]> git.proxmox.com Git - rustc.git/blob - src/libcore/intrinsics.rs
Imported Upstream version 1.3.0+dfsg1
[rustc.git] / src / libcore / intrinsics.rs
1 // Copyright 2013 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! rustc compiler intrinsics.
12 //!
13 //! The corresponding definitions are in librustc_trans/trans/intrinsic.rs.
14 //!
15 //! # Volatiles
16 //!
17 //! The volatile intrinsics provide operations intended to act on I/O
18 //! memory, which are guaranteed to not be reordered by the compiler
19 //! across other volatile intrinsics. See the LLVM documentation on
20 //! [[volatile]].
21 //!
22 //! [volatile]: http://llvm.org/docs/LangRef.html#volatile-memory-accesses
23 //!
24 //! # Atomics
25 //!
26 //! The atomic intrinsics provide common atomic operations on machine
27 //! words, with multiple possible memory orderings. They obey the same
28 //! semantics as C++11. See the LLVM documentation on [[atomics]].
29 //!
30 //! [atomics]: http://llvm.org/docs/Atomics.html
31 //!
32 //! A quick refresher on memory ordering:
33 //!
34 //! * Acquire - a barrier for acquiring a lock. Subsequent reads and writes
35 //! take place after the barrier.
36 //! * Release - a barrier for releasing a lock. Preceding reads and writes
37 //! take place before the barrier.
38 //! * Sequentially consistent - sequentially consistent operations are
39 //! guaranteed to happen in order. This is the standard mode for working
40 //! with atomic types and is equivalent to Java's `volatile`.
41
42 #![unstable(feature = "core_intrinsics",
43 reason = "intrinsics are unlikely to ever be stabilized, instead \
44 they should be used through stabilized interfaces \
45 in the rest of the standard library")]
46 #![allow(missing_docs)]
47
48 use marker::Sized;
49
50 extern "rust-intrinsic" {
51
52 // NB: These intrinsics take raw pointers because they mutate aliased
53 // memory, which is not valid for either `&` or `&mut`.
54
55 pub fn atomic_cxchg<T>(dst: *mut T, old: T, src: T) -> T;
56 pub fn atomic_cxchg_acq<T>(dst: *mut T, old: T, src: T) -> T;
57 pub fn atomic_cxchg_rel<T>(dst: *mut T, old: T, src: T) -> T;
58 pub fn atomic_cxchg_acqrel<T>(dst: *mut T, old: T, src: T) -> T;
59 pub fn atomic_cxchg_relaxed<T>(dst: *mut T, old: T, src: T) -> T;
60
61 pub fn atomic_load<T>(src: *const T) -> T;
62 pub fn atomic_load_acq<T>(src: *const T) -> T;
63 pub fn atomic_load_relaxed<T>(src: *const T) -> T;
64 pub fn atomic_load_unordered<T>(src: *const T) -> T;
65
66 pub fn atomic_store<T>(dst: *mut T, val: T);
67 pub fn atomic_store_rel<T>(dst: *mut T, val: T);
68 pub fn atomic_store_relaxed<T>(dst: *mut T, val: T);
69 pub fn atomic_store_unordered<T>(dst: *mut T, val: T);
70
71 pub fn atomic_xchg<T>(dst: *mut T, src: T) -> T;
72 pub fn atomic_xchg_acq<T>(dst: *mut T, src: T) -> T;
73 pub fn atomic_xchg_rel<T>(dst: *mut T, src: T) -> T;
74 pub fn atomic_xchg_acqrel<T>(dst: *mut T, src: T) -> T;
75 pub fn atomic_xchg_relaxed<T>(dst: *mut T, src: T) -> T;
76
77 pub fn atomic_xadd<T>(dst: *mut T, src: T) -> T;
78 pub fn atomic_xadd_acq<T>(dst: *mut T, src: T) -> T;
79 pub fn atomic_xadd_rel<T>(dst: *mut T, src: T) -> T;
80 pub fn atomic_xadd_acqrel<T>(dst: *mut T, src: T) -> T;
81 pub fn atomic_xadd_relaxed<T>(dst: *mut T, src: T) -> T;
82
83 pub fn atomic_xsub<T>(dst: *mut T, src: T) -> T;
84 pub fn atomic_xsub_acq<T>(dst: *mut T, src: T) -> T;
85 pub fn atomic_xsub_rel<T>(dst: *mut T, src: T) -> T;
86 pub fn atomic_xsub_acqrel<T>(dst: *mut T, src: T) -> T;
87 pub fn atomic_xsub_relaxed<T>(dst: *mut T, src: T) -> T;
88
89 pub fn atomic_and<T>(dst: *mut T, src: T) -> T;
90 pub fn atomic_and_acq<T>(dst: *mut T, src: T) -> T;
91 pub fn atomic_and_rel<T>(dst: *mut T, src: T) -> T;
92 pub fn atomic_and_acqrel<T>(dst: *mut T, src: T) -> T;
93 pub fn atomic_and_relaxed<T>(dst: *mut T, src: T) -> T;
94
95 pub fn atomic_nand<T>(dst: *mut T, src: T) -> T;
96 pub fn atomic_nand_acq<T>(dst: *mut T, src: T) -> T;
97 pub fn atomic_nand_rel<T>(dst: *mut T, src: T) -> T;
98 pub fn atomic_nand_acqrel<T>(dst: *mut T, src: T) -> T;
99 pub fn atomic_nand_relaxed<T>(dst: *mut T, src: T) -> T;
100
101 pub fn atomic_or<T>(dst: *mut T, src: T) -> T;
102 pub fn atomic_or_acq<T>(dst: *mut T, src: T) -> T;
103 pub fn atomic_or_rel<T>(dst: *mut T, src: T) -> T;
104 pub fn atomic_or_acqrel<T>(dst: *mut T, src: T) -> T;
105 pub fn atomic_or_relaxed<T>(dst: *mut T, src: T) -> T;
106
107 pub fn atomic_xor<T>(dst: *mut T, src: T) -> T;
108 pub fn atomic_xor_acq<T>(dst: *mut T, src: T) -> T;
109 pub fn atomic_xor_rel<T>(dst: *mut T, src: T) -> T;
110 pub fn atomic_xor_acqrel<T>(dst: *mut T, src: T) -> T;
111 pub fn atomic_xor_relaxed<T>(dst: *mut T, src: T) -> T;
112
113 pub fn atomic_max<T>(dst: *mut T, src: T) -> T;
114 pub fn atomic_max_acq<T>(dst: *mut T, src: T) -> T;
115 pub fn atomic_max_rel<T>(dst: *mut T, src: T) -> T;
116 pub fn atomic_max_acqrel<T>(dst: *mut T, src: T) -> T;
117 pub fn atomic_max_relaxed<T>(dst: *mut T, src: T) -> T;
118
119 pub fn atomic_min<T>(dst: *mut T, src: T) -> T;
120 pub fn atomic_min_acq<T>(dst: *mut T, src: T) -> T;
121 pub fn atomic_min_rel<T>(dst: *mut T, src: T) -> T;
122 pub fn atomic_min_acqrel<T>(dst: *mut T, src: T) -> T;
123 pub fn atomic_min_relaxed<T>(dst: *mut T, src: T) -> T;
124
125 pub fn atomic_umin<T>(dst: *mut T, src: T) -> T;
126 pub fn atomic_umin_acq<T>(dst: *mut T, src: T) -> T;
127 pub fn atomic_umin_rel<T>(dst: *mut T, src: T) -> T;
128 pub fn atomic_umin_acqrel<T>(dst: *mut T, src: T) -> T;
129 pub fn atomic_umin_relaxed<T>(dst: *mut T, src: T) -> T;
130
131 pub fn atomic_umax<T>(dst: *mut T, src: T) -> T;
132 pub fn atomic_umax_acq<T>(dst: *mut T, src: T) -> T;
133 pub fn atomic_umax_rel<T>(dst: *mut T, src: T) -> T;
134 pub fn atomic_umax_acqrel<T>(dst: *mut T, src: T) -> T;
135 pub fn atomic_umax_relaxed<T>(dst: *mut T, src: T) -> T;
136 }
137
138 extern "rust-intrinsic" {
139
140 pub fn atomic_fence();
141 pub fn atomic_fence_acq();
142 pub fn atomic_fence_rel();
143 pub fn atomic_fence_acqrel();
144
145 /// A compiler-only memory barrier.
146 ///
147 /// Memory accesses will never be reordered across this barrier by the
148 /// compiler, but no instructions will be emitted for it. This is
149 /// appropriate for operations on the same thread that may be preempted,
150 /// such as when interacting with signal handlers.
151 pub fn atomic_singlethreadfence();
152 pub fn atomic_singlethreadfence_acq();
153 pub fn atomic_singlethreadfence_rel();
154 pub fn atomic_singlethreadfence_acqrel();
155
156 /// Aborts the execution of the process.
157 pub fn abort() -> !;
158
159 /// Tells LLVM that this point in the code is not reachable,
160 /// enabling further optimizations.
161 ///
162 /// NB: This is very different from the `unreachable!()` macro!
163 pub fn unreachable() -> !;
164
165 /// Informs the optimizer that a condition is always true.
166 /// If the condition is false, the behavior is undefined.
167 ///
168 /// No code is generated for this intrinsic, but the optimizer will try
169 /// to preserve it (and its condition) between passes, which may interfere
170 /// with optimization of surrounding code and reduce performance. It should
171 /// not be used if the invariant can be discovered by the optimizer on its
172 /// own, or if it does not enable any significant optimizations.
173 pub fn assume(b: bool);
174
175 /// Executes a breakpoint trap, for inspection by a debugger.
176 pub fn breakpoint();
177
178 /// The size of a type in bytes.
179 ///
180 /// This is the exact number of bytes in memory taken up by a
181 /// value of the given type. In other words, a memset of this size
182 /// would *exactly* overwrite a value. When laid out in vectors
183 /// and structures there may be additional padding between
184 /// elements.
185 pub fn size_of<T>() -> usize;
186
187 /// Moves a value to an uninitialized memory location.
188 ///
189 /// Drop glue is not run on the destination.
190 pub fn move_val_init<T>(dst: *mut T, src: T);
191
192 pub fn min_align_of<T>() -> usize;
193 pub fn pref_align_of<T>() -> usize;
194
195 pub fn size_of_val<T: ?Sized>(_: &T) -> usize;
196 pub fn min_align_of_val<T: ?Sized>(_: &T) -> usize;
197 pub fn drop_in_place<T: ?Sized>(_: *mut T);
198
199 /// Gets a static string slice containing the name of a type.
200 pub fn type_name<T: ?Sized>() -> &'static str;
201
202 /// Gets an identifier which is globally unique to the specified type. This
203 /// function will return the same value for a type regardless of whichever
204 /// crate it is invoked in.
205 pub fn type_id<T: ?Sized + 'static>() -> u64;
206
207 /// Creates a value initialized to so that its drop flag,
208 /// if any, says that it has been dropped.
209 ///
210 /// `init_dropped` is unsafe because it returns a datum with all
211 /// of its bytes set to the drop flag, which generally does not
212 /// correspond to a valid value.
213 ///
214 /// This intrinsic is likely to be deprecated in the future when
215 /// Rust moves to non-zeroing dynamic drop (and thus removes the
216 /// embedded drop flags that are being established by this
217 /// intrinsic).
218 pub fn init_dropped<T>() -> T;
219
220 /// Creates a value initialized to zero.
221 ///
222 /// `init` is unsafe because it returns a zeroed-out datum,
223 /// which is unsafe unless T is `Copy`. Also, even if T is
224 /// `Copy`, an all-zero value may not correspond to any legitimate
225 /// state for the type in question.
226 pub fn init<T>() -> T;
227
228 /// Creates an uninitialized value.
229 ///
230 /// `uninit` is unsafe because there is no guarantee of what its
231 /// contents are. In particular its drop-flag may be set to any
232 /// state, which means it may claim either dropped or
233 /// undropped. In the general case one must use `ptr::write` to
234 /// initialize memory previous set to the result of `uninit`.
235 pub fn uninit<T>() -> T;
236
237 /// Moves a value out of scope without running drop glue.
238 pub fn forget<T>(_: T) -> ();
239
240 /// Unsafely transforms a value of one type into a value of another type.
241 ///
242 /// Both types must have the same size.
243 ///
244 /// # Examples
245 ///
246 /// ```
247 /// use std::mem;
248 ///
249 /// let v: &[u8] = unsafe { mem::transmute("L") };
250 /// assert!(v == [76]);
251 /// ```
252 #[stable(feature = "rust1", since = "1.0.0")]
253 pub fn transmute<T,U>(e: T) -> U;
254
255 /// Gives the address for the return value of the enclosing function.
256 ///
257 /// Using this intrinsic in a function that does not use an out pointer
258 /// will trigger a compiler error.
259 pub fn return_address() -> *const u8;
260
261 /// Returns `true` if the actual type given as `T` requires drop
262 /// glue; returns `false` if the actual type provided for `T`
263 /// implements `Copy`.
264 ///
265 /// If the actual type neither requires drop glue nor implements
266 /// `Copy`, then may return `true` or `false`.
267 pub fn needs_drop<T>() -> bool;
268
269 /// Calculates the offset from a pointer.
270 ///
271 /// This is implemented as an intrinsic to avoid converting to and from an
272 /// integer, since the conversion would throw away aliasing information.
273 ///
274 /// # Safety
275 ///
276 /// Both the starting and resulting pointer must be either in bounds or one
277 /// byte past the end of an allocated object. If either pointer is out of
278 /// bounds or arithmetic overflow occurs then any further use of the
279 /// returned value will result in undefined behavior.
280 pub fn offset<T>(dst: *const T, offset: isize) -> *const T;
281
282 /// Calculates the offset from a pointer, potentially wrapping.
283 ///
284 /// This is implemented as an intrinsic to avoid converting to and from an
285 /// integer, since the conversion inhibits certain optimizations.
286 ///
287 /// # Safety
288 ///
289 /// Unlike the `offset` intrinsic, this intrinsic does not restrict the
290 /// resulting pointer to point into or one byte past the end of an allocated
291 /// object, and it wraps with two's complement arithmetic. The resulting
292 /// value is not necessarily valid to be used to actually access memory.
293 pub fn arith_offset<T>(dst: *const T, offset: isize) -> *const T;
294
295 /// Copies `count * size_of<T>` bytes from `src` to `dst`. The source
296 /// and destination may *not* overlap.
297 ///
298 /// `copy_nonoverlapping` is semantically equivalent to C's `memcpy`.
299 ///
300 /// # Safety
301 ///
302 /// Beyond requiring that the program must be allowed to access both regions
303 /// of memory, it is Undefined Behaviour for source and destination to
304 /// overlap. Care must also be taken with the ownership of `src` and
305 /// `dst`. This method semantically moves the values of `src` into `dst`.
306 /// However it does not drop the contents of `dst`, or prevent the contents
307 /// of `src` from being dropped or used.
308 ///
309 /// # Examples
310 ///
311 /// A safe swap function:
312 ///
313 /// ```
314 /// use std::mem;
315 /// use std::ptr;
316 ///
317 /// fn swap<T>(x: &mut T, y: &mut T) {
318 /// unsafe {
319 /// // Give ourselves some scratch space to work with
320 /// let mut t: T = mem::uninitialized();
321 ///
322 /// // Perform the swap, `&mut` pointers never alias
323 /// ptr::copy_nonoverlapping(x, &mut t, 1);
324 /// ptr::copy_nonoverlapping(y, x, 1);
325 /// ptr::copy_nonoverlapping(&t, y, 1);
326 ///
327 /// // y and t now point to the same thing, but we need to completely forget `tmp`
328 /// // because it's no longer relevant.
329 /// mem::forget(t);
330 /// }
331 /// }
332 /// ```
333 #[stable(feature = "rust1", since = "1.0.0")]
334 pub fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize);
335
336 /// Copies `count * size_of<T>` bytes from `src` to `dst`. The source
337 /// and destination may overlap.
338 ///
339 /// `copy` is semantically equivalent to C's `memmove`.
340 ///
341 /// # Safety
342 ///
343 /// Care must be taken with the ownership of `src` and `dst`.
344 /// This method semantically moves the values of `src` into `dst`.
345 /// However it does not drop the contents of `dst`, or prevent the contents of `src`
346 /// from being dropped or used.
347 ///
348 /// # Examples
349 ///
350 /// Efficiently create a Rust vector from an unsafe buffer:
351 ///
352 /// ```
353 /// use std::ptr;
354 ///
355 /// unsafe fn from_buf_raw<T>(ptr: *const T, elts: usize) -> Vec<T> {
356 /// let mut dst = Vec::with_capacity(elts);
357 /// dst.set_len(elts);
358 /// ptr::copy(ptr, dst.as_mut_ptr(), elts);
359 /// dst
360 /// }
361 /// ```
362 ///
363 #[stable(feature = "rust1", since = "1.0.0")]
364 pub fn copy<T>(src: *const T, dst: *mut T, count: usize);
365
366 /// Invokes memset on the specified pointer, setting `count * size_of::<T>()`
367 /// bytes of memory starting at `dst` to `c`.
368 #[stable(feature = "rust1", since = "1.0.0")]
369 pub fn write_bytes<T>(dst: *mut T, val: u8, count: usize);
370
371 /// Equivalent to the appropriate `llvm.memcpy.p0i8.0i8.*` intrinsic, with
372 /// a size of `count` * `size_of::<T>()` and an alignment of
373 /// `min_align_of::<T>()`
374 ///
375 /// The volatile parameter parameter is set to `true`, so it will not be optimized out.
376 pub fn volatile_copy_nonoverlapping_memory<T>(dst: *mut T, src: *const T,
377 count: usize);
378 /// Equivalent to the appropriate `llvm.memmove.p0i8.0i8.*` intrinsic, with
379 /// a size of `count` * `size_of::<T>()` and an alignment of
380 /// `min_align_of::<T>()`
381 ///
382 /// The volatile parameter parameter is set to `true`, so it will not be optimized out.
383 pub fn volatile_copy_memory<T>(dst: *mut T, src: *const T, count: usize);
384 /// Equivalent to the appropriate `llvm.memset.p0i8.*` intrinsic, with a
385 /// size of `count` * `size_of::<T>()` and an alignment of
386 /// `min_align_of::<T>()`.
387 ///
388 /// The volatile parameter parameter is set to `true`, so it will not be optimized out.
389 pub fn volatile_set_memory<T>(dst: *mut T, val: u8, count: usize);
390
391 /// Perform a volatile load from the `src` pointer.
392 pub fn volatile_load<T>(src: *const T) -> T;
393 /// Perform a volatile store to the `dst` pointer.
394 pub fn volatile_store<T>(dst: *mut T, val: T);
395
396 /// Returns the square root of an `f32`
397 pub fn sqrtf32(x: f32) -> f32;
398 /// Returns the square root of an `f64`
399 pub fn sqrtf64(x: f64) -> f64;
400
401 /// Raises an `f32` to an integer power.
402 pub fn powif32(a: f32, x: i32) -> f32;
403 /// Raises an `f64` to an integer power.
404 pub fn powif64(a: f64, x: i32) -> f64;
405
406 /// Returns the sine of an `f32`.
407 pub fn sinf32(x: f32) -> f32;
408 /// Returns the sine of an `f64`.
409 pub fn sinf64(x: f64) -> f64;
410
411 /// Returns the cosine of an `f32`.
412 pub fn cosf32(x: f32) -> f32;
413 /// Returns the cosine of an `f64`.
414 pub fn cosf64(x: f64) -> f64;
415
416 /// Raises an `f32` to an `f32` power.
417 pub fn powf32(a: f32, x: f32) -> f32;
418 /// Raises an `f64` to an `f64` power.
419 pub fn powf64(a: f64, x: f64) -> f64;
420
421 /// Returns the exponential of an `f32`.
422 pub fn expf32(x: f32) -> f32;
423 /// Returns the exponential of an `f64`.
424 pub fn expf64(x: f64) -> f64;
425
426 /// Returns 2 raised to the power of an `f32`.
427 pub fn exp2f32(x: f32) -> f32;
428 /// Returns 2 raised to the power of an `f64`.
429 pub fn exp2f64(x: f64) -> f64;
430
431 /// Returns the natural logarithm of an `f32`.
432 pub fn logf32(x: f32) -> f32;
433 /// Returns the natural logarithm of an `f64`.
434 pub fn logf64(x: f64) -> f64;
435
436 /// Returns the base 10 logarithm of an `f32`.
437 pub fn log10f32(x: f32) -> f32;
438 /// Returns the base 10 logarithm of an `f64`.
439 pub fn log10f64(x: f64) -> f64;
440
441 /// Returns the base 2 logarithm of an `f32`.
442 pub fn log2f32(x: f32) -> f32;
443 /// Returns the base 2 logarithm of an `f64`.
444 pub fn log2f64(x: f64) -> f64;
445
446 /// Returns `a * b + c` for `f32` values.
447 pub fn fmaf32(a: f32, b: f32, c: f32) -> f32;
448 /// Returns `a * b + c` for `f64` values.
449 pub fn fmaf64(a: f64, b: f64, c: f64) -> f64;
450
451 /// Returns the absolute value of an `f32`.
452 pub fn fabsf32(x: f32) -> f32;
453 /// Returns the absolute value of an `f64`.
454 pub fn fabsf64(x: f64) -> f64;
455
456 /// Copies the sign from `y` to `x` for `f32` values.
457 pub fn copysignf32(x: f32, y: f32) -> f32;
458 /// Copies the sign from `y` to `x` for `f64` values.
459 pub fn copysignf64(x: f64, y: f64) -> f64;
460
461 /// Returns the largest integer less than or equal to an `f32`.
462 pub fn floorf32(x: f32) -> f32;
463 /// Returns the largest integer less than or equal to an `f64`.
464 pub fn floorf64(x: f64) -> f64;
465
466 /// Returns the smallest integer greater than or equal to an `f32`.
467 pub fn ceilf32(x: f32) -> f32;
468 /// Returns the smallest integer greater than or equal to an `f64`.
469 pub fn ceilf64(x: f64) -> f64;
470
471 /// Returns the integer part of an `f32`.
472 pub fn truncf32(x: f32) -> f32;
473 /// Returns the integer part of an `f64`.
474 pub fn truncf64(x: f64) -> f64;
475
476 /// Returns the nearest integer to an `f32`. May raise an inexact floating-point exception
477 /// if the argument is not an integer.
478 pub fn rintf32(x: f32) -> f32;
479 /// Returns the nearest integer to an `f64`. May raise an inexact floating-point exception
480 /// if the argument is not an integer.
481 pub fn rintf64(x: f64) -> f64;
482
483 /// Returns the nearest integer to an `f32`.
484 pub fn nearbyintf32(x: f32) -> f32;
485 /// Returns the nearest integer to an `f64`.
486 pub fn nearbyintf64(x: f64) -> f64;
487
488 /// Returns the nearest integer to an `f32`. Rounds half-way cases away from zero.
489 pub fn roundf32(x: f32) -> f32;
490 /// Returns the nearest integer to an `f64`. Rounds half-way cases away from zero.
491 pub fn roundf64(x: f64) -> f64;
492
493 /// Returns the number of bits set in a `u8`.
494 pub fn ctpop8(x: u8) -> u8;
495 /// Returns the number of bits set in a `u16`.
496 pub fn ctpop16(x: u16) -> u16;
497 /// Returns the number of bits set in a `u32`.
498 pub fn ctpop32(x: u32) -> u32;
499 /// Returns the number of bits set in a `u64`.
500 pub fn ctpop64(x: u64) -> u64;
501
502 /// Returns the number of leading bits unset in a `u8`.
503 pub fn ctlz8(x: u8) -> u8;
504 /// Returns the number of leading bits unset in a `u16`.
505 pub fn ctlz16(x: u16) -> u16;
506 /// Returns the number of leading bits unset in a `u32`.
507 pub fn ctlz32(x: u32) -> u32;
508 /// Returns the number of leading bits unset in a `u64`.
509 pub fn ctlz64(x: u64) -> u64;
510
511 /// Returns the number of trailing bits unset in a `u8`.
512 pub fn cttz8(x: u8) -> u8;
513 /// Returns the number of trailing bits unset in a `u16`.
514 pub fn cttz16(x: u16) -> u16;
515 /// Returns the number of trailing bits unset in a `u32`.
516 pub fn cttz32(x: u32) -> u32;
517 /// Returns the number of trailing bits unset in a `u64`.
518 pub fn cttz64(x: u64) -> u64;
519
520 /// Reverses the bytes in a `u16`.
521 pub fn bswap16(x: u16) -> u16;
522 /// Reverses the bytes in a `u32`.
523 pub fn bswap32(x: u32) -> u32;
524 /// Reverses the bytes in a `u64`.
525 pub fn bswap64(x: u64) -> u64;
526
527 /// Performs checked `i8` addition.
528 pub fn i8_add_with_overflow(x: i8, y: i8) -> (i8, bool);
529 /// Performs checked `i16` addition.
530 pub fn i16_add_with_overflow(x: i16, y: i16) -> (i16, bool);
531 /// Performs checked `i32` addition.
532 pub fn i32_add_with_overflow(x: i32, y: i32) -> (i32, bool);
533 /// Performs checked `i64` addition.
534 pub fn i64_add_with_overflow(x: i64, y: i64) -> (i64, bool);
535
536 /// Performs checked `u8` addition.
537 pub fn u8_add_with_overflow(x: u8, y: u8) -> (u8, bool);
538 /// Performs checked `u16` addition.
539 pub fn u16_add_with_overflow(x: u16, y: u16) -> (u16, bool);
540 /// Performs checked `u32` addition.
541 pub fn u32_add_with_overflow(x: u32, y: u32) -> (u32, bool);
542 /// Performs checked `u64` addition.
543 pub fn u64_add_with_overflow(x: u64, y: u64) -> (u64, bool);
544
545 /// Performs checked `i8` subtraction.
546 pub fn i8_sub_with_overflow(x: i8, y: i8) -> (i8, bool);
547 /// Performs checked `i16` subtraction.
548 pub fn i16_sub_with_overflow(x: i16, y: i16) -> (i16, bool);
549 /// Performs checked `i32` subtraction.
550 pub fn i32_sub_with_overflow(x: i32, y: i32) -> (i32, bool);
551 /// Performs checked `i64` subtraction.
552 pub fn i64_sub_with_overflow(x: i64, y: i64) -> (i64, bool);
553
554 /// Performs checked `u8` subtraction.
555 pub fn u8_sub_with_overflow(x: u8, y: u8) -> (u8, bool);
556 /// Performs checked `u16` subtraction.
557 pub fn u16_sub_with_overflow(x: u16, y: u16) -> (u16, bool);
558 /// Performs checked `u32` subtraction.
559 pub fn u32_sub_with_overflow(x: u32, y: u32) -> (u32, bool);
560 /// Performs checked `u64` subtraction.
561 pub fn u64_sub_with_overflow(x: u64, y: u64) -> (u64, bool);
562
563 /// Performs checked `i8` multiplication.
564 pub fn i8_mul_with_overflow(x: i8, y: i8) -> (i8, bool);
565 /// Performs checked `i16` multiplication.
566 pub fn i16_mul_with_overflow(x: i16, y: i16) -> (i16, bool);
567 /// Performs checked `i32` multiplication.
568 pub fn i32_mul_with_overflow(x: i32, y: i32) -> (i32, bool);
569 /// Performs checked `i64` multiplication.
570 pub fn i64_mul_with_overflow(x: i64, y: i64) -> (i64, bool);
571
572 /// Performs checked `u8` multiplication.
573 pub fn u8_mul_with_overflow(x: u8, y: u8) -> (u8, bool);
574 /// Performs checked `u16` multiplication.
575 pub fn u16_mul_with_overflow(x: u16, y: u16) -> (u16, bool);
576 /// Performs checked `u32` multiplication.
577 pub fn u32_mul_with_overflow(x: u32, y: u32) -> (u32, bool);
578 /// Performs checked `u64` multiplication.
579 pub fn u64_mul_with_overflow(x: u64, y: u64) -> (u64, bool);
580
581 /// Returns (a + b) mod 2^N, where N is the width of N in bits.
582 pub fn overflowing_add<T>(a: T, b: T) -> T;
583 /// Returns (a - b) mod 2^N, where N is the width of N in bits.
584 pub fn overflowing_sub<T>(a: T, b: T) -> T;
585 /// Returns (a * b) mod 2^N, where N is the width of N in bits.
586 pub fn overflowing_mul<T>(a: T, b: T) -> T;
587
588 /// Performs an unchecked signed division, which results in undefined behavior,
589 /// in cases where y == 0, or x == isize::MIN and y == -1
590 pub fn unchecked_sdiv<T>(x: T, y: T) -> T;
591 /// Performs an unchecked unsigned division, which results in undefined behavior,
592 /// in cases where y == 0
593 pub fn unchecked_udiv<T>(x: T, y: T) -> T;
594
595 /// Returns the remainder of an unchecked signed division, which results in
596 /// undefined behavior, in cases where y == 0, or x == isize::MIN and y == -1
597 pub fn unchecked_srem<T>(x: T, y: T) -> T;
598 /// Returns the remainder of an unchecked unsigned division, which results in
599 /// undefined behavior, in cases where y == 0
600 pub fn unchecked_urem<T>(x: T, y: T) -> T;
601
602 /// Returns the value of the discriminant for the variant in 'v',
603 /// cast to a `u64`; if `T` has no discriminant, returns 0.
604 pub fn discriminant_value<T>(v: &T) -> u64;
605
606 /// Rust's "try catch" construct which invokes the function pointer `f` with
607 /// the data pointer `data`, returning the exception payload if an exception
608 /// is thrown (aka the thread panics).
609 pub fn try(f: fn(*mut u8), data: *mut u8) -> *mut u8;
610 }