1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
11 //! A UTF-8 encoded, growable string.
13 //! This module contains the [`String`] type, a trait for converting
14 //! [`ToString`]s, and several error types that may result from working with
17 //! [`String`]: struct.String.html
18 //! [`ToString`]: trait.ToString.html
22 //! There are multiple ways to create a new `String` from a string literal:
25 //! let s = "Hello".to_string();
27 //! let s = String::from("world");
28 //! let s: String = "also this".into();
31 //! You can create a new `String` from an existing one by concatenating with
35 //! let s = "Hello".to_string();
37 //! let message = s + " world!";
40 //! If you have a vector of valid UTF-8 bytes, you can make a `String` out of
41 //! it. You can do the reverse too.
44 //! let sparkle_heart = vec![240, 159, 146, 150];
46 //! // We know these bytes are valid, so we'll use `unwrap()`.
47 //! let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
49 //! assert_eq!("💖", sparkle_heart);
51 //! let bytes = sparkle_heart.into_bytes();
53 //! assert_eq!(bytes, [240, 159, 146, 150]);
56 #![stable(feature = "rust1", since = "1.0.0")]
60 use core
::iter
::FromIterator
;
62 use core
::ops
::{self, Add, Index, IndexMut}
;
64 use core
::str::pattern
::Pattern
;
65 use rustc_unicode
::char::{decode_utf16, REPLACEMENT_CHARACTER}
;
66 use rustc_unicode
::str as unicode_str
;
68 use borrow
::{Cow, ToOwned}
;
69 use range
::RangeArgument
;
70 use str::{self, FromStr, Utf8Error, Chars}
;
74 /// A UTF-8 encoded, growable string.
76 /// The `String` type is the most common string type that has ownership over the
77 /// contents of the string. It has a close relationship with its borrowed
78 /// counterpart, the primitive [`str`].
80 /// [`str`]: ../../std/primitive.str.html
84 /// You can create a `String` from a literal string with `String::from`:
87 /// let hello = String::from("Hello, world!");
90 /// You can append a [`char`] to a `String` with the [`push()`] method, and
91 /// append a [`&str`] with the [`push_str()`] method:
94 /// let mut hello = String::from("Hello, ");
97 /// hello.push_str("orld!");
100 /// [`char`]: ../../std/primitive.char.html
101 /// [`push()`]: #method.push
102 /// [`push_str()`]: #method.push_str
104 /// If you have a vector of UTF-8 bytes, you can create a `String` from it with
105 /// the [`from_utf8()`] method:
108 /// // some bytes, in a vector
109 /// let sparkle_heart = vec![240, 159, 146, 150];
111 /// // We know these bytes are valid, so we'll use `unwrap()`.
112 /// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
114 /// assert_eq!("💖", sparkle_heart);
117 /// [`from_utf8()`]: #method.from_utf8
121 /// `String`s are always valid UTF-8. This has a few implications, the first of
122 /// which is that if you need a non-UTF-8 string, consider [`OsString`]. It is
123 /// similar, but without the UTF-8 constraint. The second implication is that
124 /// you cannot index into a `String`:
129 /// println!("The first letter of s is {}", s[0]); // ERROR!!!
132 /// [`OsString`]: ../../std/ffi/struct.OsString.html
134 /// Indexing is intended to be a constant-time operation, but UTF-8 encoding
135 /// does not allow us to do this. Furtheremore, it's not clear what sort of
136 /// thing the index should return: a byte, a codepoint, or a grapheme cluster.
137 /// The [`as_bytes()`] and [`chars()`] methods return iterators over the first
138 /// two, respectively.
140 /// [`as_bytes()`]: #method.as_bytes
141 /// [`chars()`]: #method.chars
145 /// `String`s implement [`Deref`]`<Target=str>`, and so inherit all of [`str`]'s
146 /// methods. In addition, this means that you can pass a `String` to any
147 /// function which takes a [`&str`] by using an ampersand (`&`):
150 /// fn takes_str(s: &str) { }
152 /// let s = String::from("Hello");
157 /// [`&str`]: ../../std/primitive.str.html
158 /// [`Deref`]: ../../std/ops/trait.Deref.html
160 /// This will create a [`&str`] from the `String` and pass it in. This
161 /// conversion is very inexpensive, and so generally, functions will accept
162 /// [`&str`]s as arguments unless they need a `String` for some specific reason.
167 /// A `String` is made up of three components: a pointer to some bytes, a
168 /// length, and a capacity. The pointer points to an internal buffer `String`
169 /// uses to store its data. The length is the number of bytes currently stored
170 /// in the buffer, and the capacity is the size of the buffer in bytes. As such,
171 /// the length will always be less than or equal to the capacity.
173 /// This buffer is always stored on the heap.
175 /// You can look at these with the [`as_ptr()`], [`len()`], and [`capacity()`]
181 /// let story = String::from("Once upon a time...");
183 /// let ptr = story.as_ptr();
184 /// let len = story.len();
185 /// let capacity = story.capacity();
187 /// // story has thirteen bytes
188 /// assert_eq!(19, len);
190 /// // Now that we have our parts, we throw the story away.
191 /// mem::forget(story);
193 /// // We can re-build a String out of ptr, len, and capacity. This is all
194 /// // unsafe because we are responsible for making sure the components are
196 /// let s = unsafe { String::from_raw_parts(ptr as *mut _, len, capacity) } ;
198 /// assert_eq!(String::from("Once upon a time..."), s);
201 /// [`as_ptr()`]: #method.as_ptr
202 /// [`len()`]: #method.len
203 /// [`capacity()`]: #method.capacity
205 /// If a `String` has enough capacity, adding elements to it will not
206 /// re-allocate. For example, consider this program:
209 /// let mut s = String::new();
211 /// println!("{}", s.capacity());
214 /// s.push_str("hello");
215 /// println!("{}", s.capacity());
219 /// This will output the following:
230 /// At first, we have no memory allocated at all, but as we append to the
231 /// string, it increases its capacity appropriately. If we instead use the
232 /// [`with_capacity()`] method to allocate the correct capacity initially:
235 /// let mut s = String::with_capacity(25);
237 /// println!("{}", s.capacity());
240 /// s.push_str("hello");
241 /// println!("{}", s.capacity());
245 /// [`with_capacity()`]: #method.with_capacity
247 /// We end up with a different output:
258 /// Here, there's no need to allocate more memory inside the loop.
259 #[derive(PartialOrd, Eq, Ord)]
260 #[stable(feature = "rust1", since = "1.0.0")]
265 /// A possible error value when converting a `String` from a UTF-8 byte vector.
267 /// This type is the error type for the [`from_utf8()`] method on [`String`]. It
268 /// is designed in such a way to carefully avoid reallocations: the
269 /// [`into_bytes()`] method will give back the byte vector that was used in the
270 /// conversion attempt.
272 /// [`from_utf8()`]: struct.String.html#method.from_utf8
273 /// [`String`]: struct.String.html
274 /// [`into_bytes()`]: struct.FromUtf8Error.html#method.into_bytes
276 /// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
277 /// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
278 /// an analogue to `FromUtf8Error`, and you can get one from a `FromUtf8Error`
279 /// through the [`utf8_error()`] method.
281 /// [`Utf8Error`]: ../../std/str/struct.Utf8Error.html
282 /// [`std::str`]: ../../std/str/index.html
283 /// [`u8`]: ../../std/primitive.u8.html
284 /// [`&str`]: ../../std/primitive.str.html
285 /// [`utf8_error()`]: #method.utf8_error
292 /// // some invalid bytes, in a vector
293 /// let bytes = vec![0, 159];
295 /// let value = String::from_utf8(bytes);
297 /// assert!(value.is_err());
298 /// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
300 #[stable(feature = "rust1", since = "1.0.0")]
302 pub struct FromUtf8Error
{
307 /// A possible error value when converting a `String` from a UTF-16 byte slice.
309 /// This type is the error type for the [`from_utf16()`] method on [`String`].
311 /// [`from_utf16()`]: struct.String.html#method.from_utf16
312 /// [`String`]: struct.String.html
319 /// // 𝄞mu<invalid>ic
320 /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
321 /// 0xD800, 0x0069, 0x0063];
323 /// assert!(String::from_utf16(v).is_err());
325 #[stable(feature = "rust1", since = "1.0.0")]
327 pub struct FromUtf16Error(());
330 /// Creates a new empty `String`.
332 /// Given that the `String` is empty, this will not allocate any initial
333 /// buffer. While that means that this initial operation is very
334 /// inexpensive, but may cause excessive allocation later, when you add
335 /// data. If you have an idea of how much data the `String` will hold,
336 /// consider the [`with_capacity()`] method to prevent excessive
339 /// [`with_capacity()`]: #method.with_capacity
346 /// let s = String::new();
349 #[stable(feature = "rust1", since = "1.0.0")]
350 pub fn new() -> String
{
351 String { vec: Vec::new() }
354 /// Creates a new empty `String` with a particular capacity.
356 /// `String`s have an internal buffer to hold their data. The capacity is
357 /// the length of that buffer, and can be queried with the [`capacity()`]
358 /// method. This method creates an empty `String`, but one with an initial
359 /// buffer that can hold `capacity` bytes. This is useful when you may be
360 /// appending a bunch of data to the `String`, reducing the number of
361 /// reallocations it needs to do.
363 /// [`capacity()`]: #method.capacity
365 /// If the given capacity is `0`, no allocation will occur, and this method
366 /// is identical to the [`new()`] method.
368 /// [`new()`]: #method.new
375 /// let mut s = String::with_capacity(10);
377 /// // The String contains no chars, even though it has capacity for more
378 /// assert_eq!(s.len(), 0);
380 /// // These are all done without reallocating...
381 /// let cap = s.capacity();
386 /// assert_eq!(s.capacity(), cap);
388 /// // ...but this may make the vector reallocate
392 #[stable(feature = "rust1", since = "1.0.0")]
393 pub fn with_capacity(capacity
: usize) -> String
{
394 String { vec: Vec::with_capacity(capacity) }
397 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
398 // required for this method definition, is not available. Since we don't
399 // require this method for testing purposes, I'll just stub it
400 // NB see the slice::hack module in slice.rs for more information
403 pub fn from_str(_
: &str) -> String
{
404 panic
!("not available with cfg(test)");
407 /// Converts a vector of bytes to a `String`.
409 /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a vector of bytes
410 /// ([`Vec<u8>`]) is made of bytes, so this function converts between the
411 /// two. Not all byte slices are valid `String`s, however: `String`
412 /// requires that it is valid UTF-8. `from_utf8()` checks to ensure that
413 /// the bytes are valid UTF-8, and then does the conversion.
415 /// [`&str`]: ../../std/primitive.str.html
416 /// [`u8`]: ../../std/primitive.u8.html
417 /// [`Vec<u8>`]: ../../std/vec/struct.Vec.html
419 /// If you are sure that the byte slice is valid UTF-8, and you don't want
420 /// to incur the overhead of the validity check, there is an unsafe version
421 /// of this function, [`from_utf8_unchecked()`], which has the same behavior
422 /// but skips the check.
424 /// [`from_utf8_unchecked()`]: struct.String.html#method.from_utf8_unchecked
426 /// This method will take care to not copy the vector, for efficiency's
429 /// If you need a `&str` instead of a `String`, consider
430 /// [`str::from_utf8()`].
432 /// [`str::from_utf8()`]: ../../std/str/fn.from_utf8.html
436 /// Returns `Err` if the slice is not UTF-8 with a description as to why the
437 /// provided bytes are not UTF-8. The vector you moved in is also included.
444 /// // some bytes, in a vector
445 /// let sparkle_heart = vec![240, 159, 146, 150];
447 /// // We know these bytes are valid, so we'll use `unwrap()`.
448 /// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
450 /// assert_eq!("💖", sparkle_heart);
456 /// // some invalid bytes, in a vector
457 /// let sparkle_heart = vec![0, 159, 146, 150];
459 /// assert!(String::from_utf8(sparkle_heart).is_err());
462 /// See the docs for [`FromUtf8Error`] for more details on what you can do
465 /// [`FromUtf8Error`]: struct.FromUtf8Error.html
467 #[stable(feature = "rust1", since = "1.0.0")]
468 pub fn from_utf8(vec
: Vec
<u8>) -> Result
<String
, FromUtf8Error
> {
469 match str::from_utf8(&vec
) {
470 Ok(..) => Ok(String { vec: vec }
),
480 /// Converts a slice of bytes to a string, including invalid characters.
482 /// Strings are made of bytes ([`u8`]), and a slice of bytes
483 /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts
484 /// between the two. Not all byte slices are valid strings, however: strings
485 /// are required to be valid UTF-8. During this conversion,
486 /// `from_utf8_lossy()` will replace any invalid UTF-8 sequences with
487 /// `U+FFFD REPLACEMENT CHARACTER`, which looks like this: �
489 /// [`u8`]: ../../std/primitive.u8.html
490 /// [byteslice]: ../../std/primitive.slice.html
492 /// If you are sure that the byte slice is valid UTF-8, and you don't want
493 /// to incur the overhead of the conversion, there is an unsafe version
494 /// of this function, [`from_utf8_unchecked()`], which has the same behavior
495 /// but skips the checks.
497 /// [`from_utf8_unchecked()`]: struct.String.html#method.from_utf8_unchecked
499 /// This function returns a [`Cow<'a, str>`]. If our byte slice is invalid
500 /// UTF-8, then we need to insert the replacement characters, which will
501 /// change the size of the string, and hence, require a `String`. But if
502 /// it's already valid UTF-8, we don't need a new allocation. This return
503 /// type allows us to handle both cases.
505 /// [`Cow<'a, str>`]: ../../std/borrow/enum.Cow.html
512 /// // some bytes, in a vector
513 /// let sparkle_heart = vec![240, 159, 146, 150];
515 /// let sparkle_heart = String::from_utf8_lossy(&sparkle_heart);
517 /// assert_eq!("💖", sparkle_heart);
523 /// // some invalid bytes
524 /// let input = b"Hello \xF0\x90\x80World";
525 /// let output = String::from_utf8_lossy(input);
527 /// assert_eq!("Hello �World", output);
529 #[stable(feature = "rust1", since = "1.0.0")]
530 pub fn from_utf8_lossy
<'a
>(v
: &'a
[u8]) -> Cow
<'a
, str> {
532 match str::from_utf8(v
) {
533 Ok(s
) => return Cow
::Borrowed(s
),
534 Err(e
) => i
= e
.valid_up_to(),
537 const TAG_CONT_U8
: u8 = 128;
538 const REPLACEMENT
: &'
static [u8] = b
"\xEF\xBF\xBD"; // U+FFFD in UTF-8
540 fn unsafe_get(xs
: &[u8], i
: usize) -> u8 {
541 unsafe { *xs.get_unchecked(i) }
543 fn safe_get(xs
: &[u8], i
: usize, total
: usize) -> u8 {
551 let mut res
= String
::with_capacity(total
);
554 unsafe { res.as_mut_vec().extend_from_slice(&v[..i]) }
;
557 // subseqidx is the index of the first byte of the subsequence we're
558 // looking at. It's used to copy a bunch of contiguous good codepoints
559 // at once instead of copying them one by one.
560 let mut subseqidx
= i
;
564 let byte
= unsafe_get(v
, i
);
567 macro_rules
! error
{ () => ({
570 res
.as_mut_vec().extend_from_slice(&v
[subseqidx
..i_
]);
573 res
.as_mut_vec().extend_from_slice(REPLACEMENT
);
578 // subseqidx handles this
580 let w
= unicode_str
::utf8_char_width(byte
);
584 if safe_get(v
, i
, total
) & 192 != TAG_CONT_U8
{
591 match (byte
, safe_get(v
, i
, total
)) {
592 (0xE0, 0xA0...0xBF) => (),
593 (0xE1...0xEC, 0x80...0xBF) => (),
594 (0xED, 0x80...0x9F) => (),
595 (0xEE...0xEF, 0x80...0xBF) => (),
602 if safe_get(v
, i
, total
) & 192 != TAG_CONT_U8
{
609 match (byte
, safe_get(v
, i
, total
)) {
610 (0xF0, 0x90...0xBF) => (),
611 (0xF1...0xF3, 0x80...0xBF) => (),
612 (0xF4, 0x80...0x8F) => (),
619 if safe_get(v
, i
, total
) & 192 != TAG_CONT_U8
{
624 if safe_get(v
, i
, total
) & 192 != TAG_CONT_U8
{
637 if subseqidx
< total
{
638 unsafe { res.as_mut_vec().extend_from_slice(&v[subseqidx..total]) }
;
643 /// Decode a UTF-16 encoded vector `v` into a `String`, returning `Err`
644 /// if `v` contains any invalid data.
652 /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
653 /// 0x0073, 0x0069, 0x0063];
654 /// assert_eq!(String::from("𝄞music"),
655 /// String::from_utf16(v).unwrap());
657 /// // 𝄞mu<invalid>ic
658 /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
659 /// 0xD800, 0x0069, 0x0063];
660 /// assert!(String::from_utf16(v).is_err());
662 #[stable(feature = "rust1", since = "1.0.0")]
663 pub fn from_utf16(v
: &[u16]) -> Result
<String
, FromUtf16Error
> {
664 decode_utf16(v
.iter().cloned()).collect
::<Result
<_
, _
>>().map_err(|_
| FromUtf16Error(()))
667 /// Decode a UTF-16 encoded vector `v` into a string, replacing
668 /// invalid data with the replacement character (U+FFFD).
675 /// // 𝄞mus<invalid>ic<invalid>
676 /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
677 /// 0x0073, 0xDD1E, 0x0069, 0x0063,
680 /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
681 /// String::from_utf16_lossy(v));
684 #[stable(feature = "rust1", since = "1.0.0")]
685 pub fn from_utf16_lossy(v
: &[u16]) -> String
{
686 decode_utf16(v
.iter().cloned()).map(|r
| r
.unwrap_or(REPLACEMENT_CHARACTER
)).collect()
689 /// Creates a new `String` from a length, capacity, and pointer.
693 /// This is highly unsafe, due to the number of invariants that aren't
696 /// * The memory at `ptr` needs to have been previously allocated by the
697 /// same allocator the standard library uses.
698 /// * `length` needs to be less than or equal to `capacity`.
699 /// * `capacity` needs to be the correct value.
701 /// Violating these may cause problems like corrupting the allocator's
702 /// internal datastructures.
712 /// let s = String::from("hello");
713 /// let ptr = s.as_ptr();
714 /// let len = s.len();
715 /// let capacity = s.capacity();
719 /// let s = String::from_raw_parts(ptr as *mut _, len, capacity);
721 /// assert_eq!(String::from("hello"), s);
725 #[stable(feature = "rust1", since = "1.0.0")]
726 pub unsafe fn from_raw_parts(buf
: *mut u8, length
: usize, capacity
: usize) -> String
{
727 String { vec: Vec::from_raw_parts(buf, length, capacity) }
730 /// Converts a vector of bytes to a `String` without checking that the
731 /// string contains valid UTF-8.
733 /// See the safe version, [`from_utf8()`], for more details.
735 /// [`from_utf8()`]: struct.String.html#method.from_utf8
739 /// This function is unsafe because it does not check that the bytes passed
740 /// to it are valid UTF-8. If this constraint is violated, it may cause
741 /// memory unsafety issues with future users of the `String`, as the rest of
742 /// the standard library assumes that `String`s are valid UTF-8.
749 /// // some bytes, in a vector
750 /// let sparkle_heart = vec![240, 159, 146, 150];
752 /// let sparkle_heart = unsafe {
753 /// String::from_utf8_unchecked(sparkle_heart)
756 /// assert_eq!("💖", sparkle_heart);
759 #[stable(feature = "rust1", since = "1.0.0")]
760 pub unsafe fn from_utf8_unchecked(bytes
: Vec
<u8>) -> String
{
761 String { vec: bytes }
764 /// Converts a `String` into a byte vector.
766 /// This consumes the `String`, so we do not need to copy its contents.
773 /// let s = String::from("hello");
774 /// let bytes = s.into_bytes();
776 /// assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);
779 #[stable(feature = "rust1", since = "1.0.0")]
780 pub fn into_bytes(self) -> Vec
<u8> {
784 /// Extracts a string slice containing the entire string.
786 #[stable(feature = "string_as_str", since = "1.7.0")]
787 pub fn as_str(&self) -> &str {
791 /// Extracts a string slice containing the entire string.
793 #[stable(feature = "string_as_str", since = "1.7.0")]
794 pub fn as_mut_str(&mut self) -> &mut str {
798 /// Appends a given string slice onto the end of this `String`.
805 /// let mut s = String::from("foo");
807 /// s.push_str("bar");
809 /// assert_eq!("foobar", s);
812 #[stable(feature = "rust1", since = "1.0.0")]
813 pub fn push_str(&mut self, string
: &str) {
814 self.vec
.extend_from_slice(string
.as_bytes())
817 /// Returns this `String`'s capacity, in bytes.
824 /// let s = String::with_capacity(10);
826 /// assert!(s.capacity() >= 10);
829 #[stable(feature = "rust1", since = "1.0.0")]
830 pub fn capacity(&self) -> usize {
834 /// Ensures that this `String`'s capacity is at least `additional` bytes
835 /// larger than its length.
837 /// The capacity may be increased by more than `additional` bytes if it
838 /// chooses, to prevent frequent reallocations.
840 /// If you do not want this "at least" behavior, see the [`reserve_exact()`]
843 /// [`reserve_exact()`]: #method.reserve_exact
847 /// Panics if the new capacity overflows `usize`.
854 /// let mut s = String::new();
858 /// assert!(s.capacity() >= 10);
861 /// This may not actually increase the capacity:
864 /// let mut s = String::with_capacity(10);
868 /// // s now has a length of 2 and a capacity of 10
869 /// assert_eq!(2, s.len());
870 /// assert_eq!(10, s.capacity());
872 /// // Since we already have an extra 8 capacity, calling this...
875 /// // ... doesn't actually increase.
876 /// assert_eq!(10, s.capacity());
879 #[stable(feature = "rust1", since = "1.0.0")]
880 pub fn reserve(&mut self, additional
: usize) {
881 self.vec
.reserve(additional
)
884 /// Ensures that this `String`'s capacity is `additional` bytes
885 /// larger than its length.
887 /// Consider using the [`reserve()`] method unless you absolutely know
888 /// better than the allocator.
890 /// [`reserve()`]: #method.reserve
894 /// Panics if the new capacity overflows `usize`.
901 /// let mut s = String::new();
903 /// s.reserve_exact(10);
905 /// assert!(s.capacity() >= 10);
908 /// This may not actually increase the capacity:
911 /// let mut s = String::with_capacity(10);
915 /// // s now has a length of 2 and a capacity of 10
916 /// assert_eq!(2, s.len());
917 /// assert_eq!(10, s.capacity());
919 /// // Since we already have an extra 8 capacity, calling this...
920 /// s.reserve_exact(8);
922 /// // ... doesn't actually increase.
923 /// assert_eq!(10, s.capacity());
926 #[stable(feature = "rust1", since = "1.0.0")]
927 pub fn reserve_exact(&mut self, additional
: usize) {
928 self.vec
.reserve_exact(additional
)
931 /// Shrinks the capacity of this `String` to match its length.
938 /// let mut s = String::from("foo");
941 /// assert!(s.capacity() >= 100);
943 /// s.shrink_to_fit();
944 /// assert_eq!(3, s.capacity());
947 #[stable(feature = "rust1", since = "1.0.0")]
948 pub fn shrink_to_fit(&mut self) {
949 self.vec
.shrink_to_fit()
952 /// Appends the given `char` to the end of this `String`.
959 /// let mut s = String::from("abc");
965 /// assert_eq!("abc123", s);
968 #[stable(feature = "rust1", since = "1.0.0")]
969 pub fn push(&mut self, ch
: char) {
970 match ch
.len_utf8() {
971 1 => self.vec
.push(ch
as u8),
972 _
=> self.vec
.extend_from_slice(ch
.encode_utf8().as_slice()),
976 /// Returns a byte slice of this `String`'s contents.
983 /// let s = String::from("hello");
985 /// assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());
988 #[stable(feature = "rust1", since = "1.0.0")]
989 pub fn as_bytes(&self) -> &[u8] {
993 /// Shortens this `String` to the specified length.
997 /// Panics if `new_len` > current length, or if `new_len` does not lie on a
998 /// [`char`] boundary.
1000 /// [`char`]: ../../std/primitive.char.html
1007 /// let mut s = String::from("hello");
1011 /// assert_eq!("he", s);
1014 #[stable(feature = "rust1", since = "1.0.0")]
1015 pub fn truncate(&mut self, new_len
: usize) {
1016 assert
!(self.is_char_boundary(new_len
));
1017 self.vec
.truncate(new_len
)
1020 /// Removes the last character from the string buffer and returns it.
1022 /// Returns `None` if this `String` is empty.
1029 /// let mut s = String::from("foo");
1031 /// assert_eq!(s.pop(), Some('o'));
1032 /// assert_eq!(s.pop(), Some('o'));
1033 /// assert_eq!(s.pop(), Some('f'));
1035 /// assert_eq!(s.pop(), None);
1038 #[stable(feature = "rust1", since = "1.0.0")]
1039 pub fn pop(&mut self) -> Option
<char> {
1040 let ch
= match self.chars().rev().next() {
1042 None
=> return None
,
1044 let newlen
= self.len() - ch
.len_utf8();
1046 self.vec
.set_len(newlen
);
1051 /// Removes a `char` from this `String` at a byte position and returns it.
1053 /// This is an `O(n)` operation, as it requires copying every element in the
1058 /// Panics if `idx` is larger than or equal to the `String`'s length,
1059 /// or if it does not lie on a [`char`] boundary.
1061 /// [`char`]: ../../std/primitive.char.html
1068 /// let mut s = String::from("foo");
1070 /// assert_eq!(s.remove(0), 'f');
1071 /// assert_eq!(s.remove(1), 'o');
1072 /// assert_eq!(s.remove(0), 'o');
1075 #[stable(feature = "rust1", since = "1.0.0")]
1076 pub fn remove(&mut self, idx
: usize) -> char {
1077 let ch
= match self[idx
..].chars().next() {
1079 None
=> panic
!("cannot remove a char from the end of a string"),
1082 let next
= idx
+ ch
.len_utf8();
1083 let len
= self.len();
1085 ptr
::copy(self.vec
.as_ptr().offset(next
as isize),
1086 self.vec
.as_mut_ptr().offset(idx
as isize),
1088 self.vec
.set_len(len
- (next
- idx
));
1093 /// Inserts a character into this `String` at a byte position.
1095 /// This is an `O(n)` operation as it requires copying every element in the
1100 /// Panics if `idx` is larger than the `String`'s length, or if it does not
1101 /// lie on a [`char`] boundary.
1103 /// [`char`]: ../../std/primitive.char.html
1110 /// let mut s = String::with_capacity(3);
1112 /// s.insert(0, 'f');
1113 /// s.insert(1, 'o');
1114 /// s.insert(2, 'o');
1116 /// assert_eq!("foo", s);
1119 #[stable(feature = "rust1", since = "1.0.0")]
1120 pub fn insert(&mut self, idx
: usize, ch
: char) {
1121 let len
= self.len();
1122 assert
!(idx
<= len
);
1123 assert
!(self.is_char_boundary(idx
));
1124 let bits
= ch
.encode_utf8();
1125 let bits
= bits
.as_slice();
1126 let amt
= bits
.len();
1127 self.vec
.reserve(amt
);
1130 ptr
::copy(self.vec
.as_ptr().offset(idx
as isize),
1131 self.vec
.as_mut_ptr().offset((idx
+ amt
) as isize),
1133 ptr
::copy(bits
.as_ptr(),
1134 self.vec
.as_mut_ptr().offset(idx
as isize),
1136 self.vec
.set_len(len
+ amt
);
1140 /// Returns a mutable reference to the contents of this `String`.
1144 /// This function is unsafe because it does not check that the bytes passed
1145 /// to it are valid UTF-8. If this constraint is violated, it may cause
1146 /// memory unsafety issues with future users of the `String`, as the rest of
1147 /// the standard library assumes that `String`s are valid UTF-8.
1154 /// let mut s = String::from("hello");
1157 /// let vec = s.as_mut_vec();
1158 /// assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);
1162 /// assert_eq!(s, "olleh");
1165 #[stable(feature = "rust1", since = "1.0.0")]
1166 pub unsafe fn as_mut_vec(&mut self) -> &mut Vec
<u8> {
1170 /// Returns the length of this `String`, in bytes.
1177 /// let a = String::from("foo");
1179 /// assert_eq!(a.len(), 3);
1182 #[stable(feature = "rust1", since = "1.0.0")]
1183 pub fn len(&self) -> usize {
1187 /// Returns `true` if this `String` has a length of zero.
1189 /// Returns `false` otherwise.
1196 /// let mut v = String::new();
1197 /// assert!(v.is_empty());
1200 /// assert!(!v.is_empty());
1203 #[stable(feature = "rust1", since = "1.0.0")]
1204 pub fn is_empty(&self) -> bool
{
1208 /// Truncates this `String`, removing all contents.
1210 /// While this means the `String` will have a length of zero, it does not
1211 /// touch its capacity.
1218 /// let mut s = String::from("foo");
1222 /// assert!(s.is_empty());
1223 /// assert_eq!(0, s.len());
1224 /// assert_eq!(3, s.capacity());
1227 #[stable(feature = "rust1", since = "1.0.0")]
1228 pub fn clear(&mut self) {
1232 /// Create a draining iterator that removes the specified range in the string
1233 /// and yields the removed chars.
1235 /// Note: The element range is removed even if the iterator is not
1236 /// consumed until the end.
1240 /// Panics if the starting point or end point do not lie on a [`char`]
1241 /// boundary, or if they're out of bounds.
1243 /// [`char`]: ../../std/primitive.char.html
1250 /// let mut s = String::from("α is alpha, β is beta");
1251 /// let beta_offset = s.find('β').unwrap_or(s.len());
1253 /// // Remove the range up until the β from the string
1254 /// let t: String = s.drain(..beta_offset).collect();
1255 /// assert_eq!(t, "α is alpha, ");
1256 /// assert_eq!(s, "β is beta");
1258 /// // A full range clears the string
1260 /// assert_eq!(s, "");
1262 #[stable(feature = "drain", since = "1.6.0")]
1263 pub fn drain
<R
>(&mut self, range
: R
) -> Drain
1264 where R
: RangeArgument
<usize>
1268 // The String version of Drain does not have the memory safety issues
1269 // of the vector version. The data is just plain bytes.
1270 // Because the range removal happens in Drop, if the Drain iterator is leaked,
1271 // the removal will not happen.
1272 let len
= self.len();
1273 let start
= *range
.start().unwrap_or(&0);
1274 let end
= *range
.end().unwrap_or(&len
);
1276 // Take out two simultaneous borrows. The &mut String won't be accessed
1277 // until iteration is over, in Drop.
1278 let self_ptr
= self as *mut _
;
1279 // slicing does the appropriate bounds checks
1280 let chars_iter
= self[start
..end
].chars();
1290 /// Converts this `String` into a `Box<str>`.
1292 /// This will drop any excess capacity.
1299 /// let s = String::from("hello");
1301 /// let b = s.into_boxed_str();
1303 #[stable(feature = "box_str", since = "1.4.0")]
1304 pub fn into_boxed_str(self) -> Box
<str> {
1305 let slice
= self.vec
.into_boxed_slice();
1306 unsafe { mem::transmute::<Box<[u8]>, Box<str>>(slice) }
1310 impl FromUtf8Error
{
1311 /// Returns the bytes that were attempted to convert to a `String`.
1313 /// This method is carefully constructed to avoid allocation. It will
1314 /// consume the error, moving out the bytes, so that a copy of the bytes
1315 /// does not need to be made.
1322 /// // some invalid bytes, in a vector
1323 /// let bytes = vec![0, 159];
1325 /// let value = String::from_utf8(bytes);
1327 /// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
1329 #[stable(feature = "rust1", since = "1.0.0")]
1330 pub fn into_bytes(self) -> Vec
<u8> {
1334 /// Fetch a `Utf8Error` to get more details about the conversion failure.
1336 /// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
1337 /// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
1338 /// an analogue to `FromUtf8Error`. See its documentation for more details
1341 /// [`Utf8Error`]: ../../std/str/struct.Utf8Error.html
1342 /// [`std::str`]: ../../std/str/index.html
1343 /// [`u8`]: ../../std/primitive.u8.html
1344 /// [`&str`]: ../../std/primitive.str.html
1351 /// // some invalid bytes, in a vector
1352 /// let bytes = vec![0, 159];
1354 /// let error = String::from_utf8(bytes).unwrap_err().utf8_error();
1356 /// // the first byte is invalid here
1357 /// assert_eq!(1, error.valid_up_to());
1359 #[stable(feature = "rust1", since = "1.0.0")]
1360 pub fn utf8_error(&self) -> Utf8Error
{
1365 #[stable(feature = "rust1", since = "1.0.0")]
1366 impl fmt
::Display
for FromUtf8Error
{
1367 fn fmt(&self, f
: &mut fmt
::Formatter
) -> fmt
::Result
{
1368 fmt
::Display
::fmt(&self.error
, f
)
1372 #[stable(feature = "rust1", since = "1.0.0")]
1373 impl fmt
::Display
for FromUtf16Error
{
1374 fn fmt(&self, f
: &mut fmt
::Formatter
) -> fmt
::Result
{
1375 fmt
::Display
::fmt("invalid utf-16: lone surrogate found", f
)
1379 #[stable(feature = "rust1", since = "1.0.0")]
1380 impl Clone
for String
{
1381 fn clone(&self) -> Self {
1382 String { vec: self.vec.clone() }
1385 fn clone_from(&mut self, source
: &Self) {
1386 self.vec
.clone_from(&source
.vec
);
1390 #[stable(feature = "rust1", since = "1.0.0")]
1391 impl FromIterator
<char> for String
{
1392 fn from_iter
<I
: IntoIterator
<Item
= char>>(iter
: I
) -> String
{
1393 let mut buf
= String
::new();
1399 #[stable(feature = "rust1", since = "1.0.0")]
1400 impl<'a
> FromIterator
<&'a
str> for String
{
1401 fn from_iter
<I
: IntoIterator
<Item
= &'a
str>>(iter
: I
) -> String
{
1402 let mut buf
= String
::new();
1408 #[stable(feature = "extend_string", since = "1.4.0")]
1409 impl FromIterator
<String
> for String
{
1410 fn from_iter
<I
: IntoIterator
<Item
= String
>>(iter
: I
) -> String
{
1411 let mut buf
= String
::new();
1417 #[stable(feature = "rust1", since = "1.0.0")]
1418 impl Extend
<char> for String
{
1419 fn extend
<I
: IntoIterator
<Item
= char>>(&mut self, iter
: I
) {
1420 let iterator
= iter
.into_iter();
1421 let (lower_bound
, _
) = iterator
.size_hint();
1422 self.reserve(lower_bound
);
1423 for ch
in iterator
{
1429 #[stable(feature = "extend_ref", since = "1.2.0")]
1430 impl<'a
> Extend
<&'a
char> for String
{
1431 fn extend
<I
: IntoIterator
<Item
= &'a
char>>(&mut self, iter
: I
) {
1432 self.extend(iter
.into_iter().cloned());
1436 #[stable(feature = "rust1", since = "1.0.0")]
1437 impl<'a
> Extend
<&'a
str> for String
{
1438 fn extend
<I
: IntoIterator
<Item
= &'a
str>>(&mut self, iter
: I
) {
1445 #[stable(feature = "extend_string", since = "1.4.0")]
1446 impl Extend
<String
> for String
{
1447 fn extend
<I
: IntoIterator
<Item
= String
>>(&mut self, iter
: I
) {
1454 /// A convenience impl that delegates to the impl for `&str`
1455 #[unstable(feature = "pattern",
1456 reason
= "API not fully fleshed out and ready to be stabilized",
1458 impl<'a
, 'b
> Pattern
<'a
> for &'b String
{
1459 type Searcher
= <&'b
str as Pattern
<'a
>>::Searcher
;
1461 fn into_searcher(self, haystack
: &'a
str) -> <&'b
str as Pattern
<'a
>>::Searcher
{
1462 self[..].into_searcher(haystack
)
1466 fn is_contained_in(self, haystack
: &'a
str) -> bool
{
1467 self[..].is_contained_in(haystack
)
1471 fn is_prefix_of(self, haystack
: &'a
str) -> bool
{
1472 self[..].is_prefix_of(haystack
)
1476 #[stable(feature = "rust1", since = "1.0.0")]
1477 impl PartialEq
for String
{
1479 fn eq(&self, other
: &String
) -> bool
{
1480 PartialEq
::eq(&self[..], &other
[..])
1483 fn ne(&self, other
: &String
) -> bool
{
1484 PartialEq
::ne(&self[..], &other
[..])
1488 macro_rules
! impl_eq
{
1489 ($lhs
:ty
, $rhs
: ty
) => {
1490 #[stable(feature = "rust1", since = "1.0.0")]
1491 impl<'a
, 'b
> PartialEq
<$rhs
> for $lhs
{
1493 fn eq(&self, other
: &$rhs
) -> bool { PartialEq::eq(&self[..], &other[..]) }
1495 fn ne(&self, other
: &$rhs
) -> bool { PartialEq::ne(&self[..], &other[..]) }
1498 #[stable(feature = "rust1", since = "1.0.0")]
1499 impl<'a
, 'b
> PartialEq
<$lhs
> for $rhs
{
1501 fn eq(&self, other
: &$lhs
) -> bool { PartialEq::eq(&self[..], &other[..]) }
1503 fn ne(&self, other
: &$lhs
) -> bool { PartialEq::ne(&self[..], &other[..]) }
1509 impl_eq
! { String, str }
1510 impl_eq
! { String, &'a str }
1511 impl_eq
! { Cow<'a, str>, str }
1512 impl_eq
! { Cow<'a, str>, &'b str }
1513 impl_eq
! { Cow<'a, str>, String }
1515 #[stable(feature = "rust1", since = "1.0.0")]
1516 impl Default
for String
{
1518 fn default() -> String
{
1523 #[stable(feature = "rust1", since = "1.0.0")]
1524 impl fmt
::Display
for String
{
1526 fn fmt(&self, f
: &mut fmt
::Formatter
) -> fmt
::Result
{
1527 fmt
::Display
::fmt(&**self, f
)
1531 #[stable(feature = "rust1", since = "1.0.0")]
1532 impl fmt
::Debug
for String
{
1534 fn fmt(&self, f
: &mut fmt
::Formatter
) -> fmt
::Result
{
1535 fmt
::Debug
::fmt(&**self, f
)
1539 #[stable(feature = "rust1", since = "1.0.0")]
1540 impl hash
::Hash
for String
{
1542 fn hash
<H
: hash
::Hasher
>(&self, hasher
: &mut H
) {
1543 (**self).hash(hasher
)
1547 #[stable(feature = "rust1", since = "1.0.0")]
1548 impl<'a
> Add
<&'a
str> for String
{
1549 type Output
= String
;
1552 fn add(mut self, other
: &str) -> String
{
1553 self.push_str(other
);
1558 #[stable(feature = "rust1", since = "1.0.0")]
1559 impl ops
::Index
<ops
::Range
<usize>> for String
{
1563 fn index(&self, index
: ops
::Range
<usize>) -> &str {
1567 #[stable(feature = "rust1", since = "1.0.0")]
1568 impl ops
::Index
<ops
::RangeTo
<usize>> for String
{
1572 fn index(&self, index
: ops
::RangeTo
<usize>) -> &str {
1576 #[stable(feature = "rust1", since = "1.0.0")]
1577 impl ops
::Index
<ops
::RangeFrom
<usize>> for String
{
1581 fn index(&self, index
: ops
::RangeFrom
<usize>) -> &str {
1585 #[stable(feature = "rust1", since = "1.0.0")]
1586 impl ops
::Index
<ops
::RangeFull
> for String
{
1590 fn index(&self, _index
: ops
::RangeFull
) -> &str {
1591 unsafe { str::from_utf8_unchecked(&self.vec) }
1594 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1595 impl ops
::Index
<ops
::RangeInclusive
<usize>> for String
{
1599 fn index(&self, index
: ops
::RangeInclusive
<usize>) -> &str {
1600 Index
::index(&**self, index
)
1603 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1604 impl ops
::Index
<ops
::RangeToInclusive
<usize>> for String
{
1608 fn index(&self, index
: ops
::RangeToInclusive
<usize>) -> &str {
1609 Index
::index(&**self, index
)
1613 #[stable(feature = "derefmut_for_string", since = "1.2.0")]
1614 impl ops
::IndexMut
<ops
::Range
<usize>> for String
{
1616 fn index_mut(&mut self, index
: ops
::Range
<usize>) -> &mut str {
1617 &mut self[..][index
]
1620 #[stable(feature = "derefmut_for_string", since = "1.2.0")]
1621 impl ops
::IndexMut
<ops
::RangeTo
<usize>> for String
{
1623 fn index_mut(&mut self, index
: ops
::RangeTo
<usize>) -> &mut str {
1624 &mut self[..][index
]
1627 #[stable(feature = "derefmut_for_string", since = "1.2.0")]
1628 impl ops
::IndexMut
<ops
::RangeFrom
<usize>> for String
{
1630 fn index_mut(&mut self, index
: ops
::RangeFrom
<usize>) -> &mut str {
1631 &mut self[..][index
]
1634 #[stable(feature = "derefmut_for_string", since = "1.2.0")]
1635 impl ops
::IndexMut
<ops
::RangeFull
> for String
{
1637 fn index_mut(&mut self, _index
: ops
::RangeFull
) -> &mut str {
1638 unsafe { mem::transmute(&mut *self.vec) }
1641 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1642 impl ops
::IndexMut
<ops
::RangeInclusive
<usize>> for String
{
1644 fn index_mut(&mut self, index
: ops
::RangeInclusive
<usize>) -> &mut str {
1645 IndexMut
::index_mut(&mut **self, index
)
1648 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1649 impl ops
::IndexMut
<ops
::RangeToInclusive
<usize>> for String
{
1651 fn index_mut(&mut self, index
: ops
::RangeToInclusive
<usize>) -> &mut str {
1652 IndexMut
::index_mut(&mut **self, index
)
1656 #[stable(feature = "rust1", since = "1.0.0")]
1657 impl ops
::Deref
for String
{
1661 fn deref(&self) -> &str {
1662 unsafe { str::from_utf8_unchecked(&self.vec) }
1666 #[stable(feature = "derefmut_for_string", since = "1.2.0")]
1667 impl ops
::DerefMut
for String
{
1669 fn deref_mut(&mut self) -> &mut str {
1670 unsafe { mem::transmute(&mut *self.vec) }
1674 /// An error when parsing a `String`.
1676 /// This `enum` is slightly awkward: it will never actually exist. This error is
1677 /// part of the type signature of the implementation of [`FromStr`] on
1678 /// [`String`]. The return type of [`from_str()`], requires that an error be
1679 /// defined, but, given that a [`String`] can always be made into a new
1680 /// [`String`] without error, this type will never actually be returned. As
1681 /// such, it is only here to satisfy said signature, and is useless otherwise.
1683 /// [`FromStr`]: ../../std/str/trait.FromStr.html
1684 /// [`String`]: struct.String.html
1685 /// [`from_str()`]: ../../std/str/trait.FromStr.html#tymethod.from_str
1686 #[stable(feature = "str_parse_error", since = "1.5.0")]
1688 pub enum ParseError {}
1690 #[stable(feature = "rust1", since = "1.0.0")]
1691 impl FromStr
for String
{
1692 type Err
= ParseError
;
1694 fn from_str(s
: &str) -> Result
<String
, ParseError
> {
1699 #[stable(feature = "str_parse_error", since = "1.5.0")]
1700 impl Clone
for ParseError
{
1701 fn clone(&self) -> ParseError
{
1706 #[stable(feature = "str_parse_error", since = "1.5.0")]
1707 impl fmt
::Debug
for ParseError
{
1708 fn fmt(&self, _
: &mut fmt
::Formatter
) -> fmt
::Result
{
1713 #[stable(feature = "str_parse_error2", since = "1.8.0")]
1714 impl fmt
::Display
for ParseError
{
1715 fn fmt(&self, _
: &mut fmt
::Formatter
) -> fmt
::Result
{
1720 #[stable(feature = "str_parse_error", since = "1.5.0")]
1721 impl PartialEq
for ParseError
{
1722 fn eq(&self, _
: &ParseError
) -> bool
{
1727 #[stable(feature = "str_parse_error", since = "1.5.0")]
1728 impl Eq
for ParseError {}
1730 /// A trait for converting a value to a `String`.
1732 /// This trait is automatically implemented for any type which implements the
1733 /// [`Display`] trait. As such, `ToString` shouldn't be implemented directly:
1734 /// [`Display`] should be implemented instead, and you get the `ToString`
1735 /// implementation for free.
1737 /// [`Display`]: ../../std/fmt/trait.Display.html
1738 #[stable(feature = "rust1", since = "1.0.0")]
1739 pub trait ToString
{
1740 /// Converts the given value to a `String`.
1748 /// let five = String::from("5");
1750 /// assert_eq!(five, i.to_string());
1752 #[stable(feature = "rust1", since = "1.0.0")]
1753 fn to_string(&self) -> String
;
1756 #[stable(feature = "rust1", since = "1.0.0")]
1757 impl<T
: fmt
::Display
+ ?Sized
> ToString
for T
{
1759 default fn to_string(&self) -> String
{
1760 use core
::fmt
::Write
;
1761 let mut buf
= String
::new();
1762 let _
= buf
.write_fmt(format_args
!("{}", self));
1763 buf
.shrink_to_fit();
1768 #[stable(feature = "str_to_string_specialization", since = "1.9.0")]
1769 impl ToString
for str {
1771 fn to_string(&self) -> String
{
1776 #[stable(feature = "rust1", since = "1.0.0")]
1777 impl AsRef
<str> for String
{
1779 fn as_ref(&self) -> &str {
1784 #[stable(feature = "rust1", since = "1.0.0")]
1785 impl AsRef
<[u8]> for String
{
1787 fn as_ref(&self) -> &[u8] {
1792 #[stable(feature = "rust1", since = "1.0.0")]
1793 impl<'a
> From
<&'a
str> for String
{
1794 fn from(s
: &'a
str) -> String
{
1799 #[stable(feature = "rust1", since = "1.0.0")]
1800 impl<'a
> From
<&'a
str> for Cow
<'a
, str> {
1802 fn from(s
: &'a
str) -> Cow
<'a
, str> {
1807 #[stable(feature = "rust1", since = "1.0.0")]
1808 impl<'a
> From
<String
> for Cow
<'a
, str> {
1810 fn from(s
: String
) -> Cow
<'a
, str> {
1815 #[stable(feature = "rust1", since = "1.0.0")]
1816 impl Into
<Vec
<u8>> for String
{
1817 fn into(self) -> Vec
<u8> {
1822 #[stable(feature = "rust1", since = "1.0.0")]
1823 impl fmt
::Write
for String
{
1825 fn write_str(&mut self, s
: &str) -> fmt
::Result
{
1831 fn write_char(&mut self, c
: char) -> fmt
::Result
{
1837 /// A draining iterator for `String`.
1839 /// This struct is created by the [`drain()`] method on [`String`]. See its
1840 /// documentation for more.
1842 /// [`drain()`]: struct.String.html#method.drain
1843 /// [`String`]: struct.String.html
1844 #[stable(feature = "drain", since = "1.6.0")]
1845 pub struct Drain
<'a
> {
1846 /// Will be used as &'a mut String in the destructor
1847 string
: *mut String
,
1848 /// Start of part to remove
1850 /// End of part to remove
1852 /// Current remaining range to remove
1856 #[stable(feature = "drain", since = "1.6.0")]
1857 unsafe impl<'a
> Sync
for Drain
<'a
> {}
1858 #[stable(feature = "drain", since = "1.6.0")]
1859 unsafe impl<'a
> Send
for Drain
<'a
> {}
1861 #[stable(feature = "drain", since = "1.6.0")]
1862 impl<'a
> Drop
for Drain
<'a
> {
1863 fn drop(&mut self) {
1865 // Use Vec::drain. "Reaffirm" the bounds checks to avoid
1866 // panic code being inserted again.
1867 let self_vec
= (*self.string
).as_mut_vec();
1868 if self.start
<= self.end
&& self.end
<= self_vec
.len() {
1869 self_vec
.drain(self.start
..self.end
);
1875 #[stable(feature = "drain", since = "1.6.0")]
1876 impl<'a
> Iterator
for Drain
<'a
> {
1880 fn next(&mut self) -> Option
<char> {
1884 fn size_hint(&self) -> (usize, Option
<usize>) {
1885 self.iter
.size_hint()
1889 #[stable(feature = "drain", since = "1.6.0")]
1890 impl<'a
> DoubleEndedIterator
for Drain
<'a
> {
1892 fn next_back(&mut self) -> Option
<char> {
1893 self.iter
.next_back()