]> git.proxmox.com Git - rustc.git/blob - src/libcollections/vec.rs
New upstream version 1.15.0+dfsg1
[rustc.git] / src / libcollections / vec.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! A contiguous growable array type with heap-allocated contents, written
12 //! `Vec<T>` but pronounced 'vector.'
13 //!
14 //! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and
15 //! `O(1)` pop (from the end).
16 //!
17 //! # Examples
18 //!
19 //! You can explicitly create a [`Vec<T>`] with [`new()`]:
20 //!
21 //! ```
22 //! let v: Vec<i32> = Vec::new();
23 //! ```
24 //!
25 //! ...or by using the [`vec!`] macro:
26 //!
27 //! ```
28 //! let v: Vec<i32> = vec![];
29 //!
30 //! let v = vec![1, 2, 3, 4, 5];
31 //!
32 //! let v = vec![0; 10]; // ten zeroes
33 //! ```
34 //!
35 //! You can [`push`] values onto the end of a vector (which will grow the vector
36 //! as needed):
37 //!
38 //! ```
39 //! let mut v = vec![1, 2];
40 //!
41 //! v.push(3);
42 //! ```
43 //!
44 //! Popping values works in much the same way:
45 //!
46 //! ```
47 //! let mut v = vec![1, 2];
48 //!
49 //! let two = v.pop();
50 //! ```
51 //!
52 //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
53 //!
54 //! ```
55 //! let mut v = vec![1, 2, 3];
56 //! let three = v[2];
57 //! v[1] = v[1] + 5;
58 //! ```
59 //!
60 //! [`Vec<T>`]: ../../std/vec/struct.Vec.html
61 //! [`new()`]: ../../std/vec/struct.Vec.html#method.new
62 //! [`push`]: ../../std/vec/struct.Vec.html#method.push
63 //! [`Index`]: ../../std/ops/trait.Index.html
64 //! [`IndexMut`]: ../../std/ops/trait.IndexMut.html
65 //! [`vec!`]: ../../std/macro.vec.html
66
67 #![stable(feature = "rust1", since = "1.0.0")]
68
69 use alloc::boxed::Box;
70 use alloc::heap::EMPTY;
71 use alloc::raw_vec::RawVec;
72 use borrow::ToOwned;
73 use borrow::Cow;
74 use core::cmp::Ordering;
75 use core::fmt;
76 use core::hash::{self, Hash};
77 use core::intrinsics::{arith_offset, assume};
78 use core::iter::{FromIterator, FusedIterator, TrustedLen};
79 use core::mem;
80 use core::ops::{Index, IndexMut};
81 use core::ops;
82 use core::ptr;
83 use core::ptr::Shared;
84 use core::slice;
85
86 use super::range::RangeArgument;
87
88 /// A contiguous growable array type, written `Vec<T>` but pronounced 'vector'.
89 ///
90 /// # Examples
91 ///
92 /// ```
93 /// let mut vec = Vec::new();
94 /// vec.push(1);
95 /// vec.push(2);
96 ///
97 /// assert_eq!(vec.len(), 2);
98 /// assert_eq!(vec[0], 1);
99 ///
100 /// assert_eq!(vec.pop(), Some(2));
101 /// assert_eq!(vec.len(), 1);
102 ///
103 /// vec[0] = 7;
104 /// assert_eq!(vec[0], 7);
105 ///
106 /// vec.extend([1, 2, 3].iter().cloned());
107 ///
108 /// for x in &vec {
109 /// println!("{}", x);
110 /// }
111 /// assert_eq!(vec, [7, 1, 2, 3]);
112 /// ```
113 ///
114 /// The [`vec!`] macro is provided to make initialization more convenient:
115 ///
116 /// ```
117 /// let mut vec = vec![1, 2, 3];
118 /// vec.push(4);
119 /// assert_eq!(vec, [1, 2, 3, 4]);
120 /// ```
121 ///
122 /// It can also initialize each element of a `Vec<T>` with a given value:
123 ///
124 /// ```
125 /// let vec = vec![0; 5];
126 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
127 /// ```
128 ///
129 /// Use a `Vec<T>` as an efficient stack:
130 ///
131 /// ```
132 /// let mut stack = Vec::new();
133 ///
134 /// stack.push(1);
135 /// stack.push(2);
136 /// stack.push(3);
137 ///
138 /// while let Some(top) = stack.pop() {
139 /// // Prints 3, 2, 1
140 /// println!("{}", top);
141 /// }
142 /// ```
143 ///
144 /// # Indexing
145 ///
146 /// The `Vec` type allows to access values by index, because it implements the
147 /// [`Index`] trait. An example will be more explicit:
148 ///
149 /// ```
150 /// let v = vec![0, 2, 4, 6];
151 /// println!("{}", v[1]); // it will display '2'
152 /// ```
153 ///
154 /// However be careful: if you try to access an index which isn't in the `Vec`,
155 /// your software will panic! You cannot do this:
156 ///
157 /// ```ignore
158 /// let v = vec![0, 2, 4, 6];
159 /// println!("{}", v[6]); // it will panic!
160 /// ```
161 ///
162 /// In conclusion: always check if the index you want to get really exists
163 /// before doing it.
164 ///
165 /// # Slicing
166 ///
167 /// A `Vec` can be mutable. Slices, on the other hand, are read-only objects.
168 /// To get a slice, use `&`. Example:
169 ///
170 /// ```
171 /// fn read_slice(slice: &[usize]) {
172 /// // ...
173 /// }
174 ///
175 /// let v = vec![0, 1];
176 /// read_slice(&v);
177 ///
178 /// // ... and that's all!
179 /// // you can also do it like this:
180 /// let x : &[usize] = &v;
181 /// ```
182 ///
183 /// In Rust, it's more common to pass slices as arguments rather than vectors
184 /// when you just want to provide a read access. The same goes for [`String`] and
185 /// [`&str`].
186 ///
187 /// # Capacity and reallocation
188 ///
189 /// The capacity of a vector is the amount of space allocated for any future
190 /// elements that will be added onto the vector. This is not to be confused with
191 /// the *length* of a vector, which specifies the number of actual elements
192 /// within the vector. If a vector's length exceeds its capacity, its capacity
193 /// will automatically be increased, but its elements will have to be
194 /// reallocated.
195 ///
196 /// For example, a vector with capacity 10 and length 0 would be an empty vector
197 /// with space for 10 more elements. Pushing 10 or fewer elements onto the
198 /// vector will not change its capacity or cause reallocation to occur. However,
199 /// if the vector's length is increased to 11, it will have to reallocate, which
200 /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
201 /// whenever possible to specify how big the vector is expected to get.
202 ///
203 /// # Guarantees
204 ///
205 /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
206 /// about its design. This ensures that it's as low-overhead as possible in
207 /// the general case, and can be correctly manipulated in primitive ways
208 /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
209 /// If additional type parameters are added (e.g. to support custom allocators),
210 /// overriding their defaults may change the behavior.
211 ///
212 /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
213 /// triplet. No more, no less. The order of these fields is completely
214 /// unspecified, and you should use the appropriate methods to modify these.
215 /// The pointer will never be null, so this type is null-pointer-optimized.
216 ///
217 /// However, the pointer may not actually point to allocated memory. In particular,
218 /// if you construct a `Vec` with capacity 0 via [`Vec::new()`], [`vec![]`][`vec!`],
219 /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit()`]
220 /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
221 /// types inside a `Vec`, it will not allocate space for them. *Note that in this case
222 /// the `Vec` may not report a [`capacity()`] of 0*. `Vec` will allocate if and only
223 /// if [`mem::size_of::<T>()`]` * capacity() > 0`. In general, `Vec`'s allocation
224 /// details are subtle enough that it is strongly recommended that you only
225 /// free memory allocated by a `Vec` by creating a new `Vec` and dropping it.
226 ///
227 /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
228 /// (as defined by the allocator Rust is configured to use by default), and its
229 /// pointer points to [`len()`] initialized elements in order (what you would see
230 /// if you coerced it to a slice), followed by [`capacity()`]` - `[`len()`]
231 /// logically uninitialized elements.
232 ///
233 /// `Vec` will never perform a "small optimization" where elements are actually
234 /// stored on the stack for two reasons:
235 ///
236 /// * It would make it more difficult for unsafe code to correctly manipulate
237 /// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
238 /// only moved, and it would be more difficult to determine if a `Vec` had
239 /// actually allocated memory.
240 ///
241 /// * It would penalize the general case, incurring an additional branch
242 /// on every access.
243 ///
244 /// `Vec` will never automatically shrink itself, even if completely empty. This
245 /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
246 /// and then filling it back up to the same [`len()`] should incur no calls to
247 /// the allocator. If you wish to free up unused memory, use
248 /// [`shrink_to_fit`][`shrink_to_fit()`].
249 ///
250 /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
251 /// sufficient. [`push`] and [`insert`] *will* (re)allocate if
252 /// [`len()`]` == `[`capacity()`]. That is, the reported capacity is completely
253 /// accurate, and can be relied on. It can even be used to manually free the memory
254 /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
255 /// when not necessary.
256 ///
257 /// `Vec` does not guarantee any particular growth strategy when reallocating
258 /// when full, nor when [`reserve`] is called. The current strategy is basic
259 /// and it may prove desirable to use a non-constant growth factor. Whatever
260 /// strategy is used will of course guarantee `O(1)` amortized [`push`].
261 ///
262 /// `vec![x; n]`, `vec![a, b, c, d]`, and
263 /// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
264 /// with exactly the requested capacity. If [`len()`]` == `[`capacity()`],
265 /// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
266 /// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
267 ///
268 /// `Vec` will not specifically overwrite any data that is removed from it,
269 /// but also won't specifically preserve it. Its uninitialized memory is
270 /// scratch space that it may use however it wants. It will generally just do
271 /// whatever is most efficient or otherwise easy to implement. Do not rely on
272 /// removed data to be erased for security purposes. Even if you drop a `Vec`, its
273 /// buffer may simply be reused by another `Vec`. Even if you zero a `Vec`'s memory
274 /// first, that may not actually happen because the optimizer does not consider
275 /// this a side-effect that must be preserved.
276 ///
277 /// `Vec` does not currently guarantee the order in which elements are dropped
278 /// (the order has changed in the past, and may change again).
279 ///
280 /// [`vec!`]: ../../std/macro.vec.html
281 /// [`Index`]: ../../std/ops/trait.Index.html
282 /// [`String`]: ../../std/string/struct.String.html
283 /// [`&str`]: ../../std/primitive.str.html
284 /// [`Vec::with_capacity`]: ../../std/vec/struct.Vec.html#method.with_capacity
285 /// [`Vec::new()`]: ../../std/vec/struct.Vec.html#method.new
286 /// [`shrink_to_fit()`]: ../../std/vec/struct.Vec.html#method.shrink_to_fit
287 /// [`capacity()`]: ../../std/vec/struct.Vec.html#method.capacity
288 /// [`mem::size_of::<T>()`]: ../../std/mem/fn.size_of.html
289 /// [`len()`]: ../../std/vec/struct.Vec.html#method.len
290 /// [`push`]: ../../std/vec/struct.Vec.html#method.push
291 /// [`insert`]: ../../std/vec/struct.Vec.html#method.insert
292 /// [`reserve`]: ../../std/vec/struct.Vec.html#method.reserve
293 /// [owned slice]: ../../std/boxed/struct.Box.html
294 #[stable(feature = "rust1", since = "1.0.0")]
295 pub struct Vec<T> {
296 buf: RawVec<T>,
297 len: usize,
298 }
299
300 ////////////////////////////////////////////////////////////////////////////////
301 // Inherent methods
302 ////////////////////////////////////////////////////////////////////////////////
303
304 impl<T> Vec<T> {
305 /// Constructs a new, empty `Vec<T>`.
306 ///
307 /// The vector will not allocate until elements are pushed onto it.
308 ///
309 /// # Examples
310 ///
311 /// ```
312 /// # #![allow(unused_mut)]
313 /// let mut vec: Vec<i32> = Vec::new();
314 /// ```
315 #[inline]
316 #[stable(feature = "rust1", since = "1.0.0")]
317 pub fn new() -> Vec<T> {
318 Vec {
319 buf: RawVec::new(),
320 len: 0,
321 }
322 }
323
324 /// Constructs a new, empty `Vec<T>` with the specified capacity.
325 ///
326 /// The vector will be able to hold exactly `capacity` elements without
327 /// reallocating. If `capacity` is 0, the vector will not allocate.
328 ///
329 /// It is important to note that this function does not specify the *length*
330 /// of the returned vector, but only the *capacity*. For an explanation of
331 /// the difference between length and capacity, see *[Capacity and reallocation]*.
332 ///
333 /// [Capacity and reallocation]: #capacity-and-reallocation
334 ///
335 /// # Examples
336 ///
337 /// ```
338 /// let mut vec = Vec::with_capacity(10);
339 ///
340 /// // The vector contains no items, even though it has capacity for more
341 /// assert_eq!(vec.len(), 0);
342 ///
343 /// // These are all done without reallocating...
344 /// for i in 0..10 {
345 /// vec.push(i);
346 /// }
347 ///
348 /// // ...but this may make the vector reallocate
349 /// vec.push(11);
350 /// ```
351 #[inline]
352 #[stable(feature = "rust1", since = "1.0.0")]
353 pub fn with_capacity(capacity: usize) -> Vec<T> {
354 Vec {
355 buf: RawVec::with_capacity(capacity),
356 len: 0,
357 }
358 }
359
360 /// Creates a `Vec<T>` directly from the raw components of another vector.
361 ///
362 /// # Safety
363 ///
364 /// This is highly unsafe, due to the number of invariants that aren't
365 /// checked:
366 ///
367 /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
368 /// (at least, it's highly likely to be incorrect if it wasn't).
369 /// * `length` needs to be less than or equal to `capacity`.
370 /// * `capacity` needs to be the capacity that the pointer was allocated with.
371 ///
372 /// Violating these may cause problems like corrupting the allocator's
373 /// internal datastructures.
374 ///
375 /// The ownership of `ptr` is effectively transferred to the
376 /// `Vec<T>` which may then deallocate, reallocate or change the
377 /// contents of memory pointed to by the pointer at will. Ensure
378 /// that nothing else uses the pointer after calling this
379 /// function.
380 ///
381 /// [`String`]: ../../std/string/struct.String.html
382 ///
383 /// # Examples
384 ///
385 /// ```
386 /// use std::ptr;
387 /// use std::mem;
388 ///
389 /// fn main() {
390 /// let mut v = vec![1, 2, 3];
391 ///
392 /// // Pull out the various important pieces of information about `v`
393 /// let p = v.as_mut_ptr();
394 /// let len = v.len();
395 /// let cap = v.capacity();
396 ///
397 /// unsafe {
398 /// // Cast `v` into the void: no destructor run, so we are in
399 /// // complete control of the allocation to which `p` points.
400 /// mem::forget(v);
401 ///
402 /// // Overwrite memory with 4, 5, 6
403 /// for i in 0..len as isize {
404 /// ptr::write(p.offset(i), 4 + i);
405 /// }
406 ///
407 /// // Put everything back together into a Vec
408 /// let rebuilt = Vec::from_raw_parts(p, len, cap);
409 /// assert_eq!(rebuilt, [4, 5, 6]);
410 /// }
411 /// }
412 /// ```
413 #[stable(feature = "rust1", since = "1.0.0")]
414 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Vec<T> {
415 Vec {
416 buf: RawVec::from_raw_parts(ptr, capacity),
417 len: length,
418 }
419 }
420
421 /// Returns the number of elements the vector can hold without
422 /// reallocating.
423 ///
424 /// # Examples
425 ///
426 /// ```
427 /// let vec: Vec<i32> = Vec::with_capacity(10);
428 /// assert_eq!(vec.capacity(), 10);
429 /// ```
430 #[inline]
431 #[stable(feature = "rust1", since = "1.0.0")]
432 pub fn capacity(&self) -> usize {
433 self.buf.cap()
434 }
435
436 /// Reserves capacity for at least `additional` more elements to be inserted
437 /// in the given `Vec<T>`. The collection may reserve more space to avoid
438 /// frequent reallocations.
439 ///
440 /// # Panics
441 ///
442 /// Panics if the new capacity overflows `usize`.
443 ///
444 /// # Examples
445 ///
446 /// ```
447 /// let mut vec = vec![1];
448 /// vec.reserve(10);
449 /// assert!(vec.capacity() >= 11);
450 /// ```
451 #[stable(feature = "rust1", since = "1.0.0")]
452 pub fn reserve(&mut self, additional: usize) {
453 self.buf.reserve(self.len, additional);
454 }
455
456 /// Reserves the minimum capacity for exactly `additional` more elements to
457 /// be inserted in the given `Vec<T>`. Does nothing if the capacity is already
458 /// sufficient.
459 ///
460 /// Note that the allocator may give the collection more space than it
461 /// requests. Therefore capacity can not be relied upon to be precisely
462 /// minimal. Prefer `reserve` if future insertions are expected.
463 ///
464 /// # Panics
465 ///
466 /// Panics if the new capacity overflows `usize`.
467 ///
468 /// # Examples
469 ///
470 /// ```
471 /// let mut vec = vec![1];
472 /// vec.reserve_exact(10);
473 /// assert!(vec.capacity() >= 11);
474 /// ```
475 #[stable(feature = "rust1", since = "1.0.0")]
476 pub fn reserve_exact(&mut self, additional: usize) {
477 self.buf.reserve_exact(self.len, additional);
478 }
479
480 /// Shrinks the capacity of the vector as much as possible.
481 ///
482 /// It will drop down as close as possible to the length but the allocator
483 /// may still inform the vector that there is space for a few more elements.
484 ///
485 /// # Examples
486 ///
487 /// ```
488 /// let mut vec = Vec::with_capacity(10);
489 /// vec.extend([1, 2, 3].iter().cloned());
490 /// assert_eq!(vec.capacity(), 10);
491 /// vec.shrink_to_fit();
492 /// assert!(vec.capacity() >= 3);
493 /// ```
494 #[stable(feature = "rust1", since = "1.0.0")]
495 pub fn shrink_to_fit(&mut self) {
496 self.buf.shrink_to_fit(self.len);
497 }
498
499 /// Converts the vector into [`Box<[T]>`][owned slice].
500 ///
501 /// Note that this will drop any excess capacity. Calling this and
502 /// converting back to a vector with [`into_vec()`] is equivalent to calling
503 /// [`shrink_to_fit()`].
504 ///
505 /// [owned slice]: ../../std/boxed/struct.Box.html
506 /// [`into_vec()`]: ../../std/primitive.slice.html#method.into_vec
507 /// [`shrink_to_fit()`]: #method.shrink_to_fit
508 ///
509 /// # Examples
510 ///
511 /// ```
512 /// let v = vec![1, 2, 3];
513 ///
514 /// let slice = v.into_boxed_slice();
515 /// ```
516 ///
517 /// Any excess capacity is removed:
518 ///
519 /// ```
520 /// let mut vec = Vec::with_capacity(10);
521 /// vec.extend([1, 2, 3].iter().cloned());
522 ///
523 /// assert_eq!(vec.capacity(), 10);
524 /// let slice = vec.into_boxed_slice();
525 /// assert_eq!(slice.into_vec().capacity(), 3);
526 /// ```
527 #[stable(feature = "rust1", since = "1.0.0")]
528 pub fn into_boxed_slice(mut self) -> Box<[T]> {
529 unsafe {
530 self.shrink_to_fit();
531 let buf = ptr::read(&self.buf);
532 mem::forget(self);
533 buf.into_box()
534 }
535 }
536
537 /// Shortens the vector, keeping the first `len` elements and dropping
538 /// the rest.
539 ///
540 /// If `len` is greater than the vector's current length, this has no
541 /// effect.
542 ///
543 /// The [`drain`] method can emulate `truncate`, but causes the excess
544 /// elements to be returned instead of dropped.
545 ///
546 /// # Examples
547 ///
548 /// Truncating a five element vector to two elements:
549 ///
550 /// ```
551 /// let mut vec = vec![1, 2, 3, 4, 5];
552 /// vec.truncate(2);
553 /// assert_eq!(vec, [1, 2]);
554 /// ```
555 ///
556 /// No truncation occurs when `len` is greater than the vector's current
557 /// length:
558 ///
559 /// ```
560 /// let mut vec = vec![1, 2, 3];
561 /// vec.truncate(8);
562 /// assert_eq!(vec, [1, 2, 3]);
563 /// ```
564 ///
565 /// Truncating when `len == 0` is equivalent to calling the [`clear`]
566 /// method.
567 ///
568 /// ```
569 /// let mut vec = vec![1, 2, 3];
570 /// vec.truncate(0);
571 /// assert_eq!(vec, []);
572 /// ```
573 ///
574 /// [`clear`]: #method.clear
575 /// [`drain`]: #method.drain
576 #[stable(feature = "rust1", since = "1.0.0")]
577 pub fn truncate(&mut self, len: usize) {
578 unsafe {
579 // drop any extra elements
580 while len < self.len {
581 // decrement len before the drop_in_place(), so a panic on Drop
582 // doesn't re-drop the just-failed value.
583 self.len -= 1;
584 let len = self.len;
585 ptr::drop_in_place(self.get_unchecked_mut(len));
586 }
587 }
588 }
589
590 /// Extracts a slice containing the entire vector.
591 ///
592 /// Equivalent to `&s[..]`.
593 ///
594 /// # Examples
595 ///
596 /// ```
597 /// use std::io::{self, Write};
598 /// let buffer = vec![1, 2, 3, 5, 8];
599 /// io::sink().write(buffer.as_slice()).unwrap();
600 /// ```
601 #[inline]
602 #[stable(feature = "vec_as_slice", since = "1.7.0")]
603 pub fn as_slice(&self) -> &[T] {
604 self
605 }
606
607 /// Extracts a mutable slice of the entire vector.
608 ///
609 /// Equivalent to `&mut s[..]`.
610 ///
611 /// # Examples
612 ///
613 /// ```
614 /// use std::io::{self, Read};
615 /// let mut buffer = vec![0; 3];
616 /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
617 /// ```
618 #[inline]
619 #[stable(feature = "vec_as_slice", since = "1.7.0")]
620 pub fn as_mut_slice(&mut self) -> &mut [T] {
621 self
622 }
623
624 /// Sets the length of a vector.
625 ///
626 /// This will explicitly set the size of the vector, without actually
627 /// modifying its buffers, so it is up to the caller to ensure that the
628 /// vector is actually the specified size.
629 ///
630 /// # Examples
631 ///
632 /// ```
633 /// use std::ptr;
634 ///
635 /// let mut vec = vec!['r', 'u', 's', 't'];
636 ///
637 /// unsafe {
638 /// ptr::drop_in_place(&mut vec[3]);
639 /// vec.set_len(3);
640 /// }
641 /// assert_eq!(vec, ['r', 'u', 's']);
642 /// ```
643 ///
644 /// In this example, there is a memory leak since the memory locations
645 /// owned by the inner vectors were not freed prior to the `set_len` call:
646 ///
647 /// ```
648 /// let mut vec = vec![vec![1, 0, 0],
649 /// vec![0, 1, 0],
650 /// vec![0, 0, 1]];
651 /// unsafe {
652 /// vec.set_len(0);
653 /// }
654 /// ```
655 ///
656 /// In this example, the vector gets expanded from zero to four items
657 /// without any memory allocations occurring, resulting in vector
658 /// values of unallocated memory:
659 ///
660 /// ```
661 /// let mut vec: Vec<char> = Vec::new();
662 ///
663 /// unsafe {
664 /// vec.set_len(4);
665 /// }
666 /// ```
667 #[inline]
668 #[stable(feature = "rust1", since = "1.0.0")]
669 pub unsafe fn set_len(&mut self, len: usize) {
670 self.len = len;
671 }
672
673 /// Removes an element from anywhere in the vector and return it, replacing
674 /// it with the last element.
675 ///
676 /// This does not preserve ordering, but is O(1).
677 ///
678 /// # Panics
679 ///
680 /// Panics if `index` is out of bounds.
681 ///
682 /// # Examples
683 ///
684 /// ```
685 /// let mut v = vec!["foo", "bar", "baz", "qux"];
686 ///
687 /// assert_eq!(v.swap_remove(1), "bar");
688 /// assert_eq!(v, ["foo", "qux", "baz"]);
689 ///
690 /// assert_eq!(v.swap_remove(0), "foo");
691 /// assert_eq!(v, ["baz", "qux"]);
692 /// ```
693 #[inline]
694 #[stable(feature = "rust1", since = "1.0.0")]
695 pub fn swap_remove(&mut self, index: usize) -> T {
696 let length = self.len();
697 self.swap(index, length - 1);
698 self.pop().unwrap()
699 }
700
701 /// Inserts an element at position `index` within the vector, shifting all
702 /// elements after it to the right.
703 ///
704 /// # Panics
705 ///
706 /// Panics if `index` is out of bounds.
707 ///
708 /// # Examples
709 ///
710 /// ```
711 /// let mut vec = vec![1, 2, 3];
712 /// vec.insert(1, 4);
713 /// assert_eq!(vec, [1, 4, 2, 3]);
714 /// vec.insert(4, 5);
715 /// assert_eq!(vec, [1, 4, 2, 3, 5]);
716 /// ```
717 #[stable(feature = "rust1", since = "1.0.0")]
718 pub fn insert(&mut self, index: usize, element: T) {
719 let len = self.len();
720 assert!(index <= len);
721
722 // space for the new element
723 if len == self.buf.cap() {
724 self.buf.double();
725 }
726
727 unsafe {
728 // infallible
729 // The spot to put the new value
730 {
731 let p = self.as_mut_ptr().offset(index as isize);
732 // Shift everything over to make space. (Duplicating the
733 // `index`th element into two consecutive places.)
734 ptr::copy(p, p.offset(1), len - index);
735 // Write it in, overwriting the first copy of the `index`th
736 // element.
737 ptr::write(p, element);
738 }
739 self.set_len(len + 1);
740 }
741 }
742
743 /// Removes and returns the element at position `index` within the vector,
744 /// shifting all elements after it to the left.
745 ///
746 /// # Panics
747 ///
748 /// Panics if `index` is out of bounds.
749 ///
750 /// # Examples
751 ///
752 /// ```
753 /// let mut v = vec![1, 2, 3];
754 /// assert_eq!(v.remove(1), 2);
755 /// assert_eq!(v, [1, 3]);
756 /// ```
757 #[stable(feature = "rust1", since = "1.0.0")]
758 pub fn remove(&mut self, index: usize) -> T {
759 let len = self.len();
760 assert!(index < len);
761 unsafe {
762 // infallible
763 let ret;
764 {
765 // the place we are taking from.
766 let ptr = self.as_mut_ptr().offset(index as isize);
767 // copy it out, unsafely having a copy of the value on
768 // the stack and in the vector at the same time.
769 ret = ptr::read(ptr);
770
771 // Shift everything down to fill in that spot.
772 ptr::copy(ptr.offset(1), ptr, len - index - 1);
773 }
774 self.set_len(len - 1);
775 ret
776 }
777 }
778
779 /// Retains only the elements specified by the predicate.
780 ///
781 /// In other words, remove all elements `e` such that `f(&e)` returns `false`.
782 /// This method operates in place and preserves the order of the retained
783 /// elements.
784 ///
785 /// # Examples
786 ///
787 /// ```
788 /// let mut vec = vec![1, 2, 3, 4];
789 /// vec.retain(|&x| x%2 == 0);
790 /// assert_eq!(vec, [2, 4]);
791 /// ```
792 #[stable(feature = "rust1", since = "1.0.0")]
793 pub fn retain<F>(&mut self, mut f: F)
794 where F: FnMut(&T) -> bool
795 {
796 let len = self.len();
797 let mut del = 0;
798 {
799 let v = &mut **self;
800
801 for i in 0..len {
802 if !f(&v[i]) {
803 del += 1;
804 } else if del > 0 {
805 v.swap(i - del, i);
806 }
807 }
808 }
809 if del > 0 {
810 self.truncate(len - del);
811 }
812 }
813
814 /// Removes consecutive elements in the vector that resolve to the same key.
815 ///
816 /// If the vector is sorted, this removes all duplicates.
817 ///
818 /// # Examples
819 ///
820 /// ```
821 /// #![feature(dedup_by)]
822 ///
823 /// let mut vec = vec![10, 20, 21, 30, 20];
824 ///
825 /// vec.dedup_by_key(|i| *i / 10);
826 ///
827 /// assert_eq!(vec, [10, 20, 30, 20]);
828 /// ```
829 #[unstable(feature = "dedup_by", reason = "recently added", issue = "37087")]
830 #[inline]
831 pub fn dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq {
832 self.dedup_by(|a, b| key(a) == key(b))
833 }
834
835 /// Removes consecutive elements in the vector that resolve to the same key.
836 ///
837 /// If the vector is sorted, this removes all duplicates.
838 ///
839 /// # Examples
840 ///
841 /// ```
842 /// #![feature(dedup_by)]
843 /// use std::ascii::AsciiExt;
844 ///
845 /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
846 ///
847 /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
848 ///
849 /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
850 /// ```
851 #[unstable(feature = "dedup_by", reason = "recently added", issue = "37087")]
852 pub fn dedup_by<F>(&mut self, mut same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool {
853 unsafe {
854 // Although we have a mutable reference to `self`, we cannot make
855 // *arbitrary* changes. The `same_bucket` calls could panic, so we
856 // must ensure that the vector is in a valid state at all time.
857 //
858 // The way that we handle this is by using swaps; we iterate
859 // over all the elements, swapping as we go so that at the end
860 // the elements we wish to keep are in the front, and those we
861 // wish to reject are at the back. We can then truncate the
862 // vector. This operation is still O(n).
863 //
864 // Example: We start in this state, where `r` represents "next
865 // read" and `w` represents "next_write`.
866 //
867 // r
868 // +---+---+---+---+---+---+
869 // | 0 | 1 | 1 | 2 | 3 | 3 |
870 // +---+---+---+---+---+---+
871 // w
872 //
873 // Comparing self[r] against self[w-1], this is not a duplicate, so
874 // we swap self[r] and self[w] (no effect as r==w) and then increment both
875 // r and w, leaving us with:
876 //
877 // r
878 // +---+---+---+---+---+---+
879 // | 0 | 1 | 1 | 2 | 3 | 3 |
880 // +---+---+---+---+---+---+
881 // w
882 //
883 // Comparing self[r] against self[w-1], this value is a duplicate,
884 // so we increment `r` but leave everything else unchanged:
885 //
886 // r
887 // +---+---+---+---+---+---+
888 // | 0 | 1 | 1 | 2 | 3 | 3 |
889 // +---+---+---+---+---+---+
890 // w
891 //
892 // Comparing self[r] against self[w-1], this is not a duplicate,
893 // so swap self[r] and self[w] and advance r and w:
894 //
895 // r
896 // +---+---+---+---+---+---+
897 // | 0 | 1 | 2 | 1 | 3 | 3 |
898 // +---+---+---+---+---+---+
899 // w
900 //
901 // Not a duplicate, repeat:
902 //
903 // r
904 // +---+---+---+---+---+---+
905 // | 0 | 1 | 2 | 3 | 1 | 3 |
906 // +---+---+---+---+---+---+
907 // w
908 //
909 // Duplicate, advance r. End of vec. Truncate to w.
910
911 let ln = self.len();
912 if ln <= 1 {
913 return;
914 }
915
916 // Avoid bounds checks by using raw pointers.
917 let p = self.as_mut_ptr();
918 let mut r: usize = 1;
919 let mut w: usize = 1;
920
921 while r < ln {
922 let p_r = p.offset(r as isize);
923 let p_wm1 = p.offset((w - 1) as isize);
924 if !same_bucket(&mut *p_r, &mut *p_wm1) {
925 if r != w {
926 let p_w = p_wm1.offset(1);
927 mem::swap(&mut *p_r, &mut *p_w);
928 }
929 w += 1;
930 }
931 r += 1;
932 }
933
934 self.truncate(w);
935 }
936 }
937
938 /// Appends an element to the back of a collection.
939 ///
940 /// # Panics
941 ///
942 /// Panics if the number of elements in the vector overflows a `usize`.
943 ///
944 /// # Examples
945 ///
946 /// ```
947 /// let mut vec = vec![1, 2];
948 /// vec.push(3);
949 /// assert_eq!(vec, [1, 2, 3]);
950 /// ```
951 #[inline]
952 #[stable(feature = "rust1", since = "1.0.0")]
953 pub fn push(&mut self, value: T) {
954 // This will panic or abort if we would allocate > isize::MAX bytes
955 // or if the length increment would overflow for zero-sized types.
956 if self.len == self.buf.cap() {
957 self.buf.double();
958 }
959 unsafe {
960 let end = self.as_mut_ptr().offset(self.len as isize);
961 ptr::write(end, value);
962 self.len += 1;
963 }
964 }
965
966 /// Removes the last element from a vector and returns it, or [`None`] if it
967 /// is empty.
968 ///
969 /// [`None`]: ../../std/option/enum.Option.html#variant.None
970 ///
971 /// # Examples
972 ///
973 /// ```
974 /// let mut vec = vec![1, 2, 3];
975 /// assert_eq!(vec.pop(), Some(3));
976 /// assert_eq!(vec, [1, 2]);
977 /// ```
978 #[inline]
979 #[stable(feature = "rust1", since = "1.0.0")]
980 pub fn pop(&mut self) -> Option<T> {
981 if self.len == 0 {
982 None
983 } else {
984 unsafe {
985 self.len -= 1;
986 Some(ptr::read(self.get_unchecked(self.len())))
987 }
988 }
989 }
990
991 /// Moves all the elements of `other` into `Self`, leaving `other` empty.
992 ///
993 /// # Panics
994 ///
995 /// Panics if the number of elements in the vector overflows a `usize`.
996 ///
997 /// # Examples
998 ///
999 /// ```
1000 /// let mut vec = vec![1, 2, 3];
1001 /// let mut vec2 = vec![4, 5, 6];
1002 /// vec.append(&mut vec2);
1003 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
1004 /// assert_eq!(vec2, []);
1005 /// ```
1006 #[inline]
1007 #[stable(feature = "append", since = "1.4.0")]
1008 pub fn append(&mut self, other: &mut Self) {
1009 self.reserve(other.len());
1010 let len = self.len();
1011 unsafe {
1012 ptr::copy_nonoverlapping(other.as_ptr(), self.get_unchecked_mut(len), other.len());
1013 }
1014
1015 self.len += other.len();
1016 unsafe {
1017 other.set_len(0);
1018 }
1019 }
1020
1021 /// Create a draining iterator that removes the specified range in the vector
1022 /// and yields the removed items.
1023 ///
1024 /// Note 1: The element range is removed even if the iterator is not
1025 /// consumed until the end.
1026 ///
1027 /// Note 2: It is unspecified how many elements are removed from the vector,
1028 /// if the `Drain` value is leaked.
1029 ///
1030 /// # Panics
1031 ///
1032 /// Panics if the starting point is greater than the end point or if
1033 /// the end point is greater than the length of the vector.
1034 ///
1035 /// # Examples
1036 ///
1037 /// ```
1038 /// let mut v = vec![1, 2, 3];
1039 /// let u: Vec<_> = v.drain(1..).collect();
1040 /// assert_eq!(v, &[1]);
1041 /// assert_eq!(u, &[2, 3]);
1042 ///
1043 /// // A full range clears the vector
1044 /// v.drain(..);
1045 /// assert_eq!(v, &[]);
1046 /// ```
1047 #[stable(feature = "drain", since = "1.6.0")]
1048 pub fn drain<R>(&mut self, range: R) -> Drain<T>
1049 where R: RangeArgument<usize>
1050 {
1051 // Memory safety
1052 //
1053 // When the Drain is first created, it shortens the length of
1054 // the source vector to make sure no uninitalized or moved-from elements
1055 // are accessible at all if the Drain's destructor never gets to run.
1056 //
1057 // Drain will ptr::read out the values to remove.
1058 // When finished, remaining tail of the vec is copied back to cover
1059 // the hole, and the vector length is restored to the new length.
1060 //
1061 let len = self.len();
1062 let start = *range.start().unwrap_or(&0);
1063 let end = *range.end().unwrap_or(&len);
1064 assert!(start <= end);
1065 assert!(end <= len);
1066
1067 unsafe {
1068 // set self.vec length's to start, to be safe in case Drain is leaked
1069 self.set_len(start);
1070 // Use the borrow in the IterMut to indicate borrowing behavior of the
1071 // whole Drain iterator (like &mut T).
1072 let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().offset(start as isize),
1073 end - start);
1074 Drain {
1075 tail_start: end,
1076 tail_len: len - end,
1077 iter: range_slice.iter(),
1078 vec: Shared::new(self as *mut _),
1079 }
1080 }
1081 }
1082
1083 /// Clears the vector, removing all values.
1084 ///
1085 /// # Examples
1086 ///
1087 /// ```
1088 /// let mut v = vec![1, 2, 3];
1089 ///
1090 /// v.clear();
1091 ///
1092 /// assert!(v.is_empty());
1093 /// ```
1094 #[inline]
1095 #[stable(feature = "rust1", since = "1.0.0")]
1096 pub fn clear(&mut self) {
1097 self.truncate(0)
1098 }
1099
1100 /// Returns the number of elements in the vector.
1101 ///
1102 /// # Examples
1103 ///
1104 /// ```
1105 /// let a = vec![1, 2, 3];
1106 /// assert_eq!(a.len(), 3);
1107 /// ```
1108 #[inline]
1109 #[stable(feature = "rust1", since = "1.0.0")]
1110 pub fn len(&self) -> usize {
1111 self.len
1112 }
1113
1114 /// Returns `true` if the vector contains no elements.
1115 ///
1116 /// # Examples
1117 ///
1118 /// ```
1119 /// let mut v = Vec::new();
1120 /// assert!(v.is_empty());
1121 ///
1122 /// v.push(1);
1123 /// assert!(!v.is_empty());
1124 /// ```
1125 #[stable(feature = "rust1", since = "1.0.0")]
1126 pub fn is_empty(&self) -> bool {
1127 self.len() == 0
1128 }
1129
1130 /// Splits the collection into two at the given index.
1131 ///
1132 /// Returns a newly allocated `Self`. `self` contains elements `[0, at)`,
1133 /// and the returned `Self` contains elements `[at, len)`.
1134 ///
1135 /// Note that the capacity of `self` does not change.
1136 ///
1137 /// # Panics
1138 ///
1139 /// Panics if `at > len`.
1140 ///
1141 /// # Examples
1142 ///
1143 /// ```
1144 /// let mut vec = vec![1,2,3];
1145 /// let vec2 = vec.split_off(1);
1146 /// assert_eq!(vec, [1]);
1147 /// assert_eq!(vec2, [2, 3]);
1148 /// ```
1149 #[inline]
1150 #[stable(feature = "split_off", since = "1.4.0")]
1151 pub fn split_off(&mut self, at: usize) -> Self {
1152 assert!(at <= self.len(), "`at` out of bounds");
1153
1154 let other_len = self.len - at;
1155 let mut other = Vec::with_capacity(other_len);
1156
1157 // Unsafely `set_len` and copy items to `other`.
1158 unsafe {
1159 self.set_len(at);
1160 other.set_len(other_len);
1161
1162 ptr::copy_nonoverlapping(self.as_ptr().offset(at as isize),
1163 other.as_mut_ptr(),
1164 other.len());
1165 }
1166 other
1167 }
1168 }
1169
1170 impl<T: Clone> Vec<T> {
1171 /// Resizes the `Vec` in-place so that `len()` is equal to `new_len`.
1172 ///
1173 /// If `new_len` is greater than `len()`, the `Vec` is extended by the
1174 /// difference, with each additional slot filled with `value`.
1175 /// If `new_len` is less than `len()`, the `Vec` is simply truncated.
1176 ///
1177 /// # Examples
1178 ///
1179 /// ```
1180 /// let mut vec = vec!["hello"];
1181 /// vec.resize(3, "world");
1182 /// assert_eq!(vec, ["hello", "world", "world"]);
1183 ///
1184 /// let mut vec = vec![1, 2, 3, 4];
1185 /// vec.resize(2, 0);
1186 /// assert_eq!(vec, [1, 2]);
1187 /// ```
1188 #[stable(feature = "vec_resize", since = "1.5.0")]
1189 pub fn resize(&mut self, new_len: usize, value: T) {
1190 let len = self.len();
1191
1192 if new_len > len {
1193 self.extend_with_element(new_len - len, value);
1194 } else {
1195 self.truncate(new_len);
1196 }
1197 }
1198
1199 /// Extend the vector by `n` additional clones of `value`.
1200 fn extend_with_element(&mut self, n: usize, value: T) {
1201 self.reserve(n);
1202
1203 unsafe {
1204 let mut ptr = self.as_mut_ptr().offset(self.len() as isize);
1205 // Use SetLenOnDrop to work around bug where compiler
1206 // may not realize the store through `ptr` trough self.set_len()
1207 // don't alias.
1208 let mut local_len = SetLenOnDrop::new(&mut self.len);
1209
1210 // Write all elements except the last one
1211 for _ in 1..n {
1212 ptr::write(ptr, value.clone());
1213 ptr = ptr.offset(1);
1214 // Increment the length in every step in case clone() panics
1215 local_len.increment_len(1);
1216 }
1217
1218 if n > 0 {
1219 // We can write the last element directly without cloning needlessly
1220 ptr::write(ptr, value);
1221 local_len.increment_len(1);
1222 }
1223
1224 // len set by scope guard
1225 }
1226 }
1227
1228 /// Clones and appends all elements in a slice to the `Vec`.
1229 ///
1230 /// Iterates over the slice `other`, clones each element, and then appends
1231 /// it to this `Vec`. The `other` vector is traversed in-order.
1232 ///
1233 /// Note that this function is same as `extend` except that it is
1234 /// specialized to work with slices instead. If and when Rust gets
1235 /// specialization this function will likely be deprecated (but still
1236 /// available).
1237 ///
1238 /// # Examples
1239 ///
1240 /// ```
1241 /// let mut vec = vec![1];
1242 /// vec.extend_from_slice(&[2, 3, 4]);
1243 /// assert_eq!(vec, [1, 2, 3, 4]);
1244 /// ```
1245 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
1246 pub fn extend_from_slice(&mut self, other: &[T]) {
1247 self.spec_extend(other.iter())
1248 }
1249 }
1250
1251 // Set the length of the vec when the `SetLenOnDrop` value goes out of scope.
1252 //
1253 // The idea is: The length field in SetLenOnDrop is a local variable
1254 // that the optimizer will see does not alias with any stores through the Vec's data
1255 // pointer. This is a workaround for alias analysis issue #32155
1256 struct SetLenOnDrop<'a> {
1257 len: &'a mut usize,
1258 local_len: usize,
1259 }
1260
1261 impl<'a> SetLenOnDrop<'a> {
1262 #[inline]
1263 fn new(len: &'a mut usize) -> Self {
1264 SetLenOnDrop { local_len: *len, len: len }
1265 }
1266
1267 #[inline]
1268 fn increment_len(&mut self, increment: usize) {
1269 self.local_len += increment;
1270 }
1271 }
1272
1273 impl<'a> Drop for SetLenOnDrop<'a> {
1274 #[inline]
1275 fn drop(&mut self) {
1276 *self.len = self.local_len;
1277 }
1278 }
1279
1280 impl<T: PartialEq> Vec<T> {
1281 /// Removes consecutive repeated elements in the vector.
1282 ///
1283 /// If the vector is sorted, this removes all duplicates.
1284 ///
1285 /// # Examples
1286 ///
1287 /// ```
1288 /// let mut vec = vec![1, 2, 2, 3, 2];
1289 ///
1290 /// vec.dedup();
1291 ///
1292 /// assert_eq!(vec, [1, 2, 3, 2]);
1293 /// ```
1294 #[stable(feature = "rust1", since = "1.0.0")]
1295 #[inline]
1296 pub fn dedup(&mut self) {
1297 self.dedup_by(|a, b| a == b)
1298 }
1299 }
1300
1301 ////////////////////////////////////////////////////////////////////////////////
1302 // Internal methods and functions
1303 ////////////////////////////////////////////////////////////////////////////////
1304
1305 #[doc(hidden)]
1306 #[stable(feature = "rust1", since = "1.0.0")]
1307 pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
1308 let mut v = Vec::with_capacity(n);
1309 v.extend_with_element(n, elem);
1310 v
1311 }
1312
1313 ////////////////////////////////////////////////////////////////////////////////
1314 // Common trait implementations for Vec
1315 ////////////////////////////////////////////////////////////////////////////////
1316
1317 #[stable(feature = "rust1", since = "1.0.0")]
1318 impl<T: Clone> Clone for Vec<T> {
1319 #[cfg(not(test))]
1320 fn clone(&self) -> Vec<T> {
1321 <[T]>::to_vec(&**self)
1322 }
1323
1324 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
1325 // required for this method definition, is not available. Instead use the
1326 // `slice::to_vec` function which is only available with cfg(test)
1327 // NB see the slice::hack module in slice.rs for more information
1328 #[cfg(test)]
1329 fn clone(&self) -> Vec<T> {
1330 ::slice::to_vec(&**self)
1331 }
1332
1333 fn clone_from(&mut self, other: &Vec<T>) {
1334 // drop anything in self that will not be overwritten
1335 self.truncate(other.len());
1336 let len = self.len();
1337
1338 // reuse the contained values' allocations/resources.
1339 self.clone_from_slice(&other[..len]);
1340
1341 // self.len <= other.len due to the truncate above, so the
1342 // slice here is always in-bounds.
1343 self.extend_from_slice(&other[len..]);
1344 }
1345 }
1346
1347 #[stable(feature = "rust1", since = "1.0.0")]
1348 impl<T: Hash> Hash for Vec<T> {
1349 #[inline]
1350 fn hash<H: hash::Hasher>(&self, state: &mut H) {
1351 Hash::hash(&**self, state)
1352 }
1353 }
1354
1355 #[stable(feature = "rust1", since = "1.0.0")]
1356 impl<T> Index<usize> for Vec<T> {
1357 type Output = T;
1358
1359 #[inline]
1360 fn index(&self, index: usize) -> &T {
1361 // NB built-in indexing via `&[T]`
1362 &(**self)[index]
1363 }
1364 }
1365
1366 #[stable(feature = "rust1", since = "1.0.0")]
1367 impl<T> IndexMut<usize> for Vec<T> {
1368 #[inline]
1369 fn index_mut(&mut self, index: usize) -> &mut T {
1370 // NB built-in indexing via `&mut [T]`
1371 &mut (**self)[index]
1372 }
1373 }
1374
1375
1376 #[stable(feature = "rust1", since = "1.0.0")]
1377 impl<T> ops::Index<ops::Range<usize>> for Vec<T> {
1378 type Output = [T];
1379
1380 #[inline]
1381 fn index(&self, index: ops::Range<usize>) -> &[T] {
1382 Index::index(&**self, index)
1383 }
1384 }
1385 #[stable(feature = "rust1", since = "1.0.0")]
1386 impl<T> ops::Index<ops::RangeTo<usize>> for Vec<T> {
1387 type Output = [T];
1388
1389 #[inline]
1390 fn index(&self, index: ops::RangeTo<usize>) -> &[T] {
1391 Index::index(&**self, index)
1392 }
1393 }
1394 #[stable(feature = "rust1", since = "1.0.0")]
1395 impl<T> ops::Index<ops::RangeFrom<usize>> for Vec<T> {
1396 type Output = [T];
1397
1398 #[inline]
1399 fn index(&self, index: ops::RangeFrom<usize>) -> &[T] {
1400 Index::index(&**self, index)
1401 }
1402 }
1403 #[stable(feature = "rust1", since = "1.0.0")]
1404 impl<T> ops::Index<ops::RangeFull> for Vec<T> {
1405 type Output = [T];
1406
1407 #[inline]
1408 fn index(&self, _index: ops::RangeFull) -> &[T] {
1409 self
1410 }
1411 }
1412 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1413 impl<T> ops::Index<ops::RangeInclusive<usize>> for Vec<T> {
1414 type Output = [T];
1415
1416 #[inline]
1417 fn index(&self, index: ops::RangeInclusive<usize>) -> &[T] {
1418 Index::index(&**self, index)
1419 }
1420 }
1421 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1422 impl<T> ops::Index<ops::RangeToInclusive<usize>> for Vec<T> {
1423 type Output = [T];
1424
1425 #[inline]
1426 fn index(&self, index: ops::RangeToInclusive<usize>) -> &[T] {
1427 Index::index(&**self, index)
1428 }
1429 }
1430
1431 #[stable(feature = "rust1", since = "1.0.0")]
1432 impl<T> ops::IndexMut<ops::Range<usize>> for Vec<T> {
1433 #[inline]
1434 fn index_mut(&mut self, index: ops::Range<usize>) -> &mut [T] {
1435 IndexMut::index_mut(&mut **self, index)
1436 }
1437 }
1438 #[stable(feature = "rust1", since = "1.0.0")]
1439 impl<T> ops::IndexMut<ops::RangeTo<usize>> for Vec<T> {
1440 #[inline]
1441 fn index_mut(&mut self, index: ops::RangeTo<usize>) -> &mut [T] {
1442 IndexMut::index_mut(&mut **self, index)
1443 }
1444 }
1445 #[stable(feature = "rust1", since = "1.0.0")]
1446 impl<T> ops::IndexMut<ops::RangeFrom<usize>> for Vec<T> {
1447 #[inline]
1448 fn index_mut(&mut self, index: ops::RangeFrom<usize>) -> &mut [T] {
1449 IndexMut::index_mut(&mut **self, index)
1450 }
1451 }
1452 #[stable(feature = "rust1", since = "1.0.0")]
1453 impl<T> ops::IndexMut<ops::RangeFull> for Vec<T> {
1454 #[inline]
1455 fn index_mut(&mut self, _index: ops::RangeFull) -> &mut [T] {
1456 self
1457 }
1458 }
1459 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1460 impl<T> ops::IndexMut<ops::RangeInclusive<usize>> for Vec<T> {
1461 #[inline]
1462 fn index_mut(&mut self, index: ops::RangeInclusive<usize>) -> &mut [T] {
1463 IndexMut::index_mut(&mut **self, index)
1464 }
1465 }
1466 #[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1467 impl<T> ops::IndexMut<ops::RangeToInclusive<usize>> for Vec<T> {
1468 #[inline]
1469 fn index_mut(&mut self, index: ops::RangeToInclusive<usize>) -> &mut [T] {
1470 IndexMut::index_mut(&mut **self, index)
1471 }
1472 }
1473
1474 #[stable(feature = "rust1", since = "1.0.0")]
1475 impl<T> ops::Deref for Vec<T> {
1476 type Target = [T];
1477
1478 fn deref(&self) -> &[T] {
1479 unsafe {
1480 let p = self.buf.ptr();
1481 assume(!p.is_null());
1482 slice::from_raw_parts(p, self.len)
1483 }
1484 }
1485 }
1486
1487 #[stable(feature = "rust1", since = "1.0.0")]
1488 impl<T> ops::DerefMut for Vec<T> {
1489 fn deref_mut(&mut self) -> &mut [T] {
1490 unsafe {
1491 let ptr = self.buf.ptr();
1492 assume(!ptr.is_null());
1493 slice::from_raw_parts_mut(ptr, self.len)
1494 }
1495 }
1496 }
1497
1498 #[stable(feature = "rust1", since = "1.0.0")]
1499 impl<T> FromIterator<T> for Vec<T> {
1500 #[inline]
1501 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
1502 <Self as SpecExtend<_, _>>::from_iter(iter.into_iter())
1503 }
1504 }
1505
1506 #[stable(feature = "rust1", since = "1.0.0")]
1507 impl<T> IntoIterator for Vec<T> {
1508 type Item = T;
1509 type IntoIter = IntoIter<T>;
1510
1511 /// Creates a consuming iterator, that is, one that moves each value out of
1512 /// the vector (from start to end). The vector cannot be used after calling
1513 /// this.
1514 ///
1515 /// # Examples
1516 ///
1517 /// ```
1518 /// let v = vec!["a".to_string(), "b".to_string()];
1519 /// for s in v.into_iter() {
1520 /// // s has type String, not &String
1521 /// println!("{}", s);
1522 /// }
1523 /// ```
1524 #[inline]
1525 fn into_iter(mut self) -> IntoIter<T> {
1526 unsafe {
1527 let begin = self.as_mut_ptr();
1528 assume(!begin.is_null());
1529 let end = if mem::size_of::<T>() == 0 {
1530 arith_offset(begin as *const i8, self.len() as isize) as *const T
1531 } else {
1532 begin.offset(self.len() as isize) as *const T
1533 };
1534 let cap = self.buf.cap();
1535 mem::forget(self);
1536 IntoIter {
1537 buf: Shared::new(begin),
1538 cap: cap,
1539 ptr: begin,
1540 end: end,
1541 }
1542 }
1543 }
1544 }
1545
1546 #[stable(feature = "rust1", since = "1.0.0")]
1547 impl<'a, T> IntoIterator for &'a Vec<T> {
1548 type Item = &'a T;
1549 type IntoIter = slice::Iter<'a, T>;
1550
1551 fn into_iter(self) -> slice::Iter<'a, T> {
1552 self.iter()
1553 }
1554 }
1555
1556 #[stable(feature = "rust1", since = "1.0.0")]
1557 impl<'a, T> IntoIterator for &'a mut Vec<T> {
1558 type Item = &'a mut T;
1559 type IntoIter = slice::IterMut<'a, T>;
1560
1561 fn into_iter(mut self) -> slice::IterMut<'a, T> {
1562 self.iter_mut()
1563 }
1564 }
1565
1566 #[stable(feature = "rust1", since = "1.0.0")]
1567 impl<T> Extend<T> for Vec<T> {
1568 #[inline]
1569 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
1570 self.spec_extend(iter.into_iter())
1571 }
1572 }
1573
1574 // Specialization trait used for Vec::from_iter and Vec::extend
1575 trait SpecExtend<T, I> {
1576 fn from_iter(iter: I) -> Self;
1577 fn spec_extend(&mut self, iter: I);
1578 }
1579
1580 impl<T, I> SpecExtend<T, I> for Vec<T>
1581 where I: Iterator<Item=T>,
1582 {
1583 default fn from_iter(mut iterator: I) -> Self {
1584 // Unroll the first iteration, as the vector is going to be
1585 // expanded on this iteration in every case when the iterable is not
1586 // empty, but the loop in extend_desugared() is not going to see the
1587 // vector being full in the few subsequent loop iterations.
1588 // So we get better branch prediction.
1589 let mut vector = match iterator.next() {
1590 None => return Vec::new(),
1591 Some(element) => {
1592 let (lower, _) = iterator.size_hint();
1593 let mut vector = Vec::with_capacity(lower.saturating_add(1));
1594 unsafe {
1595 ptr::write(vector.get_unchecked_mut(0), element);
1596 vector.set_len(1);
1597 }
1598 vector
1599 }
1600 };
1601 vector.spec_extend(iterator);
1602 vector
1603 }
1604
1605 default fn spec_extend(&mut self, iter: I) {
1606 self.extend_desugared(iter)
1607 }
1608 }
1609
1610 impl<T, I> SpecExtend<T, I> for Vec<T>
1611 where I: TrustedLen<Item=T>,
1612 {
1613 fn from_iter(iterator: I) -> Self {
1614 let mut vector = Vec::new();
1615 vector.spec_extend(iterator);
1616 vector
1617 }
1618
1619 fn spec_extend(&mut self, iterator: I) {
1620 // This is the case for a TrustedLen iterator.
1621 let (low, high) = iterator.size_hint();
1622 if let Some(high_value) = high {
1623 debug_assert_eq!(low, high_value,
1624 "TrustedLen iterator's size hint is not exact: {:?}",
1625 (low, high));
1626 }
1627 if let Some(additional) = high {
1628 self.reserve(additional);
1629 unsafe {
1630 let mut ptr = self.as_mut_ptr().offset(self.len() as isize);
1631 let mut local_len = SetLenOnDrop::new(&mut self.len);
1632 for element in iterator {
1633 ptr::write(ptr, element);
1634 ptr = ptr.offset(1);
1635 // NB can't overflow since we would have had to alloc the address space
1636 local_len.increment_len(1);
1637 }
1638 }
1639 } else {
1640 self.extend_desugared(iterator)
1641 }
1642 }
1643 }
1644
1645 impl<'a, T: 'a, I> SpecExtend<&'a T, I> for Vec<T>
1646 where I: Iterator<Item=&'a T>,
1647 T: Clone,
1648 {
1649 default fn from_iter(iterator: I) -> Self {
1650 SpecExtend::from_iter(iterator.cloned())
1651 }
1652
1653 default fn spec_extend(&mut self, iterator: I) {
1654 self.spec_extend(iterator.cloned())
1655 }
1656 }
1657
1658 impl<'a, T: 'a> SpecExtend<&'a T, slice::Iter<'a, T>> for Vec<T>
1659 where T: Copy,
1660 {
1661 fn spec_extend(&mut self, iterator: slice::Iter<'a, T>) {
1662 let slice = iterator.as_slice();
1663 self.reserve(slice.len());
1664 unsafe {
1665 let len = self.len();
1666 self.set_len(len + slice.len());
1667 self.get_unchecked_mut(len..).copy_from_slice(slice);
1668 }
1669 }
1670 }
1671
1672 impl<T> Vec<T> {
1673 fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
1674 // This is the case for a general iterator.
1675 //
1676 // This function should be the moral equivalent of:
1677 //
1678 // for item in iterator {
1679 // self.push(item);
1680 // }
1681 while let Some(element) = iterator.next() {
1682 let len = self.len();
1683 if len == self.capacity() {
1684 let (lower, _) = iterator.size_hint();
1685 self.reserve(lower.saturating_add(1));
1686 }
1687 unsafe {
1688 ptr::write(self.get_unchecked_mut(len), element);
1689 // NB can't overflow since we would have had to alloc the address space
1690 self.set_len(len + 1);
1691 }
1692 }
1693 }
1694 }
1695
1696 #[stable(feature = "extend_ref", since = "1.2.0")]
1697 impl<'a, T: 'a + Copy> Extend<&'a T> for Vec<T> {
1698 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
1699 self.spec_extend(iter.into_iter())
1700 }
1701 }
1702
1703 macro_rules! __impl_slice_eq1 {
1704 ($Lhs: ty, $Rhs: ty) => {
1705 __impl_slice_eq1! { $Lhs, $Rhs, Sized }
1706 };
1707 ($Lhs: ty, $Rhs: ty, $Bound: ident) => {
1708 #[stable(feature = "rust1", since = "1.0.0")]
1709 impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq<B> {
1710 #[inline]
1711 fn eq(&self, other: &$Rhs) -> bool { self[..] == other[..] }
1712 #[inline]
1713 fn ne(&self, other: &$Rhs) -> bool { self[..] != other[..] }
1714 }
1715 }
1716 }
1717
1718 __impl_slice_eq1! { Vec<A>, Vec<B> }
1719 __impl_slice_eq1! { Vec<A>, &'b [B] }
1720 __impl_slice_eq1! { Vec<A>, &'b mut [B] }
1721 __impl_slice_eq1! { Cow<'a, [A]>, &'b [B], Clone }
1722 __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B], Clone }
1723 __impl_slice_eq1! { Cow<'a, [A]>, Vec<B>, Clone }
1724
1725 macro_rules! array_impls {
1726 ($($N: expr)+) => {
1727 $(
1728 // NOTE: some less important impls are omitted to reduce code bloat
1729 __impl_slice_eq1! { Vec<A>, [B; $N] }
1730 __impl_slice_eq1! { Vec<A>, &'b [B; $N] }
1731 // __impl_slice_eq1! { Vec<A>, &'b mut [B; $N] }
1732 // __impl_slice_eq1! { Cow<'a, [A]>, [B; $N], Clone }
1733 // __impl_slice_eq1! { Cow<'a, [A]>, &'b [B; $N], Clone }
1734 // __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B; $N], Clone }
1735 )+
1736 }
1737 }
1738
1739 array_impls! {
1740 0 1 2 3 4 5 6 7 8 9
1741 10 11 12 13 14 15 16 17 18 19
1742 20 21 22 23 24 25 26 27 28 29
1743 30 31 32
1744 }
1745
1746 #[stable(feature = "rust1", since = "1.0.0")]
1747 impl<T: PartialOrd> PartialOrd for Vec<T> {
1748 #[inline]
1749 fn partial_cmp(&self, other: &Vec<T>) -> Option<Ordering> {
1750 PartialOrd::partial_cmp(&**self, &**other)
1751 }
1752 }
1753
1754 #[stable(feature = "rust1", since = "1.0.0")]
1755 impl<T: Eq> Eq for Vec<T> {}
1756
1757 #[stable(feature = "rust1", since = "1.0.0")]
1758 impl<T: Ord> Ord for Vec<T> {
1759 #[inline]
1760 fn cmp(&self, other: &Vec<T>) -> Ordering {
1761 Ord::cmp(&**self, &**other)
1762 }
1763 }
1764
1765 #[stable(feature = "rust1", since = "1.0.0")]
1766 impl<T> Drop for Vec<T> {
1767 #[unsafe_destructor_blind_to_params]
1768 fn drop(&mut self) {
1769 unsafe {
1770 // use drop for [T]
1771 ptr::drop_in_place(&mut self[..]);
1772 }
1773 // RawVec handles deallocation
1774 }
1775 }
1776
1777 #[stable(feature = "rust1", since = "1.0.0")]
1778 impl<T> Default for Vec<T> {
1779 /// Creates an empty `Vec<T>`.
1780 fn default() -> Vec<T> {
1781 Vec::new()
1782 }
1783 }
1784
1785 #[stable(feature = "rust1", since = "1.0.0")]
1786 impl<T: fmt::Debug> fmt::Debug for Vec<T> {
1787 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1788 fmt::Debug::fmt(&**self, f)
1789 }
1790 }
1791
1792 #[stable(feature = "rust1", since = "1.0.0")]
1793 impl<T> AsRef<Vec<T>> for Vec<T> {
1794 fn as_ref(&self) -> &Vec<T> {
1795 self
1796 }
1797 }
1798
1799 #[stable(feature = "vec_as_mut", since = "1.5.0")]
1800 impl<T> AsMut<Vec<T>> for Vec<T> {
1801 fn as_mut(&mut self) -> &mut Vec<T> {
1802 self
1803 }
1804 }
1805
1806 #[stable(feature = "rust1", since = "1.0.0")]
1807 impl<T> AsRef<[T]> for Vec<T> {
1808 fn as_ref(&self) -> &[T] {
1809 self
1810 }
1811 }
1812
1813 #[stable(feature = "vec_as_mut", since = "1.5.0")]
1814 impl<T> AsMut<[T]> for Vec<T> {
1815 fn as_mut(&mut self) -> &mut [T] {
1816 self
1817 }
1818 }
1819
1820 #[stable(feature = "rust1", since = "1.0.0")]
1821 impl<'a, T: Clone> From<&'a [T]> for Vec<T> {
1822 #[cfg(not(test))]
1823 fn from(s: &'a [T]) -> Vec<T> {
1824 s.to_vec()
1825 }
1826 #[cfg(test)]
1827 fn from(s: &'a [T]) -> Vec<T> {
1828 ::slice::to_vec(s)
1829 }
1830 }
1831
1832 #[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
1833 impl<'a, T> From<Cow<'a, [T]>> for Vec<T> where [T]: ToOwned<Owned=Vec<T>> {
1834 fn from(s: Cow<'a, [T]>) -> Vec<T> {
1835 s.into_owned()
1836 }
1837 }
1838
1839 #[stable(feature = "rust1", since = "1.0.0")]
1840 impl<'a> From<&'a str> for Vec<u8> {
1841 fn from(s: &'a str) -> Vec<u8> {
1842 From::from(s.as_bytes())
1843 }
1844 }
1845
1846 ////////////////////////////////////////////////////////////////////////////////
1847 // Clone-on-write
1848 ////////////////////////////////////////////////////////////////////////////////
1849
1850 #[stable(feature = "cow_from_vec", since = "1.7.0")]
1851 impl<'a, T: Clone> From<&'a [T]> for Cow<'a, [T]> {
1852 fn from(s: &'a [T]) -> Cow<'a, [T]> {
1853 Cow::Borrowed(s)
1854 }
1855 }
1856
1857 #[stable(feature = "cow_from_vec", since = "1.7.0")]
1858 impl<'a, T: Clone> From<Vec<T>> for Cow<'a, [T]> {
1859 fn from(v: Vec<T>) -> Cow<'a, [T]> {
1860 Cow::Owned(v)
1861 }
1862 }
1863
1864 #[stable(feature = "rust1", since = "1.0.0")]
1865 impl<'a, T> FromIterator<T> for Cow<'a, [T]> where T: Clone {
1866 fn from_iter<I: IntoIterator<Item = T>>(it: I) -> Cow<'a, [T]> {
1867 Cow::Owned(FromIterator::from_iter(it))
1868 }
1869 }
1870
1871 ////////////////////////////////////////////////////////////////////////////////
1872 // Iterators
1873 ////////////////////////////////////////////////////////////////////////////////
1874
1875 /// An iterator that moves out of a vector.
1876 ///
1877 /// This `struct` is created by the `into_iter` method on [`Vec`][`Vec`] (provided
1878 /// by the [`IntoIterator`] trait).
1879 ///
1880 /// [`Vec`]: struct.Vec.html
1881 /// [`IntoIterator`]: ../../std/iter/trait.IntoIterator.html
1882 #[stable(feature = "rust1", since = "1.0.0")]
1883 pub struct IntoIter<T> {
1884 buf: Shared<T>,
1885 cap: usize,
1886 ptr: *const T,
1887 end: *const T,
1888 }
1889
1890 #[stable(feature = "vec_intoiter_debug", since = "1.13.0")]
1891 impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
1892 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1893 f.debug_tuple("IntoIter")
1894 .field(&self.as_slice())
1895 .finish()
1896 }
1897 }
1898
1899 impl<T> IntoIter<T> {
1900 /// Returns the remaining items of this iterator as a slice.
1901 ///
1902 /// # Examples
1903 ///
1904 /// ```
1905 /// let vec = vec!['a', 'b', 'c'];
1906 /// let mut into_iter = vec.into_iter();
1907 /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
1908 /// let _ = into_iter.next().unwrap();
1909 /// assert_eq!(into_iter.as_slice(), &['b', 'c']);
1910 /// ```
1911 #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
1912 pub fn as_slice(&self) -> &[T] {
1913 unsafe {
1914 slice::from_raw_parts(self.ptr, self.len())
1915 }
1916 }
1917
1918 /// Returns the remaining items of this iterator as a mutable slice.
1919 ///
1920 /// # Examples
1921 ///
1922 /// ```
1923 /// let vec = vec!['a', 'b', 'c'];
1924 /// let mut into_iter = vec.into_iter();
1925 /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
1926 /// into_iter.as_mut_slice()[2] = 'z';
1927 /// assert_eq!(into_iter.next().unwrap(), 'a');
1928 /// assert_eq!(into_iter.next().unwrap(), 'b');
1929 /// assert_eq!(into_iter.next().unwrap(), 'z');
1930 /// ```
1931 #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
1932 pub fn as_mut_slice(&self) -> &mut [T] {
1933 unsafe {
1934 slice::from_raw_parts_mut(self.ptr as *mut T, self.len())
1935 }
1936 }
1937 }
1938
1939 #[stable(feature = "rust1", since = "1.0.0")]
1940 unsafe impl<T: Send> Send for IntoIter<T> {}
1941 #[stable(feature = "rust1", since = "1.0.0")]
1942 unsafe impl<T: Sync> Sync for IntoIter<T> {}
1943
1944 #[stable(feature = "rust1", since = "1.0.0")]
1945 impl<T> Iterator for IntoIter<T> {
1946 type Item = T;
1947
1948 #[inline]
1949 fn next(&mut self) -> Option<T> {
1950 unsafe {
1951 if self.ptr as *const _ == self.end {
1952 None
1953 } else {
1954 if mem::size_of::<T>() == 0 {
1955 // purposefully don't use 'ptr.offset' because for
1956 // vectors with 0-size elements this would return the
1957 // same pointer.
1958 self.ptr = arith_offset(self.ptr as *const i8, 1) as *mut T;
1959
1960 // Use a non-null pointer value
1961 Some(ptr::read(EMPTY as *mut T))
1962 } else {
1963 let old = self.ptr;
1964 self.ptr = self.ptr.offset(1);
1965
1966 Some(ptr::read(old))
1967 }
1968 }
1969 }
1970 }
1971
1972 #[inline]
1973 fn size_hint(&self) -> (usize, Option<usize>) {
1974 let diff = (self.end as usize) - (self.ptr as usize);
1975 let size = mem::size_of::<T>();
1976 let exact = diff /
1977 (if size == 0 {
1978 1
1979 } else {
1980 size
1981 });
1982 (exact, Some(exact))
1983 }
1984
1985 #[inline]
1986 fn count(self) -> usize {
1987 self.len()
1988 }
1989 }
1990
1991 #[stable(feature = "rust1", since = "1.0.0")]
1992 impl<T> DoubleEndedIterator for IntoIter<T> {
1993 #[inline]
1994 fn next_back(&mut self) -> Option<T> {
1995 unsafe {
1996 if self.end == self.ptr {
1997 None
1998 } else {
1999 if mem::size_of::<T>() == 0 {
2000 // See above for why 'ptr.offset' isn't used
2001 self.end = arith_offset(self.end as *const i8, -1) as *mut T;
2002
2003 // Use a non-null pointer value
2004 Some(ptr::read(EMPTY as *mut T))
2005 } else {
2006 self.end = self.end.offset(-1);
2007
2008 Some(ptr::read(self.end))
2009 }
2010 }
2011 }
2012 }
2013 }
2014
2015 #[stable(feature = "rust1", since = "1.0.0")]
2016 impl<T> ExactSizeIterator for IntoIter<T> {
2017 fn is_empty(&self) -> bool {
2018 self.ptr == self.end
2019 }
2020 }
2021
2022 #[unstable(feature = "fused", issue = "35602")]
2023 impl<T> FusedIterator for IntoIter<T> {}
2024
2025 #[unstable(feature = "trusted_len", issue = "37572")]
2026 unsafe impl<T> TrustedLen for IntoIter<T> {}
2027
2028 #[stable(feature = "vec_into_iter_clone", since = "1.8.0")]
2029 impl<T: Clone> Clone for IntoIter<T> {
2030 fn clone(&self) -> IntoIter<T> {
2031 self.as_slice().to_owned().into_iter()
2032 }
2033 }
2034
2035 #[stable(feature = "rust1", since = "1.0.0")]
2036 impl<T> Drop for IntoIter<T> {
2037 #[unsafe_destructor_blind_to_params]
2038 fn drop(&mut self) {
2039 // destroy the remaining elements
2040 for _x in self.by_ref() {}
2041
2042 // RawVec handles deallocation
2043 let _ = unsafe { RawVec::from_raw_parts(*self.buf, self.cap) };
2044 }
2045 }
2046
2047 /// A draining iterator for `Vec<T>`.
2048 ///
2049 /// This `struct` is created by the [`drain`] method on [`Vec`].
2050 ///
2051 /// [`drain`]: struct.Vec.html#method.drain
2052 /// [`Vec`]: struct.Vec.html
2053 #[stable(feature = "drain", since = "1.6.0")]
2054 pub struct Drain<'a, T: 'a> {
2055 /// Index of tail to preserve
2056 tail_start: usize,
2057 /// Length of tail
2058 tail_len: usize,
2059 /// Current remaining range to remove
2060 iter: slice::Iter<'a, T>,
2061 vec: Shared<Vec<T>>,
2062 }
2063
2064 #[stable(feature = "drain", since = "1.6.0")]
2065 unsafe impl<'a, T: Sync> Sync for Drain<'a, T> {}
2066 #[stable(feature = "drain", since = "1.6.0")]
2067 unsafe impl<'a, T: Send> Send for Drain<'a, T> {}
2068
2069 #[stable(feature = "drain", since = "1.6.0")]
2070 impl<'a, T> Iterator for Drain<'a, T> {
2071 type Item = T;
2072
2073 #[inline]
2074 fn next(&mut self) -> Option<T> {
2075 self.iter.next().map(|elt| unsafe { ptr::read(elt as *const _) })
2076 }
2077
2078 fn size_hint(&self) -> (usize, Option<usize>) {
2079 self.iter.size_hint()
2080 }
2081 }
2082
2083 #[stable(feature = "drain", since = "1.6.0")]
2084 impl<'a, T> DoubleEndedIterator for Drain<'a, T> {
2085 #[inline]
2086 fn next_back(&mut self) -> Option<T> {
2087 self.iter.next_back().map(|elt| unsafe { ptr::read(elt as *const _) })
2088 }
2089 }
2090
2091 #[stable(feature = "drain", since = "1.6.0")]
2092 impl<'a, T> Drop for Drain<'a, T> {
2093 fn drop(&mut self) {
2094 // exhaust self first
2095 while let Some(_) = self.next() {}
2096
2097 if self.tail_len > 0 {
2098 unsafe {
2099 let source_vec = &mut **self.vec;
2100 // memmove back untouched tail, update to new length
2101 let start = source_vec.len();
2102 let tail = self.tail_start;
2103 let src = source_vec.as_ptr().offset(tail as isize);
2104 let dst = source_vec.as_mut_ptr().offset(start as isize);
2105 ptr::copy(src, dst, self.tail_len);
2106 source_vec.set_len(start + self.tail_len);
2107 }
2108 }
2109 }
2110 }
2111
2112
2113 #[stable(feature = "drain", since = "1.6.0")]
2114 impl<'a, T> ExactSizeIterator for Drain<'a, T> {
2115 fn is_empty(&self) -> bool {
2116 self.iter.is_empty()
2117 }
2118 }
2119
2120 #[unstable(feature = "fused", issue = "35602")]
2121 impl<'a, T> FusedIterator for Drain<'a, T> {}