]> git.proxmox.com Git - rustc.git/blob - src/libcore/cell.rs
New upstream version 1.28.0~beta.14+dfsg1
[rustc.git] / src / libcore / cell.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Shareable mutable containers.
12 //!
13 //! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
14 //! have one of the following:
15 //!
16 //! - Having several immutable references (`&T`) to the object (also known as **aliasing**).
17 //! - Having one mutable reference (`&mut T`) to the object (also known as **mutability**).
18 //!
19 //! This is enforced by the Rust compiler. However, there are situations where this rule is not
20 //! flexible enough. Sometimes it is required to have multiple references to an object and yet
21 //! mutate it.
22 //!
23 //! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
24 //! presence of aliasing. Both `Cell<T>` and `RefCell<T>` allows to do this in a single threaded
25 //! way. However, neither `Cell<T>` nor `RefCell<T>` are thread safe (they do not implement
26 //! `Sync`). If you need to do aliasing and mutation between multiple threads it is possible to
27 //! use [`Mutex`](../../std/sync/struct.Mutex.html),
28 //! [`RwLock`](../../std/sync/struct.RwLock.html) or
29 //! [`atomic`](../../core/sync/atomic/index.html) types.
30 //!
31 //! Values of the `Cell<T>` and `RefCell<T>` types may be mutated through shared references (i.e.
32 //! the common `&T` type), whereas most Rust types can only be mutated through unique (`&mut T`)
33 //! references. We say that `Cell<T>` and `RefCell<T>` provide 'interior mutability', in contrast
34 //! with typical Rust types that exhibit 'inherited mutability'.
35 //!
36 //! Cell types come in two flavors: `Cell<T>` and `RefCell<T>`. `Cell<T>` implements interior
37 //! mutability by moving values in and out of the `Cell<T>`. To use references instead of values,
38 //! one must use the `RefCell<T>` type, acquiring a write lock before mutating. `Cell<T>` provides
39 //! methods to retrieve and change the current interior value:
40 //!
41 //! - For types that implement `Copy`, the `get` method retrieves the current interior value.
42 //! - For types that implement `Default`, the `take` method replaces the current interior value
43 //! with `Default::default()` and returns the replaced value.
44 //! - For all types, the `replace` method replaces the current interior value and returns the
45 //! replaced value and the `into_inner` method consumes the `Cell<T>` and returns the interior
46 //! value. Additionally, the `set` method replaces the interior value, dropping the replaced
47 //! value.
48 //!
49 //! `RefCell<T>` uses Rust's lifetimes to implement 'dynamic borrowing', a process whereby one can
50 //! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
51 //! tracked 'at runtime', unlike Rust's native reference types which are entirely tracked
52 //! statically, at compile time. Because `RefCell<T>` borrows are dynamic it is possible to attempt
53 //! to borrow a value that is already mutably borrowed; when this happens it results in thread
54 //! panic.
55 //!
56 //! # When to choose interior mutability
57 //!
58 //! The more common inherited mutability, where one must have unique access to mutate a value, is
59 //! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
60 //! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
61 //! interior mutability is something of a last resort. Since cell types enable mutation where it
62 //! would otherwise be disallowed though, there are occasions when interior mutability might be
63 //! appropriate, or even *must* be used, e.g.
64 //!
65 //! * Introducing mutability 'inside' of something immutable
66 //! * Implementation details of logically-immutable methods.
67 //! * Mutating implementations of `Clone`.
68 //!
69 //! ## Introducing mutability 'inside' of something immutable
70 //!
71 //! Many shared smart pointer types, including `Rc<T>` and `Arc<T>`, provide containers that can be
72 //! cloned and shared between multiple parties. Because the contained values may be
73 //! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
74 //! impossible to mutate data inside of these smart pointers at all.
75 //!
76 //! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
77 //! mutability:
78 //!
79 //! ```
80 //! use std::collections::HashMap;
81 //! use std::cell::RefCell;
82 //! use std::rc::Rc;
83 //!
84 //! fn main() {
85 //! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
86 //! shared_map.borrow_mut().insert("africa", 92388);
87 //! shared_map.borrow_mut().insert("kyoto", 11837);
88 //! shared_map.borrow_mut().insert("piccadilly", 11826);
89 //! shared_map.borrow_mut().insert("marbles", 38);
90 //! }
91 //! ```
92 //!
93 //! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
94 //! scenarios. Consider using `RwLock<T>` or `Mutex<T>` if you need shared mutability in a
95 //! multi-threaded situation.
96 //!
97 //! ## Implementation details of logically-immutable methods
98 //!
99 //! Occasionally it may be desirable not to expose in an API that there is mutation happening
100 //! "under the hood". This may be because logically the operation is immutable, but e.g. caching
101 //! forces the implementation to perform mutation; or because you must employ mutation to implement
102 //! a trait method that was originally defined to take `&self`.
103 //!
104 //! ```
105 //! # #![allow(dead_code)]
106 //! use std::cell::RefCell;
107 //!
108 //! struct Graph {
109 //! edges: Vec<(i32, i32)>,
110 //! span_tree_cache: RefCell<Option<Vec<(i32, i32)>>>
111 //! }
112 //!
113 //! impl Graph {
114 //! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
115 //! // Create a new scope to contain the lifetime of the
116 //! // dynamic borrow
117 //! {
118 //! // Take a reference to the inside of cache cell
119 //! let mut cache = self.span_tree_cache.borrow_mut();
120 //! if cache.is_some() {
121 //! return cache.as_ref().unwrap().clone();
122 //! }
123 //!
124 //! let span_tree = self.calc_span_tree();
125 //! *cache = Some(span_tree);
126 //! }
127 //!
128 //! // Recursive call to return the just-cached value.
129 //! // Note that if we had not let the previous borrow
130 //! // of the cache fall out of scope then the subsequent
131 //! // recursive borrow would cause a dynamic thread panic.
132 //! // This is the major hazard of using `RefCell`.
133 //! self.minimum_spanning_tree()
134 //! }
135 //! # fn calc_span_tree(&self) -> Vec<(i32, i32)> { vec![] }
136 //! }
137 //! ```
138 //!
139 //! ## Mutating implementations of `Clone`
140 //!
141 //! This is simply a special - but common - case of the previous: hiding mutability for operations
142 //! that appear to be immutable. The `clone` method is expected to not change the source value, and
143 //! is declared to take `&self`, not `&mut self`. Therefore any mutation that happens in the
144 //! `clone` method must use cell types. For example, `Rc<T>` maintains its reference counts within a
145 //! `Cell<T>`.
146 //!
147 //! ```
148 //! #![feature(core_intrinsics)]
149 //! use std::cell::Cell;
150 //! use std::ptr::NonNull;
151 //! use std::intrinsics::abort;
152 //!
153 //! struct Rc<T: ?Sized> {
154 //! ptr: NonNull<RcBox<T>>
155 //! }
156 //!
157 //! struct RcBox<T: ?Sized> {
158 //! strong: Cell<usize>,
159 //! refcount: Cell<usize>,
160 //! value: T,
161 //! }
162 //!
163 //! impl<T: ?Sized> Clone for Rc<T> {
164 //! fn clone(&self) -> Rc<T> {
165 //! self.inc_strong();
166 //! Rc { ptr: self.ptr }
167 //! }
168 //! }
169 //!
170 //! trait RcBoxPtr<T: ?Sized> {
171 //!
172 //! fn inner(&self) -> &RcBox<T>;
173 //!
174 //! fn strong(&self) -> usize {
175 //! self.inner().strong.get()
176 //! }
177 //!
178 //! fn inc_strong(&self) {
179 //! self.inner()
180 //! .strong
181 //! .set(self.strong()
182 //! .checked_add(1)
183 //! .unwrap_or_else(|| unsafe { abort() }));
184 //! }
185 //! }
186 //!
187 //! impl<T: ?Sized> RcBoxPtr<T> for Rc<T> {
188 //! fn inner(&self) -> &RcBox<T> {
189 //! unsafe {
190 //! self.ptr.as_ref()
191 //! }
192 //! }
193 //! }
194 //! ```
195 //!
196
197 #![stable(feature = "rust1", since = "1.0.0")]
198
199 use cmp::Ordering;
200 use fmt::{self, Debug, Display};
201 use marker::Unsize;
202 use mem;
203 use ops::{Deref, DerefMut, CoerceUnsized};
204 use ptr;
205
206 /// A mutable memory location.
207 ///
208 /// # Examples
209 ///
210 /// Here you can see how using `Cell<T>` allows to use mutable field inside
211 /// immutable struct (which is also called 'interior mutability').
212 ///
213 /// ```
214 /// use std::cell::Cell;
215 ///
216 /// struct SomeStruct {
217 /// regular_field: u8,
218 /// special_field: Cell<u8>,
219 /// }
220 ///
221 /// let my_struct = SomeStruct {
222 /// regular_field: 0,
223 /// special_field: Cell::new(1),
224 /// };
225 ///
226 /// let new_value = 100;
227 ///
228 /// // ERROR, because my_struct is immutable
229 /// // my_struct.regular_field = new_value;
230 ///
231 /// // WORKS, although `my_struct` is immutable, field `special_field` is mutable because it is Cell
232 /// my_struct.special_field.set(new_value);
233 /// assert_eq!(my_struct.special_field.get(), new_value);
234 /// ```
235 ///
236 /// See the [module-level documentation](index.html) for more.
237 #[stable(feature = "rust1", since = "1.0.0")]
238 pub struct Cell<T> {
239 value: UnsafeCell<T>,
240 }
241
242 impl<T:Copy> Cell<T> {
243 /// Returns a copy of the contained value.
244 ///
245 /// # Examples
246 ///
247 /// ```
248 /// use std::cell::Cell;
249 ///
250 /// let c = Cell::new(5);
251 ///
252 /// let five = c.get();
253 /// ```
254 #[inline]
255 #[stable(feature = "rust1", since = "1.0.0")]
256 pub fn get(&self) -> T {
257 unsafe{ *self.value.get() }
258 }
259
260 /// Updates the contained value using a function and returns the new value.
261 ///
262 /// # Examples
263 ///
264 /// ```
265 /// #![feature(cell_update)]
266 ///
267 /// use std::cell::Cell;
268 ///
269 /// let c = Cell::new(5);
270 /// let new = c.update(|x| x + 1);
271 ///
272 /// assert_eq!(new, 6);
273 /// assert_eq!(c.get(), 6);
274 /// ```
275 #[inline]
276 #[unstable(feature = "cell_update", issue = "50186")]
277 pub fn update<F>(&self, f: F) -> T
278 where
279 F: FnOnce(T) -> T,
280 {
281 let old = self.get();
282 let new = f(old);
283 self.set(new);
284 new
285 }
286 }
287
288 #[stable(feature = "rust1", since = "1.0.0")]
289 unsafe impl<T> Send for Cell<T> where T: Send {}
290
291 #[stable(feature = "rust1", since = "1.0.0")]
292 impl<T> !Sync for Cell<T> {}
293
294 #[stable(feature = "rust1", since = "1.0.0")]
295 impl<T:Copy> Clone for Cell<T> {
296 #[inline]
297 fn clone(&self) -> Cell<T> {
298 Cell::new(self.get())
299 }
300 }
301
302 #[stable(feature = "rust1", since = "1.0.0")]
303 impl<T:Default> Default for Cell<T> {
304 /// Creates a `Cell<T>`, with the `Default` value for T.
305 #[inline]
306 fn default() -> Cell<T> {
307 Cell::new(Default::default())
308 }
309 }
310
311 #[stable(feature = "rust1", since = "1.0.0")]
312 impl<T:PartialEq + Copy> PartialEq for Cell<T> {
313 #[inline]
314 fn eq(&self, other: &Cell<T>) -> bool {
315 self.get() == other.get()
316 }
317 }
318
319 #[stable(feature = "cell_eq", since = "1.2.0")]
320 impl<T:Eq + Copy> Eq for Cell<T> {}
321
322 #[stable(feature = "cell_ord", since = "1.10.0")]
323 impl<T:PartialOrd + Copy> PartialOrd for Cell<T> {
324 #[inline]
325 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
326 self.get().partial_cmp(&other.get())
327 }
328
329 #[inline]
330 fn lt(&self, other: &Cell<T>) -> bool {
331 self.get() < other.get()
332 }
333
334 #[inline]
335 fn le(&self, other: &Cell<T>) -> bool {
336 self.get() <= other.get()
337 }
338
339 #[inline]
340 fn gt(&self, other: &Cell<T>) -> bool {
341 self.get() > other.get()
342 }
343
344 #[inline]
345 fn ge(&self, other: &Cell<T>) -> bool {
346 self.get() >= other.get()
347 }
348 }
349
350 #[stable(feature = "cell_ord", since = "1.10.0")]
351 impl<T:Ord + Copy> Ord for Cell<T> {
352 #[inline]
353 fn cmp(&self, other: &Cell<T>) -> Ordering {
354 self.get().cmp(&other.get())
355 }
356 }
357
358 #[stable(feature = "cell_from", since = "1.12.0")]
359 impl<T> From<T> for Cell<T> {
360 fn from(t: T) -> Cell<T> {
361 Cell::new(t)
362 }
363 }
364
365 impl<T> Cell<T> {
366 /// Creates a new `Cell` containing the given value.
367 ///
368 /// # Examples
369 ///
370 /// ```
371 /// use std::cell::Cell;
372 ///
373 /// let c = Cell::new(5);
374 /// ```
375 #[stable(feature = "rust1", since = "1.0.0")]
376 #[inline]
377 pub const fn new(value: T) -> Cell<T> {
378 Cell {
379 value: UnsafeCell::new(value),
380 }
381 }
382
383 /// Returns a raw pointer to the underlying data in this cell.
384 ///
385 /// # Examples
386 ///
387 /// ```
388 /// use std::cell::Cell;
389 ///
390 /// let c = Cell::new(5);
391 ///
392 /// let ptr = c.as_ptr();
393 /// ```
394 #[inline]
395 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
396 pub fn as_ptr(&self) -> *mut T {
397 self.value.get()
398 }
399
400 /// Returns a mutable reference to the underlying data.
401 ///
402 /// This call borrows `Cell` mutably (at compile-time) which guarantees
403 /// that we possess the only reference.
404 ///
405 /// # Examples
406 ///
407 /// ```
408 /// use std::cell::Cell;
409 ///
410 /// let mut c = Cell::new(5);
411 /// *c.get_mut() += 1;
412 ///
413 /// assert_eq!(c.get(), 6);
414 /// ```
415 #[inline]
416 #[stable(feature = "cell_get_mut", since = "1.11.0")]
417 pub fn get_mut(&mut self) -> &mut T {
418 unsafe {
419 &mut *self.value.get()
420 }
421 }
422
423 /// Sets the contained value.
424 ///
425 /// # Examples
426 ///
427 /// ```
428 /// use std::cell::Cell;
429 ///
430 /// let c = Cell::new(5);
431 ///
432 /// c.set(10);
433 /// ```
434 #[inline]
435 #[stable(feature = "rust1", since = "1.0.0")]
436 pub fn set(&self, val: T) {
437 let old = self.replace(val);
438 drop(old);
439 }
440
441 /// Swaps the values of two Cells.
442 /// Difference with `std::mem::swap` is that this function doesn't require `&mut` reference.
443 ///
444 /// # Examples
445 ///
446 /// ```
447 /// use std::cell::Cell;
448 ///
449 /// let c1 = Cell::new(5i32);
450 /// let c2 = Cell::new(10i32);
451 /// c1.swap(&c2);
452 /// assert_eq!(10, c1.get());
453 /// assert_eq!(5, c2.get());
454 /// ```
455 #[inline]
456 #[stable(feature = "move_cell", since = "1.17.0")]
457 pub fn swap(&self, other: &Self) {
458 if ptr::eq(self, other) {
459 return;
460 }
461 unsafe {
462 ptr::swap(self.value.get(), other.value.get());
463 }
464 }
465
466 /// Replaces the contained value, and returns it.
467 ///
468 /// # Examples
469 ///
470 /// ```
471 /// use std::cell::Cell;
472 ///
473 /// let cell = Cell::new(5);
474 /// assert_eq!(cell.get(), 5);
475 /// assert_eq!(cell.replace(10), 5);
476 /// assert_eq!(cell.get(), 10);
477 /// ```
478 #[stable(feature = "move_cell", since = "1.17.0")]
479 pub fn replace(&self, val: T) -> T {
480 mem::replace(unsafe { &mut *self.value.get() }, val)
481 }
482
483 /// Unwraps the value.
484 ///
485 /// # Examples
486 ///
487 /// ```
488 /// use std::cell::Cell;
489 ///
490 /// let c = Cell::new(5);
491 /// let five = c.into_inner();
492 ///
493 /// assert_eq!(five, 5);
494 /// ```
495 #[stable(feature = "move_cell", since = "1.17.0")]
496 pub fn into_inner(self) -> T {
497 self.value.into_inner()
498 }
499 }
500
501 impl<T: Default> Cell<T> {
502 /// Takes the value of the cell, leaving `Default::default()` in its place.
503 ///
504 /// # Examples
505 ///
506 /// ```
507 /// use std::cell::Cell;
508 ///
509 /// let c = Cell::new(5);
510 /// let five = c.take();
511 ///
512 /// assert_eq!(five, 5);
513 /// assert_eq!(c.into_inner(), 0);
514 /// ```
515 #[stable(feature = "move_cell", since = "1.17.0")]
516 pub fn take(&self) -> T {
517 self.replace(Default::default())
518 }
519 }
520
521 #[unstable(feature = "coerce_unsized", issue = "27732")]
522 impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
523
524 /// A mutable memory location with dynamically checked borrow rules
525 ///
526 /// See the [module-level documentation](index.html) for more.
527 #[stable(feature = "rust1", since = "1.0.0")]
528 pub struct RefCell<T: ?Sized> {
529 borrow: Cell<BorrowFlag>,
530 value: UnsafeCell<T>,
531 }
532
533 /// An error returned by [`RefCell::try_borrow`](struct.RefCell.html#method.try_borrow).
534 #[stable(feature = "try_borrow", since = "1.13.0")]
535 pub struct BorrowError {
536 _private: (),
537 }
538
539 #[stable(feature = "try_borrow", since = "1.13.0")]
540 impl Debug for BorrowError {
541 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
542 f.debug_struct("BorrowError").finish()
543 }
544 }
545
546 #[stable(feature = "try_borrow", since = "1.13.0")]
547 impl Display for BorrowError {
548 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
549 Display::fmt("already mutably borrowed", f)
550 }
551 }
552
553 /// An error returned by [`RefCell::try_borrow_mut`](struct.RefCell.html#method.try_borrow_mut).
554 #[stable(feature = "try_borrow", since = "1.13.0")]
555 pub struct BorrowMutError {
556 _private: (),
557 }
558
559 #[stable(feature = "try_borrow", since = "1.13.0")]
560 impl Debug for BorrowMutError {
561 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
562 f.debug_struct("BorrowMutError").finish()
563 }
564 }
565
566 #[stable(feature = "try_borrow", since = "1.13.0")]
567 impl Display for BorrowMutError {
568 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
569 Display::fmt("already borrowed", f)
570 }
571 }
572
573 // Values [1, MIN_WRITING-1] represent the number of `Ref` active. Values in
574 // [MIN_WRITING, MAX-1] represent the number of `RefMut` active. Multiple
575 // `RefMut`s can only be active at a time if they refer to distinct,
576 // nonoverlapping components of a `RefCell` (e.g., different ranges of a slice).
577 //
578 // `Ref` and `RefMut` are both two words in size, and so there will likely never
579 // be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
580 // range. Thus, a `BorrowFlag` will probably never overflow. However, this is
581 // not a guarantee, as a pathological program could repeatedly create and then
582 // mem::forget `Ref`s or `RefMut`s. Thus, all code must explicitly check for
583 // overflow in order to avoid unsafety.
584 type BorrowFlag = usize;
585 const UNUSED: BorrowFlag = 0;
586 const MIN_WRITING: BorrowFlag = (!0)/2 + 1; // 0b1000...
587
588 impl<T> RefCell<T> {
589 /// Creates a new `RefCell` containing `value`.
590 ///
591 /// # Examples
592 ///
593 /// ```
594 /// use std::cell::RefCell;
595 ///
596 /// let c = RefCell::new(5);
597 /// ```
598 #[stable(feature = "rust1", since = "1.0.0")]
599 #[inline]
600 pub const fn new(value: T) -> RefCell<T> {
601 RefCell {
602 value: UnsafeCell::new(value),
603 borrow: Cell::new(UNUSED),
604 }
605 }
606
607 /// Consumes the `RefCell`, returning the wrapped value.
608 ///
609 /// # Examples
610 ///
611 /// ```
612 /// use std::cell::RefCell;
613 ///
614 /// let c = RefCell::new(5);
615 ///
616 /// let five = c.into_inner();
617 /// ```
618 #[stable(feature = "rust1", since = "1.0.0")]
619 #[inline]
620 pub fn into_inner(self) -> T {
621 // Since this function takes `self` (the `RefCell`) by value, the
622 // compiler statically verifies that it is not currently borrowed.
623 // Therefore the following assertion is just a `debug_assert!`.
624 debug_assert!(self.borrow.get() == UNUSED);
625 self.value.into_inner()
626 }
627
628 /// Replaces the wrapped value with a new one, returning the old value,
629 /// without deinitializing either one.
630 ///
631 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
632 ///
633 /// # Panics
634 ///
635 /// Panics if the value is currently borrowed.
636 ///
637 /// # Examples
638 ///
639 /// ```
640 /// use std::cell::RefCell;
641 /// let cell = RefCell::new(5);
642 /// let old_value = cell.replace(6);
643 /// assert_eq!(old_value, 5);
644 /// assert_eq!(cell, RefCell::new(6));
645 /// ```
646 #[inline]
647 #[stable(feature = "refcell_replace", since="1.24.0")]
648 pub fn replace(&self, t: T) -> T {
649 mem::replace(&mut *self.borrow_mut(), t)
650 }
651
652 /// Replaces the wrapped value with a new one computed from `f`, returning
653 /// the old value, without deinitializing either one.
654 ///
655 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
656 ///
657 /// # Panics
658 ///
659 /// Panics if the value is currently borrowed.
660 ///
661 /// # Examples
662 ///
663 /// ```
664 /// #![feature(refcell_replace_swap)]
665 /// use std::cell::RefCell;
666 /// let cell = RefCell::new(5);
667 /// let old_value = cell.replace_with(|&mut old| old + 1);
668 /// assert_eq!(old_value, 5);
669 /// assert_eq!(cell, RefCell::new(6));
670 /// ```
671 #[inline]
672 #[unstable(feature = "refcell_replace_swap", issue="43570")]
673 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
674 let mut_borrow = &mut *self.borrow_mut();
675 let replacement = f(mut_borrow);
676 mem::replace(mut_borrow, replacement)
677 }
678
679 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
680 /// without deinitializing either one.
681 ///
682 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
683 ///
684 /// # Panics
685 ///
686 /// Panics if the value in either `RefCell` is currently borrowed.
687 ///
688 /// # Examples
689 ///
690 /// ```
691 /// use std::cell::RefCell;
692 /// let c = RefCell::new(5);
693 /// let d = RefCell::new(6);
694 /// c.swap(&d);
695 /// assert_eq!(c, RefCell::new(6));
696 /// assert_eq!(d, RefCell::new(5));
697 /// ```
698 #[inline]
699 #[stable(feature = "refcell_swap", since="1.24.0")]
700 pub fn swap(&self, other: &Self) {
701 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
702 }
703 }
704
705 impl<T: ?Sized> RefCell<T> {
706 /// Immutably borrows the wrapped value.
707 ///
708 /// The borrow lasts until the returned `Ref` exits scope. Multiple
709 /// immutable borrows can be taken out at the same time.
710 ///
711 /// # Panics
712 ///
713 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
714 /// [`try_borrow`](#method.try_borrow).
715 ///
716 /// # Examples
717 ///
718 /// ```
719 /// use std::cell::RefCell;
720 ///
721 /// let c = RefCell::new(5);
722 ///
723 /// let borrowed_five = c.borrow();
724 /// let borrowed_five2 = c.borrow();
725 /// ```
726 ///
727 /// An example of panic:
728 ///
729 /// ```
730 /// use std::cell::RefCell;
731 /// use std::thread;
732 ///
733 /// let result = thread::spawn(move || {
734 /// let c = RefCell::new(5);
735 /// let m = c.borrow_mut();
736 ///
737 /// let b = c.borrow(); // this causes a panic
738 /// }).join();
739 ///
740 /// assert!(result.is_err());
741 /// ```
742 #[stable(feature = "rust1", since = "1.0.0")]
743 #[inline]
744 pub fn borrow(&self) -> Ref<T> {
745 self.try_borrow().expect("already mutably borrowed")
746 }
747
748 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
749 /// borrowed.
750 ///
751 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
752 /// taken out at the same time.
753 ///
754 /// This is the non-panicking variant of [`borrow`](#method.borrow).
755 ///
756 /// # Examples
757 ///
758 /// ```
759 /// use std::cell::RefCell;
760 ///
761 /// let c = RefCell::new(5);
762 ///
763 /// {
764 /// let m = c.borrow_mut();
765 /// assert!(c.try_borrow().is_err());
766 /// }
767 ///
768 /// {
769 /// let m = c.borrow();
770 /// assert!(c.try_borrow().is_ok());
771 /// }
772 /// ```
773 #[stable(feature = "try_borrow", since = "1.13.0")]
774 #[inline]
775 pub fn try_borrow(&self) -> Result<Ref<T>, BorrowError> {
776 match BorrowRef::new(&self.borrow) {
777 Some(b) => Ok(Ref {
778 value: unsafe { &*self.value.get() },
779 borrow: b,
780 }),
781 None => Err(BorrowError { _private: () }),
782 }
783 }
784
785 /// Mutably borrows the wrapped value.
786 ///
787 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
788 /// from it exit scope. The value cannot be borrowed while this borrow is
789 /// active.
790 ///
791 /// # Panics
792 ///
793 /// Panics if the value is currently borrowed. For a non-panicking variant, use
794 /// [`try_borrow_mut`](#method.try_borrow_mut).
795 ///
796 /// # Examples
797 ///
798 /// ```
799 /// use std::cell::RefCell;
800 ///
801 /// let c = RefCell::new(5);
802 ///
803 /// *c.borrow_mut() = 7;
804 ///
805 /// assert_eq!(*c.borrow(), 7);
806 /// ```
807 ///
808 /// An example of panic:
809 ///
810 /// ```
811 /// use std::cell::RefCell;
812 /// use std::thread;
813 ///
814 /// let result = thread::spawn(move || {
815 /// let c = RefCell::new(5);
816 /// let m = c.borrow();
817 ///
818 /// let b = c.borrow_mut(); // this causes a panic
819 /// }).join();
820 ///
821 /// assert!(result.is_err());
822 /// ```
823 #[stable(feature = "rust1", since = "1.0.0")]
824 #[inline]
825 pub fn borrow_mut(&self) -> RefMut<T> {
826 self.try_borrow_mut().expect("already borrowed")
827 }
828
829 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
830 ///
831 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
832 /// from it exit scope. The value cannot be borrowed while this borrow is
833 /// active.
834 ///
835 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
836 ///
837 /// # Examples
838 ///
839 /// ```
840 /// use std::cell::RefCell;
841 ///
842 /// let c = RefCell::new(5);
843 ///
844 /// {
845 /// let m = c.borrow();
846 /// assert!(c.try_borrow_mut().is_err());
847 /// }
848 ///
849 /// assert!(c.try_borrow_mut().is_ok());
850 /// ```
851 #[stable(feature = "try_borrow", since = "1.13.0")]
852 #[inline]
853 pub fn try_borrow_mut(&self) -> Result<RefMut<T>, BorrowMutError> {
854 match BorrowRefMut::new(&self.borrow) {
855 Some(b) => Ok(RefMut {
856 value: unsafe { &mut *self.value.get() },
857 borrow: b,
858 }),
859 None => Err(BorrowMutError { _private: () }),
860 }
861 }
862
863 /// Returns a raw pointer to the underlying data in this cell.
864 ///
865 /// # Examples
866 ///
867 /// ```
868 /// use std::cell::RefCell;
869 ///
870 /// let c = RefCell::new(5);
871 ///
872 /// let ptr = c.as_ptr();
873 /// ```
874 #[inline]
875 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
876 pub fn as_ptr(&self) -> *mut T {
877 self.value.get()
878 }
879
880 /// Returns a mutable reference to the underlying data.
881 ///
882 /// This call borrows `RefCell` mutably (at compile-time) so there is no
883 /// need for dynamic checks.
884 ///
885 /// However be cautious: this method expects `self` to be mutable, which is
886 /// generally not the case when using a `RefCell`. Take a look at the
887 /// [`borrow_mut`] method instead if `self` isn't mutable.
888 ///
889 /// Also, please be aware that this method is only for special circumstances and is usually
890 /// not what you want. In case of doubt, use [`borrow_mut`] instead.
891 ///
892 /// [`borrow_mut`]: #method.borrow_mut
893 ///
894 /// # Examples
895 ///
896 /// ```
897 /// use std::cell::RefCell;
898 ///
899 /// let mut c = RefCell::new(5);
900 /// *c.get_mut() += 1;
901 ///
902 /// assert_eq!(c, RefCell::new(6));
903 /// ```
904 #[inline]
905 #[stable(feature = "cell_get_mut", since = "1.11.0")]
906 pub fn get_mut(&mut self) -> &mut T {
907 unsafe {
908 &mut *self.value.get()
909 }
910 }
911 }
912
913 #[stable(feature = "rust1", since = "1.0.0")]
914 unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
915
916 #[stable(feature = "rust1", since = "1.0.0")]
917 impl<T: ?Sized> !Sync for RefCell<T> {}
918
919 #[stable(feature = "rust1", since = "1.0.0")]
920 impl<T: Clone> Clone for RefCell<T> {
921 /// # Panics
922 ///
923 /// Panics if the value is currently mutably borrowed.
924 #[inline]
925 fn clone(&self) -> RefCell<T> {
926 RefCell::new(self.borrow().clone())
927 }
928 }
929
930 #[stable(feature = "rust1", since = "1.0.0")]
931 impl<T:Default> Default for RefCell<T> {
932 /// Creates a `RefCell<T>`, with the `Default` value for T.
933 #[inline]
934 fn default() -> RefCell<T> {
935 RefCell::new(Default::default())
936 }
937 }
938
939 #[stable(feature = "rust1", since = "1.0.0")]
940 impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
941 /// # Panics
942 ///
943 /// Panics if the value in either `RefCell` is currently borrowed.
944 #[inline]
945 fn eq(&self, other: &RefCell<T>) -> bool {
946 *self.borrow() == *other.borrow()
947 }
948 }
949
950 #[stable(feature = "cell_eq", since = "1.2.0")]
951 impl<T: ?Sized + Eq> Eq for RefCell<T> {}
952
953 #[stable(feature = "cell_ord", since = "1.10.0")]
954 impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
955 /// # Panics
956 ///
957 /// Panics if the value in either `RefCell` is currently borrowed.
958 #[inline]
959 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
960 self.borrow().partial_cmp(&*other.borrow())
961 }
962
963 /// # Panics
964 ///
965 /// Panics if the value in either `RefCell` is currently borrowed.
966 #[inline]
967 fn lt(&self, other: &RefCell<T>) -> bool {
968 *self.borrow() < *other.borrow()
969 }
970
971 /// # Panics
972 ///
973 /// Panics if the value in either `RefCell` is currently borrowed.
974 #[inline]
975 fn le(&self, other: &RefCell<T>) -> bool {
976 *self.borrow() <= *other.borrow()
977 }
978
979 /// # Panics
980 ///
981 /// Panics if the value in either `RefCell` is currently borrowed.
982 #[inline]
983 fn gt(&self, other: &RefCell<T>) -> bool {
984 *self.borrow() > *other.borrow()
985 }
986
987 /// # Panics
988 ///
989 /// Panics if the value in either `RefCell` is currently borrowed.
990 #[inline]
991 fn ge(&self, other: &RefCell<T>) -> bool {
992 *self.borrow() >= *other.borrow()
993 }
994 }
995
996 #[stable(feature = "cell_ord", since = "1.10.0")]
997 impl<T: ?Sized + Ord> Ord for RefCell<T> {
998 /// # Panics
999 ///
1000 /// Panics if the value in either `RefCell` is currently borrowed.
1001 #[inline]
1002 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1003 self.borrow().cmp(&*other.borrow())
1004 }
1005 }
1006
1007 #[stable(feature = "cell_from", since = "1.12.0")]
1008 impl<T> From<T> for RefCell<T> {
1009 fn from(t: T) -> RefCell<T> {
1010 RefCell::new(t)
1011 }
1012 }
1013
1014 #[unstable(feature = "coerce_unsized", issue = "27732")]
1015 impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1016
1017 struct BorrowRef<'b> {
1018 borrow: &'b Cell<BorrowFlag>,
1019 }
1020
1021 impl<'b> BorrowRef<'b> {
1022 #[inline]
1023 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {
1024 let b = borrow.get();
1025 if b >= MIN_WRITING {
1026 None
1027 } else {
1028 // Prevent the borrow counter from overflowing into
1029 // a writing borrow.
1030 assert!(b < MIN_WRITING - 1);
1031 borrow.set(b + 1);
1032 Some(BorrowRef { borrow })
1033 }
1034 }
1035 }
1036
1037 impl<'b> Drop for BorrowRef<'b> {
1038 #[inline]
1039 fn drop(&mut self) {
1040 let borrow = self.borrow.get();
1041 debug_assert!(borrow < MIN_WRITING && borrow != UNUSED);
1042 self.borrow.set(borrow - 1);
1043 }
1044 }
1045
1046 impl<'b> Clone for BorrowRef<'b> {
1047 #[inline]
1048 fn clone(&self) -> BorrowRef<'b> {
1049 // Since this Ref exists, we know the borrow flag
1050 // is not set to WRITING.
1051 let borrow = self.borrow.get();
1052 debug_assert!(borrow != UNUSED);
1053 // Prevent the borrow counter from overflowing into
1054 // a writing borrow.
1055 assert!(borrow < MIN_WRITING - 1);
1056 self.borrow.set(borrow + 1);
1057 BorrowRef { borrow: self.borrow }
1058 }
1059 }
1060
1061 /// Wraps a borrowed reference to a value in a `RefCell` box.
1062 /// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1063 ///
1064 /// See the [module-level documentation](index.html) for more.
1065 #[stable(feature = "rust1", since = "1.0.0")]
1066 pub struct Ref<'b, T: ?Sized + 'b> {
1067 value: &'b T,
1068 borrow: BorrowRef<'b>,
1069 }
1070
1071 #[stable(feature = "rust1", since = "1.0.0")]
1072 impl<'b, T: ?Sized> Deref for Ref<'b, T> {
1073 type Target = T;
1074
1075 #[inline]
1076 fn deref(&self) -> &T {
1077 self.value
1078 }
1079 }
1080
1081 impl<'b, T: ?Sized> Ref<'b, T> {
1082 /// Copies a `Ref`.
1083 ///
1084 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1085 ///
1086 /// This is an associated function that needs to be used as
1087 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1088 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1089 /// a `RefCell`.
1090 #[stable(feature = "cell_extras", since = "1.15.0")]
1091 #[inline]
1092 pub fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1093 Ref {
1094 value: orig.value,
1095 borrow: orig.borrow.clone(),
1096 }
1097 }
1098
1099 /// Make a new `Ref` for a component of the borrowed data.
1100 ///
1101 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1102 ///
1103 /// This is an associated function that needs to be used as `Ref::map(...)`.
1104 /// A method would interfere with methods of the same name on the contents
1105 /// of a `RefCell` used through `Deref`.
1106 ///
1107 /// # Examples
1108 ///
1109 /// ```
1110 /// use std::cell::{RefCell, Ref};
1111 ///
1112 /// let c = RefCell::new((5, 'b'));
1113 /// let b1: Ref<(u32, char)> = c.borrow();
1114 /// let b2: Ref<u32> = Ref::map(b1, |t| &t.0);
1115 /// assert_eq!(*b2, 5)
1116 /// ```
1117 #[stable(feature = "cell_map", since = "1.8.0")]
1118 #[inline]
1119 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1120 where F: FnOnce(&T) -> &U
1121 {
1122 Ref {
1123 value: f(orig.value),
1124 borrow: orig.borrow,
1125 }
1126 }
1127
1128 /// Split a `Ref` into multiple `Ref`s for different components of the
1129 /// borrowed data.
1130 ///
1131 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1132 ///
1133 /// This is an associated function that needs to be used as
1134 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1135 /// name on the contents of a `RefCell` used through `Deref`.
1136 ///
1137 /// # Examples
1138 ///
1139 /// ```
1140 /// #![feature(refcell_map_split)]
1141 /// use std::cell::{Ref, RefCell};
1142 ///
1143 /// let cell = RefCell::new([1, 2, 3, 4]);
1144 /// let borrow = cell.borrow();
1145 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1146 /// assert_eq!(*begin, [1, 2]);
1147 /// assert_eq!(*end, [3, 4]);
1148 /// ```
1149 #[unstable(feature = "refcell_map_split", issue = "51476")]
1150 #[inline]
1151 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1152 where F: FnOnce(&T) -> (&U, &V)
1153 {
1154 let (a, b) = f(orig.value);
1155 let borrow = orig.borrow.clone();
1156 (Ref { value: a, borrow }, Ref { value: b, borrow: orig.borrow })
1157 }
1158 }
1159
1160 #[unstable(feature = "coerce_unsized", issue = "27732")]
1161 impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1162
1163 #[stable(feature = "std_guard_impls", since = "1.20.0")]
1164 impl<'a, T: ?Sized + fmt::Display> fmt::Display for Ref<'a, T> {
1165 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1166 self.value.fmt(f)
1167 }
1168 }
1169
1170 impl<'b, T: ?Sized> RefMut<'b, T> {
1171 /// Make a new `RefMut` for a component of the borrowed data, e.g. an enum
1172 /// variant.
1173 ///
1174 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1175 ///
1176 /// This is an associated function that needs to be used as
1177 /// `RefMut::map(...)`. A method would interfere with methods of the same
1178 /// name on the contents of a `RefCell` used through `Deref`.
1179 ///
1180 /// # Examples
1181 ///
1182 /// ```
1183 /// use std::cell::{RefCell, RefMut};
1184 ///
1185 /// let c = RefCell::new((5, 'b'));
1186 /// {
1187 /// let b1: RefMut<(u32, char)> = c.borrow_mut();
1188 /// let mut b2: RefMut<u32> = RefMut::map(b1, |t| &mut t.0);
1189 /// assert_eq!(*b2, 5);
1190 /// *b2 = 42;
1191 /// }
1192 /// assert_eq!(*c.borrow(), (42, 'b'));
1193 /// ```
1194 #[stable(feature = "cell_map", since = "1.8.0")]
1195 #[inline]
1196 pub fn map<U: ?Sized, F>(orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1197 where F: FnOnce(&mut T) -> &mut U
1198 {
1199 // FIXME(nll-rfc#40): fix borrow-check
1200 let RefMut { value, borrow } = orig;
1201 RefMut {
1202 value: f(value),
1203 borrow: borrow,
1204 }
1205 }
1206
1207 /// Split a `RefMut` into multiple `RefMut`s for different components of the
1208 /// borrowed data.
1209 ///
1210 /// The underlying `RefCell` will remain mutably borrowed until both
1211 /// returned `RefMut`s go out of scope.
1212 ///
1213 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1214 ///
1215 /// This is an associated function that needs to be used as
1216 /// `RefMut::map_split(...)`. A method would interfere with methods of the
1217 /// same name on the contents of a `RefCell` used through `Deref`.
1218 ///
1219 /// # Examples
1220 ///
1221 /// ```
1222 /// #![feature(refcell_map_split)]
1223 /// use std::cell::{RefCell, RefMut};
1224 ///
1225 /// let cell = RefCell::new([1, 2, 3, 4]);
1226 /// let borrow = cell.borrow_mut();
1227 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1228 /// assert_eq!(*begin, [1, 2]);
1229 /// assert_eq!(*end, [3, 4]);
1230 /// begin.copy_from_slice(&[4, 3]);
1231 /// end.copy_from_slice(&[2, 1]);
1232 /// ```
1233 #[unstable(feature = "refcell_map_split", issue = "51476")]
1234 #[inline]
1235 pub fn map_split<U: ?Sized, V: ?Sized, F>(
1236 orig: RefMut<'b, T>, f: F
1237 ) -> (RefMut<'b, U>, RefMut<'b, V>)
1238 where F: FnOnce(&mut T) -> (&mut U, &mut V)
1239 {
1240 let (a, b) = f(orig.value);
1241 let borrow = orig.borrow.clone();
1242 (RefMut { value: a, borrow }, RefMut { value: b, borrow: orig.borrow })
1243 }
1244 }
1245
1246 struct BorrowRefMut<'b> {
1247 borrow: &'b Cell<BorrowFlag>,
1248 }
1249
1250 impl<'b> Drop for BorrowRefMut<'b> {
1251 #[inline]
1252 fn drop(&mut self) {
1253 let borrow = self.borrow.get();
1254 debug_assert!(borrow >= MIN_WRITING);
1255 self.borrow.set(if borrow == MIN_WRITING {
1256 UNUSED
1257 } else {
1258 borrow - 1
1259 });
1260 }
1261 }
1262
1263 impl<'b> BorrowRefMut<'b> {
1264 #[inline]
1265 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
1266 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1267 // mutable reference, and so there must currently be no existing
1268 // references. Thus, while clone increments the mutable refcount, here
1269 // we simply go directly from UNUSED to MIN_WRITING.
1270 match borrow.get() {
1271 UNUSED => {
1272 borrow.set(MIN_WRITING);
1273 Some(BorrowRefMut { borrow: borrow })
1274 },
1275 _ => None,
1276 }
1277 }
1278
1279 // Clone a `BorrowRefMut`.
1280 //
1281 // This is only valid if each `BorrowRefMut` is used to track a mutable
1282 // reference to a distinct, nonoverlapping range of the original object.
1283 // This isn't in a Clone impl so that code doesn't call this implicitly.
1284 #[inline]
1285 fn clone(&self) -> BorrowRefMut<'b> {
1286 let borrow = self.borrow.get();
1287 debug_assert!(borrow >= MIN_WRITING);
1288 // Prevent the borrow counter from overflowing.
1289 assert!(borrow != !0);
1290 self.borrow.set(borrow + 1);
1291 BorrowRefMut { borrow: self.borrow }
1292 }
1293 }
1294
1295 /// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
1296 ///
1297 /// See the [module-level documentation](index.html) for more.
1298 #[stable(feature = "rust1", since = "1.0.0")]
1299 pub struct RefMut<'b, T: ?Sized + 'b> {
1300 value: &'b mut T,
1301 borrow: BorrowRefMut<'b>,
1302 }
1303
1304 #[stable(feature = "rust1", since = "1.0.0")]
1305 impl<'b, T: ?Sized> Deref for RefMut<'b, T> {
1306 type Target = T;
1307
1308 #[inline]
1309 fn deref(&self) -> &T {
1310 self.value
1311 }
1312 }
1313
1314 #[stable(feature = "rust1", since = "1.0.0")]
1315 impl<'b, T: ?Sized> DerefMut for RefMut<'b, T> {
1316 #[inline]
1317 fn deref_mut(&mut self) -> &mut T {
1318 self.value
1319 }
1320 }
1321
1322 #[unstable(feature = "coerce_unsized", issue = "27732")]
1323 impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
1324
1325 #[stable(feature = "std_guard_impls", since = "1.20.0")]
1326 impl<'a, T: ?Sized + fmt::Display> fmt::Display for RefMut<'a, T> {
1327 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1328 self.value.fmt(f)
1329 }
1330 }
1331
1332 /// The core primitive for interior mutability in Rust.
1333 ///
1334 /// `UnsafeCell<T>` is a type that wraps some `T` and indicates unsafe interior operations on the
1335 /// wrapped type. Types with an `UnsafeCell<T>` field are considered to have an 'unsafe interior'.
1336 /// The `UnsafeCell<T>` type is the only legal way to obtain aliasable data that is considered
1337 /// mutable. In general, transmuting an `&T` type into an `&mut T` is considered undefined behavior.
1338 ///
1339 /// If you have a reference `&SomeStruct`, then normally in Rust all fields of `SomeStruct` are
1340 /// immutable. The compiler makes optimizations based on the knowledge that `&T` is not mutably
1341 /// aliased or mutated, and that `&mut T` is unique. `UnsafeCell<T>` is the only core language
1342 /// feature to work around this restriction. All other types that allow internal mutability, such as
1343 /// `Cell<T>` and `RefCell<T>`, use `UnsafeCell` to wrap their internal data.
1344 ///
1345 /// The `UnsafeCell` API itself is technically very simple: it gives you a raw pointer `*mut T` to
1346 /// its contents. It is up to _you_ as the abstraction designer to use that raw pointer correctly.
1347 ///
1348 /// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
1349 ///
1350 /// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T`
1351 /// reference) that is accessible by safe code (for example, because you returned it),
1352 /// then you must not access the data in any way that contradicts that reference for the
1353 /// remainder of `'a`. For example, this means that if you take the `*mut T` from an
1354 /// `UnsafeCell<T>` and cast it to an `&T`, then the data in `T` must remain immutable
1355 /// (modulo any `UnsafeCell` data found within `T`, of course) until that reference's
1356 /// lifetime expires. Similarly, if you create a `&mut T` reference that is released to
1357 /// safe code, then you must not access the data within the `UnsafeCell` until that
1358 /// reference expires.
1359 ///
1360 /// - At all times, you must avoid data races. If multiple threads have access to
1361 /// the same `UnsafeCell`, then any writes must have a proper happens-before relation to all other
1362 /// accesses (or use atomics).
1363 ///
1364 /// To assist with proper design, the following scenarios are explicitly declared legal
1365 /// for single-threaded code:
1366 ///
1367 /// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
1368 /// references, but not with a `&mut T`
1369 ///
1370 /// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
1371 /// co-exist with it. A `&mut T` must always be unique.
1372 ///
1373 /// Note that while mutating or mutably aliasing the contents of an `&UnsafeCell<T>` is
1374 /// okay (provided you enforce the invariants some other way), it is still undefined behavior
1375 /// to have multiple `&mut UnsafeCell<T>` aliases.
1376 ///
1377 /// # Examples
1378 ///
1379 /// ```
1380 /// use std::cell::UnsafeCell;
1381 /// use std::marker::Sync;
1382 ///
1383 /// # #[allow(dead_code)]
1384 /// struct NotThreadSafe<T> {
1385 /// value: UnsafeCell<T>,
1386 /// }
1387 ///
1388 /// unsafe impl<T> Sync for NotThreadSafe<T> {}
1389 /// ```
1390 #[lang = "unsafe_cell"]
1391 #[stable(feature = "rust1", since = "1.0.0")]
1392 pub struct UnsafeCell<T: ?Sized> {
1393 value: T,
1394 }
1395
1396 #[stable(feature = "rust1", since = "1.0.0")]
1397 impl<T: ?Sized> !Sync for UnsafeCell<T> {}
1398
1399 impl<T> UnsafeCell<T> {
1400 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
1401 /// value.
1402 ///
1403 /// All access to the inner value through methods is `unsafe`.
1404 ///
1405 /// # Examples
1406 ///
1407 /// ```
1408 /// use std::cell::UnsafeCell;
1409 ///
1410 /// let uc = UnsafeCell::new(5);
1411 /// ```
1412 #[stable(feature = "rust1", since = "1.0.0")]
1413 #[inline]
1414 pub const fn new(value: T) -> UnsafeCell<T> {
1415 UnsafeCell { value: value }
1416 }
1417
1418 /// Unwraps the value.
1419 ///
1420 /// # Examples
1421 ///
1422 /// ```
1423 /// use std::cell::UnsafeCell;
1424 ///
1425 /// let uc = UnsafeCell::new(5);
1426 ///
1427 /// let five = uc.into_inner();
1428 /// ```
1429 #[inline]
1430 #[stable(feature = "rust1", since = "1.0.0")]
1431 pub fn into_inner(self) -> T {
1432 self.value
1433 }
1434 }
1435
1436 impl<T: ?Sized> UnsafeCell<T> {
1437 /// Gets a mutable pointer to the wrapped value.
1438 ///
1439 /// This can be cast to a pointer of any kind.
1440 /// Ensure that the access is unique (no active references, mutable or not)
1441 /// when casting to `&mut T`, and ensure that there are no mutations
1442 /// or mutable aliases going on when casting to `&T`
1443 ///
1444 /// # Examples
1445 ///
1446 /// ```
1447 /// use std::cell::UnsafeCell;
1448 ///
1449 /// let uc = UnsafeCell::new(5);
1450 ///
1451 /// let five = uc.get();
1452 /// ```
1453 #[inline]
1454 #[stable(feature = "rust1", since = "1.0.0")]
1455 pub fn get(&self) -> *mut T {
1456 &self.value as *const T as *mut T
1457 }
1458 }
1459
1460 #[stable(feature = "unsafe_cell_default", since = "1.10.0")]
1461 impl<T: Default> Default for UnsafeCell<T> {
1462 /// Creates an `UnsafeCell`, with the `Default` value for T.
1463 fn default() -> UnsafeCell<T> {
1464 UnsafeCell::new(Default::default())
1465 }
1466 }
1467
1468 #[stable(feature = "cell_from", since = "1.12.0")]
1469 impl<T> From<T> for UnsafeCell<T> {
1470 fn from(t: T) -> UnsafeCell<T> {
1471 UnsafeCell::new(t)
1472 }
1473 }
1474
1475 #[unstable(feature = "coerce_unsized", issue = "27732")]
1476 impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
1477
1478 #[allow(unused)]
1479 fn assert_coerce_unsized(a: UnsafeCell<&i32>, b: Cell<&i32>, c: RefCell<&i32>) {
1480 let _: UnsafeCell<&Send> = a;
1481 let _: Cell<&Send> = b;
1482 let _: RefCell<&Send> = c;
1483 }