]> git.proxmox.com Git - rustc.git/blob - src/libcore/cell.rs
Imported Upstream version 1.9.0+dfsg1
[rustc.git] / src / libcore / cell.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Shareable mutable containers.
12 //!
13 //! Values of the `Cell<T>` and `RefCell<T>` types may be mutated through shared references (i.e.
14 //! the common `&T` type), whereas most Rust types can only be mutated through unique (`&mut T`)
15 //! references. We say that `Cell<T>` and `RefCell<T>` provide 'interior mutability', in contrast
16 //! with typical Rust types that exhibit 'inherited mutability'.
17 //!
18 //! Cell types come in two flavors: `Cell<T>` and `RefCell<T>`. `Cell<T>` provides `get` and `set`
19 //! methods that change the interior value with a single method call. `Cell<T>` though is only
20 //! compatible with types that implement `Copy`. For other types, one must use the `RefCell<T>`
21 //! type, acquiring a write lock before mutating.
22 //!
23 //! `RefCell<T>` uses Rust's lifetimes to implement 'dynamic borrowing', a process whereby one can
24 //! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
25 //! tracked 'at runtime', unlike Rust's native reference types which are entirely tracked
26 //! statically, at compile time. Because `RefCell<T>` borrows are dynamic it is possible to attempt
27 //! to borrow a value that is already mutably borrowed; when this happens it results in thread
28 //! panic.
29 //!
30 //! # When to choose interior mutability
31 //!
32 //! The more common inherited mutability, where one must have unique access to mutate a value, is
33 //! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
34 //! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
35 //! interior mutability is something of a last resort. Since cell types enable mutation where it
36 //! would otherwise be disallowed though, there are occasions when interior mutability might be
37 //! appropriate, or even *must* be used, e.g.
38 //!
39 //! * Introducing mutability 'inside' of something immutable
40 //! * Implementation details of logically-immutable methods.
41 //! * Mutating implementations of `Clone`.
42 //!
43 //! ## Introducing mutability 'inside' of something immutable
44 //!
45 //! Many shared smart pointer types, including `Rc<T>` and `Arc<T>`, provide containers that can be
46 //! cloned and shared between multiple parties. Because the contained values may be
47 //! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
48 //! impossible to mutate data inside of these smart pointers at all.
49 //!
50 //! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
51 //! mutability:
52 //!
53 //! ```
54 //! use std::collections::HashMap;
55 //! use std::cell::RefCell;
56 //! use std::rc::Rc;
57 //!
58 //! fn main() {
59 //! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
60 //! shared_map.borrow_mut().insert("africa", 92388);
61 //! shared_map.borrow_mut().insert("kyoto", 11837);
62 //! shared_map.borrow_mut().insert("piccadilly", 11826);
63 //! shared_map.borrow_mut().insert("marbles", 38);
64 //! }
65 //! ```
66 //!
67 //! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
68 //! scenarios. Consider using `RwLock<T>` or `Mutex<T>` if you need shared mutability in a
69 //! multi-threaded situation.
70 //!
71 //! ## Implementation details of logically-immutable methods
72 //!
73 //! Occasionally it may be desirable not to expose in an API that there is mutation happening
74 //! "under the hood". This may be because logically the operation is immutable, but e.g. caching
75 //! forces the implementation to perform mutation; or because you must employ mutation to implement
76 //! a trait method that was originally defined to take `&self`.
77 //!
78 //! ```
79 //! # #![allow(dead_code)]
80 //! use std::cell::RefCell;
81 //!
82 //! struct Graph {
83 //! edges: Vec<(i32, i32)>,
84 //! span_tree_cache: RefCell<Option<Vec<(i32, i32)>>>
85 //! }
86 //!
87 //! impl Graph {
88 //! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
89 //! // Create a new scope to contain the lifetime of the
90 //! // dynamic borrow
91 //! {
92 //! // Take a reference to the inside of cache cell
93 //! let mut cache = self.span_tree_cache.borrow_mut();
94 //! if cache.is_some() {
95 //! return cache.as_ref().unwrap().clone();
96 //! }
97 //!
98 //! let span_tree = self.calc_span_tree();
99 //! *cache = Some(span_tree);
100 //! }
101 //!
102 //! // Recursive call to return the just-cached value.
103 //! // Note that if we had not let the previous borrow
104 //! // of the cache fall out of scope then the subsequent
105 //! // recursive borrow would cause a dynamic thread panic.
106 //! // This is the major hazard of using `RefCell`.
107 //! self.minimum_spanning_tree()
108 //! }
109 //! # fn calc_span_tree(&self) -> Vec<(i32, i32)> { vec![] }
110 //! }
111 //! ```
112 //!
113 //! ## Mutating implementations of `Clone`
114 //!
115 //! This is simply a special - but common - case of the previous: hiding mutability for operations
116 //! that appear to be immutable. The `clone` method is expected to not change the source value, and
117 //! is declared to take `&self`, not `&mut self`. Therefore any mutation that happens in the
118 //! `clone` method must use cell types. For example, `Rc<T>` maintains its reference counts within a
119 //! `Cell<T>`.
120 //!
121 //! ```
122 //! use std::cell::Cell;
123 //!
124 //! struct Rc<T> {
125 //! ptr: *mut RcBox<T>
126 //! }
127 //!
128 //! struct RcBox<T> {
129 //! # #[allow(dead_code)]
130 //! value: T,
131 //! refcount: Cell<usize>
132 //! }
133 //!
134 //! impl<T> Clone for Rc<T> {
135 //! fn clone(&self) -> Rc<T> {
136 //! unsafe {
137 //! (*self.ptr).refcount.set((*self.ptr).refcount.get() + 1);
138 //! Rc { ptr: self.ptr }
139 //! }
140 //! }
141 //! }
142 //! ```
143 //!
144
145 #![stable(feature = "rust1", since = "1.0.0")]
146
147 use clone::Clone;
148 use cmp::{PartialEq, Eq};
149 use default::Default;
150 use marker::{Copy, Send, Sync, Sized, Unsize};
151 use ops::{Deref, DerefMut, Drop, FnOnce, CoerceUnsized};
152 use option::Option;
153 use option::Option::{None, Some};
154
155 /// A mutable memory location that admits only `Copy` data.
156 ///
157 /// See the [module-level documentation](index.html) for more.
158 #[stable(feature = "rust1", since = "1.0.0")]
159 pub struct Cell<T> {
160 value: UnsafeCell<T>,
161 }
162
163 impl<T:Copy> Cell<T> {
164 /// Creates a new `Cell` containing the given value.
165 ///
166 /// # Examples
167 ///
168 /// ```
169 /// use std::cell::Cell;
170 ///
171 /// let c = Cell::new(5);
172 /// ```
173 #[stable(feature = "rust1", since = "1.0.0")]
174 #[inline]
175 pub const fn new(value: T) -> Cell<T> {
176 Cell {
177 value: UnsafeCell::new(value),
178 }
179 }
180
181 /// Returns a copy of the contained value.
182 ///
183 /// # Examples
184 ///
185 /// ```
186 /// use std::cell::Cell;
187 ///
188 /// let c = Cell::new(5);
189 ///
190 /// let five = c.get();
191 /// ```
192 #[inline]
193 #[stable(feature = "rust1", since = "1.0.0")]
194 pub fn get(&self) -> T {
195 unsafe{ *self.value.get() }
196 }
197
198 /// Sets the contained value.
199 ///
200 /// # Examples
201 ///
202 /// ```
203 /// use std::cell::Cell;
204 ///
205 /// let c = Cell::new(5);
206 ///
207 /// c.set(10);
208 /// ```
209 #[inline]
210 #[stable(feature = "rust1", since = "1.0.0")]
211 pub fn set(&self, value: T) {
212 unsafe {
213 *self.value.get() = value;
214 }
215 }
216
217 /// Returns a reference to the underlying `UnsafeCell`.
218 ///
219 /// # Examples
220 ///
221 /// ```
222 /// #![feature(as_unsafe_cell)]
223 ///
224 /// use std::cell::Cell;
225 ///
226 /// let c = Cell::new(5);
227 ///
228 /// let uc = c.as_unsafe_cell();
229 /// ```
230 #[inline]
231 #[unstable(feature = "as_unsafe_cell", issue = "27708")]
232 pub fn as_unsafe_cell(&self) -> &UnsafeCell<T> {
233 &self.value
234 }
235 }
236
237 #[stable(feature = "rust1", since = "1.0.0")]
238 unsafe impl<T> Send for Cell<T> where T: Send {}
239
240 #[stable(feature = "rust1", since = "1.0.0")]
241 impl<T> !Sync for Cell<T> {}
242
243 #[stable(feature = "rust1", since = "1.0.0")]
244 impl<T:Copy> Clone for Cell<T> {
245 #[inline]
246 fn clone(&self) -> Cell<T> {
247 Cell::new(self.get())
248 }
249 }
250
251 #[stable(feature = "rust1", since = "1.0.0")]
252 impl<T:Default + Copy> Default for Cell<T> {
253 #[inline]
254 fn default() -> Cell<T> {
255 Cell::new(Default::default())
256 }
257 }
258
259 #[stable(feature = "rust1", since = "1.0.0")]
260 impl<T:PartialEq + Copy> PartialEq for Cell<T> {
261 #[inline]
262 fn eq(&self, other: &Cell<T>) -> bool {
263 self.get() == other.get()
264 }
265 }
266
267 #[stable(feature = "cell_eq", since = "1.2.0")]
268 impl<T:Eq + Copy> Eq for Cell<T> {}
269
270 /// A mutable memory location with dynamically checked borrow rules
271 ///
272 /// See the [module-level documentation](index.html) for more.
273 #[stable(feature = "rust1", since = "1.0.0")]
274 pub struct RefCell<T: ?Sized> {
275 borrow: Cell<BorrowFlag>,
276 value: UnsafeCell<T>,
277 }
278
279 /// An enumeration of values returned from the `state` method on a `RefCell<T>`.
280 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
281 #[unstable(feature = "borrow_state", issue = "27733")]
282 pub enum BorrowState {
283 /// The cell is currently being read, there is at least one active `borrow`.
284 Reading,
285 /// The cell is currently being written to, there is an active `borrow_mut`.
286 Writing,
287 /// There are no outstanding borrows on this cell.
288 Unused,
289 }
290
291 // Values [1, MAX-1] represent the number of `Ref` active
292 // (will not outgrow its range since `usize` is the size of the address space)
293 type BorrowFlag = usize;
294 const UNUSED: BorrowFlag = 0;
295 const WRITING: BorrowFlag = !0;
296
297 impl<T> RefCell<T> {
298 /// Creates a new `RefCell` containing `value`.
299 ///
300 /// # Examples
301 ///
302 /// ```
303 /// use std::cell::RefCell;
304 ///
305 /// let c = RefCell::new(5);
306 /// ```
307 #[stable(feature = "rust1", since = "1.0.0")]
308 #[inline]
309 pub const fn new(value: T) -> RefCell<T> {
310 RefCell {
311 value: UnsafeCell::new(value),
312 borrow: Cell::new(UNUSED),
313 }
314 }
315
316 /// Consumes the `RefCell`, returning the wrapped value.
317 ///
318 /// # Examples
319 ///
320 /// ```
321 /// use std::cell::RefCell;
322 ///
323 /// let c = RefCell::new(5);
324 ///
325 /// let five = c.into_inner();
326 /// ```
327 #[stable(feature = "rust1", since = "1.0.0")]
328 #[inline]
329 pub fn into_inner(self) -> T {
330 // Since this function takes `self` (the `RefCell`) by value, the
331 // compiler statically verifies that it is not currently borrowed.
332 // Therefore the following assertion is just a `debug_assert!`.
333 debug_assert!(self.borrow.get() == UNUSED);
334 unsafe { self.value.into_inner() }
335 }
336 }
337
338 impl<T: ?Sized> RefCell<T> {
339 /// Query the current state of this `RefCell`
340 ///
341 /// The returned value can be dispatched on to determine if a call to
342 /// `borrow` or `borrow_mut` would succeed.
343 #[unstable(feature = "borrow_state", issue = "27733")]
344 #[inline]
345 pub fn borrow_state(&self) -> BorrowState {
346 match self.borrow.get() {
347 WRITING => BorrowState::Writing,
348 UNUSED => BorrowState::Unused,
349 _ => BorrowState::Reading,
350 }
351 }
352
353 /// Immutably borrows the wrapped value.
354 ///
355 /// The borrow lasts until the returned `Ref` exits scope. Multiple
356 /// immutable borrows can be taken out at the same time.
357 ///
358 /// # Panics
359 ///
360 /// Panics if the value is currently mutably borrowed.
361 ///
362 /// # Examples
363 ///
364 /// ```
365 /// use std::cell::RefCell;
366 ///
367 /// let c = RefCell::new(5);
368 ///
369 /// let borrowed_five = c.borrow();
370 /// let borrowed_five2 = c.borrow();
371 /// ```
372 ///
373 /// An example of panic:
374 ///
375 /// ```
376 /// use std::cell::RefCell;
377 /// use std::thread;
378 ///
379 /// let result = thread::spawn(move || {
380 /// let c = RefCell::new(5);
381 /// let m = c.borrow_mut();
382 ///
383 /// let b = c.borrow(); // this causes a panic
384 /// }).join();
385 ///
386 /// assert!(result.is_err());
387 /// ```
388 #[stable(feature = "rust1", since = "1.0.0")]
389 #[inline]
390 pub fn borrow(&self) -> Ref<T> {
391 match BorrowRef::new(&self.borrow) {
392 Some(b) => Ref {
393 value: unsafe { &*self.value.get() },
394 borrow: b,
395 },
396 None => panic!("RefCell<T> already mutably borrowed"),
397 }
398 }
399
400 /// Mutably borrows the wrapped value.
401 ///
402 /// The borrow lasts until the returned `RefMut` exits scope. The value
403 /// cannot be borrowed while this borrow is active.
404 ///
405 /// # Panics
406 ///
407 /// Panics if the value is currently borrowed.
408 ///
409 /// # Examples
410 ///
411 /// ```
412 /// use std::cell::RefCell;
413 ///
414 /// let c = RefCell::new(5);
415 ///
416 /// *c.borrow_mut() = 7;
417 ///
418 /// assert_eq!(*c.borrow(), 7);
419 /// ```
420 ///
421 /// An example of panic:
422 ///
423 /// ```
424 /// use std::cell::RefCell;
425 /// use std::thread;
426 ///
427 /// let result = thread::spawn(move || {
428 /// let c = RefCell::new(5);
429 /// let m = c.borrow();
430 ///
431 /// let b = c.borrow_mut(); // this causes a panic
432 /// }).join();
433 ///
434 /// assert!(result.is_err());
435 /// ```
436 #[stable(feature = "rust1", since = "1.0.0")]
437 #[inline]
438 pub fn borrow_mut(&self) -> RefMut<T> {
439 match BorrowRefMut::new(&self.borrow) {
440 Some(b) => RefMut {
441 value: unsafe { &mut *self.value.get() },
442 borrow: b,
443 },
444 None => panic!("RefCell<T> already borrowed"),
445 }
446 }
447
448 /// Returns a reference to the underlying `UnsafeCell`.
449 ///
450 /// This can be used to circumvent `RefCell`'s safety checks.
451 ///
452 /// This function is `unsafe` because `UnsafeCell`'s field is public.
453 #[inline]
454 #[unstable(feature = "as_unsafe_cell", issue = "27708")]
455 pub unsafe fn as_unsafe_cell(&self) -> &UnsafeCell<T> {
456 &self.value
457 }
458 }
459
460 #[stable(feature = "rust1", since = "1.0.0")]
461 unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
462
463 #[stable(feature = "rust1", since = "1.0.0")]
464 impl<T: ?Sized> !Sync for RefCell<T> {}
465
466 #[stable(feature = "rust1", since = "1.0.0")]
467 impl<T: Clone> Clone for RefCell<T> {
468 #[inline]
469 fn clone(&self) -> RefCell<T> {
470 RefCell::new(self.borrow().clone())
471 }
472 }
473
474 #[stable(feature = "rust1", since = "1.0.0")]
475 impl<T:Default> Default for RefCell<T> {
476 #[inline]
477 fn default() -> RefCell<T> {
478 RefCell::new(Default::default())
479 }
480 }
481
482 #[stable(feature = "rust1", since = "1.0.0")]
483 impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
484 #[inline]
485 fn eq(&self, other: &RefCell<T>) -> bool {
486 *self.borrow() == *other.borrow()
487 }
488 }
489
490 #[stable(feature = "cell_eq", since = "1.2.0")]
491 impl<T: ?Sized + Eq> Eq for RefCell<T> {}
492
493 struct BorrowRef<'b> {
494 borrow: &'b Cell<BorrowFlag>,
495 }
496
497 impl<'b> BorrowRef<'b> {
498 #[inline]
499 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {
500 match borrow.get() {
501 WRITING => None,
502 b => {
503 borrow.set(b + 1);
504 Some(BorrowRef { borrow: borrow })
505 },
506 }
507 }
508 }
509
510 impl<'b> Drop for BorrowRef<'b> {
511 #[inline]
512 fn drop(&mut self) {
513 let borrow = self.borrow.get();
514 debug_assert!(borrow != WRITING && borrow != UNUSED);
515 self.borrow.set(borrow - 1);
516 }
517 }
518
519 impl<'b> Clone for BorrowRef<'b> {
520 #[inline]
521 fn clone(&self) -> BorrowRef<'b> {
522 // Since this Ref exists, we know the borrow flag
523 // is not set to WRITING.
524 let borrow = self.borrow.get();
525 debug_assert!(borrow != WRITING && borrow != UNUSED);
526 self.borrow.set(borrow + 1);
527 BorrowRef { borrow: self.borrow }
528 }
529 }
530
531 /// Wraps a borrowed reference to a value in a `RefCell` box.
532 /// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
533 ///
534 /// See the [module-level documentation](index.html) for more.
535 #[stable(feature = "rust1", since = "1.0.0")]
536 pub struct Ref<'b, T: ?Sized + 'b> {
537 value: &'b T,
538 borrow: BorrowRef<'b>,
539 }
540
541 #[stable(feature = "rust1", since = "1.0.0")]
542 impl<'b, T: ?Sized> Deref for Ref<'b, T> {
543 type Target = T;
544
545 #[inline]
546 fn deref(&self) -> &T {
547 self.value
548 }
549 }
550
551 impl<'b, T: ?Sized> Ref<'b, T> {
552 /// Copies a `Ref`.
553 ///
554 /// The `RefCell` is already immutably borrowed, so this cannot fail.
555 ///
556 /// This is an associated function that needs to be used as
557 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
558 /// with the widespread use of `r.borrow().clone()` to clone the contents of
559 /// a `RefCell`.
560 #[unstable(feature = "cell_extras",
561 reason = "likely to be moved to a method, pending language changes",
562 issue = "27746")]
563 #[inline]
564 pub fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
565 Ref {
566 value: orig.value,
567 borrow: orig.borrow.clone(),
568 }
569 }
570
571 /// Make a new `Ref` for a component of the borrowed data.
572 ///
573 /// The `RefCell` is already immutably borrowed, so this cannot fail.
574 ///
575 /// This is an associated function that needs to be used as `Ref::map(...)`.
576 /// A method would interfere with methods of the same name on the contents
577 /// of a `RefCell` used through `Deref`.
578 ///
579 /// # Example
580 ///
581 /// ```
582 /// use std::cell::{RefCell, Ref};
583 ///
584 /// let c = RefCell::new((5, 'b'));
585 /// let b1: Ref<(u32, char)> = c.borrow();
586 /// let b2: Ref<u32> = Ref::map(b1, |t| &t.0);
587 /// assert_eq!(*b2, 5)
588 /// ```
589 #[stable(feature = "cell_map", since = "1.8.0")]
590 #[inline]
591 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
592 where F: FnOnce(&T) -> &U
593 {
594 Ref {
595 value: f(orig.value),
596 borrow: orig.borrow,
597 }
598 }
599
600 /// Make a new `Ref` for an optional component of the borrowed data, e.g. an
601 /// enum variant.
602 ///
603 /// The `RefCell` is already immutably borrowed, so this cannot fail.
604 ///
605 /// This is an associated function that needs to be used as
606 /// `Ref::filter_map(...)`. A method would interfere with methods of the
607 /// same name on the contents of a `RefCell` used through `Deref`.
608 ///
609 /// # Example
610 ///
611 /// ```
612 /// # #![feature(cell_extras)]
613 /// use std::cell::{RefCell, Ref};
614 ///
615 /// let c = RefCell::new(Ok(5));
616 /// let b1: Ref<Result<u32, ()>> = c.borrow();
617 /// let b2: Ref<u32> = Ref::filter_map(b1, |o| o.as_ref().ok()).unwrap();
618 /// assert_eq!(*b2, 5)
619 /// ```
620 #[unstable(feature = "cell_extras", reason = "recently added",
621 issue = "27746")]
622 #[rustc_deprecated(since = "1.8.0", reason = "can be built on `Ref::map`: \
623 https://crates.io/crates/ref_filter_map")]
624 #[inline]
625 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Option<Ref<'b, U>>
626 where F: FnOnce(&T) -> Option<&U>
627 {
628 f(orig.value).map(move |new| Ref {
629 value: new,
630 borrow: orig.borrow,
631 })
632 }
633 }
634
635 #[unstable(feature = "coerce_unsized", issue = "27732")]
636 impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
637
638 impl<'b, T: ?Sized> RefMut<'b, T> {
639 /// Make a new `RefMut` for a component of the borrowed data, e.g. an enum
640 /// variant.
641 ///
642 /// The `RefCell` is already mutably borrowed, so this cannot fail.
643 ///
644 /// This is an associated function that needs to be used as
645 /// `RefMut::map(...)`. A method would interfere with methods of the same
646 /// name on the contents of a `RefCell` used through `Deref`.
647 ///
648 /// # Example
649 ///
650 /// ```
651 /// use std::cell::{RefCell, RefMut};
652 ///
653 /// let c = RefCell::new((5, 'b'));
654 /// {
655 /// let b1: RefMut<(u32, char)> = c.borrow_mut();
656 /// let mut b2: RefMut<u32> = RefMut::map(b1, |t| &mut t.0);
657 /// assert_eq!(*b2, 5);
658 /// *b2 = 42;
659 /// }
660 /// assert_eq!(*c.borrow(), (42, 'b'));
661 /// ```
662 #[stable(feature = "cell_map", since = "1.8.0")]
663 #[inline]
664 pub fn map<U: ?Sized, F>(orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
665 where F: FnOnce(&mut T) -> &mut U
666 {
667 RefMut {
668 value: f(orig.value),
669 borrow: orig.borrow,
670 }
671 }
672
673 /// Make a new `RefMut` for an optional component of the borrowed data, e.g.
674 /// an enum variant.
675 ///
676 /// The `RefCell` is already mutably borrowed, so this cannot fail.
677 ///
678 /// This is an associated function that needs to be used as
679 /// `RefMut::filter_map(...)`. A method would interfere with methods of the
680 /// same name on the contents of a `RefCell` used through `Deref`.
681 ///
682 /// # Example
683 ///
684 /// ```
685 /// # #![feature(cell_extras)]
686 /// use std::cell::{RefCell, RefMut};
687 ///
688 /// let c = RefCell::new(Ok(5));
689 /// {
690 /// let b1: RefMut<Result<u32, ()>> = c.borrow_mut();
691 /// let mut b2: RefMut<u32> = RefMut::filter_map(b1, |o| {
692 /// o.as_mut().ok()
693 /// }).unwrap();
694 /// assert_eq!(*b2, 5);
695 /// *b2 = 42;
696 /// }
697 /// assert_eq!(*c.borrow(), Ok(42));
698 /// ```
699 #[unstable(feature = "cell_extras", reason = "recently added",
700 issue = "27746")]
701 #[rustc_deprecated(since = "1.8.0", reason = "can be built on `RefMut::map`: \
702 https://crates.io/crates/ref_filter_map")]
703 #[inline]
704 pub fn filter_map<U: ?Sized, F>(orig: RefMut<'b, T>, f: F) -> Option<RefMut<'b, U>>
705 where F: FnOnce(&mut T) -> Option<&mut U>
706 {
707 let RefMut { value, borrow } = orig;
708 f(value).map(move |new| RefMut {
709 value: new,
710 borrow: borrow,
711 })
712 }
713 }
714
715 struct BorrowRefMut<'b> {
716 borrow: &'b Cell<BorrowFlag>,
717 }
718
719 impl<'b> Drop for BorrowRefMut<'b> {
720 #[inline]
721 fn drop(&mut self) {
722 let borrow = self.borrow.get();
723 debug_assert!(borrow == WRITING);
724 self.borrow.set(UNUSED);
725 }
726 }
727
728 impl<'b> BorrowRefMut<'b> {
729 #[inline]
730 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
731 match borrow.get() {
732 UNUSED => {
733 borrow.set(WRITING);
734 Some(BorrowRefMut { borrow: borrow })
735 },
736 _ => None,
737 }
738 }
739 }
740
741 /// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
742 ///
743 /// See the [module-level documentation](index.html) for more.
744 #[stable(feature = "rust1", since = "1.0.0")]
745 pub struct RefMut<'b, T: ?Sized + 'b> {
746 value: &'b mut T,
747 borrow: BorrowRefMut<'b>,
748 }
749
750 #[stable(feature = "rust1", since = "1.0.0")]
751 impl<'b, T: ?Sized> Deref for RefMut<'b, T> {
752 type Target = T;
753
754 #[inline]
755 fn deref(&self) -> &T {
756 self.value
757 }
758 }
759
760 #[stable(feature = "rust1", since = "1.0.0")]
761 impl<'b, T: ?Sized> DerefMut for RefMut<'b, T> {
762 #[inline]
763 fn deref_mut(&mut self) -> &mut T {
764 self.value
765 }
766 }
767
768 #[unstable(feature = "coerce_unsized", issue = "27732")]
769 impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
770
771 /// The core primitive for interior mutability in Rust.
772 ///
773 /// `UnsafeCell<T>` is a type that wraps some `T` and indicates unsafe interior operations on the
774 /// wrapped type. Types with an `UnsafeCell<T>` field are considered to have an 'unsafe interior'.
775 /// The `UnsafeCell<T>` type is the only legal way to obtain aliasable data that is considered
776 /// mutable. In general, transmuting an `&T` type into an `&mut T` is considered undefined behavior.
777 ///
778 /// Types like `Cell<T>` and `RefCell<T>` use this type to wrap their internal data.
779 ///
780 /// # Examples
781 ///
782 /// ```
783 /// use std::cell::UnsafeCell;
784 /// use std::marker::Sync;
785 ///
786 /// # #[allow(dead_code)]
787 /// struct NotThreadSafe<T> {
788 /// value: UnsafeCell<T>,
789 /// }
790 ///
791 /// unsafe impl<T> Sync for NotThreadSafe<T> {}
792 /// ```
793 #[lang = "unsafe_cell"]
794 #[stable(feature = "rust1", since = "1.0.0")]
795 pub struct UnsafeCell<T: ?Sized> {
796 value: T,
797 }
798
799 #[stable(feature = "rust1", since = "1.0.0")]
800 impl<T: ?Sized> !Sync for UnsafeCell<T> {}
801
802 impl<T> UnsafeCell<T> {
803 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
804 /// value.
805 ///
806 /// All access to the inner value through methods is `unsafe`.
807 ///
808 /// # Examples
809 ///
810 /// ```
811 /// use std::cell::UnsafeCell;
812 ///
813 /// let uc = UnsafeCell::new(5);
814 /// ```
815 #[stable(feature = "rust1", since = "1.0.0")]
816 #[inline]
817 pub const fn new(value: T) -> UnsafeCell<T> {
818 UnsafeCell { value: value }
819 }
820
821 /// Unwraps the value.
822 ///
823 /// # Safety
824 ///
825 /// This function is unsafe because this thread or another thread may currently be
826 /// inspecting the inner value.
827 ///
828 /// # Examples
829 ///
830 /// ```
831 /// use std::cell::UnsafeCell;
832 ///
833 /// let uc = UnsafeCell::new(5);
834 ///
835 /// let five = unsafe { uc.into_inner() };
836 /// ```
837 #[inline]
838 #[stable(feature = "rust1", since = "1.0.0")]
839 pub unsafe fn into_inner(self) -> T {
840 self.value
841 }
842 }
843
844 impl<T: ?Sized> UnsafeCell<T> {
845 /// Gets a mutable pointer to the wrapped value.
846 ///
847 /// # Examples
848 ///
849 /// ```
850 /// use std::cell::UnsafeCell;
851 ///
852 /// let uc = UnsafeCell::new(5);
853 ///
854 /// let five = uc.get();
855 /// ```
856 #[inline]
857 #[stable(feature = "rust1", since = "1.0.0")]
858 pub fn get(&self) -> *mut T {
859 &self.value as *const T as *mut T
860 }
861 }