]> git.proxmox.com Git - rustc.git/blob - src/libcore/cell.rs
New upstream version 1.38.0+dfsg1
[rustc.git] / src / libcore / cell.rs
1 //! Shareable mutable containers.
2 //!
3 //! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4 //! have one of the following:
5 //!
6 //! - Having several immutable references (`&T`) to the object (also known as **aliasing**).
7 //! - Having one mutable reference (`&mut T`) to the object (also known as **mutability**).
8 //!
9 //! This is enforced by the Rust compiler. However, there are situations where this rule is not
10 //! flexible enough. Sometimes it is required to have multiple references to an object and yet
11 //! mutate it.
12 //!
13 //! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14 //! presence of aliasing. Both `Cell<T>` and `RefCell<T>` allow doing this in a single-threaded
15 //! way. However, neither `Cell<T>` nor `RefCell<T>` are thread safe (they do not implement
16 //! `Sync`). If you need to do aliasing and mutation between multiple threads it is possible to
17 //! use [`Mutex`](../../std/sync/struct.Mutex.html),
18 //! [`RwLock`](../../std/sync/struct.RwLock.html) or
19 //! [`atomic`](../../core/sync/atomic/index.html) types.
20 //!
21 //! Values of the `Cell<T>` and `RefCell<T>` types may be mutated through shared references (i.e.
22 //! the common `&T` type), whereas most Rust types can only be mutated through unique (`&mut T`)
23 //! references. We say that `Cell<T>` and `RefCell<T>` provide 'interior mutability', in contrast
24 //! with typical Rust types that exhibit 'inherited mutability'.
25 //!
26 //! Cell types come in two flavors: `Cell<T>` and `RefCell<T>`. `Cell<T>` implements interior
27 //! mutability by moving values in and out of the `Cell<T>`. To use references instead of values,
28 //! one must use the `RefCell<T>` type, acquiring a write lock before mutating. `Cell<T>` provides
29 //! methods to retrieve and change the current interior value:
30 //!
31 //! - For types that implement `Copy`, the `get` method retrieves the current interior value.
32 //! - For types that implement `Default`, the `take` method replaces the current interior value
33 //! with `Default::default()` and returns the replaced value.
34 //! - For all types, the `replace` method replaces the current interior value and returns the
35 //! replaced value and the `into_inner` method consumes the `Cell<T>` and returns the interior
36 //! value. Additionally, the `set` method replaces the interior value, dropping the replaced
37 //! value.
38 //!
39 //! `RefCell<T>` uses Rust's lifetimes to implement 'dynamic borrowing', a process whereby one can
40 //! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
41 //! tracked 'at runtime', unlike Rust's native reference types which are entirely tracked
42 //! statically, at compile time. Because `RefCell<T>` borrows are dynamic it is possible to attempt
43 //! to borrow a value that is already mutably borrowed; when this happens it results in thread
44 //! panic.
45 //!
46 //! # When to choose interior mutability
47 //!
48 //! The more common inherited mutability, where one must have unique access to mutate a value, is
49 //! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
50 //! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
51 //! interior mutability is something of a last resort. Since cell types enable mutation where it
52 //! would otherwise be disallowed though, there are occasions when interior mutability might be
53 //! appropriate, or even *must* be used, e.g.
54 //!
55 //! * Introducing mutability 'inside' of something immutable
56 //! * Implementation details of logically-immutable methods.
57 //! * Mutating implementations of `Clone`.
58 //!
59 //! ## Introducing mutability 'inside' of something immutable
60 //!
61 //! Many shared smart pointer types, including `Rc<T>` and `Arc<T>`, provide containers that can be
62 //! cloned and shared between multiple parties. Because the contained values may be
63 //! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
64 //! impossible to mutate data inside of these smart pointers at all.
65 //!
66 //! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
67 //! mutability:
68 //!
69 //! ```
70 //! use std::cell::{RefCell, RefMut};
71 //! use std::collections::HashMap;
72 //! use std::rc::Rc;
73 //!
74 //! fn main() {
75 //! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
76 //! // Create a new block to limit the scope of the dynamic borrow
77 //! {
78 //! let mut map: RefMut<_> = shared_map.borrow_mut();
79 //! map.insert("africa", 92388);
80 //! map.insert("kyoto", 11837);
81 //! map.insert("piccadilly", 11826);
82 //! map.insert("marbles", 38);
83 //! }
84 //!
85 //! // Note that if we had not let the previous borrow of the cache fall out
86 //! // of scope then the subsequent borrow would cause a dynamic thread panic.
87 //! // This is the major hazard of using `RefCell`.
88 //! let total: i32 = shared_map.borrow().values().sum();
89 //! println!("{}", total);
90 //! }
91 //! ```
92 //!
93 //! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
94 //! scenarios. Consider using `RwLock<T>` or `Mutex<T>` if you need shared mutability in a
95 //! multi-threaded situation.
96 //!
97 //! ## Implementation details of logically-immutable methods
98 //!
99 //! Occasionally it may be desirable not to expose in an API that there is mutation happening
100 //! "under the hood". This may be because logically the operation is immutable, but e.g., caching
101 //! forces the implementation to perform mutation; or because you must employ mutation to implement
102 //! a trait method that was originally defined to take `&self`.
103 //!
104 //! ```
105 //! # #![allow(dead_code)]
106 //! use std::cell::RefCell;
107 //!
108 //! struct Graph {
109 //! edges: Vec<(i32, i32)>,
110 //! span_tree_cache: RefCell<Option<Vec<(i32, i32)>>>
111 //! }
112 //!
113 //! impl Graph {
114 //! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
115 //! self.span_tree_cache.borrow_mut()
116 //! .get_or_insert_with(|| self.calc_span_tree())
117 //! .clone()
118 //! }
119 //!
120 //! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
121 //! // Expensive computation goes here
122 //! vec![]
123 //! }
124 //! }
125 //! ```
126 //!
127 //! ## Mutating implementations of `Clone`
128 //!
129 //! This is simply a special - but common - case of the previous: hiding mutability for operations
130 //! that appear to be immutable. The `clone` method is expected to not change the source value, and
131 //! is declared to take `&self`, not `&mut self`. Therefore, any mutation that happens in the
132 //! `clone` method must use cell types. For example, `Rc<T>` maintains its reference counts within a
133 //! `Cell<T>`.
134 //!
135 //! ```
136 //! #![feature(core_intrinsics)]
137 //! use std::cell::Cell;
138 //! use std::ptr::NonNull;
139 //! use std::intrinsics::abort;
140 //!
141 //! struct Rc<T: ?Sized> {
142 //! ptr: NonNull<RcBox<T>>
143 //! }
144 //!
145 //! struct RcBox<T: ?Sized> {
146 //! strong: Cell<usize>,
147 //! refcount: Cell<usize>,
148 //! value: T,
149 //! }
150 //!
151 //! impl<T: ?Sized> Clone for Rc<T> {
152 //! fn clone(&self) -> Rc<T> {
153 //! self.inc_strong();
154 //! Rc { ptr: self.ptr }
155 //! }
156 //! }
157 //!
158 //! trait RcBoxPtr<T: ?Sized> {
159 //!
160 //! fn inner(&self) -> &RcBox<T>;
161 //!
162 //! fn strong(&self) -> usize {
163 //! self.inner().strong.get()
164 //! }
165 //!
166 //! fn inc_strong(&self) {
167 //! self.inner()
168 //! .strong
169 //! .set(self.strong()
170 //! .checked_add(1)
171 //! .unwrap_or_else(|| unsafe { abort() }));
172 //! }
173 //! }
174 //!
175 //! impl<T: ?Sized> RcBoxPtr<T> for Rc<T> {
176 //! fn inner(&self) -> &RcBox<T> {
177 //! unsafe {
178 //! self.ptr.as_ref()
179 //! }
180 //! }
181 //! }
182 //! ```
183 //!
184
185 #![stable(feature = "rust1", since = "1.0.0")]
186
187 use crate::cmp::Ordering;
188 use crate::fmt::{self, Debug, Display};
189 use crate::marker::Unsize;
190 use crate::mem;
191 use crate::ops::{Deref, DerefMut, CoerceUnsized};
192 use crate::ptr;
193
194 /// A mutable memory location.
195 ///
196 /// # Examples
197 ///
198 /// In this example, you can see that `Cell<T>` enables mutation inside an
199 /// immutable struct. In other words, it enables "interior mutability".
200 ///
201 /// ```
202 /// use std::cell::Cell;
203 ///
204 /// struct SomeStruct {
205 /// regular_field: u8,
206 /// special_field: Cell<u8>,
207 /// }
208 ///
209 /// let my_struct = SomeStruct {
210 /// regular_field: 0,
211 /// special_field: Cell::new(1),
212 /// };
213 ///
214 /// let new_value = 100;
215 ///
216 /// // ERROR: `my_struct` is immutable
217 /// // my_struct.regular_field = new_value;
218 ///
219 /// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
220 /// // which can always be mutated
221 /// my_struct.special_field.set(new_value);
222 /// assert_eq!(my_struct.special_field.get(), new_value);
223 /// ```
224 ///
225 /// See the [module-level documentation](index.html) for more.
226 #[stable(feature = "rust1", since = "1.0.0")]
227 #[repr(transparent)]
228 pub struct Cell<T: ?Sized> {
229 value: UnsafeCell<T>,
230 }
231
232 impl<T:Copy> Cell<T> {
233 /// Returns a copy of the contained value.
234 ///
235 /// # Examples
236 ///
237 /// ```
238 /// use std::cell::Cell;
239 ///
240 /// let c = Cell::new(5);
241 ///
242 /// let five = c.get();
243 /// ```
244 #[inline]
245 #[stable(feature = "rust1", since = "1.0.0")]
246 pub fn get(&self) -> T {
247 unsafe{ *self.value.get() }
248 }
249
250 /// Updates the contained value using a function and returns the new value.
251 ///
252 /// # Examples
253 ///
254 /// ```
255 /// #![feature(cell_update)]
256 ///
257 /// use std::cell::Cell;
258 ///
259 /// let c = Cell::new(5);
260 /// let new = c.update(|x| x + 1);
261 ///
262 /// assert_eq!(new, 6);
263 /// assert_eq!(c.get(), 6);
264 /// ```
265 #[inline]
266 #[unstable(feature = "cell_update", issue = "50186")]
267 pub fn update<F>(&self, f: F) -> T
268 where
269 F: FnOnce(T) -> T,
270 {
271 let old = self.get();
272 let new = f(old);
273 self.set(new);
274 new
275 }
276 }
277
278 #[stable(feature = "rust1", since = "1.0.0")]
279 unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
280
281 #[stable(feature = "rust1", since = "1.0.0")]
282 impl<T: ?Sized> !Sync for Cell<T> {}
283
284 #[stable(feature = "rust1", since = "1.0.0")]
285 impl<T:Copy> Clone for Cell<T> {
286 #[inline]
287 fn clone(&self) -> Cell<T> {
288 Cell::new(self.get())
289 }
290 }
291
292 #[stable(feature = "rust1", since = "1.0.0")]
293 impl<T: Default> Default for Cell<T> {
294 /// Creates a `Cell<T>`, with the `Default` value for T.
295 #[inline]
296 fn default() -> Cell<T> {
297 Cell::new(Default::default())
298 }
299 }
300
301 #[stable(feature = "rust1", since = "1.0.0")]
302 impl<T: PartialEq + Copy> PartialEq for Cell<T> {
303 #[inline]
304 fn eq(&self, other: &Cell<T>) -> bool {
305 self.get() == other.get()
306 }
307 }
308
309 #[stable(feature = "cell_eq", since = "1.2.0")]
310 impl<T: Eq + Copy> Eq for Cell<T> {}
311
312 #[stable(feature = "cell_ord", since = "1.10.0")]
313 impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
314 #[inline]
315 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
316 self.get().partial_cmp(&other.get())
317 }
318
319 #[inline]
320 fn lt(&self, other: &Cell<T>) -> bool {
321 self.get() < other.get()
322 }
323
324 #[inline]
325 fn le(&self, other: &Cell<T>) -> bool {
326 self.get() <= other.get()
327 }
328
329 #[inline]
330 fn gt(&self, other: &Cell<T>) -> bool {
331 self.get() > other.get()
332 }
333
334 #[inline]
335 fn ge(&self, other: &Cell<T>) -> bool {
336 self.get() >= other.get()
337 }
338 }
339
340 #[stable(feature = "cell_ord", since = "1.10.0")]
341 impl<T: Ord + Copy> Ord for Cell<T> {
342 #[inline]
343 fn cmp(&self, other: &Cell<T>) -> Ordering {
344 self.get().cmp(&other.get())
345 }
346 }
347
348 #[stable(feature = "cell_from", since = "1.12.0")]
349 impl<T> From<T> for Cell<T> {
350 fn from(t: T) -> Cell<T> {
351 Cell::new(t)
352 }
353 }
354
355 impl<T> Cell<T> {
356 /// Creates a new `Cell` containing the given value.
357 ///
358 /// # Examples
359 ///
360 /// ```
361 /// use std::cell::Cell;
362 ///
363 /// let c = Cell::new(5);
364 /// ```
365 #[stable(feature = "rust1", since = "1.0.0")]
366 #[inline]
367 pub const fn new(value: T) -> Cell<T> {
368 Cell {
369 value: UnsafeCell::new(value),
370 }
371 }
372
373 /// Sets the contained value.
374 ///
375 /// # Examples
376 ///
377 /// ```
378 /// use std::cell::Cell;
379 ///
380 /// let c = Cell::new(5);
381 ///
382 /// c.set(10);
383 /// ```
384 #[inline]
385 #[stable(feature = "rust1", since = "1.0.0")]
386 pub fn set(&self, val: T) {
387 let old = self.replace(val);
388 drop(old);
389 }
390
391 /// Swaps the values of two Cells.
392 /// Difference with `std::mem::swap` is that this function doesn't require `&mut` reference.
393 ///
394 /// # Examples
395 ///
396 /// ```
397 /// use std::cell::Cell;
398 ///
399 /// let c1 = Cell::new(5i32);
400 /// let c2 = Cell::new(10i32);
401 /// c1.swap(&c2);
402 /// assert_eq!(10, c1.get());
403 /// assert_eq!(5, c2.get());
404 /// ```
405 #[inline]
406 #[stable(feature = "move_cell", since = "1.17.0")]
407 pub fn swap(&self, other: &Self) {
408 if ptr::eq(self, other) {
409 return;
410 }
411 unsafe {
412 ptr::swap(self.value.get(), other.value.get());
413 }
414 }
415
416 /// Replaces the contained value, and returns it.
417 ///
418 /// # Examples
419 ///
420 /// ```
421 /// use std::cell::Cell;
422 ///
423 /// let cell = Cell::new(5);
424 /// assert_eq!(cell.get(), 5);
425 /// assert_eq!(cell.replace(10), 5);
426 /// assert_eq!(cell.get(), 10);
427 /// ```
428 #[stable(feature = "move_cell", since = "1.17.0")]
429 pub fn replace(&self, val: T) -> T {
430 mem::replace(unsafe { &mut *self.value.get() }, val)
431 }
432
433 /// Unwraps the value.
434 ///
435 /// # Examples
436 ///
437 /// ```
438 /// use std::cell::Cell;
439 ///
440 /// let c = Cell::new(5);
441 /// let five = c.into_inner();
442 ///
443 /// assert_eq!(five, 5);
444 /// ```
445 #[stable(feature = "move_cell", since = "1.17.0")]
446 pub fn into_inner(self) -> T {
447 self.value.into_inner()
448 }
449 }
450
451 impl<T: ?Sized> Cell<T> {
452 /// Returns a raw pointer to the underlying data in this cell.
453 ///
454 /// # Examples
455 ///
456 /// ```
457 /// use std::cell::Cell;
458 ///
459 /// let c = Cell::new(5);
460 ///
461 /// let ptr = c.as_ptr();
462 /// ```
463 #[inline]
464 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
465 pub const fn as_ptr(&self) -> *mut T {
466 self.value.get()
467 }
468
469 /// Returns a mutable reference to the underlying data.
470 ///
471 /// This call borrows `Cell` mutably (at compile-time) which guarantees
472 /// that we possess the only reference.
473 ///
474 /// # Examples
475 ///
476 /// ```
477 /// use std::cell::Cell;
478 ///
479 /// let mut c = Cell::new(5);
480 /// *c.get_mut() += 1;
481 ///
482 /// assert_eq!(c.get(), 6);
483 /// ```
484 #[inline]
485 #[stable(feature = "cell_get_mut", since = "1.11.0")]
486 pub fn get_mut(&mut self) -> &mut T {
487 unsafe {
488 &mut *self.value.get()
489 }
490 }
491
492 /// Returns a `&Cell<T>` from a `&mut T`
493 ///
494 /// # Examples
495 ///
496 /// ```
497 /// use std::cell::Cell;
498 ///
499 /// let slice: &mut [i32] = &mut [1, 2, 3];
500 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
501 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
502 ///
503 /// assert_eq!(slice_cell.len(), 3);
504 /// ```
505 #[inline]
506 #[stable(feature = "as_cell", since = "1.37.0")]
507 pub fn from_mut(t: &mut T) -> &Cell<T> {
508 unsafe {
509 &*(t as *mut T as *const Cell<T>)
510 }
511 }
512 }
513
514 impl<T: Default> Cell<T> {
515 /// Takes the value of the cell, leaving `Default::default()` in its place.
516 ///
517 /// # Examples
518 ///
519 /// ```
520 /// use std::cell::Cell;
521 ///
522 /// let c = Cell::new(5);
523 /// let five = c.take();
524 ///
525 /// assert_eq!(five, 5);
526 /// assert_eq!(c.into_inner(), 0);
527 /// ```
528 #[stable(feature = "move_cell", since = "1.17.0")]
529 pub fn take(&self) -> T {
530 self.replace(Default::default())
531 }
532 }
533
534 #[unstable(feature = "coerce_unsized", issue = "27732")]
535 impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
536
537 impl<T> Cell<[T]> {
538 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
539 ///
540 /// # Examples
541 ///
542 /// ```
543 /// use std::cell::Cell;
544 ///
545 /// let slice: &mut [i32] = &mut [1, 2, 3];
546 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
547 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
548 ///
549 /// assert_eq!(slice_cell.len(), 3);
550 /// ```
551 #[stable(feature = "as_cell", since = "1.37.0")]
552 pub fn as_slice_of_cells(&self) -> &[Cell<T>] {
553 unsafe {
554 &*(self as *const Cell<[T]> as *const [Cell<T>])
555 }
556 }
557 }
558
559 /// A mutable memory location with dynamically checked borrow rules
560 ///
561 /// See the [module-level documentation](index.html) for more.
562 #[stable(feature = "rust1", since = "1.0.0")]
563 pub struct RefCell<T: ?Sized> {
564 borrow: Cell<BorrowFlag>,
565 value: UnsafeCell<T>,
566 }
567
568 /// An error returned by [`RefCell::try_borrow`](struct.RefCell.html#method.try_borrow).
569 #[stable(feature = "try_borrow", since = "1.13.0")]
570 pub struct BorrowError {
571 _private: (),
572 }
573
574 #[stable(feature = "try_borrow", since = "1.13.0")]
575 impl Debug for BorrowError {
576 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
577 f.debug_struct("BorrowError").finish()
578 }
579 }
580
581 #[stable(feature = "try_borrow", since = "1.13.0")]
582 impl Display for BorrowError {
583 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
584 Display::fmt("already mutably borrowed", f)
585 }
586 }
587
588 /// An error returned by [`RefCell::try_borrow_mut`](struct.RefCell.html#method.try_borrow_mut).
589 #[stable(feature = "try_borrow", since = "1.13.0")]
590 pub struct BorrowMutError {
591 _private: (),
592 }
593
594 #[stable(feature = "try_borrow", since = "1.13.0")]
595 impl Debug for BorrowMutError {
596 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
597 f.debug_struct("BorrowMutError").finish()
598 }
599 }
600
601 #[stable(feature = "try_borrow", since = "1.13.0")]
602 impl Display for BorrowMutError {
603 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
604 Display::fmt("already borrowed", f)
605 }
606 }
607
608 // Positive values represent the number of `Ref` active. Negative values
609 // represent the number of `RefMut` active. Multiple `RefMut`s can only be
610 // active at a time if they refer to distinct, nonoverlapping components of a
611 // `RefCell` (e.g., different ranges of a slice).
612 //
613 // `Ref` and `RefMut` are both two words in size, and so there will likely never
614 // be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
615 // range. Thus, a `BorrowFlag` will probably never overflow or underflow.
616 // However, this is not a guarantee, as a pathological program could repeatedly
617 // create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
618 // explicitly check for overflow and underflow in order to avoid unsafety, or at
619 // least behave correctly in the event that overflow or underflow happens (e.g.,
620 // see BorrowRef::new).
621 type BorrowFlag = isize;
622 const UNUSED: BorrowFlag = 0;
623
624 #[inline(always)]
625 fn is_writing(x: BorrowFlag) -> bool {
626 x < UNUSED
627 }
628
629 #[inline(always)]
630 fn is_reading(x: BorrowFlag) -> bool {
631 x > UNUSED
632 }
633
634 impl<T> RefCell<T> {
635 /// Creates a new `RefCell` containing `value`.
636 ///
637 /// # Examples
638 ///
639 /// ```
640 /// use std::cell::RefCell;
641 ///
642 /// let c = RefCell::new(5);
643 /// ```
644 #[stable(feature = "rust1", since = "1.0.0")]
645 #[inline]
646 pub const fn new(value: T) -> RefCell<T> {
647 RefCell {
648 value: UnsafeCell::new(value),
649 borrow: Cell::new(UNUSED),
650 }
651 }
652
653 /// Consumes the `RefCell`, returning the wrapped value.
654 ///
655 /// # Examples
656 ///
657 /// ```
658 /// use std::cell::RefCell;
659 ///
660 /// let c = RefCell::new(5);
661 ///
662 /// let five = c.into_inner();
663 /// ```
664 #[stable(feature = "rust1", since = "1.0.0")]
665 #[inline]
666 pub fn into_inner(self) -> T {
667 // Since this function takes `self` (the `RefCell`) by value, the
668 // compiler statically verifies that it is not currently borrowed.
669 // Therefore the following assertion is just a `debug_assert!`.
670 debug_assert!(self.borrow.get() == UNUSED);
671 self.value.into_inner()
672 }
673
674 /// Replaces the wrapped value with a new one, returning the old value,
675 /// without deinitializing either one.
676 ///
677 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
678 ///
679 /// # Panics
680 ///
681 /// Panics if the value is currently borrowed.
682 ///
683 /// # Examples
684 ///
685 /// ```
686 /// use std::cell::RefCell;
687 /// let cell = RefCell::new(5);
688 /// let old_value = cell.replace(6);
689 /// assert_eq!(old_value, 5);
690 /// assert_eq!(cell, RefCell::new(6));
691 /// ```
692 #[inline]
693 #[stable(feature = "refcell_replace", since="1.24.0")]
694 pub fn replace(&self, t: T) -> T {
695 mem::replace(&mut *self.borrow_mut(), t)
696 }
697
698 /// Replaces the wrapped value with a new one computed from `f`, returning
699 /// the old value, without deinitializing either one.
700 ///
701 /// # Panics
702 ///
703 /// Panics if the value is currently borrowed.
704 ///
705 /// # Examples
706 ///
707 /// ```
708 /// use std::cell::RefCell;
709 /// let cell = RefCell::new(5);
710 /// let old_value = cell.replace_with(|&mut old| old + 1);
711 /// assert_eq!(old_value, 5);
712 /// assert_eq!(cell, RefCell::new(6));
713 /// ```
714 #[inline]
715 #[stable(feature = "refcell_replace_swap", since="1.35.0")]
716 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
717 let mut_borrow = &mut *self.borrow_mut();
718 let replacement = f(mut_borrow);
719 mem::replace(mut_borrow, replacement)
720 }
721
722 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
723 /// without deinitializing either one.
724 ///
725 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
726 ///
727 /// # Panics
728 ///
729 /// Panics if the value in either `RefCell` is currently borrowed.
730 ///
731 /// # Examples
732 ///
733 /// ```
734 /// use std::cell::RefCell;
735 /// let c = RefCell::new(5);
736 /// let d = RefCell::new(6);
737 /// c.swap(&d);
738 /// assert_eq!(c, RefCell::new(6));
739 /// assert_eq!(d, RefCell::new(5));
740 /// ```
741 #[inline]
742 #[stable(feature = "refcell_swap", since="1.24.0")]
743 pub fn swap(&self, other: &Self) {
744 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
745 }
746 }
747
748 impl<T: ?Sized> RefCell<T> {
749 /// Immutably borrows the wrapped value.
750 ///
751 /// The borrow lasts until the returned `Ref` exits scope. Multiple
752 /// immutable borrows can be taken out at the same time.
753 ///
754 /// # Panics
755 ///
756 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
757 /// [`try_borrow`](#method.try_borrow).
758 ///
759 /// # Examples
760 ///
761 /// ```
762 /// use std::cell::RefCell;
763 ///
764 /// let c = RefCell::new(5);
765 ///
766 /// let borrowed_five = c.borrow();
767 /// let borrowed_five2 = c.borrow();
768 /// ```
769 ///
770 /// An example of panic:
771 ///
772 /// ```
773 /// use std::cell::RefCell;
774 /// use std::thread;
775 ///
776 /// let result = thread::spawn(move || {
777 /// let c = RefCell::new(5);
778 /// let m = c.borrow_mut();
779 ///
780 /// let b = c.borrow(); // this causes a panic
781 /// }).join();
782 ///
783 /// assert!(result.is_err());
784 /// ```
785 #[stable(feature = "rust1", since = "1.0.0")]
786 #[inline]
787 pub fn borrow(&self) -> Ref<'_, T> {
788 self.try_borrow().expect("already mutably borrowed")
789 }
790
791 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
792 /// borrowed.
793 ///
794 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
795 /// taken out at the same time.
796 ///
797 /// This is the non-panicking variant of [`borrow`](#method.borrow).
798 ///
799 /// # Examples
800 ///
801 /// ```
802 /// use std::cell::RefCell;
803 ///
804 /// let c = RefCell::new(5);
805 ///
806 /// {
807 /// let m = c.borrow_mut();
808 /// assert!(c.try_borrow().is_err());
809 /// }
810 ///
811 /// {
812 /// let m = c.borrow();
813 /// assert!(c.try_borrow().is_ok());
814 /// }
815 /// ```
816 #[stable(feature = "try_borrow", since = "1.13.0")]
817 #[inline]
818 pub fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
819 match BorrowRef::new(&self.borrow) {
820 Some(b) => Ok(Ref {
821 value: unsafe { &*self.value.get() },
822 borrow: b,
823 }),
824 None => Err(BorrowError { _private: () }),
825 }
826 }
827
828 /// Mutably borrows the wrapped value.
829 ///
830 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
831 /// from it exit scope. The value cannot be borrowed while this borrow is
832 /// active.
833 ///
834 /// # Panics
835 ///
836 /// Panics if the value is currently borrowed. For a non-panicking variant, use
837 /// [`try_borrow_mut`](#method.try_borrow_mut).
838 ///
839 /// # Examples
840 ///
841 /// ```
842 /// use std::cell::RefCell;
843 ///
844 /// let c = RefCell::new(5);
845 ///
846 /// *c.borrow_mut() = 7;
847 ///
848 /// assert_eq!(*c.borrow(), 7);
849 /// ```
850 ///
851 /// An example of panic:
852 ///
853 /// ```
854 /// use std::cell::RefCell;
855 /// use std::thread;
856 ///
857 /// let result = thread::spawn(move || {
858 /// let c = RefCell::new(5);
859 /// let m = c.borrow();
860 ///
861 /// let b = c.borrow_mut(); // this causes a panic
862 /// }).join();
863 ///
864 /// assert!(result.is_err());
865 /// ```
866 #[stable(feature = "rust1", since = "1.0.0")]
867 #[inline]
868 pub fn borrow_mut(&self) -> RefMut<'_, T> {
869 self.try_borrow_mut().expect("already borrowed")
870 }
871
872 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
873 ///
874 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
875 /// from it exit scope. The value cannot be borrowed while this borrow is
876 /// active.
877 ///
878 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
879 ///
880 /// # Examples
881 ///
882 /// ```
883 /// use std::cell::RefCell;
884 ///
885 /// let c = RefCell::new(5);
886 ///
887 /// {
888 /// let m = c.borrow();
889 /// assert!(c.try_borrow_mut().is_err());
890 /// }
891 ///
892 /// assert!(c.try_borrow_mut().is_ok());
893 /// ```
894 #[stable(feature = "try_borrow", since = "1.13.0")]
895 #[inline]
896 pub fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
897 match BorrowRefMut::new(&self.borrow) {
898 Some(b) => Ok(RefMut {
899 value: unsafe { &mut *self.value.get() },
900 borrow: b,
901 }),
902 None => Err(BorrowMutError { _private: () }),
903 }
904 }
905
906 /// Returns a raw pointer to the underlying data in this cell.
907 ///
908 /// # Examples
909 ///
910 /// ```
911 /// use std::cell::RefCell;
912 ///
913 /// let c = RefCell::new(5);
914 ///
915 /// let ptr = c.as_ptr();
916 /// ```
917 #[inline]
918 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
919 pub fn as_ptr(&self) -> *mut T {
920 self.value.get()
921 }
922
923 /// Returns a mutable reference to the underlying data.
924 ///
925 /// This call borrows `RefCell` mutably (at compile-time) so there is no
926 /// need for dynamic checks.
927 ///
928 /// However be cautious: this method expects `self` to be mutable, which is
929 /// generally not the case when using a `RefCell`. Take a look at the
930 /// [`borrow_mut`] method instead if `self` isn't mutable.
931 ///
932 /// Also, please be aware that this method is only for special circumstances and is usually
933 /// not what you want. In case of doubt, use [`borrow_mut`] instead.
934 ///
935 /// [`borrow_mut`]: #method.borrow_mut
936 ///
937 /// # Examples
938 ///
939 /// ```
940 /// use std::cell::RefCell;
941 ///
942 /// let mut c = RefCell::new(5);
943 /// *c.get_mut() += 1;
944 ///
945 /// assert_eq!(c, RefCell::new(6));
946 /// ```
947 #[inline]
948 #[stable(feature = "cell_get_mut", since = "1.11.0")]
949 pub fn get_mut(&mut self) -> &mut T {
950 unsafe {
951 &mut *self.value.get()
952 }
953 }
954
955 /// Immutably borrows the wrapped value, returning an error if the value is
956 /// currently mutably borrowed.
957 ///
958 /// # Safety
959 ///
960 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
961 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
962 /// borrowing the `RefCell` while the reference returned by this method
963 /// is alive is undefined behaviour.
964 ///
965 /// # Examples
966 ///
967 /// ```
968 /// use std::cell::RefCell;
969 ///
970 /// let c = RefCell::new(5);
971 ///
972 /// {
973 /// let m = c.borrow_mut();
974 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
975 /// }
976 ///
977 /// {
978 /// let m = c.borrow();
979 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
980 /// }
981 /// ```
982 #[stable(feature = "borrow_state", since = "1.37.0")]
983 #[inline]
984 pub unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
985 if !is_writing(self.borrow.get()) {
986 Ok(&*self.value.get())
987 } else {
988 Err(BorrowError { _private: () })
989 }
990 }
991 }
992
993 #[stable(feature = "rust1", since = "1.0.0")]
994 unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
995
996 #[stable(feature = "rust1", since = "1.0.0")]
997 impl<T: ?Sized> !Sync for RefCell<T> {}
998
999 #[stable(feature = "rust1", since = "1.0.0")]
1000 impl<T: Clone> Clone for RefCell<T> {
1001 /// # Panics
1002 ///
1003 /// Panics if the value is currently mutably borrowed.
1004 #[inline]
1005 fn clone(&self) -> RefCell<T> {
1006 RefCell::new(self.borrow().clone())
1007 }
1008 }
1009
1010 #[stable(feature = "rust1", since = "1.0.0")]
1011 impl<T: Default> Default for RefCell<T> {
1012 /// Creates a `RefCell<T>`, with the `Default` value for T.
1013 #[inline]
1014 fn default() -> RefCell<T> {
1015 RefCell::new(Default::default())
1016 }
1017 }
1018
1019 #[stable(feature = "rust1", since = "1.0.0")]
1020 impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1021 /// # Panics
1022 ///
1023 /// Panics if the value in either `RefCell` is currently borrowed.
1024 #[inline]
1025 fn eq(&self, other: &RefCell<T>) -> bool {
1026 *self.borrow() == *other.borrow()
1027 }
1028 }
1029
1030 #[stable(feature = "cell_eq", since = "1.2.0")]
1031 impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1032
1033 #[stable(feature = "cell_ord", since = "1.10.0")]
1034 impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1035 /// # Panics
1036 ///
1037 /// Panics if the value in either `RefCell` is currently borrowed.
1038 #[inline]
1039 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1040 self.borrow().partial_cmp(&*other.borrow())
1041 }
1042
1043 /// # Panics
1044 ///
1045 /// Panics if the value in either `RefCell` is currently borrowed.
1046 #[inline]
1047 fn lt(&self, other: &RefCell<T>) -> bool {
1048 *self.borrow() < *other.borrow()
1049 }
1050
1051 /// # Panics
1052 ///
1053 /// Panics if the value in either `RefCell` is currently borrowed.
1054 #[inline]
1055 fn le(&self, other: &RefCell<T>) -> bool {
1056 *self.borrow() <= *other.borrow()
1057 }
1058
1059 /// # Panics
1060 ///
1061 /// Panics if the value in either `RefCell` is currently borrowed.
1062 #[inline]
1063 fn gt(&self, other: &RefCell<T>) -> bool {
1064 *self.borrow() > *other.borrow()
1065 }
1066
1067 /// # Panics
1068 ///
1069 /// Panics if the value in either `RefCell` is currently borrowed.
1070 #[inline]
1071 fn ge(&self, other: &RefCell<T>) -> bool {
1072 *self.borrow() >= *other.borrow()
1073 }
1074 }
1075
1076 #[stable(feature = "cell_ord", since = "1.10.0")]
1077 impl<T: ?Sized + Ord> Ord for RefCell<T> {
1078 /// # Panics
1079 ///
1080 /// Panics if the value in either `RefCell` is currently borrowed.
1081 #[inline]
1082 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1083 self.borrow().cmp(&*other.borrow())
1084 }
1085 }
1086
1087 #[stable(feature = "cell_from", since = "1.12.0")]
1088 impl<T> From<T> for RefCell<T> {
1089 fn from(t: T) -> RefCell<T> {
1090 RefCell::new(t)
1091 }
1092 }
1093
1094 #[unstable(feature = "coerce_unsized", issue = "27732")]
1095 impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1096
1097 struct BorrowRef<'b> {
1098 borrow: &'b Cell<BorrowFlag>,
1099 }
1100
1101 impl<'b> BorrowRef<'b> {
1102 #[inline]
1103 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {
1104 let b = borrow.get().wrapping_add(1);
1105 if !is_reading(b) {
1106 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1107 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1108 // due to Rust's reference aliasing rules
1109 // 2. It was isize::max_value() (the max amount of reading borrows) and it overflowed
1110 // into isize::min_value() (the max amount of writing borrows) so we can't allow
1111 // an additional read borrow because isize can't represent so many read borrows
1112 // (this can only happen if you mem::forget more than a small constant amount of
1113 // `Ref`s, which is not good practice)
1114 None
1115 } else {
1116 // Incrementing borrow can result in a reading value (> 0) in these cases:
1117 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1118 // 2. It was > 0 and < isize::max_value(), i.e. there were read borrows, and isize
1119 // is large enough to represent having one more read borrow
1120 borrow.set(b);
1121 Some(BorrowRef { borrow })
1122 }
1123 }
1124 }
1125
1126 impl Drop for BorrowRef<'_> {
1127 #[inline]
1128 fn drop(&mut self) {
1129 let borrow = self.borrow.get();
1130 debug_assert!(is_reading(borrow));
1131 self.borrow.set(borrow - 1);
1132 }
1133 }
1134
1135 impl Clone for BorrowRef<'_> {
1136 #[inline]
1137 fn clone(&self) -> Self {
1138 // Since this Ref exists, we know the borrow flag
1139 // is a reading borrow.
1140 let borrow = self.borrow.get();
1141 debug_assert!(is_reading(borrow));
1142 // Prevent the borrow counter from overflowing into
1143 // a writing borrow.
1144 assert!(borrow != isize::max_value());
1145 self.borrow.set(borrow + 1);
1146 BorrowRef { borrow: self.borrow }
1147 }
1148 }
1149
1150 /// Wraps a borrowed reference to a value in a `RefCell` box.
1151 /// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1152 ///
1153 /// See the [module-level documentation](index.html) for more.
1154 #[stable(feature = "rust1", since = "1.0.0")]
1155 pub struct Ref<'b, T: ?Sized + 'b> {
1156 value: &'b T,
1157 borrow: BorrowRef<'b>,
1158 }
1159
1160 #[stable(feature = "rust1", since = "1.0.0")]
1161 impl<T: ?Sized> Deref for Ref<'_, T> {
1162 type Target = T;
1163
1164 #[inline]
1165 fn deref(&self) -> &T {
1166 self.value
1167 }
1168 }
1169
1170 impl<'b, T: ?Sized> Ref<'b, T> {
1171 /// Copies a `Ref`.
1172 ///
1173 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1174 ///
1175 /// This is an associated function that needs to be used as
1176 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1177 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1178 /// a `RefCell`.
1179 #[stable(feature = "cell_extras", since = "1.15.0")]
1180 #[inline]
1181 pub fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1182 Ref {
1183 value: orig.value,
1184 borrow: orig.borrow.clone(),
1185 }
1186 }
1187
1188 /// Makes a new `Ref` for a component of the borrowed data.
1189 ///
1190 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1191 ///
1192 /// This is an associated function that needs to be used as `Ref::map(...)`.
1193 /// A method would interfere with methods of the same name on the contents
1194 /// of a `RefCell` used through `Deref`.
1195 ///
1196 /// # Examples
1197 ///
1198 /// ```
1199 /// use std::cell::{RefCell, Ref};
1200 ///
1201 /// let c = RefCell::new((5, 'b'));
1202 /// let b1: Ref<(u32, char)> = c.borrow();
1203 /// let b2: Ref<u32> = Ref::map(b1, |t| &t.0);
1204 /// assert_eq!(*b2, 5)
1205 /// ```
1206 #[stable(feature = "cell_map", since = "1.8.0")]
1207 #[inline]
1208 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1209 where F: FnOnce(&T) -> &U
1210 {
1211 Ref {
1212 value: f(orig.value),
1213 borrow: orig.borrow,
1214 }
1215 }
1216
1217 /// Splits a `Ref` into multiple `Ref`s for different components of the
1218 /// borrowed data.
1219 ///
1220 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1221 ///
1222 /// This is an associated function that needs to be used as
1223 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1224 /// name on the contents of a `RefCell` used through `Deref`.
1225 ///
1226 /// # Examples
1227 ///
1228 /// ```
1229 /// use std::cell::{Ref, RefCell};
1230 ///
1231 /// let cell = RefCell::new([1, 2, 3, 4]);
1232 /// let borrow = cell.borrow();
1233 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1234 /// assert_eq!(*begin, [1, 2]);
1235 /// assert_eq!(*end, [3, 4]);
1236 /// ```
1237 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1238 #[inline]
1239 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1240 where F: FnOnce(&T) -> (&U, &V)
1241 {
1242 let (a, b) = f(orig.value);
1243 let borrow = orig.borrow.clone();
1244 (Ref { value: a, borrow }, Ref { value: b, borrow: orig.borrow })
1245 }
1246 }
1247
1248 #[unstable(feature = "coerce_unsized", issue = "27732")]
1249 impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1250
1251 #[stable(feature = "std_guard_impls", since = "1.20.0")]
1252 impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1253 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1254 self.value.fmt(f)
1255 }
1256 }
1257
1258 impl<'b, T: ?Sized> RefMut<'b, T> {
1259 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1260 /// variant.
1261 ///
1262 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1263 ///
1264 /// This is an associated function that needs to be used as
1265 /// `RefMut::map(...)`. A method would interfere with methods of the same
1266 /// name on the contents of a `RefCell` used through `Deref`.
1267 ///
1268 /// # Examples
1269 ///
1270 /// ```
1271 /// use std::cell::{RefCell, RefMut};
1272 ///
1273 /// let c = RefCell::new((5, 'b'));
1274 /// {
1275 /// let b1: RefMut<(u32, char)> = c.borrow_mut();
1276 /// let mut b2: RefMut<u32> = RefMut::map(b1, |t| &mut t.0);
1277 /// assert_eq!(*b2, 5);
1278 /// *b2 = 42;
1279 /// }
1280 /// assert_eq!(*c.borrow(), (42, 'b'));
1281 /// ```
1282 #[stable(feature = "cell_map", since = "1.8.0")]
1283 #[inline]
1284 pub fn map<U: ?Sized, F>(orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1285 where F: FnOnce(&mut T) -> &mut U
1286 {
1287 // FIXME(nll-rfc#40): fix borrow-check
1288 let RefMut { value, borrow } = orig;
1289 RefMut {
1290 value: f(value),
1291 borrow,
1292 }
1293 }
1294
1295 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1296 /// borrowed data.
1297 ///
1298 /// The underlying `RefCell` will remain mutably borrowed until both
1299 /// returned `RefMut`s go out of scope.
1300 ///
1301 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1302 ///
1303 /// This is an associated function that needs to be used as
1304 /// `RefMut::map_split(...)`. A method would interfere with methods of the
1305 /// same name on the contents of a `RefCell` used through `Deref`.
1306 ///
1307 /// # Examples
1308 ///
1309 /// ```
1310 /// use std::cell::{RefCell, RefMut};
1311 ///
1312 /// let cell = RefCell::new([1, 2, 3, 4]);
1313 /// let borrow = cell.borrow_mut();
1314 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1315 /// assert_eq!(*begin, [1, 2]);
1316 /// assert_eq!(*end, [3, 4]);
1317 /// begin.copy_from_slice(&[4, 3]);
1318 /// end.copy_from_slice(&[2, 1]);
1319 /// ```
1320 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1321 #[inline]
1322 pub fn map_split<U: ?Sized, V: ?Sized, F>(
1323 orig: RefMut<'b, T>, f: F
1324 ) -> (RefMut<'b, U>, RefMut<'b, V>)
1325 where F: FnOnce(&mut T) -> (&mut U, &mut V)
1326 {
1327 let (a, b) = f(orig.value);
1328 let borrow = orig.borrow.clone();
1329 (RefMut { value: a, borrow }, RefMut { value: b, borrow: orig.borrow })
1330 }
1331 }
1332
1333 struct BorrowRefMut<'b> {
1334 borrow: &'b Cell<BorrowFlag>,
1335 }
1336
1337 impl Drop for BorrowRefMut<'_> {
1338 #[inline]
1339 fn drop(&mut self) {
1340 let borrow = self.borrow.get();
1341 debug_assert!(is_writing(borrow));
1342 self.borrow.set(borrow + 1);
1343 }
1344 }
1345
1346 impl<'b> BorrowRefMut<'b> {
1347 #[inline]
1348 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
1349 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1350 // mutable reference, and so there must currently be no existing
1351 // references. Thus, while clone increments the mutable refcount, here
1352 // we explicitly only allow going from UNUSED to UNUSED - 1.
1353 match borrow.get() {
1354 UNUSED => {
1355 borrow.set(UNUSED - 1);
1356 Some(BorrowRefMut { borrow })
1357 },
1358 _ => None,
1359 }
1360 }
1361
1362 // Clones a `BorrowRefMut`.
1363 //
1364 // This is only valid if each `BorrowRefMut` is used to track a mutable
1365 // reference to a distinct, nonoverlapping range of the original object.
1366 // This isn't in a Clone impl so that code doesn't call this implicitly.
1367 #[inline]
1368 fn clone(&self) -> BorrowRefMut<'b> {
1369 let borrow = self.borrow.get();
1370 debug_assert!(is_writing(borrow));
1371 // Prevent the borrow counter from underflowing.
1372 assert!(borrow != isize::min_value());
1373 self.borrow.set(borrow - 1);
1374 BorrowRefMut { borrow: self.borrow }
1375 }
1376 }
1377
1378 /// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
1379 ///
1380 /// See the [module-level documentation](index.html) for more.
1381 #[stable(feature = "rust1", since = "1.0.0")]
1382 pub struct RefMut<'b, T: ?Sized + 'b> {
1383 value: &'b mut T,
1384 borrow: BorrowRefMut<'b>,
1385 }
1386
1387 #[stable(feature = "rust1", since = "1.0.0")]
1388 impl<T: ?Sized> Deref for RefMut<'_, T> {
1389 type Target = T;
1390
1391 #[inline]
1392 fn deref(&self) -> &T {
1393 self.value
1394 }
1395 }
1396
1397 #[stable(feature = "rust1", since = "1.0.0")]
1398 impl<T: ?Sized> DerefMut for RefMut<'_, T> {
1399 #[inline]
1400 fn deref_mut(&mut self) -> &mut T {
1401 self.value
1402 }
1403 }
1404
1405 #[unstable(feature = "coerce_unsized", issue = "27732")]
1406 impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
1407
1408 #[stable(feature = "std_guard_impls", since = "1.20.0")]
1409 impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
1410 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1411 self.value.fmt(f)
1412 }
1413 }
1414
1415 /// The core primitive for interior mutability in Rust.
1416 ///
1417 /// `UnsafeCell<T>` is a type that wraps some `T` and indicates unsafe interior operations on the
1418 /// wrapped type. Types with an `UnsafeCell<T>` field are considered to have an 'unsafe interior'.
1419 /// The `UnsafeCell<T>` type is the only legal way to obtain aliasable data that is considered
1420 /// mutable. In general, transmuting an `&T` type into an `&mut T` is considered undefined behavior.
1421 ///
1422 /// If you have a reference `&SomeStruct`, then normally in Rust all fields of `SomeStruct` are
1423 /// immutable. The compiler makes optimizations based on the knowledge that `&T` is not mutably
1424 /// aliased or mutated, and that `&mut T` is unique. `UnsafeCell<T>` is the only core language
1425 /// feature to work around the restriction that `&T` may not be mutated. All other types that
1426 /// allow internal mutability, such as `Cell<T>` and `RefCell<T>`, use `UnsafeCell` to wrap their
1427 /// internal data. There is *no* legal way to obtain aliasing `&mut`, not even with `UnsafeCell<T>`.
1428 ///
1429 /// The `UnsafeCell` API itself is technically very simple: it gives you a raw pointer `*mut T` to
1430 /// its contents. It is up to _you_ as the abstraction designer to use that raw pointer correctly.
1431 ///
1432 /// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
1433 ///
1434 /// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T`
1435 /// reference) that is accessible by safe code (for example, because you returned it),
1436 /// then you must not access the data in any way that contradicts that reference for the
1437 /// remainder of `'a`. For example, this means that if you take the `*mut T` from an
1438 /// `UnsafeCell<T>` and cast it to an `&T`, then the data in `T` must remain immutable
1439 /// (modulo any `UnsafeCell` data found within `T`, of course) until that reference's
1440 /// lifetime expires. Similarly, if you create a `&mut T` reference that is released to
1441 /// safe code, then you must not access the data within the `UnsafeCell` until that
1442 /// reference expires.
1443 ///
1444 /// - At all times, you must avoid data races. If multiple threads have access to
1445 /// the same `UnsafeCell`, then any writes must have a proper happens-before relation to all other
1446 /// accesses (or use atomics).
1447 ///
1448 /// To assist with proper design, the following scenarios are explicitly declared legal
1449 /// for single-threaded code:
1450 ///
1451 /// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
1452 /// references, but not with a `&mut T`
1453 ///
1454 /// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
1455 /// co-exist with it. A `&mut T` must always be unique.
1456 ///
1457 /// Note that while mutating or mutably aliasing the contents of an `&UnsafeCell<T>` is
1458 /// ok (provided you enforce the invariants some other way), it is still undefined behavior
1459 /// to have multiple `&mut UnsafeCell<T>` aliases.
1460 ///
1461 /// # Examples
1462 ///
1463 /// ```
1464 /// use std::cell::UnsafeCell;
1465 ///
1466 /// # #[allow(dead_code)]
1467 /// struct NotThreadSafe<T> {
1468 /// value: UnsafeCell<T>,
1469 /// }
1470 ///
1471 /// unsafe impl<T> Sync for NotThreadSafe<T> {}
1472 /// ```
1473 #[lang = "unsafe_cell"]
1474 #[stable(feature = "rust1", since = "1.0.0")]
1475 #[repr(transparent)]
1476 pub struct UnsafeCell<T: ?Sized> {
1477 value: T,
1478 }
1479
1480 #[stable(feature = "rust1", since = "1.0.0")]
1481 impl<T: ?Sized> !Sync for UnsafeCell<T> {}
1482
1483 impl<T> UnsafeCell<T> {
1484 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
1485 /// value.
1486 ///
1487 /// All access to the inner value through methods is `unsafe`.
1488 ///
1489 /// # Examples
1490 ///
1491 /// ```
1492 /// use std::cell::UnsafeCell;
1493 ///
1494 /// let uc = UnsafeCell::new(5);
1495 /// ```
1496 #[stable(feature = "rust1", since = "1.0.0")]
1497 #[inline]
1498 pub const fn new(value: T) -> UnsafeCell<T> {
1499 UnsafeCell { value }
1500 }
1501
1502 /// Unwraps the value.
1503 ///
1504 /// # Examples
1505 ///
1506 /// ```
1507 /// use std::cell::UnsafeCell;
1508 ///
1509 /// let uc = UnsafeCell::new(5);
1510 ///
1511 /// let five = uc.into_inner();
1512 /// ```
1513 #[inline]
1514 #[stable(feature = "rust1", since = "1.0.0")]
1515 pub fn into_inner(self) -> T {
1516 self.value
1517 }
1518 }
1519
1520 impl<T: ?Sized> UnsafeCell<T> {
1521 /// Gets a mutable pointer to the wrapped value.
1522 ///
1523 /// This can be cast to a pointer of any kind.
1524 /// Ensure that the access is unique (no active references, mutable or not)
1525 /// when casting to `&mut T`, and ensure that there are no mutations
1526 /// or mutable aliases going on when casting to `&T`
1527 ///
1528 /// # Examples
1529 ///
1530 /// ```
1531 /// use std::cell::UnsafeCell;
1532 ///
1533 /// let uc = UnsafeCell::new(5);
1534 ///
1535 /// let five = uc.get();
1536 /// ```
1537 #[inline]
1538 #[stable(feature = "rust1", since = "1.0.0")]
1539 pub const fn get(&self) -> *mut T {
1540 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
1541 // #[repr(transparent)]
1542 self as *const UnsafeCell<T> as *const T as *mut T
1543 }
1544 }
1545
1546 #[stable(feature = "unsafe_cell_default", since = "1.10.0")]
1547 impl<T: Default> Default for UnsafeCell<T> {
1548 /// Creates an `UnsafeCell`, with the `Default` value for T.
1549 fn default() -> UnsafeCell<T> {
1550 UnsafeCell::new(Default::default())
1551 }
1552 }
1553
1554 #[stable(feature = "cell_from", since = "1.12.0")]
1555 impl<T> From<T> for UnsafeCell<T> {
1556 fn from(t: T) -> UnsafeCell<T> {
1557 UnsafeCell::new(t)
1558 }
1559 }
1560
1561 #[unstable(feature = "coerce_unsized", issue = "27732")]
1562 impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
1563
1564 #[allow(unused)]
1565 fn assert_coerce_unsized(a: UnsafeCell<&i32>, b: Cell<&i32>, c: RefCell<&i32>) {
1566 let _: UnsafeCell<&dyn Send> = a;
1567 let _: Cell<&dyn Send> = b;
1568 let _: RefCell<&dyn Send> = c;
1569 }