]> git.proxmox.com Git - rustc.git/blob - src/libcollections/string.rs
Imported Upstream version 1.9.0+dfsg1
[rustc.git] / src / libcollections / string.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! A UTF-8 encoded, growable string.
12 //!
13 //! This module contains the [`String`] type, a trait for converting
14 //! [`ToString`]s, and several error types that may result from working with
15 //! [`String`]s.
16 //!
17 //! [`String`]: struct.String.html
18 //! [`ToString`]: trait.ToString.html
19 //!
20 //! # Examples
21 //!
22 //! There are multiple ways to create a new `String` from a string literal:
23 //!
24 //! ```rust
25 //! let s = "Hello".to_string();
26 //!
27 //! let s = String::from("world");
28 //! let s: String = "also this".into();
29 //! ```
30 //!
31 //! You can create a new `String` from an existing one by concatenating with
32 //! `+`:
33 //!
34 //! ```rust
35 //! let s = "Hello".to_string();
36 //!
37 //! let message = s + " world!";
38 //! ```
39 //!
40 //! If you have a vector of valid UTF-8 bytes, you can make a `String` out of
41 //! it. You can do the reverse too.
42 //!
43 //! ```rust
44 //! let sparkle_heart = vec![240, 159, 146, 150];
45 //!
46 //! // We know these bytes are valid, so we'll use `unwrap()`.
47 //! let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
48 //!
49 //! assert_eq!("💖", sparkle_heart);
50 //!
51 //! let bytes = sparkle_heart.into_bytes();
52 //!
53 //! assert_eq!(bytes, [240, 159, 146, 150]);
54 //! ```
55
56 #![stable(feature = "rust1", since = "1.0.0")]
57
58 use core::fmt;
59 use core::hash;
60 use core::iter::FromIterator;
61 use core::mem;
62 use core::ops::{self, Add, Index, IndexMut};
63 use core::ptr;
64 use core::str::pattern::Pattern;
65 use rustc_unicode::char::{decode_utf16, REPLACEMENT_CHARACTER};
66 use rustc_unicode::str as unicode_str;
67
68 use borrow::{Cow, ToOwned};
69 use range::RangeArgument;
70 use str::{self, FromStr, Utf8Error, Chars};
71 use vec::Vec;
72 use boxed::Box;
73
74 /// A UTF-8 encoded, growable string.
75 ///
76 /// The `String` type is the most common string type that has ownership over the
77 /// contents of the string. It has a close relationship with its borrowed
78 /// counterpart, the primitive [`str`].
79 ///
80 /// [`str`]: ../../std/primitive.str.html
81 ///
82 /// # Examples
83 ///
84 /// You can create a `String` from a literal string with `String::from`:
85 ///
86 /// ```
87 /// let hello = String::from("Hello, world!");
88 /// ```
89 ///
90 /// You can append a [`char`] to a `String` with the [`push()`] method, and
91 /// append a [`&str`] with the [`push_str()`] method:
92 ///
93 /// ```
94 /// let mut hello = String::from("Hello, ");
95 ///
96 /// hello.push('w');
97 /// hello.push_str("orld!");
98 /// ```
99 ///
100 /// [`char`]: ../../std/primitive.char.html
101 /// [`push()`]: #method.push
102 /// [`push_str()`]: #method.push_str
103 ///
104 /// If you have a vector of UTF-8 bytes, you can create a `String` from it with
105 /// the [`from_utf8()`] method:
106 ///
107 /// ```
108 /// // some bytes, in a vector
109 /// let sparkle_heart = vec![240, 159, 146, 150];
110 ///
111 /// // We know these bytes are valid, so we'll use `unwrap()`.
112 /// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
113 ///
114 /// assert_eq!("💖", sparkle_heart);
115 /// ```
116 ///
117 /// [`from_utf8()`]: #method.from_utf8
118 ///
119 /// # UTF-8
120 ///
121 /// `String`s are always valid UTF-8. This has a few implications, the first of
122 /// which is that if you need a non-UTF-8 string, consider [`OsString`]. It is
123 /// similar, but without the UTF-8 constraint. The second implication is that
124 /// you cannot index into a `String`:
125 ///
126 /// ```ignore
127 /// let s = "hello";
128 ///
129 /// println!("The first letter of s is {}", s[0]); // ERROR!!!
130 /// ```
131 ///
132 /// [`OsString`]: ../../std/ffi/struct.OsString.html
133 ///
134 /// Indexing is intended to be a constant-time operation, but UTF-8 encoding
135 /// does not allow us to do this. Furtheremore, it's not clear what sort of
136 /// thing the index should return: a byte, a codepoint, or a grapheme cluster.
137 /// The [`as_bytes()`] and [`chars()`] methods return iterators over the first
138 /// two, respectively.
139 ///
140 /// [`as_bytes()`]: #method.as_bytes
141 /// [`chars()`]: #method.chars
142 ///
143 /// # Deref
144 ///
145 /// `String`s implement [`Deref`]`<Target=str>`, and so inherit all of [`str`]'s
146 /// methods. In addition, this means that you can pass a `String` to any
147 /// function which takes a [`&str`] by using an ampersand (`&`):
148 ///
149 /// ```
150 /// fn takes_str(s: &str) { }
151 ///
152 /// let s = String::from("Hello");
153 ///
154 /// takes_str(&s);
155 /// ```
156 ///
157 /// [`&str`]: ../../std/primitive.str.html
158 /// [`Deref`]: ../../std/ops/trait.Deref.html
159 ///
160 /// This will create a [`&str`] from the `String` and pass it in. This
161 /// conversion is very inexpensive, and so generally, functions will accept
162 /// [`&str`]s as arguments unless they need a `String` for some specific reason.
163 ///
164 ///
165 /// # Representation
166 ///
167 /// A `String` is made up of three components: a pointer to some bytes, a
168 /// length, and a capacity. The pointer points to an internal buffer `String`
169 /// uses to store its data. The length is the number of bytes currently stored
170 /// in the buffer, and the capacity is the size of the buffer in bytes. As such,
171 /// the length will always be less than or equal to the capacity.
172 ///
173 /// This buffer is always stored on the heap.
174 ///
175 /// You can look at these with the [`as_ptr()`], [`len()`], and [`capacity()`]
176 /// methods:
177 ///
178 /// ```
179 /// use std::mem;
180 ///
181 /// let story = String::from("Once upon a time...");
182 ///
183 /// let ptr = story.as_ptr();
184 /// let len = story.len();
185 /// let capacity = story.capacity();
186 ///
187 /// // story has thirteen bytes
188 /// assert_eq!(19, len);
189 ///
190 /// // Now that we have our parts, we throw the story away.
191 /// mem::forget(story);
192 ///
193 /// // We can re-build a String out of ptr, len, and capacity. This is all
194 /// // unsafe because we are responsible for making sure the components are
195 /// // valid:
196 /// let s = unsafe { String::from_raw_parts(ptr as *mut _, len, capacity) } ;
197 ///
198 /// assert_eq!(String::from("Once upon a time..."), s);
199 /// ```
200 ///
201 /// [`as_ptr()`]: #method.as_ptr
202 /// [`len()`]: #method.len
203 /// [`capacity()`]: #method.capacity
204 ///
205 /// If a `String` has enough capacity, adding elements to it will not
206 /// re-allocate. For example, consider this program:
207 ///
208 /// ```
209 /// let mut s = String::new();
210 ///
211 /// println!("{}", s.capacity());
212 ///
213 /// for _ in 0..5 {
214 /// s.push_str("hello");
215 /// println!("{}", s.capacity());
216 /// }
217 /// ```
218 ///
219 /// This will output the following:
220 ///
221 /// ```text
222 /// 0
223 /// 5
224 /// 10
225 /// 20
226 /// 20
227 /// 40
228 /// ```
229 ///
230 /// At first, we have no memory allocated at all, but as we append to the
231 /// string, it increases its capacity appropriately. If we instead use the
232 /// [`with_capacity()`] method to allocate the correct capacity initially:
233 ///
234 /// ```
235 /// let mut s = String::with_capacity(25);
236 ///
237 /// println!("{}", s.capacity());
238 ///
239 /// for _ in 0..5 {
240 /// s.push_str("hello");
241 /// println!("{}", s.capacity());
242 /// }
243 /// ```
244 ///
245 /// [`with_capacity()`]: #method.with_capacity
246 ///
247 /// We end up with a different output:
248 ///
249 /// ```text
250 /// 25
251 /// 25
252 /// 25
253 /// 25
254 /// 25
255 /// 25
256 /// ```
257 ///
258 /// Here, there's no need to allocate more memory inside the loop.
259 #[derive(PartialOrd, Eq, Ord)]
260 #[stable(feature = "rust1", since = "1.0.0")]
261 pub struct String {
262 vec: Vec<u8>,
263 }
264
265 /// A possible error value when converting a `String` from a UTF-8 byte vector.
266 ///
267 /// This type is the error type for the [`from_utf8()`] method on [`String`]. It
268 /// is designed in such a way to carefully avoid reallocations: the
269 /// [`into_bytes()`] method will give back the byte vector that was used in the
270 /// conversion attempt.
271 ///
272 /// [`from_utf8()`]: struct.String.html#method.from_utf8
273 /// [`String`]: struct.String.html
274 /// [`into_bytes()`]: struct.FromUtf8Error.html#method.into_bytes
275 ///
276 /// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
277 /// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
278 /// an analogue to `FromUtf8Error`, and you can get one from a `FromUtf8Error`
279 /// through the [`utf8_error()`] method.
280 ///
281 /// [`Utf8Error`]: ../../std/str/struct.Utf8Error.html
282 /// [`std::str`]: ../../std/str/index.html
283 /// [`u8`]: ../../std/primitive.u8.html
284 /// [`&str`]: ../../std/primitive.str.html
285 /// [`utf8_error()`]: #method.utf8_error
286 ///
287 /// # Examples
288 ///
289 /// Basic usage:
290 ///
291 /// ```
292 /// // some invalid bytes, in a vector
293 /// let bytes = vec![0, 159];
294 ///
295 /// let value = String::from_utf8(bytes);
296 ///
297 /// assert!(value.is_err());
298 /// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
299 /// ```
300 #[stable(feature = "rust1", since = "1.0.0")]
301 #[derive(Debug)]
302 pub struct FromUtf8Error {
303 bytes: Vec<u8>,
304 error: Utf8Error,
305 }
306
307 /// A possible error value when converting a `String` from a UTF-16 byte slice.
308 ///
309 /// This type is the error type for the [`from_utf16()`] method on [`String`].
310 ///
311 /// [`from_utf16()`]: struct.String.html#method.from_utf16
312 /// [`String`]: struct.String.html
313 ///
314 /// # Examples
315 ///
316 /// Basic usage:
317 ///
318 /// ```
319 /// // 𝄞mu<invalid>ic
320 /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
321 /// 0xD800, 0x0069, 0x0063];
322 ///
323 /// assert!(String::from_utf16(v).is_err());
324 /// ```
325 #[stable(feature = "rust1", since = "1.0.0")]
326 #[derive(Debug)]
327 pub struct FromUtf16Error(());
328
329 impl String {
330 /// Creates a new empty `String`.
331 ///
332 /// Given that the `String` is empty, this will not allocate any initial
333 /// buffer. While that means that this initial operation is very
334 /// inexpensive, but may cause excessive allocation later, when you add
335 /// data. If you have an idea of how much data the `String` will hold,
336 /// consider the [`with_capacity()`] method to prevent excessive
337 /// re-allocation.
338 ///
339 /// [`with_capacity()`]: #method.with_capacity
340 ///
341 /// # Examples
342 ///
343 /// Basic usage:
344 ///
345 /// ```
346 /// let s = String::new();
347 /// ```
348 #[inline]
349 #[stable(feature = "rust1", since = "1.0.0")]
350 pub fn new() -> String {
351 String { vec: Vec::new() }
352 }
353
354 /// Creates a new empty `String` with a particular capacity.
355 ///
356 /// `String`s have an internal buffer to hold their data. The capacity is
357 /// the length of that buffer, and can be queried with the [`capacity()`]
358 /// method. This method creates an empty `String`, but one with an initial
359 /// buffer that can hold `capacity` bytes. This is useful when you may be
360 /// appending a bunch of data to the `String`, reducing the number of
361 /// reallocations it needs to do.
362 ///
363 /// [`capacity()`]: #method.capacity
364 ///
365 /// If the given capacity is `0`, no allocation will occur, and this method
366 /// is identical to the [`new()`] method.
367 ///
368 /// [`new()`]: #method.new
369 ///
370 /// # Examples
371 ///
372 /// Basic usage:
373 ///
374 /// ```
375 /// let mut s = String::with_capacity(10);
376 ///
377 /// // The String contains no chars, even though it has capacity for more
378 /// assert_eq!(s.len(), 0);
379 ///
380 /// // These are all done without reallocating...
381 /// let cap = s.capacity();
382 /// for i in 0..10 {
383 /// s.push('a');
384 /// }
385 ///
386 /// assert_eq!(s.capacity(), cap);
387 ///
388 /// // ...but this may make the vector reallocate
389 /// s.push('a');
390 /// ```
391 #[inline]
392 #[stable(feature = "rust1", since = "1.0.0")]
393 pub fn with_capacity(capacity: usize) -> String {
394 String { vec: Vec::with_capacity(capacity) }
395 }
396
397 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
398 // required for this method definition, is not available. Since we don't
399 // require this method for testing purposes, I'll just stub it
400 // NB see the slice::hack module in slice.rs for more information
401 #[inline]
402 #[cfg(test)]
403 pub fn from_str(_: &str) -> String {
404 panic!("not available with cfg(test)");
405 }
406
407 /// Converts a vector of bytes to a `String`.
408 ///
409 /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a vector of bytes
410 /// ([`Vec<u8>`]) is made of bytes, so this function converts between the
411 /// two. Not all byte slices are valid `String`s, however: `String`
412 /// requires that it is valid UTF-8. `from_utf8()` checks to ensure that
413 /// the bytes are valid UTF-8, and then does the conversion.
414 ///
415 /// [`&str`]: ../../std/primitive.str.html
416 /// [`u8`]: ../../std/primitive.u8.html
417 /// [`Vec<u8>`]: ../../std/vec/struct.Vec.html
418 ///
419 /// If you are sure that the byte slice is valid UTF-8, and you don't want
420 /// to incur the overhead of the validity check, there is an unsafe version
421 /// of this function, [`from_utf8_unchecked()`], which has the same behavior
422 /// but skips the check.
423 ///
424 /// [`from_utf8_unchecked()`]: struct.String.html#method.from_utf8_unchecked
425 ///
426 /// This method will take care to not copy the vector, for efficiency's
427 /// sake.
428 ///
429 /// If you need a `&str` instead of a `String`, consider
430 /// [`str::from_utf8()`].
431 ///
432 /// [`str::from_utf8()`]: ../../std/str/fn.from_utf8.html
433 ///
434 /// # Errors
435 ///
436 /// Returns `Err` if the slice is not UTF-8 with a description as to why the
437 /// provided bytes are not UTF-8. The vector you moved in is also included.
438 ///
439 /// # Examples
440 ///
441 /// Basic usage:
442 ///
443 /// ```
444 /// // some bytes, in a vector
445 /// let sparkle_heart = vec![240, 159, 146, 150];
446 ///
447 /// // We know these bytes are valid, so we'll use `unwrap()`.
448 /// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
449 ///
450 /// assert_eq!("💖", sparkle_heart);
451 /// ```
452 ///
453 /// Incorrect bytes:
454 ///
455 /// ```
456 /// // some invalid bytes, in a vector
457 /// let sparkle_heart = vec![0, 159, 146, 150];
458 ///
459 /// assert!(String::from_utf8(sparkle_heart).is_err());
460 /// ```
461 ///
462 /// See the docs for [`FromUtf8Error`] for more details on what you can do
463 /// with this error.
464 ///
465 /// [`FromUtf8Error`]: struct.FromUtf8Error.html
466 #[inline]
467 #[stable(feature = "rust1", since = "1.0.0")]
468 pub fn from_utf8(vec: Vec<u8>) -> Result<String, FromUtf8Error> {
469 match str::from_utf8(&vec) {
470 Ok(..) => Ok(String { vec: vec }),
471 Err(e) => {
472 Err(FromUtf8Error {
473 bytes: vec,
474 error: e,
475 })
476 }
477 }
478 }
479
480 /// Converts a slice of bytes to a string, including invalid characters.
481 ///
482 /// Strings are made of bytes ([`u8`]), and a slice of bytes
483 /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts
484 /// between the two. Not all byte slices are valid strings, however: strings
485 /// are required to be valid UTF-8. During this conversion,
486 /// `from_utf8_lossy()` will replace any invalid UTF-8 sequences with
487 /// `U+FFFD REPLACEMENT CHARACTER`, which looks like this: �
488 ///
489 /// [`u8`]: ../../std/primitive.u8.html
490 /// [byteslice]: ../../std/primitive.slice.html
491 ///
492 /// If you are sure that the byte slice is valid UTF-8, and you don't want
493 /// to incur the overhead of the conversion, there is an unsafe version
494 /// of this function, [`from_utf8_unchecked()`], which has the same behavior
495 /// but skips the checks.
496 ///
497 /// [`from_utf8_unchecked()`]: struct.String.html#method.from_utf8_unchecked
498 ///
499 /// This function returns a [`Cow<'a, str>`]. If our byte slice is invalid
500 /// UTF-8, then we need to insert the replacement characters, which will
501 /// change the size of the string, and hence, require a `String`. But if
502 /// it's already valid UTF-8, we don't need a new allocation. This return
503 /// type allows us to handle both cases.
504 ///
505 /// [`Cow<'a, str>`]: ../../std/borrow/enum.Cow.html
506 ///
507 /// # Examples
508 ///
509 /// Basic usage:
510 ///
511 /// ```
512 /// // some bytes, in a vector
513 /// let sparkle_heart = vec![240, 159, 146, 150];
514 ///
515 /// let sparkle_heart = String::from_utf8_lossy(&sparkle_heart);
516 ///
517 /// assert_eq!("💖", sparkle_heart);
518 /// ```
519 ///
520 /// Incorrect bytes:
521 ///
522 /// ```
523 /// // some invalid bytes
524 /// let input = b"Hello \xF0\x90\x80World";
525 /// let output = String::from_utf8_lossy(input);
526 ///
527 /// assert_eq!("Hello �World", output);
528 /// ```
529 #[stable(feature = "rust1", since = "1.0.0")]
530 pub fn from_utf8_lossy<'a>(v: &'a [u8]) -> Cow<'a, str> {
531 let mut i;
532 match str::from_utf8(v) {
533 Ok(s) => return Cow::Borrowed(s),
534 Err(e) => i = e.valid_up_to(),
535 }
536
537 const TAG_CONT_U8: u8 = 128;
538 const REPLACEMENT: &'static [u8] = b"\xEF\xBF\xBD"; // U+FFFD in UTF-8
539 let total = v.len();
540 fn unsafe_get(xs: &[u8], i: usize) -> u8 {
541 unsafe { *xs.get_unchecked(i) }
542 }
543 fn safe_get(xs: &[u8], i: usize, total: usize) -> u8 {
544 if i >= total {
545 0
546 } else {
547 unsafe_get(xs, i)
548 }
549 }
550
551 let mut res = String::with_capacity(total);
552
553 if i > 0 {
554 unsafe { res.as_mut_vec().extend_from_slice(&v[..i]) };
555 }
556
557 // subseqidx is the index of the first byte of the subsequence we're
558 // looking at. It's used to copy a bunch of contiguous good codepoints
559 // at once instead of copying them one by one.
560 let mut subseqidx = i;
561
562 while i < total {
563 let i_ = i;
564 let byte = unsafe_get(v, i);
565 i += 1;
566
567 macro_rules! error { () => ({
568 unsafe {
569 if subseqidx != i_ {
570 res.as_mut_vec().extend_from_slice(&v[subseqidx..i_]);
571 }
572 subseqidx = i;
573 res.as_mut_vec().extend_from_slice(REPLACEMENT);
574 }
575 })}
576
577 if byte < 128 {
578 // subseqidx handles this
579 } else {
580 let w = unicode_str::utf8_char_width(byte);
581
582 match w {
583 2 => {
584 if safe_get(v, i, total) & 192 != TAG_CONT_U8 {
585 error!();
586 continue;
587 }
588 i += 1;
589 }
590 3 => {
591 match (byte, safe_get(v, i, total)) {
592 (0xE0, 0xA0...0xBF) => (),
593 (0xE1...0xEC, 0x80...0xBF) => (),
594 (0xED, 0x80...0x9F) => (),
595 (0xEE...0xEF, 0x80...0xBF) => (),
596 _ => {
597 error!();
598 continue;
599 }
600 }
601 i += 1;
602 if safe_get(v, i, total) & 192 != TAG_CONT_U8 {
603 error!();
604 continue;
605 }
606 i += 1;
607 }
608 4 => {
609 match (byte, safe_get(v, i, total)) {
610 (0xF0, 0x90...0xBF) => (),
611 (0xF1...0xF3, 0x80...0xBF) => (),
612 (0xF4, 0x80...0x8F) => (),
613 _ => {
614 error!();
615 continue;
616 }
617 }
618 i += 1;
619 if safe_get(v, i, total) & 192 != TAG_CONT_U8 {
620 error!();
621 continue;
622 }
623 i += 1;
624 if safe_get(v, i, total) & 192 != TAG_CONT_U8 {
625 error!();
626 continue;
627 }
628 i += 1;
629 }
630 _ => {
631 error!();
632 continue;
633 }
634 }
635 }
636 }
637 if subseqidx < total {
638 unsafe { res.as_mut_vec().extend_from_slice(&v[subseqidx..total]) };
639 }
640 Cow::Owned(res)
641 }
642
643 /// Decode a UTF-16 encoded vector `v` into a `String`, returning `Err`
644 /// if `v` contains any invalid data.
645 ///
646 /// # Examples
647 ///
648 /// Basic usage:
649 ///
650 /// ```
651 /// // 𝄞music
652 /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
653 /// 0x0073, 0x0069, 0x0063];
654 /// assert_eq!(String::from("𝄞music"),
655 /// String::from_utf16(v).unwrap());
656 ///
657 /// // 𝄞mu<invalid>ic
658 /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
659 /// 0xD800, 0x0069, 0x0063];
660 /// assert!(String::from_utf16(v).is_err());
661 /// ```
662 #[stable(feature = "rust1", since = "1.0.0")]
663 pub fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error> {
664 decode_utf16(v.iter().cloned()).collect::<Result<_, _>>().map_err(|_| FromUtf16Error(()))
665 }
666
667 /// Decode a UTF-16 encoded vector `v` into a string, replacing
668 /// invalid data with the replacement character (U+FFFD).
669 ///
670 /// # Examples
671 ///
672 /// Basic usage:
673 ///
674 /// ```
675 /// // 𝄞mus<invalid>ic<invalid>
676 /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
677 /// 0x0073, 0xDD1E, 0x0069, 0x0063,
678 /// 0xD834];
679 ///
680 /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
681 /// String::from_utf16_lossy(v));
682 /// ```
683 #[inline]
684 #[stable(feature = "rust1", since = "1.0.0")]
685 pub fn from_utf16_lossy(v: &[u16]) -> String {
686 decode_utf16(v.iter().cloned()).map(|r| r.unwrap_or(REPLACEMENT_CHARACTER)).collect()
687 }
688
689 /// Creates a new `String` from a length, capacity, and pointer.
690 ///
691 /// # Safety
692 ///
693 /// This is highly unsafe, due to the number of invariants that aren't
694 /// checked:
695 ///
696 /// * The memory at `ptr` needs to have been previously allocated by the
697 /// same allocator the standard library uses.
698 /// * `length` needs to be less than or equal to `capacity`.
699 /// * `capacity` needs to be the correct value.
700 ///
701 /// Violating these may cause problems like corrupting the allocator's
702 /// internal datastructures.
703 ///
704 /// # Examples
705 ///
706 /// Basic usage:
707 ///
708 /// ```
709 /// use std::mem;
710 ///
711 /// unsafe {
712 /// let s = String::from("hello");
713 /// let ptr = s.as_ptr();
714 /// let len = s.len();
715 /// let capacity = s.capacity();
716 ///
717 /// mem::forget(s);
718 ///
719 /// let s = String::from_raw_parts(ptr as *mut _, len, capacity);
720 ///
721 /// assert_eq!(String::from("hello"), s);
722 /// }
723 /// ```
724 #[inline]
725 #[stable(feature = "rust1", since = "1.0.0")]
726 pub unsafe fn from_raw_parts(buf: *mut u8, length: usize, capacity: usize) -> String {
727 String { vec: Vec::from_raw_parts(buf, length, capacity) }
728 }
729
730 /// Converts a vector of bytes to a `String` without checking that the
731 /// string contains valid UTF-8.
732 ///
733 /// See the safe version, [`from_utf8()`], for more details.
734 ///
735 /// [`from_utf8()`]: struct.String.html#method.from_utf8
736 ///
737 /// # Safety
738 ///
739 /// This function is unsafe because it does not check that the bytes passed
740 /// to it are valid UTF-8. If this constraint is violated, it may cause
741 /// memory unsafety issues with future users of the `String`, as the rest of
742 /// the standard library assumes that `String`s are valid UTF-8.
743 ///
744 /// # Examples
745 ///
746 /// Basic usage:
747 ///
748 /// ```
749 /// // some bytes, in a vector
750 /// let sparkle_heart = vec![240, 159, 146, 150];
751 ///
752 /// let sparkle_heart = unsafe {
753 /// String::from_utf8_unchecked(sparkle_heart)
754 /// };
755 ///
756 /// assert_eq!("💖", sparkle_heart);
757 /// ```
758 #[inline]
759 #[stable(feature = "rust1", since = "1.0.0")]
760 pub unsafe fn from_utf8_unchecked(bytes: Vec<u8>) -> String {
761 String { vec: bytes }
762 }
763
764 /// Converts a `String` into a byte vector.
765 ///
766 /// This consumes the `String`, so we do not need to copy its contents.
767 ///
768 /// # Examples
769 ///
770 /// Basic usage:
771 ///
772 /// ```
773 /// let s = String::from("hello");
774 /// let bytes = s.into_bytes();
775 ///
776 /// assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);
777 /// ```
778 #[inline]
779 #[stable(feature = "rust1", since = "1.0.0")]
780 pub fn into_bytes(self) -> Vec<u8> {
781 self.vec
782 }
783
784 /// Extracts a string slice containing the entire string.
785 #[inline]
786 #[stable(feature = "string_as_str", since = "1.7.0")]
787 pub fn as_str(&self) -> &str {
788 self
789 }
790
791 /// Extracts a string slice containing the entire string.
792 #[inline]
793 #[stable(feature = "string_as_str", since = "1.7.0")]
794 pub fn as_mut_str(&mut self) -> &mut str {
795 self
796 }
797
798 /// Appends a given string slice onto the end of this `String`.
799 ///
800 /// # Examples
801 ///
802 /// Basic usage:
803 ///
804 /// ```
805 /// let mut s = String::from("foo");
806 ///
807 /// s.push_str("bar");
808 ///
809 /// assert_eq!("foobar", s);
810 /// ```
811 #[inline]
812 #[stable(feature = "rust1", since = "1.0.0")]
813 pub fn push_str(&mut self, string: &str) {
814 self.vec.extend_from_slice(string.as_bytes())
815 }
816
817 /// Returns this `String`'s capacity, in bytes.
818 ///
819 /// # Examples
820 ///
821 /// Basic usage:
822 ///
823 /// ```
824 /// let s = String::with_capacity(10);
825 ///
826 /// assert!(s.capacity() >= 10);
827 /// ```
828 #[inline]
829 #[stable(feature = "rust1", since = "1.0.0")]
830 pub fn capacity(&self) -> usize {
831 self.vec.capacity()
832 }
833
834 /// Ensures that this `String`'s capacity is at least `additional` bytes
835 /// larger than its length.
836 ///
837 /// The capacity may be increased by more than `additional` bytes if it
838 /// chooses, to prevent frequent reallocations.
839 ///
840 /// If you do not want this "at least" behavior, see the [`reserve_exact()`]
841 /// method.
842 ///
843 /// [`reserve_exact()`]: #method.reserve_exact
844 ///
845 /// # Panics
846 ///
847 /// Panics if the new capacity overflows `usize`.
848 ///
849 /// # Examples
850 ///
851 /// Basic usage:
852 ///
853 /// ```
854 /// let mut s = String::new();
855 ///
856 /// s.reserve(10);
857 ///
858 /// assert!(s.capacity() >= 10);
859 /// ```
860 ///
861 /// This may not actually increase the capacity:
862 ///
863 /// ```
864 /// let mut s = String::with_capacity(10);
865 /// s.push('a');
866 /// s.push('b');
867 ///
868 /// // s now has a length of 2 and a capacity of 10
869 /// assert_eq!(2, s.len());
870 /// assert_eq!(10, s.capacity());
871 ///
872 /// // Since we already have an extra 8 capacity, calling this...
873 /// s.reserve(8);
874 ///
875 /// // ... doesn't actually increase.
876 /// assert_eq!(10, s.capacity());
877 /// ```
878 #[inline]
879 #[stable(feature = "rust1", since = "1.0.0")]
880 pub fn reserve(&mut self, additional: usize) {
881 self.vec.reserve(additional)
882 }
883
884 /// Ensures that this `String`'s capacity is `additional` bytes
885 /// larger than its length.
886 ///
887 /// Consider using the [`reserve()`] method unless you absolutely know
888 /// better than the allocator.
889 ///
890 /// [`reserve()`]: #method.reserve
891 ///
892 /// # Panics
893 ///
894 /// Panics if the new capacity overflows `usize`.
895 ///
896 /// # Examples
897 ///
898 /// Basic usage:
899 ///
900 /// ```
901 /// let mut s = String::new();
902 ///
903 /// s.reserve_exact(10);
904 ///
905 /// assert!(s.capacity() >= 10);
906 /// ```
907 ///
908 /// This may not actually increase the capacity:
909 ///
910 /// ```
911 /// let mut s = String::with_capacity(10);
912 /// s.push('a');
913 /// s.push('b');
914 ///
915 /// // s now has a length of 2 and a capacity of 10
916 /// assert_eq!(2, s.len());
917 /// assert_eq!(10, s.capacity());
918 ///
919 /// // Since we already have an extra 8 capacity, calling this...
920 /// s.reserve_exact(8);
921 ///
922 /// // ... doesn't actually increase.
923 /// assert_eq!(10, s.capacity());
924 /// ```
925 #[inline]
926 #[stable(feature = "rust1", since = "1.0.0")]
927 pub fn reserve_exact(&mut self, additional: usize) {
928 self.vec.reserve_exact(additional)
929 }
930
931 /// Shrinks the capacity of this `String` to match its length.
932 ///
933 /// # Examples
934 ///
935 /// Basic usage:
936 ///
937 /// ```
938 /// let mut s = String::from("foo");
939 ///
940 /// s.reserve(100);
941 /// assert!(s.capacity() >= 100);
942 ///
943 /// s.shrink_to_fit();
944 /// assert_eq!(3, s.capacity());
945 /// ```
946 #[inline]
947 #[stable(feature = "rust1", since = "1.0.0")]
948 pub fn shrink_to_fit(&mut self) {
949 self.vec.shrink_to_fit()
950 }
951
952 /// Appends the given `char` to the end of this `String`.
953 ///
954 /// # Examples
955 ///
956 /// Basic usage:
957 ///
958 /// ```
959 /// let mut s = String::from("abc");
960 ///
961 /// s.push('1');
962 /// s.push('2');
963 /// s.push('3');
964 ///
965 /// assert_eq!("abc123", s);
966 /// ```
967 #[inline]
968 #[stable(feature = "rust1", since = "1.0.0")]
969 pub fn push(&mut self, ch: char) {
970 match ch.len_utf8() {
971 1 => self.vec.push(ch as u8),
972 _ => self.vec.extend_from_slice(ch.encode_utf8().as_slice()),
973 }
974 }
975
976 /// Returns a byte slice of this `String`'s contents.
977 ///
978 /// # Examples
979 ///
980 /// Basic usage:
981 ///
982 /// ```
983 /// let s = String::from("hello");
984 ///
985 /// assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());
986 /// ```
987 #[inline]
988 #[stable(feature = "rust1", since = "1.0.0")]
989 pub fn as_bytes(&self) -> &[u8] {
990 &self.vec
991 }
992
993 /// Shortens this `String` to the specified length.
994 ///
995 /// # Panics
996 ///
997 /// Panics if `new_len` > current length, or if `new_len` does not lie on a
998 /// [`char`] boundary.
999 ///
1000 /// [`char`]: ../../std/primitive.char.html
1001 ///
1002 /// # Examples
1003 ///
1004 /// Basic usage:
1005 ///
1006 /// ```
1007 /// let mut s = String::from("hello");
1008 ///
1009 /// s.truncate(2);
1010 ///
1011 /// assert_eq!("he", s);
1012 /// ```
1013 #[inline]
1014 #[stable(feature = "rust1", since = "1.0.0")]
1015 pub fn truncate(&mut self, new_len: usize) {
1016 assert!(self.is_char_boundary(new_len));
1017 self.vec.truncate(new_len)
1018 }
1019
1020 /// Removes the last character from the string buffer and returns it.
1021 ///
1022 /// Returns `None` if this `String` is empty.
1023 ///
1024 /// # Examples
1025 ///
1026 /// Basic usage:
1027 ///
1028 /// ```
1029 /// let mut s = String::from("foo");
1030 ///
1031 /// assert_eq!(s.pop(), Some('o'));
1032 /// assert_eq!(s.pop(), Some('o'));
1033 /// assert_eq!(s.pop(), Some('f'));
1034 ///
1035 /// assert_eq!(s.pop(), None);
1036 /// ```
1037 #[inline]
1038 #[stable(feature = "rust1", since = "1.0.0")]
1039 pub fn pop(&mut self) -> Option<char> {
1040 let ch = match self.chars().rev().next() {
1041 Some(ch) => ch,
1042 None => return None,
1043 };
1044 let newlen = self.len() - ch.len_utf8();
1045 unsafe {
1046 self.vec.set_len(newlen);
1047 }
1048 Some(ch)
1049 }
1050
1051 /// Removes a `char` from this `String` at a byte position and returns it.
1052 ///
1053 /// This is an `O(n)` operation, as it requires copying every element in the
1054 /// buffer.
1055 ///
1056 /// # Panics
1057 ///
1058 /// Panics if `idx` is larger than or equal to the `String`'s length,
1059 /// or if it does not lie on a [`char`] boundary.
1060 ///
1061 /// [`char`]: ../../std/primitive.char.html
1062 ///
1063 /// # Examples
1064 ///
1065 /// Basic usage:
1066 ///
1067 /// ```
1068 /// let mut s = String::from("foo");
1069 ///
1070 /// assert_eq!(s.remove(0), 'f');
1071 /// assert_eq!(s.remove(1), 'o');
1072 /// assert_eq!(s.remove(0), 'o');
1073 /// ```
1074 #[inline]
1075 #[stable(feature = "rust1", since = "1.0.0")]
1076 pub fn remove(&mut self, idx: usize) -> char {
1077 let ch = match self[idx..].chars().next() {
1078 Some(ch) => ch,
1079 None => panic!("cannot remove a char from the end of a string"),
1080 };
1081
1082 let next = idx + ch.len_utf8();
1083 let len = self.len();
1084 unsafe {
1085 ptr::copy(self.vec.as_ptr().offset(next as isize),
1086 self.vec.as_mut_ptr().offset(idx as isize),
1087 len - next);
1088 self.vec.set_len(len - (next - idx));
1089 }
1090 ch
1091 }
1092
1093 /// Inserts a character into this `String` at a byte position.
1094 ///
1095 /// This is an `O(n)` operation as it requires copying every element in the
1096 /// buffer.
1097 ///
1098 /// # Panics
1099 ///
1100 /// Panics if `idx` is larger than the `String`'s length, or if it does not
1101 /// lie on a [`char`] boundary.
1102 ///
1103 /// [`char`]: ../../std/primitive.char.html
1104 ///
1105 /// # Examples
1106 ///
1107 /// Basic usage:
1108 ///
1109 /// ```
1110 /// let mut s = String::with_capacity(3);
1111 ///
1112 /// s.insert(0, 'f');
1113 /// s.insert(1, 'o');
1114 /// s.insert(2, 'o');
1115 ///
1116 /// assert_eq!("foo", s);
1117 /// ```
1118 #[inline]
1119 #[stable(feature = "rust1", since = "1.0.0")]
1120 pub fn insert(&mut self, idx: usize, ch: char) {
1121 let len = self.len();
1122 assert!(idx <= len);
1123 assert!(self.is_char_boundary(idx));
1124 let bits = ch.encode_utf8();
1125 let bits = bits.as_slice();
1126 let amt = bits.len();
1127 self.vec.reserve(amt);
1128
1129 unsafe {
1130 ptr::copy(self.vec.as_ptr().offset(idx as isize),
1131 self.vec.as_mut_ptr().offset((idx + amt) as isize),
1132 len - idx);
1133 ptr::copy(bits.as_ptr(),
1134 self.vec.as_mut_ptr().offset(idx as isize),
1135 amt);
1136 self.vec.set_len(len + amt);
1137 }
1138 }
1139
1140 /// Returns a mutable reference to the contents of this `String`.
1141 ///
1142 /// # Safety
1143 ///
1144 /// This function is unsafe because it does not check that the bytes passed
1145 /// to it are valid UTF-8. If this constraint is violated, it may cause
1146 /// memory unsafety issues with future users of the `String`, as the rest of
1147 /// the standard library assumes that `String`s are valid UTF-8.
1148 ///
1149 /// # Examples
1150 ///
1151 /// Basic usage:
1152 ///
1153 /// ```
1154 /// let mut s = String::from("hello");
1155 ///
1156 /// unsafe {
1157 /// let vec = s.as_mut_vec();
1158 /// assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);
1159 ///
1160 /// vec.reverse();
1161 /// }
1162 /// assert_eq!(s, "olleh");
1163 /// ```
1164 #[inline]
1165 #[stable(feature = "rust1", since = "1.0.0")]
1166 pub unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8> {
1167 &mut self.vec
1168 }
1169
1170 /// Returns the length of this `String`, in bytes.
1171 ///
1172 /// # Examples
1173 ///
1174 /// Basic usage:
1175 ///
1176 /// ```
1177 /// let a = String::from("foo");
1178 ///
1179 /// assert_eq!(a.len(), 3);
1180 /// ```
1181 #[inline]
1182 #[stable(feature = "rust1", since = "1.0.0")]
1183 pub fn len(&self) -> usize {
1184 self.vec.len()
1185 }
1186
1187 /// Returns `true` if this `String` has a length of zero.
1188 ///
1189 /// Returns `false` otherwise.
1190 ///
1191 /// # Examples
1192 ///
1193 /// Basic usage:
1194 ///
1195 /// ```
1196 /// let mut v = String::new();
1197 /// assert!(v.is_empty());
1198 ///
1199 /// v.push('a');
1200 /// assert!(!v.is_empty());
1201 /// ```
1202 #[inline]
1203 #[stable(feature = "rust1", since = "1.0.0")]
1204 pub fn is_empty(&self) -> bool {
1205 self.len() == 0
1206 }
1207
1208 /// Truncates this `String`, removing all contents.
1209 ///
1210 /// While this means the `String` will have a length of zero, it does not
1211 /// touch its capacity.
1212 ///
1213 /// # Examples
1214 ///
1215 /// Basic usage:
1216 ///
1217 /// ```
1218 /// let mut s = String::from("foo");
1219 ///
1220 /// s.clear();
1221 ///
1222 /// assert!(s.is_empty());
1223 /// assert_eq!(0, s.len());
1224 /// assert_eq!(3, s.capacity());
1225 /// ```
1226 #[inline]
1227 #[stable(feature = "rust1", since = "1.0.0")]
1228 pub fn clear(&mut self) {
1229 self.vec.clear()
1230 }
1231
1232 /// Create a draining iterator that removes the specified range in the string
1233 /// and yields the removed chars.
1234 ///
1235 /// Note: The element range is removed even if the iterator is not
1236 /// consumed until the end.
1237 ///
1238 /// # Panics
1239 ///
1240 /// Panics if the starting point or end point do not lie on a [`char`]
1241 /// boundary, or if they're out of bounds.
1242 ///
1243 /// [`char`]: ../../std/primitive.char.html
1244 ///
1245 /// # Examples
1246 ///
1247 /// Basic usage:
1248 ///
1249 /// ```
1250 /// let mut s = String::from("α is alpha, β is beta");
1251 /// let beta_offset = s.find('β').unwrap_or(s.len());
1252 ///
1253 /// // Remove the range up until the β from the string
1254 /// let t: String = s.drain(..beta_offset).collect();
1255 /// assert_eq!(t, "α is alpha, ");
1256 /// assert_eq!(s, "β is beta");
1257 ///
1258 /// // A full range clears the string
1259 /// s.drain(..);
1260 /// assert_eq!(s, "");
1261 /// ```
1262 #[stable(feature = "drain", since = "1.6.0")]
1263 pub fn drain<R>(&mut self, range: R) -> Drain
1264 where R: RangeArgument<usize>
1265 {
1266 // Memory safety
1267 //
1268 // The String version of Drain does not have the memory safety issues
1269 // of the vector version. The data is just plain bytes.
1270 // Because the range removal happens in Drop, if the Drain iterator is leaked,
1271 // the removal will not happen.
1272 let len = self.len();
1273 let start = *range.start().unwrap_or(&0);
1274 let end = *range.end().unwrap_or(&len);
1275
1276 // Take out two simultaneous borrows. The &mut String won't be accessed
1277 // until iteration is over, in Drop.
1278 let self_ptr = self as *mut _;
1279 // slicing does the appropriate bounds checks
1280 let chars_iter = self[start..end].chars();
1281
1282 Drain {
1283 start: start,
1284 end: end,
1285 iter: chars_iter,
1286 string: self_ptr,
1287 }
1288 }
1289
1290 /// Converts this `String` into a `Box<str>`.
1291 ///
1292 /// This will drop any excess capacity.
1293 ///
1294 /// # Examples
1295 ///
1296 /// Basic usage:
1297 ///
1298 /// ```
1299 /// let s = String::from("hello");
1300 ///
1301 /// let b = s.into_boxed_str();
1302 /// ```
1303 #[stable(feature = "box_str", since = "1.4.0")]
1304 pub fn into_boxed_str(self) -> Box<str> {
1305 let slice = self.vec.into_boxed_slice();
1306 unsafe { mem::transmute::<Box<[u8]>, Box<str>>(slice) }
1307 }
1308 }
1309
1310 impl FromUtf8Error {
1311 /// Returns the bytes that were attempted to convert to a `String`.
1312 ///
1313 /// This method is carefully constructed to avoid allocation. It will
1314 /// consume the error, moving out the bytes, so that a copy of the bytes
1315 /// does not need to be made.
1316 ///
1317 /// # Examples
1318 ///
1319 /// Basic usage:
1320 ///
1321 /// ```
1322 /// // some invalid bytes, in a vector
1323 /// let bytes = vec![0, 159];
1324 ///
1325 /// let value = String::from_utf8(bytes);
1326 ///
1327 /// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
1328 /// ```
1329 #[stable(feature = "rust1", since = "1.0.0")]
1330 pub fn into_bytes(self) -> Vec<u8> {
1331 self.bytes
1332 }
1333
1334 /// Fetch a `Utf8Error` to get more details about the conversion failure.
1335 ///
1336 /// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
1337 /// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
1338 /// an analogue to `FromUtf8Error`. See its documentation for more details
1339 /// on using it.
1340 ///
1341 /// [`Utf8Error`]: ../../std/str/struct.Utf8Error.html
1342 /// [`std::str`]: ../../std/str/index.html
1343 /// [`u8`]: ../../std/primitive.u8.html
1344 /// [`&str`]: ../../std/primitive.str.html
1345 ///
1346 /// # Examples
1347 ///
1348 /// Basic usage:
1349 ///
1350 /// ```
1351 /// // some invalid bytes, in a vector
1352 /// let bytes = vec![0, 159];
1353 ///
1354 /// let error = String::from_utf8(bytes).unwrap_err().utf8_error();
1355 ///
1356 /// // the first byte is invalid here
1357 /// assert_eq!(1, error.valid_up_to());
1358 /// ```
1359 #[stable(feature = "rust1", since = "1.0.0")]
1360 pub fn utf8_error(&self) -> Utf8Error {
1361 self.error
1362 }
1363 }
1364
1365 #[stable(feature = "rust1", since = "1.0.0")]
1366 impl fmt::Display for FromUtf8Error {
1367 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1368 fmt::Display::fmt(&self.error, f)
1369 }
1370 }
1371
1372 #[stable(feature = "rust1", since = "1.0.0")]
1373 impl fmt::Display for FromUtf16Error {
1374 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1375 fmt::Display::fmt("invalid utf-16: lone surrogate found", f)
1376 }
1377 }
1378
1379 #[stable(feature = "rust1", since = "1.0.0")]
1380 impl Clone for String {
1381 fn clone(&self) -> Self {
1382 String { vec: self.vec.clone() }
1383 }
1384
1385 fn clone_from(&mut self, source: &Self) {
1386 self.vec.clone_from(&source.vec);
1387 }
1388 }
1389
1390 #[stable(feature = "rust1", since = "1.0.0")]
1391 impl FromIterator<char> for String {
1392 fn from_iter<I: IntoIterator<Item = char>>(iter: I) -> String {
1393 let mut buf = String::new();
1394 buf.extend(iter);
1395 buf
1396 }
1397 }
1398
1399 #[stable(feature = "rust1", since = "1.0.0")]
1400 impl<'a> FromIterator<&'a str> for String {
1401 fn from_iter<I: IntoIterator<Item = &'a str>>(iter: I) -> String {
1402 let mut buf = String::new();
1403 buf.extend(iter);
1404 buf
1405 }
1406 }
1407
1408 #[stable(feature = "extend_string", since = "1.4.0")]
1409 impl FromIterator<String> for String {
1410 fn from_iter<I: IntoIterator<Item = String>>(iter: I) -> String {
1411 let mut buf = String::new();
1412 buf.extend(iter);
1413 buf
1414 }
1415 }
1416
1417 #[stable(feature = "rust1", since = "1.0.0")]
1418 impl Extend<char> for String {
1419 fn extend<I: IntoIterator<Item = char>>(&mut self, iter: I) {
1420 let iterator = iter.into_iter();
1421 let (lower_bound, _) = iterator.size_hint();
1422 self.reserve(lower_bound);
1423 for ch in iterator {
1424 self.push(ch)
1425 }
1426 }
1427 }
1428
1429 #[stable(feature = "extend_ref", since = "1.2.0")]
1430 impl<'a> Extend<&'a char> for String {
1431 fn extend<I: IntoIterator<Item = &'a char>>(&mut self, iter: I) {
1432 self.extend(iter.into_iter().cloned());
1433 }
1434 }
1435
1436 #[stable(feature = "rust1", since = "1.0.0")]
1437 impl<'a> Extend<&'a str> for String {
1438 fn extend<I: IntoIterator<Item = &'a str>>(&mut self, iter: I) {
1439 for s in iter {
1440 self.push_str(s)
1441 }
1442 }
1443 }
1444
1445 #[stable(feature = "extend_string", since = "1.4.0")]
1446 impl Extend<String> for String {
1447 fn extend<I: IntoIterator<Item = String>>(&mut self, iter: I) {
1448 for s in iter {
1449 self.push_str(&s)
1450 }
1451 }
1452 }
1453
1454 /// A convenience impl that delegates to the impl for `&str`
1455 #[unstable(feature = "pattern",
1456 reason = "API not fully fleshed out and ready to be stabilized",
1457 issue = "27721")]
1458 impl<'a, 'b> Pattern<'a> for &'b String {
1459 type Searcher = <&'b str as Pattern<'a>>::Searcher;
1460
1461 fn into_searcher(self, haystack: &'a str) -> <&'b str as Pattern<'a>>::Searcher {
1462 self[..].into_searcher(haystack)
1463 }
1464
1465 #[inline]
1466 fn is_contained_in(self, haystack: &'a str) -> bool {
1467 self[..].is_contained_in(haystack)
1468 }
1469
1470 #[inline]
1471 fn is_prefix_of(self, haystack: &'a str) -> bool {
1472 self[..].is_prefix_of(haystack)
1473 }
1474 }
1475
1476 #[stable(feature = "rust1", since = "1.0.0")]
1477 impl PartialEq for String {
1478 #[inline]
1479 fn eq(&self, other: &String) -> bool {
1480 PartialEq::eq(&self[..], &other[..])
1481 }
1482 #[inline]
1483 fn ne(&self, other: &String) -> bool {
1484 PartialEq::ne(&self[..], &other[..])
1485 }
1486 }
1487
1488 macro_rules! impl_eq {
1489 ($lhs:ty, $rhs: ty) => {
1490 #[stable(feature = "rust1", since = "1.0.0")]
1491 impl<'a, 'b> PartialEq<$rhs> for $lhs {
1492 #[inline]
1493 fn eq(&self, other: &$rhs) -> bool { PartialEq::eq(&self[..], &other[..]) }
1494 #[inline]
1495 fn ne(&self, other: &$rhs) -> bool { PartialEq::ne(&self[..], &other[..]) }
1496 }
1497
1498 #[stable(feature = "rust1", since = "1.0.0")]
1499 impl<'a, 'b> PartialEq<$lhs> for $rhs {
1500 #[inline]
1501 fn eq(&self, other: &$lhs) -> bool { PartialEq::eq(&self[..], &other[..]) }
1502 #[inline]
1503 fn ne(&self, other: &$lhs) -> bool { PartialEq::ne(&self[..], &other[..]) }
1504 }
1505
1506 }
1507 }
1508
1509 impl_eq! { String, str }
1510 impl_eq! { String, &'a str }
1511 impl_eq! { Cow<'a, str>, str }
1512 impl_eq! { Cow<'a, str>, &'b str }
1513 impl_eq! { Cow<'a, str>, String }
1514
1515 #[stable(feature = "rust1", since = "1.0.0")]
1516 impl Default for String {
1517 #[inline]
1518 fn default() -> String {
1519 String::new()
1520 }
1521 }
1522
1523 #[stable(feature = "rust1", since = "1.0.0")]
1524 impl fmt::Display for String {
1525 #[inline]
1526 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1527 fmt::Display::fmt(&**self, f)
1528 }
1529 }
1530
1531 #[stable(feature = "rust1", since = "1.0.0")]
1532 impl fmt::Debug for String {
1533 #[inline]
1534 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1535 fmt::Debug::fmt(&**self, f)
1536 }
1537 }
1538
1539 #[stable(feature = "rust1", since = "1.0.0")]
1540 impl hash::Hash for String {
1541 #[inline]
1542 fn hash<H: hash::Hasher>(&self, hasher: &mut H) {
1543 (**self).hash(hasher)
1544 }
1545 }
1546
1547 #[stable(feature = "rust1", since = "1.0.0")]
1548 impl<'a> Add<&'a str> for String {
1549 type Output = String;
1550
1551 #[inline]
1552 fn add(mut self, other: &str) -> String {
1553 self.push_str(other);
1554 self
1555 }
1556 }
1557
1558 #[stable(feature = "rust1", since = "1.0.0")]
1559 impl ops::Index<ops::Range<usize>> for String {
1560 type Output = str;
1561
1562 #[inline]
1563 fn index(&self, index: ops::Range<usize>) -> &str {
1564 &self[..][index]
1565 }
1566 }
1567 #[stable(feature = "rust1", since = "1.0.0")]
1568 impl ops::Index<ops::RangeTo<usize>> for String {
1569 type Output = str;
1570
1571 #[inline]
1572 fn index(&self, index: ops::RangeTo<usize>) -> &str {
1573 &self[..][index]
1574 }
1575 }
1576 #[stable(feature = "rust1", since = "1.0.0")]
1577 impl ops::Index<ops::RangeFrom<usize>> for String {
1578 type Output = str;
1579
1580 #[inline]
1581 fn index(&self, index: ops::RangeFrom<usize>) -> &str {
1582 &self[..][index]
1583 }
1584 }
1585 #[stable(feature = "rust1", since = "1.0.0")]
1586 impl ops::Index<ops::RangeFull> for String {
1587 type Output = str;
1588
1589 #[inline]
1590 fn index(&self, _index: ops::RangeFull) -> &str {
1591 unsafe { str::from_utf8_unchecked(&self.vec) }
1592 }
1593 }
1594 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1595 impl ops::Index<ops::RangeInclusive<usize>> for String {
1596 type Output = str;
1597
1598 #[inline]
1599 fn index(&self, index: ops::RangeInclusive<usize>) -> &str {
1600 Index::index(&**self, index)
1601 }
1602 }
1603 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1604 impl ops::Index<ops::RangeToInclusive<usize>> for String {
1605 type Output = str;
1606
1607 #[inline]
1608 fn index(&self, index: ops::RangeToInclusive<usize>) -> &str {
1609 Index::index(&**self, index)
1610 }
1611 }
1612
1613 #[stable(feature = "derefmut_for_string", since = "1.2.0")]
1614 impl ops::IndexMut<ops::Range<usize>> for String {
1615 #[inline]
1616 fn index_mut(&mut self, index: ops::Range<usize>) -> &mut str {
1617 &mut self[..][index]
1618 }
1619 }
1620 #[stable(feature = "derefmut_for_string", since = "1.2.0")]
1621 impl ops::IndexMut<ops::RangeTo<usize>> for String {
1622 #[inline]
1623 fn index_mut(&mut self, index: ops::RangeTo<usize>) -> &mut str {
1624 &mut self[..][index]
1625 }
1626 }
1627 #[stable(feature = "derefmut_for_string", since = "1.2.0")]
1628 impl ops::IndexMut<ops::RangeFrom<usize>> for String {
1629 #[inline]
1630 fn index_mut(&mut self, index: ops::RangeFrom<usize>) -> &mut str {
1631 &mut self[..][index]
1632 }
1633 }
1634 #[stable(feature = "derefmut_for_string", since = "1.2.0")]
1635 impl ops::IndexMut<ops::RangeFull> for String {
1636 #[inline]
1637 fn index_mut(&mut self, _index: ops::RangeFull) -> &mut str {
1638 unsafe { mem::transmute(&mut *self.vec) }
1639 }
1640 }
1641 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1642 impl ops::IndexMut<ops::RangeInclusive<usize>> for String {
1643 #[inline]
1644 fn index_mut(&mut self, index: ops::RangeInclusive<usize>) -> &mut str {
1645 IndexMut::index_mut(&mut **self, index)
1646 }
1647 }
1648 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1649 impl ops::IndexMut<ops::RangeToInclusive<usize>> for String {
1650 #[inline]
1651 fn index_mut(&mut self, index: ops::RangeToInclusive<usize>) -> &mut str {
1652 IndexMut::index_mut(&mut **self, index)
1653 }
1654 }
1655
1656 #[stable(feature = "rust1", since = "1.0.0")]
1657 impl ops::Deref for String {
1658 type Target = str;
1659
1660 #[inline]
1661 fn deref(&self) -> &str {
1662 unsafe { str::from_utf8_unchecked(&self.vec) }
1663 }
1664 }
1665
1666 #[stable(feature = "derefmut_for_string", since = "1.2.0")]
1667 impl ops::DerefMut for String {
1668 #[inline]
1669 fn deref_mut(&mut self) -> &mut str {
1670 unsafe { mem::transmute(&mut *self.vec) }
1671 }
1672 }
1673
1674 /// An error when parsing a `String`.
1675 ///
1676 /// This `enum` is slightly awkward: it will never actually exist. This error is
1677 /// part of the type signature of the implementation of [`FromStr`] on
1678 /// [`String`]. The return type of [`from_str()`], requires that an error be
1679 /// defined, but, given that a [`String`] can always be made into a new
1680 /// [`String`] without error, this type will never actually be returned. As
1681 /// such, it is only here to satisfy said signature, and is useless otherwise.
1682 ///
1683 /// [`FromStr`]: ../../std/str/trait.FromStr.html
1684 /// [`String`]: struct.String.html
1685 /// [`from_str()`]: ../../std/str/trait.FromStr.html#tymethod.from_str
1686 #[stable(feature = "str_parse_error", since = "1.5.0")]
1687 #[derive(Copy)]
1688 pub enum ParseError {}
1689
1690 #[stable(feature = "rust1", since = "1.0.0")]
1691 impl FromStr for String {
1692 type Err = ParseError;
1693 #[inline]
1694 fn from_str(s: &str) -> Result<String, ParseError> {
1695 Ok(String::from(s))
1696 }
1697 }
1698
1699 #[stable(feature = "str_parse_error", since = "1.5.0")]
1700 impl Clone for ParseError {
1701 fn clone(&self) -> ParseError {
1702 match *self {}
1703 }
1704 }
1705
1706 #[stable(feature = "str_parse_error", since = "1.5.0")]
1707 impl fmt::Debug for ParseError {
1708 fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result {
1709 match *self {}
1710 }
1711 }
1712
1713 #[stable(feature = "str_parse_error2", since = "1.8.0")]
1714 impl fmt::Display for ParseError {
1715 fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result {
1716 match *self {}
1717 }
1718 }
1719
1720 #[stable(feature = "str_parse_error", since = "1.5.0")]
1721 impl PartialEq for ParseError {
1722 fn eq(&self, _: &ParseError) -> bool {
1723 match *self {}
1724 }
1725 }
1726
1727 #[stable(feature = "str_parse_error", since = "1.5.0")]
1728 impl Eq for ParseError {}
1729
1730 /// A trait for converting a value to a `String`.
1731 ///
1732 /// This trait is automatically implemented for any type which implements the
1733 /// [`Display`] trait. As such, `ToString` shouldn't be implemented directly:
1734 /// [`Display`] should be implemented instead, and you get the `ToString`
1735 /// implementation for free.
1736 ///
1737 /// [`Display`]: ../../std/fmt/trait.Display.html
1738 #[stable(feature = "rust1", since = "1.0.0")]
1739 pub trait ToString {
1740 /// Converts the given value to a `String`.
1741 ///
1742 /// # Examples
1743 ///
1744 /// Basic usage:
1745 ///
1746 /// ```
1747 /// let i = 5;
1748 /// let five = String::from("5");
1749 ///
1750 /// assert_eq!(five, i.to_string());
1751 /// ```
1752 #[stable(feature = "rust1", since = "1.0.0")]
1753 fn to_string(&self) -> String;
1754 }
1755
1756 #[stable(feature = "rust1", since = "1.0.0")]
1757 impl<T: fmt::Display + ?Sized> ToString for T {
1758 #[inline]
1759 default fn to_string(&self) -> String {
1760 use core::fmt::Write;
1761 let mut buf = String::new();
1762 let _ = buf.write_fmt(format_args!("{}", self));
1763 buf.shrink_to_fit();
1764 buf
1765 }
1766 }
1767
1768 #[stable(feature = "str_to_string_specialization", since = "1.9.0")]
1769 impl ToString for str {
1770 #[inline]
1771 fn to_string(&self) -> String {
1772 String::from(self)
1773 }
1774 }
1775
1776 #[stable(feature = "rust1", since = "1.0.0")]
1777 impl AsRef<str> for String {
1778 #[inline]
1779 fn as_ref(&self) -> &str {
1780 self
1781 }
1782 }
1783
1784 #[stable(feature = "rust1", since = "1.0.0")]
1785 impl AsRef<[u8]> for String {
1786 #[inline]
1787 fn as_ref(&self) -> &[u8] {
1788 self.as_bytes()
1789 }
1790 }
1791
1792 #[stable(feature = "rust1", since = "1.0.0")]
1793 impl<'a> From<&'a str> for String {
1794 fn from(s: &'a str) -> String {
1795 s.to_owned()
1796 }
1797 }
1798
1799 #[stable(feature = "rust1", since = "1.0.0")]
1800 impl<'a> From<&'a str> for Cow<'a, str> {
1801 #[inline]
1802 fn from(s: &'a str) -> Cow<'a, str> {
1803 Cow::Borrowed(s)
1804 }
1805 }
1806
1807 #[stable(feature = "rust1", since = "1.0.0")]
1808 impl<'a> From<String> for Cow<'a, str> {
1809 #[inline]
1810 fn from(s: String) -> Cow<'a, str> {
1811 Cow::Owned(s)
1812 }
1813 }
1814
1815 #[stable(feature = "rust1", since = "1.0.0")]
1816 impl Into<Vec<u8>> for String {
1817 fn into(self) -> Vec<u8> {
1818 self.into_bytes()
1819 }
1820 }
1821
1822 #[stable(feature = "rust1", since = "1.0.0")]
1823 impl fmt::Write for String {
1824 #[inline]
1825 fn write_str(&mut self, s: &str) -> fmt::Result {
1826 self.push_str(s);
1827 Ok(())
1828 }
1829
1830 #[inline]
1831 fn write_char(&mut self, c: char) -> fmt::Result {
1832 self.push(c);
1833 Ok(())
1834 }
1835 }
1836
1837 /// A draining iterator for `String`.
1838 ///
1839 /// This struct is created by the [`drain()`] method on [`String`]. See its
1840 /// documentation for more.
1841 ///
1842 /// [`drain()`]: struct.String.html#method.drain
1843 /// [`String`]: struct.String.html
1844 #[stable(feature = "drain", since = "1.6.0")]
1845 pub struct Drain<'a> {
1846 /// Will be used as &'a mut String in the destructor
1847 string: *mut String,
1848 /// Start of part to remove
1849 start: usize,
1850 /// End of part to remove
1851 end: usize,
1852 /// Current remaining range to remove
1853 iter: Chars<'a>,
1854 }
1855
1856 #[stable(feature = "drain", since = "1.6.0")]
1857 unsafe impl<'a> Sync for Drain<'a> {}
1858 #[stable(feature = "drain", since = "1.6.0")]
1859 unsafe impl<'a> Send for Drain<'a> {}
1860
1861 #[stable(feature = "drain", since = "1.6.0")]
1862 impl<'a> Drop for Drain<'a> {
1863 fn drop(&mut self) {
1864 unsafe {
1865 // Use Vec::drain. "Reaffirm" the bounds checks to avoid
1866 // panic code being inserted again.
1867 let self_vec = (*self.string).as_mut_vec();
1868 if self.start <= self.end && self.end <= self_vec.len() {
1869 self_vec.drain(self.start..self.end);
1870 }
1871 }
1872 }
1873 }
1874
1875 #[stable(feature = "drain", since = "1.6.0")]
1876 impl<'a> Iterator for Drain<'a> {
1877 type Item = char;
1878
1879 #[inline]
1880 fn next(&mut self) -> Option<char> {
1881 self.iter.next()
1882 }
1883
1884 fn size_hint(&self) -> (usize, Option<usize>) {
1885 self.iter.size_hint()
1886 }
1887 }
1888
1889 #[stable(feature = "drain", since = "1.6.0")]
1890 impl<'a> DoubleEndedIterator for Drain<'a> {
1891 #[inline]
1892 fn next_back(&mut self) -> Option<char> {
1893 self.iter.next_back()
1894 }
1895 }