1683 // Initially, these pointers point past the ends of their arrays.
1684 let left = &mut hole.dest;
1685 let right = &mut hole.end;
1686 let mut out = v_end;
1687
1688 while v < *left && buf < *right {
1689 // Consume the greater side.
1690 // If equal, prefer the right run to maintain stability.
1691 let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) {
1692 decrement_and_get(left)
1693 } else {
1694 decrement_and_get(right)
1695 };
1696 ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1);
1697 }
1698 }
1699 // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of
1700 // it will now be copied into the hole in `v`.
1701
1702 unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T {
1703 let old = *ptr;
1704 *ptr = ptr.offset(1);
1705 old
1706 }
1707
1708 unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T {
1709 *ptr = ptr.offset(-1);
1710 *ptr
1711 }
1712
1713 // When dropped, copies the range `start..end` into `dest..`.
1714 struct MergeHole<T> {
1715 start: *mut T,
1716 end: *mut T,
1717 dest: *mut T,
1718 }
1719
1720 impl<T> Drop for MergeHole<T> {
1721 fn drop(&mut self) {
1722 // `T` is not a zero-sized type, so it's okay to divide by it's size.
1723 let len = (self.end as usize - self.start as usize) / mem::size_of::<T>();
1724 unsafe { ptr::copy_nonoverlapping(self.start, self.dest, len); }
1725 }
1726 }
1727 }
1728
1729 /// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail
1730 /// [here](http://svn.python.org/projects/python/trunk/Objects/listsort.txt).
1731 ///
1732 /// The algorithm identifies strictly descending and non-descending subsequences, which are called
1733 /// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed
1734 /// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are
1735 /// satisfied:
1736 ///
1737 /// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len`
1738 /// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len`
1739 ///
1740 /// The invariants ensure that the total running time is `O(n log n)` worst-case.
1741 fn merge_sort<T, F>(v: &mut [T], mut is_less: F)
1742 where F: FnMut(&T, &T) -> bool
1743 {
1744 // Slices of up to this length get sorted using insertion sort.
1745 const MAX_INSERTION: usize = 20;
1746 // Very short runs are extended using insertion sort to span at least this many elements.
1747 const MIN_RUN: usize = 10;
1748
1749 // Sorting has no meaningful behavior on zero-sized types.
1750 if size_of::<T>() == 0 {
1751 return;
1752 }
1753
1754 let len = v.len();
1755
1756 // Short arrays get sorted in-place via insertion sort to avoid allocations.
1757 if len <= MAX_INSERTION {
1758 if len >= 2 {
1759 for i in (0..len-1).rev() {
1760 insert_head(&mut v[i..], &mut is_less);
1761 }
1762 }
1763 return;
1764 }
1765
1766 // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it
1767 // shallow copies of the contents of `v` without risking the dtors running on copies if
1768 // `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run,
1769 // which will always have length at most `len / 2`.
1770 let mut buf = Vec::with_capacity(len / 2);
1771
1772 // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a
1773 // strange decision, but consider the fact that merges more often go in the opposite direction
1774 // (forwards). According to benchmarks, merging forwards is slightly faster than merging
1775 // backwards. To conclude, identifying runs by traversing backwards improves performance.
1776 let mut runs = vec![];
1777 let mut end = len;
1778 while end > 0 {
1779 // Find the next natural run, and reverse it if it's strictly descending.
1780 let mut start = end - 1;
1781 if start > 0 {
1782 start -= 1;
1783 unsafe {
1784 if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) {
1785 while start > 0 && is_less(v.get_unchecked(start),
1786 v.get_unchecked(start - 1)) {
1787 start -= 1;
1788 }
1789 v[start..end].reverse();
1790 } else {
1791 while start > 0 && !is_less(v.get_unchecked(start),
1792 v.get_unchecked(start - 1)) {
1793 start -= 1;
1794 }
1795 }
1796 }
1797 }
1798
1799 // Insert some more elements into the run if it's too short. Insertion sort is faster than
1800 // merge sort on short sequences, so this significantly improves performance.
1801 while start > 0 && end - start < MIN_RUN {
1802 start -= 1;
1803 insert_head(&mut v[start..end], &mut is_less);
1804 }
1805
1806 // Push this run onto the stack.
1807 runs.push(Run {
1808 start: start,
1809 len: end - start,
1810 });
1811 end = start;
1812
1813 // Merge some pairs of adjacent runs to satisfy the invariants.
1814 while let Some(r) = collapse(&runs) {
1815 let left = runs[r + 1];
1816 let right = runs[r];
1817 unsafe {
1818 merge(&mut v[left.start .. right.start + right.len], left.len, buf.as_mut_ptr(),
1819 &mut is_less);
1820 }
1821 runs[r] = Run {
1822 start: left.start,
1823 len: left.len + right.len,
1824 };
1825 runs.remove(r + 1);
1826 }
1827 }
1828
1829 // Finally, exactly one run must remain in the stack.
1830 debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len);
1831
1832 // Examines the stack of runs and identifies the next pair of runs to merge. More specifically,
1833 // if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the
1834 // algorithm should continue building a new run instead, `None` is returned.
1835 //
1836 // TimSort is infamous for it's buggy implementations, as described here:
1837 // http://envisage-project.eu/timsort-specification-and-verification/
1838 //
1839 // The gist of the story is: we must enforce the invariants on the top four runs on the stack.
1840 // Enforcing them on just top three is not sufficient to ensure that the invariants will still
1841 // hold for *all* runs in the stack.
1842 //
1843 // This function correctly checks invariants for the top four runs. Additionally, if the top
1844 // run starts at index 0, it will always demand a merge operation until the stack is fully
1845 // collapsed, in order to complete the sort.
1846 #[inline]
1847 fn collapse(runs: &[Run]) -> Option<usize> {
1848 let n = runs.len();
1849 if n >= 2 && (runs[n - 1].start == 0 ||
1850 runs[n - 2].len <= runs[n - 1].len ||
1851 (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len) ||
1852 (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len)) {
1853 if n >= 3 && runs[n - 3].len < runs[n - 1].len {
1854 Some(n - 3)
1855 } else {
1856 Some(n - 2)
1857 }
1858 } else {
1859 None
1860 }
1861 }
1862
1863 #[derive(Clone, Copy)]
1864 struct Run {
1865 start: usize,
1866 len: usize,
1867 }
1868 }