]> git.proxmox.com Git - rustc.git/blob - src/libcompiler_builtins/compiler-rt/lib/scudo/scudo_allocator.cpp
New upstream version 1.25.0+dfsg1
[rustc.git] / src / libcompiler_builtins / compiler-rt / lib / scudo / scudo_allocator.cpp
1 //===-- scudo_allocator.cpp -------------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// Scudo Hardened Allocator implementation.
11 /// It uses the sanitizer_common allocator as a base and aims at mitigating
12 /// heap corruption vulnerabilities. It provides a checksum-guarded chunk
13 /// header, a delayed free list, and additional sanity checks.
14 ///
15 //===----------------------------------------------------------------------===//
16
17 #include "scudo_allocator.h"
18 #include "scudo_crc32.h"
19 #include "scudo_flags.h"
20 #include "scudo_tsd.h"
21 #include "scudo_utils.h"
22
23 #include "sanitizer_common/sanitizer_allocator_checks.h"
24 #include "sanitizer_common/sanitizer_allocator_interface.h"
25 #include "sanitizer_common/sanitizer_quarantine.h"
26
27 #include <errno.h>
28 #include <string.h>
29
30 namespace __scudo {
31
32 // Global static cookie, initialized at start-up.
33 static u32 Cookie;
34
35 // We default to software CRC32 if the alternatives are not supported, either
36 // at compilation or at runtime.
37 static atomic_uint8_t HashAlgorithm = { CRC32Software };
38
39 INLINE u32 computeCRC32(u32 Crc, uptr Value, uptr *Array, uptr ArraySize) {
40 // If the hardware CRC32 feature is defined here, it was enabled everywhere,
41 // as opposed to only for scudo_crc32.cpp. This means that other hardware
42 // specific instructions were likely emitted at other places, and as a
43 // result there is no reason to not use it here.
44 #if defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
45 Crc = CRC32_INTRINSIC(Crc, Value);
46 for (uptr i = 0; i < ArraySize; i++)
47 Crc = CRC32_INTRINSIC(Crc, Array[i]);
48 return Crc;
49 #else
50 if (atomic_load_relaxed(&HashAlgorithm) == CRC32Hardware) {
51 Crc = computeHardwareCRC32(Crc, Value);
52 for (uptr i = 0; i < ArraySize; i++)
53 Crc = computeHardwareCRC32(Crc, Array[i]);
54 return Crc;
55 }
56 Crc = computeSoftwareCRC32(Crc, Value);
57 for (uptr i = 0; i < ArraySize; i++)
58 Crc = computeSoftwareCRC32(Crc, Array[i]);
59 return Crc;
60 #endif // defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
61 }
62
63 static ScudoBackendAllocator &getBackendAllocator();
64
65 namespace Chunk {
66 // We can't use the offset member of the chunk itself, as we would double
67 // fetch it without any warranty that it wouldn't have been tampered. To
68 // prevent this, we work with a local copy of the header.
69 static INLINE void *getBackendPtr(const void *Ptr, UnpackedHeader *Header) {
70 return reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
71 AlignedChunkHeaderSize -
72 (Header->Offset << MinAlignmentLog));
73 }
74
75 static INLINE AtomicPackedHeader *getAtomicHeader(void *Ptr) {
76 return reinterpret_cast<AtomicPackedHeader *>(reinterpret_cast<uptr>(Ptr) -
77 AlignedChunkHeaderSize);
78 }
79 static INLINE
80 const AtomicPackedHeader *getConstAtomicHeader(const void *Ptr) {
81 return reinterpret_cast<const AtomicPackedHeader *>(
82 reinterpret_cast<uptr>(Ptr) - AlignedChunkHeaderSize);
83 }
84
85 static INLINE bool isAligned(const void *Ptr) {
86 return IsAligned(reinterpret_cast<uptr>(Ptr), MinAlignment);
87 }
88
89 // Returns the usable size for a chunk, meaning the amount of bytes from the
90 // beginning of the user data to the end of the backend allocated chunk.
91 static INLINE uptr getUsableSize(const void *Ptr, UnpackedHeader *Header) {
92 const uptr Size = getBackendAllocator().getActuallyAllocatedSize(
93 getBackendPtr(Ptr, Header), Header->ClassId);
94 if (Size == 0)
95 return 0;
96 return Size - AlignedChunkHeaderSize - (Header->Offset << MinAlignmentLog);
97 }
98
99 // Compute the checksum of the chunk pointer and its header.
100 static INLINE u16 computeChecksum(const void *Ptr, UnpackedHeader *Header) {
101 UnpackedHeader ZeroChecksumHeader = *Header;
102 ZeroChecksumHeader.Checksum = 0;
103 uptr HeaderHolder[sizeof(UnpackedHeader) / sizeof(uptr)];
104 memcpy(&HeaderHolder, &ZeroChecksumHeader, sizeof(HeaderHolder));
105 const u32 Crc = computeCRC32(Cookie, reinterpret_cast<uptr>(Ptr),
106 HeaderHolder, ARRAY_SIZE(HeaderHolder));
107 return static_cast<u16>(Crc);
108 }
109
110 // Checks the validity of a chunk by verifying its checksum. It doesn't
111 // incur termination in the event of an invalid chunk.
112 static INLINE bool isValid(const void *Ptr) {
113 PackedHeader NewPackedHeader =
114 atomic_load_relaxed(getConstAtomicHeader(Ptr));
115 UnpackedHeader NewUnpackedHeader =
116 bit_cast<UnpackedHeader>(NewPackedHeader);
117 return (NewUnpackedHeader.Checksum ==
118 computeChecksum(Ptr, &NewUnpackedHeader));
119 }
120
121 // Nulls out a chunk header. When returning the chunk to the backend, there
122 // is no need to store a valid ChunkAvailable header, as this would be
123 // computationally expensive. Zeroing out serves the same purpose by making
124 // the header invalid. In the extremely rare event where 0 would be a valid
125 // checksum for the chunk, the state of the chunk is ChunkAvailable anyway.
126 COMPILER_CHECK(ChunkAvailable == 0);
127 static INLINE void eraseHeader(void *Ptr) {
128 const PackedHeader NullPackedHeader = 0;
129 atomic_store_relaxed(getAtomicHeader(Ptr), NullPackedHeader);
130 }
131
132 // Loads and unpacks the header, verifying the checksum in the process.
133 static INLINE
134 void loadHeader(const void *Ptr, UnpackedHeader *NewUnpackedHeader) {
135 PackedHeader NewPackedHeader =
136 atomic_load_relaxed(getConstAtomicHeader(Ptr));
137 *NewUnpackedHeader = bit_cast<UnpackedHeader>(NewPackedHeader);
138 if (UNLIKELY(NewUnpackedHeader->Checksum !=
139 computeChecksum(Ptr, NewUnpackedHeader))) {
140 dieWithMessage("ERROR: corrupted chunk header at address %p\n", Ptr);
141 }
142 }
143
144 // Packs and stores the header, computing the checksum in the process.
145 static INLINE void storeHeader(void *Ptr, UnpackedHeader *NewUnpackedHeader) {
146 NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader);
147 PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
148 atomic_store_relaxed(getAtomicHeader(Ptr), NewPackedHeader);
149 }
150
151 // Packs and stores the header, computing the checksum in the process. We
152 // compare the current header with the expected provided one to ensure that
153 // we are not being raced by a corruption occurring in another thread.
154 static INLINE void compareExchangeHeader(void *Ptr,
155 UnpackedHeader *NewUnpackedHeader,
156 UnpackedHeader *OldUnpackedHeader) {
157 NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader);
158 PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
159 PackedHeader OldPackedHeader = bit_cast<PackedHeader>(*OldUnpackedHeader);
160 if (UNLIKELY(!atomic_compare_exchange_strong(
161 getAtomicHeader(Ptr), &OldPackedHeader, NewPackedHeader,
162 memory_order_relaxed))) {
163 dieWithMessage("ERROR: race on chunk header at address %p\n", Ptr);
164 }
165 }
166 } // namespace Chunk
167
168 struct QuarantineCallback {
169 explicit QuarantineCallback(AllocatorCache *Cache)
170 : Cache_(Cache) {}
171
172 // Chunk recycling function, returns a quarantined chunk to the backend,
173 // first making sure it hasn't been tampered with.
174 void Recycle(void *Ptr) {
175 UnpackedHeader Header;
176 Chunk::loadHeader(Ptr, &Header);
177 if (UNLIKELY(Header.State != ChunkQuarantine)) {
178 dieWithMessage("ERROR: invalid chunk state when recycling address %p\n",
179 Ptr);
180 }
181 Chunk::eraseHeader(Ptr);
182 void *BackendPtr = Chunk::getBackendPtr(Ptr, &Header);
183 if (Header.ClassId)
184 getBackendAllocator().deallocatePrimary(Cache_, BackendPtr,
185 Header.ClassId);
186 else
187 getBackendAllocator().deallocateSecondary(BackendPtr);
188 }
189
190 // Internal quarantine allocation and deallocation functions. We first check
191 // that the batches are indeed serviced by the Primary.
192 // TODO(kostyak): figure out the best way to protect the batches.
193 void *Allocate(uptr Size) {
194 return getBackendAllocator().allocatePrimary(Cache_, BatchClassId);
195 }
196
197 void Deallocate(void *Ptr) {
198 getBackendAllocator().deallocatePrimary(Cache_, Ptr, BatchClassId);
199 }
200
201 AllocatorCache *Cache_;
202 COMPILER_CHECK(sizeof(QuarantineBatch) < SizeClassMap::kMaxSize);
203 const uptr BatchClassId = SizeClassMap::ClassID(sizeof(QuarantineBatch));
204 };
205
206 typedef Quarantine<QuarantineCallback, void> ScudoQuarantine;
207 typedef ScudoQuarantine::Cache ScudoQuarantineCache;
208 COMPILER_CHECK(sizeof(ScudoQuarantineCache) <=
209 sizeof(ScudoTSD::QuarantineCachePlaceHolder));
210
211 ScudoQuarantineCache *getQuarantineCache(ScudoTSD *TSD) {
212 return reinterpret_cast<ScudoQuarantineCache *>(
213 TSD->QuarantineCachePlaceHolder);
214 }
215
216 struct ScudoAllocator {
217 static const uptr MaxAllowedMallocSize =
218 FIRST_32_SECOND_64(2UL << 30, 1ULL << 40);
219
220 typedef ReturnNullOrDieOnFailure FailureHandler;
221
222 ScudoBackendAllocator BackendAllocator;
223 ScudoQuarantine AllocatorQuarantine;
224
225 u32 QuarantineChunksUpToSize;
226
227 bool DeallocationTypeMismatch;
228 bool ZeroContents;
229 bool DeleteSizeMismatch;
230
231 bool CheckRssLimit;
232 uptr HardRssLimitMb;
233 uptr SoftRssLimitMb;
234 atomic_uint8_t RssLimitExceeded;
235 atomic_uint64_t RssLastCheckedAtNS;
236
237 explicit ScudoAllocator(LinkerInitialized)
238 : AllocatorQuarantine(LINKER_INITIALIZED) {}
239
240 void performSanityChecks() {
241 // Verify that the header offset field can hold the maximum offset. In the
242 // case of the Secondary allocator, it takes care of alignment and the
243 // offset will always be 0. In the case of the Primary, the worst case
244 // scenario happens in the last size class, when the backend allocation
245 // would already be aligned on the requested alignment, which would happen
246 // to be the maximum alignment that would fit in that size class. As a
247 // result, the maximum offset will be at most the maximum alignment for the
248 // last size class minus the header size, in multiples of MinAlignment.
249 UnpackedHeader Header = {};
250 const uptr MaxPrimaryAlignment =
251 1 << MostSignificantSetBitIndex(SizeClassMap::kMaxSize - MinAlignment);
252 const uptr MaxOffset =
253 (MaxPrimaryAlignment - AlignedChunkHeaderSize) >> MinAlignmentLog;
254 Header.Offset = MaxOffset;
255 if (Header.Offset != MaxOffset) {
256 dieWithMessage("ERROR: the maximum possible offset doesn't fit in the "
257 "header\n");
258 }
259 // Verify that we can fit the maximum size or amount of unused bytes in the
260 // header. Given that the Secondary fits the allocation to a page, the worst
261 // case scenario happens in the Primary. It will depend on the second to
262 // last and last class sizes, as well as the dynamic base for the Primary.
263 // The following is an over-approximation that works for our needs.
264 const uptr MaxSizeOrUnusedBytes = SizeClassMap::kMaxSize - 1;
265 Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
266 if (Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes) {
267 dieWithMessage("ERROR: the maximum possible unused bytes doesn't fit in "
268 "the header\n");
269 }
270
271 const uptr LargestClassId = SizeClassMap::kLargestClassID;
272 Header.ClassId = LargestClassId;
273 if (Header.ClassId != LargestClassId) {
274 dieWithMessage("ERROR: the largest class ID doesn't fit in the header\n");
275 }
276 }
277
278 void init() {
279 SanitizerToolName = "Scudo";
280 initFlags();
281
282 performSanityChecks();
283
284 // Check if hardware CRC32 is supported in the binary and by the platform,
285 // if so, opt for the CRC32 hardware version of the checksum.
286 if (&computeHardwareCRC32 && hasHardwareCRC32())
287 atomic_store_relaxed(&HashAlgorithm, CRC32Hardware);
288
289 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
290 BackendAllocator.init(common_flags()->allocator_release_to_os_interval_ms);
291 HardRssLimitMb = common_flags()->hard_rss_limit_mb;
292 SoftRssLimitMb = common_flags()->soft_rss_limit_mb;
293 AllocatorQuarantine.Init(
294 static_cast<uptr>(getFlags()->QuarantineSizeKb) << 10,
295 static_cast<uptr>(getFlags()->ThreadLocalQuarantineSizeKb) << 10);
296 QuarantineChunksUpToSize = getFlags()->QuarantineChunksUpToSize;
297 DeallocationTypeMismatch = getFlags()->DeallocationTypeMismatch;
298 DeleteSizeMismatch = getFlags()->DeleteSizeMismatch;
299 ZeroContents = getFlags()->ZeroContents;
300
301 if (UNLIKELY(!GetRandom(reinterpret_cast<void *>(&Cookie), sizeof(Cookie),
302 /*blocking=*/false))) {
303 Cookie = static_cast<u32>((NanoTime() >> 12) ^
304 (reinterpret_cast<uptr>(this) >> 4));
305 }
306
307 CheckRssLimit = HardRssLimitMb || SoftRssLimitMb;
308 if (CheckRssLimit)
309 atomic_store_relaxed(&RssLastCheckedAtNS, MonotonicNanoTime());
310 }
311
312 // Helper function that checks for a valid Scudo chunk. nullptr isn't.
313 bool isValidPointer(const void *Ptr) {
314 initThreadMaybe();
315 if (UNLIKELY(!Ptr))
316 return false;
317 if (!Chunk::isAligned(Ptr))
318 return false;
319 return Chunk::isValid(Ptr);
320 }
321
322 // Opportunistic RSS limit check. This will update the RSS limit status, if
323 // it can, every 100ms, otherwise it will just return the current one.
324 bool isRssLimitExceeded() {
325 u64 LastCheck = atomic_load_relaxed(&RssLastCheckedAtNS);
326 const u64 CurrentCheck = MonotonicNanoTime();
327 if (LIKELY(CurrentCheck < LastCheck + (100ULL * 1000000ULL)))
328 return atomic_load_relaxed(&RssLimitExceeded);
329 if (!atomic_compare_exchange_weak(&RssLastCheckedAtNS, &LastCheck,
330 CurrentCheck, memory_order_relaxed))
331 return atomic_load_relaxed(&RssLimitExceeded);
332 // TODO(kostyak): We currently use sanitizer_common's GetRSS which reads the
333 // RSS from /proc/self/statm by default. We might want to
334 // call getrusage directly, even if it's less accurate.
335 const uptr CurrentRssMb = GetRSS() >> 20;
336 if (HardRssLimitMb && HardRssLimitMb < CurrentRssMb) {
337 Report("%s: hard RSS limit exhausted (%zdMb vs %zdMb)\n",
338 SanitizerToolName, HardRssLimitMb, CurrentRssMb);
339 DumpProcessMap();
340 Die();
341 }
342 if (SoftRssLimitMb) {
343 if (atomic_load_relaxed(&RssLimitExceeded)) {
344 if (CurrentRssMb <= SoftRssLimitMb)
345 atomic_store_relaxed(&RssLimitExceeded, false);
346 } else {
347 if (CurrentRssMb > SoftRssLimitMb) {
348 atomic_store_relaxed(&RssLimitExceeded, true);
349 Report("%s: soft RSS limit exhausted (%zdMb vs %zdMb)\n",
350 SanitizerToolName, SoftRssLimitMb, CurrentRssMb);
351 }
352 }
353 }
354 return atomic_load_relaxed(&RssLimitExceeded);
355 }
356
357 // Allocates a chunk.
358 void *allocate(uptr Size, uptr Alignment, AllocType Type,
359 bool ForceZeroContents = false) {
360 initThreadMaybe();
361 if (UNLIKELY(Alignment > MaxAlignment))
362 return FailureHandler::OnBadRequest();
363 if (UNLIKELY(Alignment < MinAlignment))
364 Alignment = MinAlignment;
365 if (UNLIKELY(Size >= MaxAllowedMallocSize))
366 return FailureHandler::OnBadRequest();
367 if (UNLIKELY(Size == 0))
368 Size = 1;
369
370 uptr NeededSize = RoundUpTo(Size, MinAlignment) + AlignedChunkHeaderSize;
371 uptr AlignedSize = (Alignment > MinAlignment) ?
372 NeededSize + (Alignment - AlignedChunkHeaderSize) : NeededSize;
373 if (UNLIKELY(AlignedSize >= MaxAllowedMallocSize))
374 return FailureHandler::OnBadRequest();
375
376 if (CheckRssLimit && UNLIKELY(isRssLimitExceeded()))
377 return FailureHandler::OnOOM();
378
379 // Primary and Secondary backed allocations have a different treatment. We
380 // deal with alignment requirements of Primary serviced allocations here,
381 // but the Secondary will take care of its own alignment needs.
382 void *BackendPtr;
383 uptr BackendSize;
384 u8 ClassId;
385 if (PrimaryAllocator::CanAllocate(AlignedSize, MinAlignment)) {
386 BackendSize = AlignedSize;
387 ClassId = SizeClassMap::ClassID(BackendSize);
388 ScudoTSD *TSD = getTSDAndLock();
389 BackendPtr = BackendAllocator.allocatePrimary(&TSD->Cache, ClassId);
390 TSD->unlock();
391 } else {
392 BackendSize = NeededSize;
393 ClassId = 0;
394 BackendPtr = BackendAllocator.allocateSecondary(BackendSize, Alignment);
395 }
396 if (UNLIKELY(!BackendPtr))
397 return FailureHandler::OnOOM();
398
399 // If requested, we will zero out the entire contents of the returned chunk.
400 if ((ForceZeroContents || ZeroContents) && ClassId)
401 memset(BackendPtr, 0,
402 BackendAllocator.getActuallyAllocatedSize(BackendPtr, ClassId));
403
404 UnpackedHeader Header = {};
405 uptr UserPtr = reinterpret_cast<uptr>(BackendPtr) + AlignedChunkHeaderSize;
406 if (UNLIKELY(!IsAligned(UserPtr, Alignment))) {
407 // Since the Secondary takes care of alignment, a non-aligned pointer
408 // means it is from the Primary. It is also the only case where the offset
409 // field of the header would be non-zero.
410 DCHECK(ClassId);
411 const uptr AlignedUserPtr = RoundUpTo(UserPtr, Alignment);
412 Header.Offset = (AlignedUserPtr - UserPtr) >> MinAlignmentLog;
413 UserPtr = AlignedUserPtr;
414 }
415 CHECK_LE(UserPtr + Size, reinterpret_cast<uptr>(BackendPtr) + BackendSize);
416 Header.State = ChunkAllocated;
417 Header.AllocType = Type;
418 if (ClassId) {
419 Header.ClassId = ClassId;
420 Header.SizeOrUnusedBytes = Size;
421 } else {
422 // The secondary fits the allocations to a page, so the amount of unused
423 // bytes is the difference between the end of the user allocation and the
424 // next page boundary.
425 const uptr PageSize = GetPageSizeCached();
426 const uptr TrailingBytes = (UserPtr + Size) & (PageSize - 1);
427 if (TrailingBytes)
428 Header.SizeOrUnusedBytes = PageSize - TrailingBytes;
429 }
430 void *Ptr = reinterpret_cast<void *>(UserPtr);
431 Chunk::storeHeader(Ptr, &Header);
432 // if (&__sanitizer_malloc_hook) __sanitizer_malloc_hook(Ptr, Size);
433 return Ptr;
434 }
435
436 // Place a chunk in the quarantine or directly deallocate it in the event of
437 // a zero-sized quarantine, or if the size of the chunk is greater than the
438 // quarantine chunk size threshold.
439 void quarantineOrDeallocateChunk(void *Ptr, UnpackedHeader *Header,
440 uptr Size) {
441 const bool BypassQuarantine = (AllocatorQuarantine.GetCacheSize() == 0) ||
442 (Size > QuarantineChunksUpToSize);
443 if (BypassQuarantine) {
444 Chunk::eraseHeader(Ptr);
445 void *BackendPtr = Chunk::getBackendPtr(Ptr, Header);
446 if (Header->ClassId) {
447 ScudoTSD *TSD = getTSDAndLock();
448 getBackendAllocator().deallocatePrimary(&TSD->Cache, BackendPtr,
449 Header->ClassId);
450 TSD->unlock();
451 } else {
452 getBackendAllocator().deallocateSecondary(BackendPtr);
453 }
454 } else {
455 // If a small memory amount was allocated with a larger alignment, we want
456 // to take that into account. Otherwise the Quarantine would be filled
457 // with tiny chunks, taking a lot of VA memory. This is an approximation
458 // of the usable size, that allows us to not call
459 // GetActuallyAllocatedSize.
460 uptr EstimatedSize = Size + (Header->Offset << MinAlignmentLog);
461 UnpackedHeader NewHeader = *Header;
462 NewHeader.State = ChunkQuarantine;
463 Chunk::compareExchangeHeader(Ptr, &NewHeader, Header);
464 ScudoTSD *TSD = getTSDAndLock();
465 AllocatorQuarantine.Put(getQuarantineCache(TSD),
466 QuarantineCallback(&TSD->Cache), Ptr,
467 EstimatedSize);
468 TSD->unlock();
469 }
470 }
471
472 // Deallocates a Chunk, which means either adding it to the quarantine or
473 // directly returning it to the backend if criteria are met.
474 void deallocate(void *Ptr, uptr DeleteSize, AllocType Type) {
475 // For a deallocation, we only ensure minimal initialization, meaning thread
476 // local data will be left uninitialized for now (when using ELF TLS). The
477 // fallback cache will be used instead. This is a workaround for a situation
478 // where the only heap operation performed in a thread would be a free past
479 // the TLS destructors, ending up in initialized thread specific data never
480 // being destroyed properly. Any other heap operation will do a full init.
481 initThreadMaybe(/*MinimalInit=*/true);
482 // if (&__sanitizer_free_hook) __sanitizer_free_hook(Ptr);
483 if (UNLIKELY(!Ptr))
484 return;
485 if (UNLIKELY(!Chunk::isAligned(Ptr))) {
486 dieWithMessage("ERROR: attempted to deallocate a chunk not properly "
487 "aligned at address %p\n", Ptr);
488 }
489 UnpackedHeader Header;
490 Chunk::loadHeader(Ptr, &Header);
491 if (UNLIKELY(Header.State != ChunkAllocated)) {
492 dieWithMessage("ERROR: invalid chunk state when deallocating address "
493 "%p\n", Ptr);
494 }
495 if (DeallocationTypeMismatch) {
496 // The deallocation type has to match the allocation one.
497 if (Header.AllocType != Type) {
498 // With the exception of memalign'd Chunks, that can be still be free'd.
499 if (Header.AllocType != FromMemalign || Type != FromMalloc) {
500 dieWithMessage("ERROR: allocation type mismatch when deallocating "
501 "address %p\n", Ptr);
502 }
503 }
504 }
505 uptr Size = Header.ClassId ? Header.SizeOrUnusedBytes :
506 Chunk::getUsableSize(Ptr, &Header) - Header.SizeOrUnusedBytes;
507 if (DeleteSizeMismatch) {
508 if (DeleteSize && DeleteSize != Size) {
509 dieWithMessage("ERROR: invalid sized delete on chunk at address %p\n",
510 Ptr);
511 }
512 }
513 quarantineOrDeallocateChunk(Ptr, &Header, Size);
514 }
515
516 // Reallocates a chunk. We can save on a new allocation if the new requested
517 // size still fits in the chunk.
518 void *reallocate(void *OldPtr, uptr NewSize) {
519 initThreadMaybe();
520 if (UNLIKELY(!Chunk::isAligned(OldPtr))) {
521 dieWithMessage("ERROR: attempted to reallocate a chunk not properly "
522 "aligned at address %p\n", OldPtr);
523 }
524 UnpackedHeader OldHeader;
525 Chunk::loadHeader(OldPtr, &OldHeader);
526 if (UNLIKELY(OldHeader.State != ChunkAllocated)) {
527 dieWithMessage("ERROR: invalid chunk state when reallocating address "
528 "%p\n", OldPtr);
529 }
530 if (DeallocationTypeMismatch) {
531 if (UNLIKELY(OldHeader.AllocType != FromMalloc)) {
532 dieWithMessage("ERROR: allocation type mismatch when reallocating "
533 "address %p\n", OldPtr);
534 }
535 }
536 const uptr UsableSize = Chunk::getUsableSize(OldPtr, &OldHeader);
537 // The new size still fits in the current chunk, and the size difference
538 // is reasonable.
539 if (NewSize <= UsableSize &&
540 (UsableSize - NewSize) < (SizeClassMap::kMaxSize / 2)) {
541 UnpackedHeader NewHeader = OldHeader;
542 NewHeader.SizeOrUnusedBytes =
543 OldHeader.ClassId ? NewSize : UsableSize - NewSize;
544 Chunk::compareExchangeHeader(OldPtr, &NewHeader, &OldHeader);
545 return OldPtr;
546 }
547 // Otherwise, we have to allocate a new chunk and copy the contents of the
548 // old one.
549 void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
550 if (NewPtr) {
551 uptr OldSize = OldHeader.ClassId ? OldHeader.SizeOrUnusedBytes :
552 UsableSize - OldHeader.SizeOrUnusedBytes;
553 memcpy(NewPtr, OldPtr, Min(NewSize, UsableSize));
554 quarantineOrDeallocateChunk(OldPtr, &OldHeader, OldSize);
555 }
556 return NewPtr;
557 }
558
559 // Helper function that returns the actual usable size of a chunk.
560 uptr getUsableSize(const void *Ptr) {
561 initThreadMaybe();
562 if (UNLIKELY(!Ptr))
563 return 0;
564 UnpackedHeader Header;
565 Chunk::loadHeader(Ptr, &Header);
566 // Getting the usable size of a chunk only makes sense if it's allocated.
567 if (UNLIKELY(Header.State != ChunkAllocated)) {
568 dieWithMessage("ERROR: invalid chunk state when sizing address %p\n",
569 Ptr);
570 }
571 return Chunk::getUsableSize(Ptr, &Header);
572 }
573
574 void *calloc(uptr NMemB, uptr Size) {
575 initThreadMaybe();
576 if (UNLIKELY(CheckForCallocOverflow(NMemB, Size)))
577 return FailureHandler::OnBadRequest();
578 return allocate(NMemB * Size, MinAlignment, FromMalloc, true);
579 }
580
581 void commitBack(ScudoTSD *TSD) {
582 AllocatorQuarantine.Drain(getQuarantineCache(TSD),
583 QuarantineCallback(&TSD->Cache));
584 BackendAllocator.destroyCache(&TSD->Cache);
585 }
586
587 uptr getStats(AllocatorStat StatType) {
588 initThreadMaybe();
589 uptr stats[AllocatorStatCount];
590 BackendAllocator.getStats(stats);
591 return stats[StatType];
592 }
593
594 void *handleBadRequest() {
595 initThreadMaybe();
596 return FailureHandler::OnBadRequest();
597 }
598
599 void setRssLimit(uptr LimitMb, bool HardLimit) {
600 if (HardLimit)
601 HardRssLimitMb = LimitMb;
602 else
603 SoftRssLimitMb = LimitMb;
604 CheckRssLimit = HardRssLimitMb || SoftRssLimitMb;
605 }
606 };
607
608 static ScudoAllocator Instance(LINKER_INITIALIZED);
609
610 static ScudoBackendAllocator &getBackendAllocator() {
611 return Instance.BackendAllocator;
612 }
613
614 void initScudo() {
615 Instance.init();
616 }
617
618 void ScudoTSD::init(bool Shared) {
619 UnlockRequired = Shared;
620 getBackendAllocator().initCache(&Cache);
621 memset(QuarantineCachePlaceHolder, 0, sizeof(QuarantineCachePlaceHolder));
622 }
623
624 void ScudoTSD::commitBack() {
625 Instance.commitBack(this);
626 }
627
628 void *scudoMalloc(uptr Size, AllocType Type) {
629 return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, Type));
630 }
631
632 void scudoFree(void *Ptr, AllocType Type) {
633 Instance.deallocate(Ptr, 0, Type);
634 }
635
636 void scudoSizedFree(void *Ptr, uptr Size, AllocType Type) {
637 Instance.deallocate(Ptr, Size, Type);
638 }
639
640 void *scudoRealloc(void *Ptr, uptr Size) {
641 if (!Ptr)
642 return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, FromMalloc));
643 if (Size == 0) {
644 Instance.deallocate(Ptr, 0, FromMalloc);
645 return nullptr;
646 }
647 return SetErrnoOnNull(Instance.reallocate(Ptr, Size));
648 }
649
650 void *scudoCalloc(uptr NMemB, uptr Size) {
651 return SetErrnoOnNull(Instance.calloc(NMemB, Size));
652 }
653
654 void *scudoValloc(uptr Size) {
655 return SetErrnoOnNull(
656 Instance.allocate(Size, GetPageSizeCached(), FromMemalign));
657 }
658
659 void *scudoPvalloc(uptr Size) {
660 uptr PageSize = GetPageSizeCached();
661 if (UNLIKELY(CheckForPvallocOverflow(Size, PageSize))) {
662 errno = ENOMEM;
663 return Instance.handleBadRequest();
664 }
665 // pvalloc(0) should allocate one page.
666 Size = Size ? RoundUpTo(Size, PageSize) : PageSize;
667 return SetErrnoOnNull(Instance.allocate(Size, PageSize, FromMemalign));
668 }
669
670 void *scudoMemalign(uptr Alignment, uptr Size) {
671 if (UNLIKELY(!IsPowerOfTwo(Alignment))) {
672 errno = EINVAL;
673 return Instance.handleBadRequest();
674 }
675 return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMemalign));
676 }
677
678 int scudoPosixMemalign(void **MemPtr, uptr Alignment, uptr Size) {
679 if (UNLIKELY(!CheckPosixMemalignAlignment(Alignment))) {
680 Instance.handleBadRequest();
681 return EINVAL;
682 }
683 void *Ptr = Instance.allocate(Size, Alignment, FromMemalign);
684 if (UNLIKELY(!Ptr))
685 return ENOMEM;
686 *MemPtr = Ptr;
687 return 0;
688 }
689
690 void *scudoAlignedAlloc(uptr Alignment, uptr Size) {
691 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(Alignment, Size))) {
692 errno = EINVAL;
693 return Instance.handleBadRequest();
694 }
695 return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMalloc));
696 }
697
698 uptr scudoMallocUsableSize(void *Ptr) {
699 return Instance.getUsableSize(Ptr);
700 }
701
702 } // namespace __scudo
703
704 using namespace __scudo;
705
706 // MallocExtension helper functions
707
708 uptr __sanitizer_get_current_allocated_bytes() {
709 return Instance.getStats(AllocatorStatAllocated);
710 }
711
712 uptr __sanitizer_get_heap_size() {
713 return Instance.getStats(AllocatorStatMapped);
714 }
715
716 uptr __sanitizer_get_free_bytes() {
717 return 1;
718 }
719
720 uptr __sanitizer_get_unmapped_bytes() {
721 return 1;
722 }
723
724 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
725 return size;
726 }
727
728 int __sanitizer_get_ownership(const void *Ptr) {
729 return Instance.isValidPointer(Ptr);
730 }
731
732 uptr __sanitizer_get_allocated_size(const void *Ptr) {
733 return Instance.getUsableSize(Ptr);
734 }
735
736 // Interface functions
737
738 extern "C" {
739 void __scudo_set_rss_limit(unsigned long LimitMb, int HardLimit) { // NOLINT
740 if (!SCUDO_CAN_USE_PUBLIC_INTERFACE)
741 return;
742 Instance.setRssLimit(LimitMb, !!HardLimit);
743 }
744 } // extern "C"