1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
11 //! A contiguous growable array type with heap-allocated contents, written
12 //! `Vec<T>` but pronounced 'vector.'
14 //! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and
15 //! `O(1)` pop (from the end).
19 //! You can explicitly create a `Vec<T>` with `new()`:
22 //! let v: Vec<i32> = Vec::new();
25 //! ...or by using the `vec!` macro:
28 //! let v: Vec<i32> = vec![];
30 //! let v = vec![1, 2, 3, 4, 5];
32 //! let v = vec![0; 10]; // ten zeroes
35 //! You can `push` values onto the end of a vector (which will grow the vector
39 //! let mut v = vec![1, 2];
44 //! Popping values works in much the same way:
47 //! let mut v = vec![1, 2];
49 //! let two = v.pop();
52 //! Vectors also support indexing (through the `Index` and `IndexMut` traits):
55 //! let mut v = vec![1, 2, 3];
60 #![stable(feature = "rust1", since = "1.0.0")]
62 use alloc
::boxed
::Box
;
63 use alloc
::heap
::EMPTY
;
64 use alloc
::raw_vec
::RawVec
;
67 use core
::cmp
::Ordering
;
69 use core
::hash
::{self, Hash}
;
70 use core
::intrinsics
::{arith_offset, assume}
;
71 use core
::iter
::FromIterator
;
73 use core
::ops
::{Index, IndexMut}
;
78 use super::range
::RangeArgument
;
80 /// A contiguous growable array type, written `Vec<T>` but pronounced 'vector.'
85 /// let mut vec = Vec::new();
89 /// assert_eq!(vec.len(), 2);
90 /// assert_eq!(vec[0], 1);
92 /// assert_eq!(vec.pop(), Some(2));
93 /// assert_eq!(vec.len(), 1);
96 /// assert_eq!(vec[0], 7);
98 /// vec.extend([1, 2, 3].iter().cloned());
101 /// println!("{}", x);
103 /// assert_eq!(vec, [7, 1, 2, 3]);
106 /// The `vec!` macro is provided to make initialization more convenient:
109 /// let mut vec = vec![1, 2, 3];
111 /// assert_eq!(vec, [1, 2, 3, 4]);
114 /// It can also initialize each element of a `Vec<T>` with a given value:
117 /// let vec = vec![0; 5];
118 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
121 /// Use a `Vec<T>` as an efficient stack:
124 /// let mut stack = Vec::new();
130 /// while let Some(top) = stack.pop() {
131 /// // Prints 3, 2, 1
132 /// println!("{}", top);
138 /// The Vec type allows to access values by index, because it implements the
139 /// `Index` trait. An example will be more explicit:
142 /// let v = vec!(0, 2, 4, 6);
143 /// println!("{}", v[1]); // it will display '2'
146 /// However be careful: if you try to access an index which isn't in the Vec,
147 /// your software will panic! You cannot do this:
150 /// let v = vec!(0, 2, 4, 6);
151 /// println!("{}", v[6]); // it will panic!
154 /// In conclusion: always check if the index you want to get really exists
159 /// A Vec can be mutable. Slices, on the other hand, are read-only objects.
160 /// To get a slice, use "&". Example:
163 /// fn read_slice(slice: &[usize]) {
167 /// let v = vec!(0, 1);
170 /// // ... and that's all!
171 /// // you can also do it like this:
172 /// let x : &[usize] = &v;
175 /// In Rust, it's more common to pass slices as arguments rather than vectors
176 /// when you just want to provide a read access. The same goes for String and
179 /// # Capacity and reallocation
181 /// The capacity of a vector is the amount of space allocated for any future
182 /// elements that will be added onto the vector. This is not to be confused with
183 /// the *length* of a vector, which specifies the number of actual elements
184 /// within the vector. If a vector's length exceeds its capacity, its capacity
185 /// will automatically be increased, but its elements will have to be
188 /// For example, a vector with capacity 10 and length 0 would be an empty vector
189 /// with space for 10 more elements. Pushing 10 or fewer elements onto the
190 /// vector will not change its capacity or cause reallocation to occur. However,
191 /// if the vector's length is increased to 11, it will have to reallocate, which
192 /// can be slow. For this reason, it is recommended to use `Vec::with_capacity`
193 /// whenever possible to specify how big the vector is expected to get.
197 /// Due to its incredibly fundamental nature, Vec makes a lot of guarantees
198 /// about its design. This ensures that it's as low-overhead as possible in
199 /// the general case, and can be correctly manipulated in primitive ways
200 /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
201 /// If additional type parameters are added (e.g. to support custom allocators),
202 /// overriding their defaults may change the behavior.
204 /// Most fundamentally, Vec is and always will be a (pointer, capacity, length)
205 /// triplet. No more, no less. The order of these fields is completely
206 /// unspecified, and you should use the appropriate methods to modify these.
207 /// The pointer will never be null, so this type is null-pointer-optimized.
209 /// However, the pointer may not actually point to allocated memory. In particular,
210 /// if you construct a Vec with capacity 0 via `Vec::new()`, `vec![]`,
211 /// `Vec::with_capacity(0)`, or by calling `shrink_to_fit()` on an empty Vec, it
212 /// will not allocate memory. Similarly, if you store zero-sized types inside
213 /// a Vec, it will not allocate space for them. *Note that in this case the
214 /// Vec may not report a `capacity()` of 0*. Vec will allocate if and only
215 /// if `mem::size_of::<T>() * capacity() > 0`. In general, Vec's allocation
216 /// details are subtle enough that it is strongly recommended that you only
217 /// free memory allocated by a Vec by creating a new Vec and dropping it.
219 /// If a Vec *has* allocated memory, then the memory it points to is on the heap
220 /// (as defined by the allocator Rust is configured to use by default), and its
221 /// pointer points to `len()` initialized elements in order (what you would see
222 /// if you coerced it to a slice), followed by `capacity() - len()` logically
223 /// uninitialized elements.
225 /// Vec will never perform a "small optimization" where elements are actually
226 /// stored on the stack for two reasons:
228 /// * It would make it more difficult for unsafe code to correctly manipulate
229 /// a Vec. The contents of a Vec wouldn't have a stable address if it were
230 /// only moved, and it would be more difficult to determine if a Vec had
231 /// actually allocated memory.
233 /// * It would penalize the general case, incurring an additional branch
236 /// Vec will never automatically shrink itself, even if completely empty. This
237 /// ensures no unnecessary allocations or deallocations occur. Emptying a Vec
238 /// and then filling it back up to the same `len()` should incur no calls to
239 /// the allocator. If you wish to free up unused memory, use `shrink_to_fit`.
241 /// `push` and `insert` will never (re)allocate if the reported capacity is
242 /// sufficient. `push` and `insert` *will* (re)allocate if `len() == capacity()`.
243 /// That is, the reported capacity is completely accurate, and can be relied on.
244 /// It can even be used to manually free the memory allocated by a Vec if
245 /// desired. Bulk insertion methods *may* reallocate, even when not necessary.
247 /// Vec does not guarantee any particular growth strategy when reallocating
248 /// when full, nor when `reserve` is called. The current strategy is basic
249 /// and it may prove desirable to use a non-constant growth factor. Whatever
250 /// strategy is used will of course guarantee `O(1)` amortized `push`.
252 /// `vec![x; n]`, `vec![a, b, c, d]`, and `Vec::with_capacity(n)`, will all
253 /// produce a Vec with exactly the requested capacity. If `len() == capacity()`,
254 /// (as is the case for the `vec!` macro), then a `Vec<T>` can be converted
255 /// to and from a `Box<[T]>` without reallocating or moving the elements.
257 /// Vec will not specifically overwrite any data that is removed from it,
258 /// but also won't specifically preserve it. Its uninitialized memory is
259 /// scratch space that it may use however it wants. It will generally just do
260 /// whatever is most efficient or otherwise easy to implement. Do not rely on
261 /// removed data to be erased for security purposes. Even if you drop a Vec, its
262 /// buffer may simply be reused by another Vec. Even if you zero a Vec's memory
263 /// first, that may not actually happen because the optimizer does not consider
264 /// this a side-effect that must be preserved.
266 /// Vec does not currently guarantee the order in which elements are dropped
267 /// (the order has changed in the past, and may change again).
269 #[unsafe_no_drop_flag]
270 #[stable(feature = "rust1", since = "1.0.0")]
276 ////////////////////////////////////////////////////////////////////////////////
278 ////////////////////////////////////////////////////////////////////////////////
281 /// Constructs a new, empty `Vec<T>`.
283 /// The vector will not allocate until elements are pushed onto it.
288 /// # #![allow(unused_mut)]
289 /// let mut vec: Vec<i32> = Vec::new();
292 #[stable(feature = "rust1", since = "1.0.0")]
293 pub fn new() -> Vec
<T
> {
300 /// Constructs a new, empty `Vec<T>` with the specified capacity.
302 /// The vector will be able to hold exactly `capacity` elements without
303 /// reallocating. If `capacity` is 0, the vector will not allocate.
305 /// It is important to note that this function does not specify the *length*
306 /// of the returned vector, but only the *capacity*. (For an explanation of
307 /// the difference between length and capacity, see the main `Vec<T>` docs
308 /// above, 'Capacity and reallocation'.)
313 /// let mut vec = Vec::with_capacity(10);
315 /// // The vector contains no items, even though it has capacity for more
316 /// assert_eq!(vec.len(), 0);
318 /// // These are all done without reallocating...
323 /// // ...but this may make the vector reallocate
327 #[stable(feature = "rust1", since = "1.0.0")]
328 pub fn with_capacity(capacity
: usize) -> Vec
<T
> {
330 buf
: RawVec
::with_capacity(capacity
),
335 /// Creates a `Vec<T>` directly from the raw components of another vector.
339 /// This is highly unsafe, due to the number of invariants that aren't
342 /// * `ptr` needs to have been previously allocated via `String`/`Vec<T>`
343 /// (at least, it's highly likely to be incorrect if it wasn't).
344 /// * `length` needs to be the length that less than or equal to `capacity`.
345 /// * `capacity` needs to be the capacity that the pointer was allocated with.
347 /// Violating these may cause problems like corrupting the allocator's
348 /// internal datastructures.
357 /// let mut v = vec![1, 2, 3];
359 /// // Pull out the various important pieces of information about `v`
360 /// let p = v.as_mut_ptr();
361 /// let len = v.len();
362 /// let cap = v.capacity();
365 /// // Cast `v` into the void: no destructor run, so we are in
366 /// // complete control of the allocation to which `p` points.
369 /// // Overwrite memory with 4, 5, 6
370 /// for i in 0..len as isize {
371 /// ptr::write(p.offset(i), 4 + i);
374 /// // Put everything back together into a Vec
375 /// let rebuilt = Vec::from_raw_parts(p, len, cap);
376 /// assert_eq!(rebuilt, [4, 5, 6]);
380 #[stable(feature = "rust1", since = "1.0.0")]
381 pub unsafe fn from_raw_parts(ptr
: *mut T
, length
: usize, capacity
: usize) -> Vec
<T
> {
383 buf
: RawVec
::from_raw_parts(ptr
, capacity
),
388 /// Returns the number of elements the vector can hold without
394 /// let vec: Vec<i32> = Vec::with_capacity(10);
395 /// assert_eq!(vec.capacity(), 10);
398 #[stable(feature = "rust1", since = "1.0.0")]
399 pub fn capacity(&self) -> usize {
403 /// Reserves capacity for at least `additional` more elements to be inserted
404 /// in the given `Vec<T>`. The collection may reserve more space to avoid
405 /// frequent reallocations.
409 /// Panics if the new capacity overflows `usize`.
414 /// let mut vec = vec![1];
416 /// assert!(vec.capacity() >= 11);
418 #[stable(feature = "rust1", since = "1.0.0")]
419 pub fn reserve(&mut self, additional
: usize) {
420 self.buf
.reserve(self.len
, additional
);
423 /// Reserves the minimum capacity for exactly `additional` more elements to
424 /// be inserted in the given `Vec<T>`. Does nothing if the capacity is already
427 /// Note that the allocator may give the collection more space than it
428 /// requests. Therefore capacity can not be relied upon to be precisely
429 /// minimal. Prefer `reserve` if future insertions are expected.
433 /// Panics if the new capacity overflows `usize`.
438 /// let mut vec = vec![1];
439 /// vec.reserve_exact(10);
440 /// assert!(vec.capacity() >= 11);
442 #[stable(feature = "rust1", since = "1.0.0")]
443 pub fn reserve_exact(&mut self, additional
: usize) {
444 self.buf
.reserve_exact(self.len
, additional
);
447 /// Shrinks the capacity of the vector as much as possible.
449 /// It will drop down as close as possible to the length but the allocator
450 /// may still inform the vector that there is space for a few more elements.
455 /// let mut vec = Vec::with_capacity(10);
456 /// vec.extend([1, 2, 3].iter().cloned());
457 /// assert_eq!(vec.capacity(), 10);
458 /// vec.shrink_to_fit();
459 /// assert!(vec.capacity() >= 3);
461 #[stable(feature = "rust1", since = "1.0.0")]
462 pub fn shrink_to_fit(&mut self) {
463 self.buf
.shrink_to_fit(self.len
);
466 /// Converts the vector into Box<[T]>.
468 /// Note that this will drop any excess capacity. Calling this and
469 /// converting back to a vector with `into_vec()` is equivalent to calling
470 /// `shrink_to_fit()`.
471 #[stable(feature = "rust1", since = "1.0.0")]
472 pub fn into_boxed_slice(mut self) -> Box
<[T
]> {
474 self.shrink_to_fit();
475 let buf
= ptr
::read(&self.buf
);
481 /// Shorten a vector to be `len` elements long, dropping excess elements.
483 /// If `len` is greater than the vector's current length, this has no
489 /// let mut vec = vec![1, 2, 3, 4, 5];
491 /// assert_eq!(vec, [1, 2]);
493 #[stable(feature = "rust1", since = "1.0.0")]
494 pub fn truncate(&mut self, len
: usize) {
496 // drop any extra elements
497 while len
< self.len
{
498 // decrement len before the drop_in_place(), so a panic on Drop
499 // doesn't re-drop the just-failed value.
502 ptr
::drop_in_place(self.get_unchecked_mut(len
));
507 /// Extracts a slice containing the entire vector.
509 /// Equivalent to `&s[..]`.
511 #[stable(feature = "vec_as_slice", since = "1.7.0")]
512 pub fn as_slice(&self) -> &[T
] {
516 /// Extracts a mutable slice of the entire vector.
518 /// Equivalent to `&mut s[..]`.
520 #[stable(feature = "vec_as_slice", since = "1.7.0")]
521 pub fn as_mut_slice(&mut self) -> &mut [T
] {
525 /// Sets the length of a vector.
527 /// This will explicitly set the size of the vector, without actually
528 /// modifying its buffers, so it is up to the caller to ensure that the
529 /// vector is actually the specified size.
534 /// let mut v = vec![1, 2, 3, 4];
540 #[stable(feature = "rust1", since = "1.0.0")]
541 pub unsafe fn set_len(&mut self, len
: usize) {
545 /// Removes an element from anywhere in the vector and return it, replacing
546 /// it with the last element.
548 /// This does not preserve ordering, but is O(1).
552 /// Panics if `index` is out of bounds.
557 /// let mut v = vec!["foo", "bar", "baz", "qux"];
559 /// assert_eq!(v.swap_remove(1), "bar");
560 /// assert_eq!(v, ["foo", "qux", "baz"]);
562 /// assert_eq!(v.swap_remove(0), "foo");
563 /// assert_eq!(v, ["baz", "qux"]);
566 #[stable(feature = "rust1", since = "1.0.0")]
567 pub fn swap_remove(&mut self, index
: usize) -> T
{
568 let length
= self.len();
569 self.swap(index
, length
- 1);
573 /// Inserts an element at position `index` within the vector, shifting all
574 /// elements after it to the right.
578 /// Panics if `index` is greater than the vector's length.
583 /// let mut vec = vec![1, 2, 3];
584 /// vec.insert(1, 4);
585 /// assert_eq!(vec, [1, 4, 2, 3]);
586 /// vec.insert(4, 5);
587 /// assert_eq!(vec, [1, 4, 2, 3, 5]);
589 #[stable(feature = "rust1", since = "1.0.0")]
590 pub fn insert(&mut self, index
: usize, element
: T
) {
591 let len
= self.len();
592 assert
!(index
<= len
);
594 // space for the new element
595 if len
== self.buf
.cap() {
601 // The spot to put the new value
603 let p
= self.as_mut_ptr().offset(index
as isize);
604 // Shift everything over to make space. (Duplicating the
605 // `index`th element into two consecutive places.)
606 ptr
::copy(p
, p
.offset(1), len
- index
);
607 // Write it in, overwriting the first copy of the `index`th
609 ptr
::write(p
, element
);
611 self.set_len(len
+ 1);
615 /// Removes and returns the element at position `index` within the vector,
616 /// shifting all elements after it to the left.
620 /// Panics if `index` is out of bounds.
625 /// let mut v = vec![1, 2, 3];
626 /// assert_eq!(v.remove(1), 2);
627 /// assert_eq!(v, [1, 3]);
629 #[stable(feature = "rust1", since = "1.0.0")]
630 pub fn remove(&mut self, index
: usize) -> T
{
631 let len
= self.len();
632 assert
!(index
< len
);
637 // the place we are taking from.
638 let ptr
= self.as_mut_ptr().offset(index
as isize);
639 // copy it out, unsafely having a copy of the value on
640 // the stack and in the vector at the same time.
641 ret
= ptr
::read(ptr
);
643 // Shift everything down to fill in that spot.
644 ptr
::copy(ptr
.offset(1), ptr
, len
- index
- 1);
646 self.set_len(len
- 1);
651 /// Retains only the elements specified by the predicate.
653 /// In other words, remove all elements `e` such that `f(&e)` returns false.
654 /// This method operates in place and preserves the order of the retained
660 /// let mut vec = vec![1, 2, 3, 4];
661 /// vec.retain(|&x| x%2 == 0);
662 /// assert_eq!(vec, [2, 4]);
664 #[stable(feature = "rust1", since = "1.0.0")]
665 pub fn retain
<F
>(&mut self, mut f
: F
)
666 where F
: FnMut(&T
) -> bool
668 let len
= self.len();
682 self.truncate(len
- del
);
686 /// Appends an element to the back of a collection.
690 /// Panics if the number of elements in the vector overflows a `usize`.
695 /// let mut vec = vec![1, 2];
697 /// assert_eq!(vec, [1, 2, 3]);
700 #[stable(feature = "rust1", since = "1.0.0")]
701 pub fn push(&mut self, value
: T
) {
702 // This will panic or abort if we would allocate > isize::MAX bytes
703 // or if the length increment would overflow for zero-sized types.
704 if self.len
== self.buf
.cap() {
708 let end
= self.as_mut_ptr().offset(self.len
as isize);
709 ptr
::write(end
, value
);
714 /// Removes the last element from a vector and returns it, or `None` if it
720 /// let mut vec = vec![1, 2, 3];
721 /// assert_eq!(vec.pop(), Some(3));
722 /// assert_eq!(vec, [1, 2]);
725 #[stable(feature = "rust1", since = "1.0.0")]
726 pub fn pop(&mut self) -> Option
<T
> {
732 Some(ptr
::read(self.get_unchecked(self.len())))
737 /// Moves all the elements of `other` into `Self`, leaving `other` empty.
741 /// Panics if the number of elements in the vector overflows a `usize`.
746 /// let mut vec = vec![1, 2, 3];
747 /// let mut vec2 = vec![4, 5, 6];
748 /// vec.append(&mut vec2);
749 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
750 /// assert_eq!(vec2, []);
753 #[stable(feature = "append", since = "1.4.0")]
754 pub fn append(&mut self, other
: &mut Self) {
755 self.reserve(other
.len());
756 let len
= self.len();
758 ptr
::copy_nonoverlapping(other
.as_ptr(), self.get_unchecked_mut(len
), other
.len());
761 self.len
+= other
.len();
767 /// Create a draining iterator that removes the specified range in the vector
768 /// and yields the removed items.
770 /// Note 1: The element range is removed even if the iterator is not
771 /// consumed until the end.
773 /// Note 2: It is unspecified how many elements are removed from the vector,
774 /// if the `Drain` value is leaked.
778 /// Panics if the starting point is greater than the end point or if
779 /// the end point is greater than the length of the vector.
784 /// let mut v = vec![1, 2, 3];
785 /// let u: Vec<_> = v.drain(1..).collect();
786 /// assert_eq!(v, &[1]);
787 /// assert_eq!(u, &[2, 3]);
789 /// // A full range clears the vector
791 /// assert_eq!(v, &[]);
793 #[stable(feature = "drain", since = "1.6.0")]
794 pub fn drain
<R
>(&mut self, range
: R
) -> Drain
<T
>
795 where R
: RangeArgument
<usize>
799 // When the Drain is first created, it shortens the length of
800 // the source vector to make sure no uninitalized or moved-from elements
801 // are accessible at all if the Drain's destructor never gets to run.
803 // Drain will ptr::read out the values to remove.
804 // When finished, remaining tail of the vec is copied back to cover
805 // the hole, and the vector length is restored to the new length.
807 let len
= self.len();
808 let start
= *range
.start().unwrap_or(&0);
809 let end
= *range
.end().unwrap_or(&len
);
810 assert
!(start
<= end
);
814 // set self.vec length's to start, to be safe in case Drain is leaked
816 // Use the borrow in the IterMut to indicate borrowing behavior of the
817 // whole Drain iterator (like &mut T).
818 let range_slice
= slice
::from_raw_parts_mut(self.as_mut_ptr().offset(start
as isize),
823 iter
: range_slice
.iter_mut(),
829 /// Clears the vector, removing all values.
834 /// let mut v = vec![1, 2, 3];
838 /// assert!(v.is_empty());
841 #[stable(feature = "rust1", since = "1.0.0")]
842 pub fn clear(&mut self) {
846 /// Returns the number of elements in the vector.
851 /// let a = vec![1, 2, 3];
852 /// assert_eq!(a.len(), 3);
855 #[stable(feature = "rust1", since = "1.0.0")]
856 pub fn len(&self) -> usize {
860 /// Returns `true` if the vector contains no elements.
865 /// let mut v = Vec::new();
866 /// assert!(v.is_empty());
869 /// assert!(!v.is_empty());
871 #[stable(feature = "rust1", since = "1.0.0")]
872 pub fn is_empty(&self) -> bool
{
876 /// Splits the collection into two at the given index.
878 /// Returns a newly allocated `Self`. `self` contains elements `[0, at)`,
879 /// and the returned `Self` contains elements `[at, len)`.
881 /// Note that the capacity of `self` does not change.
885 /// Panics if `at > len`.
890 /// let mut vec = vec![1,2,3];
891 /// let vec2 = vec.split_off(1);
892 /// assert_eq!(vec, [1]);
893 /// assert_eq!(vec2, [2, 3]);
896 #[stable(feature = "split_off", since = "1.4.0")]
897 pub fn split_off(&mut self, at
: usize) -> Self {
898 assert
!(at
<= self.len(), "`at` out of bounds");
900 let other_len
= self.len
- at
;
901 let mut other
= Vec
::with_capacity(other_len
);
903 // Unsafely `set_len` and copy items to `other`.
906 other
.set_len(other_len
);
908 ptr
::copy_nonoverlapping(self.as_ptr().offset(at
as isize),
916 impl<T
: Clone
> Vec
<T
> {
917 /// Resizes the `Vec` in-place so that `len()` is equal to `new_len`.
919 /// If `new_len` is greater than `len()`, the `Vec` is extended by the
920 /// difference, with each additional slot filled with `value`.
921 /// If `new_len` is less than `len()`, the `Vec` is simply truncated.
926 /// let mut vec = vec!["hello"];
927 /// vec.resize(3, "world");
928 /// assert_eq!(vec, ["hello", "world", "world"]);
930 /// let mut vec = vec![1, 2, 3, 4];
931 /// vec.resize(2, 0);
932 /// assert_eq!(vec, [1, 2]);
934 #[stable(feature = "vec_resize", since = "1.5.0")]
935 pub fn resize(&mut self, new_len
: usize, value
: T
) {
936 let len
= self.len();
939 self.extend_with_element(new_len
- len
, value
);
941 self.truncate(new_len
);
945 /// Extend the vector by `n` additional clones of `value`.
946 fn extend_with_element(&mut self, n
: usize, value
: T
) {
950 let len
= self.len();
951 let mut ptr
= self.as_mut_ptr().offset(len
as isize);
952 // Write all elements except the last one
954 ptr
::write(ptr
, value
.clone());
956 // Increment the length in every step in case clone() panics
957 self.set_len(len
+ i
);
961 // We can write the last element directly without cloning needlessly
962 ptr
::write(ptr
, value
);
963 self.set_len(len
+ n
);
968 /// Appends all elements in a slice to the `Vec`.
970 /// Iterates over the slice `other`, clones each element, and then appends
971 /// it to this `Vec`. The `other` vector is traversed in-order.
973 /// Note that this function is same as `extend` except that it is
974 /// specialized to work with slices instead. If and when Rust gets
975 /// specialization this function will likely be deprecated (but still
981 /// let mut vec = vec![1];
982 /// vec.extend_from_slice(&[2, 3, 4]);
983 /// assert_eq!(vec, [1, 2, 3, 4]);
985 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
986 pub fn extend_from_slice(&mut self, other
: &[T
]) {
987 self.reserve(other
.len());
989 for i
in 0..other
.len() {
990 let len
= self.len();
992 // Unsafe code so this can be optimised to a memcpy (or something
993 // similarly fast) when T is Copy. LLVM is easily confused, so any
994 // extra operations during the loop can prevent this optimisation.
996 ptr
::write(self.get_unchecked_mut(len
), other
.get_unchecked(i
).clone());
997 self.set_len(len
+ 1);
1003 impl<T
: PartialEq
> Vec
<T
> {
1004 /// Removes consecutive repeated elements in the vector.
1006 /// If the vector is sorted, this removes all duplicates.
1011 /// let mut vec = vec![1, 2, 2, 3, 2];
1015 /// assert_eq!(vec, [1, 2, 3, 2]);
1017 #[stable(feature = "rust1", since = "1.0.0")]
1018 pub fn dedup(&mut self) {
1020 // Although we have a mutable reference to `self`, we cannot make
1021 // *arbitrary* changes. The `PartialEq` comparisons could panic, so we
1022 // must ensure that the vector is in a valid state at all time.
1024 // The way that we handle this is by using swaps; we iterate
1025 // over all the elements, swapping as we go so that at the end
1026 // the elements we wish to keep are in the front, and those we
1027 // wish to reject are at the back. We can then truncate the
1028 // vector. This operation is still O(n).
1030 // Example: We start in this state, where `r` represents "next
1031 // read" and `w` represents "next_write`.
1034 // +---+---+---+---+---+---+
1035 // | 0 | 1 | 1 | 2 | 3 | 3 |
1036 // +---+---+---+---+---+---+
1039 // Comparing self[r] against self[w-1], this is not a duplicate, so
1040 // we swap self[r] and self[w] (no effect as r==w) and then increment both
1041 // r and w, leaving us with:
1044 // +---+---+---+---+---+---+
1045 // | 0 | 1 | 1 | 2 | 3 | 3 |
1046 // +---+---+---+---+---+---+
1049 // Comparing self[r] against self[w-1], this value is a duplicate,
1050 // so we increment `r` but leave everything else unchanged:
1053 // +---+---+---+---+---+---+
1054 // | 0 | 1 | 1 | 2 | 3 | 3 |
1055 // +---+---+---+---+---+---+
1058 // Comparing self[r] against self[w-1], this is not a duplicate,
1059 // so swap self[r] and self[w] and advance r and w:
1062 // +---+---+---+---+---+---+
1063 // | 0 | 1 | 2 | 1 | 3 | 3 |
1064 // +---+---+---+---+---+---+
1067 // Not a duplicate, repeat:
1070 // +---+---+---+---+---+---+
1071 // | 0 | 1 | 2 | 3 | 1 | 3 |
1072 // +---+---+---+---+---+---+
1075 // Duplicate, advance r. End of vec. Truncate to w.
1077 let ln
= self.len();
1082 // Avoid bounds checks by using raw pointers.
1083 let p
= self.as_mut_ptr();
1084 let mut r
: usize = 1;
1085 let mut w
: usize = 1;
1088 let p_r
= p
.offset(r
as isize);
1089 let p_wm1
= p
.offset((w
- 1) as isize);
1092 let p_w
= p_wm1
.offset(1);
1093 mem
::swap(&mut *p_r
, &mut *p_w
);
1105 ////////////////////////////////////////////////////////////////////////////////
1106 // Internal methods and functions
1107 ////////////////////////////////////////////////////////////////////////////////
1110 #[stable(feature = "rust1", since = "1.0.0")]
1111 pub fn from_elem
<T
: Clone
>(elem
: T
, n
: usize) -> Vec
<T
> {
1112 let mut v
= Vec
::with_capacity(n
);
1113 v
.extend_with_element(n
, elem
);
1117 ////////////////////////////////////////////////////////////////////////////////
1118 // Common trait implementations for Vec
1119 ////////////////////////////////////////////////////////////////////////////////
1121 #[stable(feature = "rust1", since = "1.0.0")]
1122 impl<T
: Clone
> Clone
for Vec
<T
> {
1124 fn clone(&self) -> Vec
<T
> {
1125 <[T
]>::to_vec(&**self)
1128 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
1129 // required for this method definition, is not available. Instead use the
1130 // `slice::to_vec` function which is only available with cfg(test)
1131 // NB see the slice::hack module in slice.rs for more information
1133 fn clone(&self) -> Vec
<T
> {
1134 ::slice
::to_vec(&**self)
1137 fn clone_from(&mut self, other
: &Vec
<T
>) {
1138 // drop anything in self that will not be overwritten
1139 self.truncate(other
.len());
1140 let len
= self.len();
1142 // reuse the contained values' allocations/resources.
1143 self.clone_from_slice(&other
[..len
]);
1145 // self.len <= other.len due to the truncate above, so the
1146 // slice here is always in-bounds.
1147 self.extend_from_slice(&other
[len
..]);
1151 #[stable(feature = "rust1", since = "1.0.0")]
1152 impl<T
: Hash
> Hash
for Vec
<T
> {
1154 fn hash
<H
: hash
::Hasher
>(&self, state
: &mut H
) {
1155 Hash
::hash(&**self, state
)
1159 #[stable(feature = "rust1", since = "1.0.0")]
1160 impl<T
> Index
<usize> for Vec
<T
> {
1164 fn index(&self, index
: usize) -> &T
{
1165 // NB built-in indexing via `&[T]`
1170 #[stable(feature = "rust1", since = "1.0.0")]
1171 impl<T
> IndexMut
<usize> for Vec
<T
> {
1173 fn index_mut(&mut self, index
: usize) -> &mut T
{
1174 // NB built-in indexing via `&mut [T]`
1175 &mut (**self)[index
]
1180 #[stable(feature = "rust1", since = "1.0.0")]
1181 impl<T
> ops
::Index
<ops
::Range
<usize>> for Vec
<T
> {
1185 fn index(&self, index
: ops
::Range
<usize>) -> &[T
] {
1186 Index
::index(&**self, index
)
1189 #[stable(feature = "rust1", since = "1.0.0")]
1190 impl<T
> ops
::Index
<ops
::RangeTo
<usize>> for Vec
<T
> {
1194 fn index(&self, index
: ops
::RangeTo
<usize>) -> &[T
] {
1195 Index
::index(&**self, index
)
1198 #[stable(feature = "rust1", since = "1.0.0")]
1199 impl<T
> ops
::Index
<ops
::RangeFrom
<usize>> for Vec
<T
> {
1203 fn index(&self, index
: ops
::RangeFrom
<usize>) -> &[T
] {
1204 Index
::index(&**self, index
)
1207 #[stable(feature = "rust1", since = "1.0.0")]
1208 impl<T
> ops
::Index
<ops
::RangeFull
> for Vec
<T
> {
1212 fn index(&self, _index
: ops
::RangeFull
) -> &[T
] {
1216 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1217 impl<T
> ops
::Index
<ops
::RangeInclusive
<usize>> for Vec
<T
> {
1221 fn index(&self, index
: ops
::RangeInclusive
<usize>) -> &[T
] {
1222 Index
::index(&**self, index
)
1225 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1226 impl<T
> ops
::Index
<ops
::RangeToInclusive
<usize>> for Vec
<T
> {
1230 fn index(&self, index
: ops
::RangeToInclusive
<usize>) -> &[T
] {
1231 Index
::index(&**self, index
)
1235 #[stable(feature = "rust1", since = "1.0.0")]
1236 impl<T
> ops
::IndexMut
<ops
::Range
<usize>> for Vec
<T
> {
1238 fn index_mut(&mut self, index
: ops
::Range
<usize>) -> &mut [T
] {
1239 IndexMut
::index_mut(&mut **self, index
)
1242 #[stable(feature = "rust1", since = "1.0.0")]
1243 impl<T
> ops
::IndexMut
<ops
::RangeTo
<usize>> for Vec
<T
> {
1245 fn index_mut(&mut self, index
: ops
::RangeTo
<usize>) -> &mut [T
] {
1246 IndexMut
::index_mut(&mut **self, index
)
1249 #[stable(feature = "rust1", since = "1.0.0")]
1250 impl<T
> ops
::IndexMut
<ops
::RangeFrom
<usize>> for Vec
<T
> {
1252 fn index_mut(&mut self, index
: ops
::RangeFrom
<usize>) -> &mut [T
] {
1253 IndexMut
::index_mut(&mut **self, index
)
1256 #[stable(feature = "rust1", since = "1.0.0")]
1257 impl<T
> ops
::IndexMut
<ops
::RangeFull
> for Vec
<T
> {
1259 fn index_mut(&mut self, _index
: ops
::RangeFull
) -> &mut [T
] {
1263 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1264 impl<T
> ops
::IndexMut
<ops
::RangeInclusive
<usize>> for Vec
<T
> {
1266 fn index_mut(&mut self, index
: ops
::RangeInclusive
<usize>) -> &mut [T
] {
1267 IndexMut
::index_mut(&mut **self, index
)
1270 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1271 impl<T
> ops
::IndexMut
<ops
::RangeToInclusive
<usize>> for Vec
<T
> {
1273 fn index_mut(&mut self, index
: ops
::RangeToInclusive
<usize>) -> &mut [T
] {
1274 IndexMut
::index_mut(&mut **self, index
)
1278 #[stable(feature = "rust1", since = "1.0.0")]
1279 impl<T
> ops
::Deref
for Vec
<T
> {
1282 fn deref(&self) -> &[T
] {
1284 let p
= self.buf
.ptr();
1285 assume(!p
.is_null());
1286 slice
::from_raw_parts(p
, self.len
)
1291 #[stable(feature = "rust1", since = "1.0.0")]
1292 impl<T
> ops
::DerefMut
for Vec
<T
> {
1293 fn deref_mut(&mut self) -> &mut [T
] {
1295 let ptr
= self.buf
.ptr();
1296 assume(!ptr
.is_null());
1297 slice
::from_raw_parts_mut(ptr
, self.len
)
1302 #[stable(feature = "rust1", since = "1.0.0")]
1303 impl<T
> FromIterator
<T
> for Vec
<T
> {
1305 fn from_iter
<I
: IntoIterator
<Item
= T
>>(iter
: I
) -> Vec
<T
> {
1306 // Unroll the first iteration, as the vector is going to be
1307 // expanded on this iteration in every case when the iterable is not
1308 // empty, but the loop in extend_desugared() is not going to see the
1309 // vector being full in the few subsequent loop iterations.
1310 // So we get better branch prediction.
1311 let mut iterator
= iter
.into_iter();
1312 let mut vector
= match iterator
.next() {
1313 None
=> return Vec
::new(),
1315 let (lower
, _
) = iterator
.size_hint();
1316 let mut vector
= Vec
::with_capacity(lower
.saturating_add(1));
1318 ptr
::write(vector
.get_unchecked_mut(0), element
);
1324 vector
.extend_desugared(iterator
);
1329 #[stable(feature = "rust1", since = "1.0.0")]
1330 impl<T
> IntoIterator
for Vec
<T
> {
1332 type IntoIter
= IntoIter
<T
>;
1334 /// Creates a consuming iterator, that is, one that moves each value out of
1335 /// the vector (from start to end). The vector cannot be used after calling
1341 /// let v = vec!["a".to_string(), "b".to_string()];
1342 /// for s in v.into_iter() {
1343 /// // s has type String, not &String
1344 /// println!("{}", s);
1348 fn into_iter(mut self) -> IntoIter
<T
> {
1350 let ptr
= self.as_mut_ptr();
1351 assume(!ptr
.is_null());
1352 let begin
= ptr
as *const T
;
1353 let end
= if mem
::size_of
::<T
>() == 0 {
1354 arith_offset(ptr
as *const i8, self.len() as isize) as *const T
1356 ptr
.offset(self.len() as isize) as *const T
1358 let buf
= ptr
::read(&self.buf
);
1369 #[stable(feature = "rust1", since = "1.0.0")]
1370 impl<'a
, T
> IntoIterator
for &'a Vec
<T
> {
1372 type IntoIter
= slice
::Iter
<'a
, T
>;
1374 fn into_iter(self) -> slice
::Iter
<'a
, T
> {
1379 #[stable(feature = "rust1", since = "1.0.0")]
1380 impl<'a
, T
> IntoIterator
for &'a
mut Vec
<T
> {
1381 type Item
= &'a
mut T
;
1382 type IntoIter
= slice
::IterMut
<'a
, T
>;
1384 fn into_iter(mut self) -> slice
::IterMut
<'a
, T
> {
1389 #[stable(feature = "rust1", since = "1.0.0")]
1390 impl<T
> Extend
<T
> for Vec
<T
> {
1392 fn extend
<I
: IntoIterator
<Item
= T
>>(&mut self, iter
: I
) {
1393 self.extend_desugared(iter
.into_iter())
1398 fn extend_desugared
<I
: Iterator
<Item
= T
>>(&mut self, mut iterator
: I
) {
1399 // This function should be the moral equivalent of:
1401 // for item in iterator {
1404 while let Some(element
) = iterator
.next() {
1405 let len
= self.len();
1406 if len
== self.capacity() {
1407 let (lower
, _
) = iterator
.size_hint();
1408 self.reserve(lower
.saturating_add(1));
1411 ptr
::write(self.get_unchecked_mut(len
), element
);
1412 // NB can't overflow since we would have had to alloc the address space
1413 self.set_len(len
+ 1);
1419 #[stable(feature = "extend_ref", since = "1.2.0")]
1420 impl<'a
, T
: 'a
+ Copy
> Extend
<&'a T
> for Vec
<T
> {
1421 fn extend
<I
: IntoIterator
<Item
= &'a T
>>(&mut self, iter
: I
) {
1422 self.extend(iter
.into_iter().cloned());
1426 macro_rules
! __impl_slice_eq1
{
1427 ($Lhs
: ty
, $Rhs
: ty
) => {
1428 __impl_slice_eq1
! { $Lhs, $Rhs, Sized }
1430 ($Lhs
: ty
, $Rhs
: ty
, $Bound
: ident
) => {
1431 #[stable(feature = "rust1", since = "1.0.0")]
1432 impl<'a
, 'b
, A
: $Bound
, B
> PartialEq
<$Rhs
> for $Lhs
where A
: PartialEq
<B
> {
1434 fn eq(&self, other
: &$Rhs
) -> bool { self[..] == other[..] }
1436 fn ne(&self, other
: &$Rhs
) -> bool { self[..] != other[..] }
1441 __impl_slice_eq1
! { Vec<A>, Vec<B> }
1442 __impl_slice_eq1
! { Vec<A>, &'b [B] }
1443 __impl_slice_eq1
! { Vec<A>, &'b mut [B] }
1444 __impl_slice_eq1
! { Cow<'a, [A]>, &'b [B], Clone }
1445 __impl_slice_eq1
! { Cow<'a, [A]>, &'b mut [B], Clone }
1446 __impl_slice_eq1
! { Cow<'a, [A]>, Vec<B>, Clone }
1448 macro_rules
! array_impls
{
1451 // NOTE: some less important impls are omitted to reduce code bloat
1452 __impl_slice_eq1
! { Vec<A>, [B; $N] }
1453 __impl_slice_eq1
! { Vec<A>, &'b [B; $N] }
1454 // __impl_slice_eq1! { Vec<A>, &'b mut [B; $N] }
1455 // __impl_slice_eq1! { Cow<'a, [A]>, [B; $N], Clone }
1456 // __impl_slice_eq1! { Cow<'a, [A]>, &'b [B; $N], Clone }
1457 // __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B; $N], Clone }
1464 10 11 12 13 14 15 16 17 18 19
1465 20 21 22 23 24 25 26 27 28 29
1469 #[stable(feature = "rust1", since = "1.0.0")]
1470 impl<T
: PartialOrd
> PartialOrd
for Vec
<T
> {
1472 fn partial_cmp(&self, other
: &Vec
<T
>) -> Option
<Ordering
> {
1473 PartialOrd
::partial_cmp(&**self, &**other
)
1477 #[stable(feature = "rust1", since = "1.0.0")]
1478 impl<T
: Eq
> Eq
for Vec
<T
> {}
1480 #[stable(feature = "rust1", since = "1.0.0")]
1481 impl<T
: Ord
> Ord
for Vec
<T
> {
1483 fn cmp(&self, other
: &Vec
<T
>) -> Ordering
{
1484 Ord
::cmp(&**self, &**other
)
1488 #[stable(feature = "rust1", since = "1.0.0")]
1489 impl<T
> Drop
for Vec
<T
> {
1490 #[unsafe_destructor_blind_to_params]
1491 fn drop(&mut self) {
1492 if self.buf
.unsafe_no_drop_flag_needs_drop() {
1495 ptr
::drop_in_place(&mut self[..]);
1498 // RawVec handles deallocation
1502 #[stable(feature = "rust1", since = "1.0.0")]
1503 impl<T
> Default
for Vec
<T
> {
1504 fn default() -> Vec
<T
> {
1509 #[stable(feature = "rust1", since = "1.0.0")]
1510 impl<T
: fmt
::Debug
> fmt
::Debug
for Vec
<T
> {
1511 fn fmt(&self, f
: &mut fmt
::Formatter
) -> fmt
::Result
{
1512 fmt
::Debug
::fmt(&**self, f
)
1516 #[stable(feature = "rust1", since = "1.0.0")]
1517 impl<T
> AsRef
<Vec
<T
>> for Vec
<T
> {
1518 fn as_ref(&self) -> &Vec
<T
> {
1523 #[stable(feature = "vec_as_mut", since = "1.5.0")]
1524 impl<T
> AsMut
<Vec
<T
>> for Vec
<T
> {
1525 fn as_mut(&mut self) -> &mut Vec
<T
> {
1530 #[stable(feature = "rust1", since = "1.0.0")]
1531 impl<T
> AsRef
<[T
]> for Vec
<T
> {
1532 fn as_ref(&self) -> &[T
] {
1537 #[stable(feature = "vec_as_mut", since = "1.5.0")]
1538 impl<T
> AsMut
<[T
]> for Vec
<T
> {
1539 fn as_mut(&mut self) -> &mut [T
] {
1544 #[stable(feature = "rust1", since = "1.0.0")]
1545 impl<'a
, T
: Clone
> From
<&'a
[T
]> for Vec
<T
> {
1547 fn from(s
: &'a
[T
]) -> Vec
<T
> {
1551 fn from(s
: &'a
[T
]) -> Vec
<T
> {
1556 #[stable(feature = "rust1", since = "1.0.0")]
1557 impl<'a
> From
<&'a
str> for Vec
<u8> {
1558 fn from(s
: &'a
str) -> Vec
<u8> {
1559 From
::from(s
.as_bytes())
1563 ////////////////////////////////////////////////////////////////////////////////
1565 ////////////////////////////////////////////////////////////////////////////////
1567 #[stable(feature = "cow_from_vec", since = "1.7.0")]
1568 impl<'a
, T
: Clone
> From
<&'a
[T
]> for Cow
<'a
, [T
]> {
1569 fn from(s
: &'a
[T
]) -> Cow
<'a
, [T
]> {
1574 #[stable(feature = "cow_from_vec", since = "1.7.0")]
1575 impl<'a
, T
: Clone
> From
<Vec
<T
>> for Cow
<'a
, [T
]> {
1576 fn from(v
: Vec
<T
>) -> Cow
<'a
, [T
]> {
1581 #[stable(feature = "rust1", since = "1.0.0")]
1582 impl<'a
, T
> FromIterator
<T
> for Cow
<'a
, [T
]> where T
: Clone
{
1583 fn from_iter
<I
: IntoIterator
<Item
= T
>>(it
: I
) -> Cow
<'a
, [T
]> {
1584 Cow
::Owned(FromIterator
::from_iter(it
))
1588 ////////////////////////////////////////////////////////////////////////////////
1590 ////////////////////////////////////////////////////////////////////////////////
1592 /// An iterator that moves out of a vector.
1593 #[stable(feature = "rust1", since = "1.0.0")]
1594 pub struct IntoIter
<T
> {
1600 #[stable(feature = "rust1", since = "1.0.0")]
1601 unsafe impl<T
: Send
> Send
for IntoIter
<T
> {}
1602 #[stable(feature = "rust1", since = "1.0.0")]
1603 unsafe impl<T
: Sync
> Sync
for IntoIter
<T
> {}
1605 #[stable(feature = "rust1", since = "1.0.0")]
1606 impl<T
> Iterator
for IntoIter
<T
> {
1610 fn next(&mut self) -> Option
<T
> {
1612 if self.ptr
== self.end
{
1615 if mem
::size_of
::<T
>() == 0 {
1616 // purposefully don't use 'ptr.offset' because for
1617 // vectors with 0-size elements this would return the
1619 self.ptr
= arith_offset(self.ptr
as *const i8, 1) as *const T
;
1621 // Use a non-null pointer value
1622 Some(ptr
::read(EMPTY
as *mut T
))
1625 self.ptr
= self.ptr
.offset(1);
1627 Some(ptr
::read(old
))
1634 fn size_hint(&self) -> (usize, Option
<usize>) {
1635 let diff
= (self.end
as usize) - (self.ptr
as usize);
1636 let size
= mem
::size_of
::<T
>();
1643 (exact
, Some(exact
))
1647 fn count(self) -> usize {
1652 #[stable(feature = "rust1", since = "1.0.0")]
1653 impl<T
> DoubleEndedIterator
for IntoIter
<T
> {
1655 fn next_back(&mut self) -> Option
<T
> {
1657 if self.end
== self.ptr
{
1660 if mem
::size_of
::<T
>() == 0 {
1661 // See above for why 'ptr.offset' isn't used
1662 self.end
= arith_offset(self.end
as *const i8, -1) as *const T
;
1664 // Use a non-null pointer value
1665 Some(ptr
::read(EMPTY
as *mut T
))
1667 self.end
= self.end
.offset(-1);
1669 Some(ptr
::read(self.end
))
1676 #[stable(feature = "rust1", since = "1.0.0")]
1677 impl<T
> ExactSizeIterator
for IntoIter
<T
> {}
1679 #[stable(feature = "vec_into_iter_clone", since = "1.8.0")]
1680 impl<T
: Clone
> Clone
for IntoIter
<T
> {
1681 fn clone(&self) -> IntoIter
<T
> {
1683 slice
::from_raw_parts(self.ptr
, self.len()).to_owned().into_iter()
1688 #[stable(feature = "rust1", since = "1.0.0")]
1689 impl<T
> Drop
for IntoIter
<T
> {
1690 #[unsafe_destructor_blind_to_params]
1691 fn drop(&mut self) {
1692 // destroy the remaining elements
1695 // RawVec handles deallocation
1699 /// A draining iterator for `Vec<T>`.
1700 #[stable(feature = "drain", since = "1.6.0")]
1701 pub struct Drain
<'a
, T
: 'a
> {
1702 /// Index of tail to preserve
1706 /// Current remaining range to remove
1707 iter
: slice
::IterMut
<'a
, T
>,
1711 #[stable(feature = "drain", since = "1.6.0")]
1712 unsafe impl<'a
, T
: Sync
> Sync
for Drain
<'a
, T
> {}
1713 #[stable(feature = "drain", since = "1.6.0")]
1714 unsafe impl<'a
, T
: Send
> Send
for Drain
<'a
, T
> {}
1716 #[stable(feature = "rust1", since = "1.0.0")]
1717 impl<'a
, T
> Iterator
for Drain
<'a
, T
> {
1721 fn next(&mut self) -> Option
<T
> {
1722 self.iter
.next().map(|elt
| unsafe { ptr::read(elt as *const _) }
)
1725 fn size_hint(&self) -> (usize, Option
<usize>) {
1726 self.iter
.size_hint()
1730 #[stable(feature = "rust1", since = "1.0.0")]
1731 impl<'a
, T
> DoubleEndedIterator
for Drain
<'a
, T
> {
1733 fn next_back(&mut self) -> Option
<T
> {
1734 self.iter
.next_back().map(|elt
| unsafe { ptr::read(elt as *const _) }
)
1738 #[stable(feature = "rust1", since = "1.0.0")]
1739 impl<'a
, T
> Drop
for Drain
<'a
, T
> {
1740 fn drop(&mut self) {
1741 // exhaust self first
1742 while let Some(_
) = self.next() {}
1744 if self.tail_len
> 0 {
1746 let source_vec
= &mut *self.vec
;
1747 // memmove back untouched tail, update to new length
1748 let start
= source_vec
.len();
1749 let tail
= self.tail_start
;
1750 let src
= source_vec
.as_ptr().offset(tail
as isize);
1751 let dst
= source_vec
.as_mut_ptr().offset(start
as isize);
1752 ptr
::copy(src
, dst
, self.tail_len
);
1753 source_vec
.set_len(start
+ self.tail_len
);
1760 #[stable(feature = "rust1", since = "1.0.0")]
1761 impl<'a
, T
> ExactSizeIterator
for Drain
<'a
, T
> {}