]> git.proxmox.com Git - rustc.git/blob - src/libcore/intrinsics.rs
ece285a831355e3610ead728e5d6193d87667c44
[rustc.git] / src / libcore / intrinsics.rs
1 // Copyright 2013 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! rustc compiler intrinsics.
12 //!
13 //! The corresponding definitions are in librustc_trans/trans/intrinsic.rs.
14 //!
15 //! # Volatiles
16 //!
17 //! The volatile intrinsics provide operations intended to act on I/O
18 //! memory, which are guaranteed to not be reordered by the compiler
19 //! across other volatile intrinsics. See the LLVM documentation on
20 //! [[volatile]].
21 //!
22 //! [volatile]: http://llvm.org/docs/LangRef.html#volatile-memory-accesses
23 //!
24 //! # Atomics
25 //!
26 //! The atomic intrinsics provide common atomic operations on machine
27 //! words, with multiple possible memory orderings. They obey the same
28 //! semantics as C++11. See the LLVM documentation on [[atomics]].
29 //!
30 //! [atomics]: http://llvm.org/docs/Atomics.html
31 //!
32 //! A quick refresher on memory ordering:
33 //!
34 //! * Acquire - a barrier for acquiring a lock. Subsequent reads and writes
35 //! take place after the barrier.
36 //! * Release - a barrier for releasing a lock. Preceding reads and writes
37 //! take place before the barrier.
38 //! * Sequentially consistent - sequentially consistent operations are
39 //! guaranteed to happen in order. This is the standard mode for working
40 //! with atomic types and is equivalent to Java's `volatile`.
41
42 #![unstable(feature = "core_intrinsics",
43 reason = "intrinsics are unlikely to ever be stabilized, instead \
44 they should be used through stabilized interfaces \
45 in the rest of the standard library",
46 issue = "0")]
47 #![allow(missing_docs)]
48
49 use marker::Sized;
50
51 extern "rust-intrinsic" {
52
53 // NB: These intrinsics take raw pointers because they mutate aliased
54 // memory, which is not valid for either `&` or `&mut`.
55
56 pub fn atomic_cxchg<T>(dst: *mut T, old: T, src: T) -> T;
57 pub fn atomic_cxchg_acq<T>(dst: *mut T, old: T, src: T) -> T;
58 pub fn atomic_cxchg_rel<T>(dst: *mut T, old: T, src: T) -> T;
59 pub fn atomic_cxchg_acqrel<T>(dst: *mut T, old: T, src: T) -> T;
60 pub fn atomic_cxchg_relaxed<T>(dst: *mut T, old: T, src: T) -> T;
61
62 pub fn atomic_load<T>(src: *const T) -> T;
63 pub fn atomic_load_acq<T>(src: *const T) -> T;
64 pub fn atomic_load_relaxed<T>(src: *const T) -> T;
65 pub fn atomic_load_unordered<T>(src: *const T) -> T;
66
67 pub fn atomic_store<T>(dst: *mut T, val: T);
68 pub fn atomic_store_rel<T>(dst: *mut T, val: T);
69 pub fn atomic_store_relaxed<T>(dst: *mut T, val: T);
70 pub fn atomic_store_unordered<T>(dst: *mut T, val: T);
71
72 pub fn atomic_xchg<T>(dst: *mut T, src: T) -> T;
73 pub fn atomic_xchg_acq<T>(dst: *mut T, src: T) -> T;
74 pub fn atomic_xchg_rel<T>(dst: *mut T, src: T) -> T;
75 pub fn atomic_xchg_acqrel<T>(dst: *mut T, src: T) -> T;
76 pub fn atomic_xchg_relaxed<T>(dst: *mut T, src: T) -> T;
77
78 pub fn atomic_xadd<T>(dst: *mut T, src: T) -> T;
79 pub fn atomic_xadd_acq<T>(dst: *mut T, src: T) -> T;
80 pub fn atomic_xadd_rel<T>(dst: *mut T, src: T) -> T;
81 pub fn atomic_xadd_acqrel<T>(dst: *mut T, src: T) -> T;
82 pub fn atomic_xadd_relaxed<T>(dst: *mut T, src: T) -> T;
83
84 pub fn atomic_xsub<T>(dst: *mut T, src: T) -> T;
85 pub fn atomic_xsub_acq<T>(dst: *mut T, src: T) -> T;
86 pub fn atomic_xsub_rel<T>(dst: *mut T, src: T) -> T;
87 pub fn atomic_xsub_acqrel<T>(dst: *mut T, src: T) -> T;
88 pub fn atomic_xsub_relaxed<T>(dst: *mut T, src: T) -> T;
89
90 pub fn atomic_and<T>(dst: *mut T, src: T) -> T;
91 pub fn atomic_and_acq<T>(dst: *mut T, src: T) -> T;
92 pub fn atomic_and_rel<T>(dst: *mut T, src: T) -> T;
93 pub fn atomic_and_acqrel<T>(dst: *mut T, src: T) -> T;
94 pub fn atomic_and_relaxed<T>(dst: *mut T, src: T) -> T;
95
96 pub fn atomic_nand<T>(dst: *mut T, src: T) -> T;
97 pub fn atomic_nand_acq<T>(dst: *mut T, src: T) -> T;
98 pub fn atomic_nand_rel<T>(dst: *mut T, src: T) -> T;
99 pub fn atomic_nand_acqrel<T>(dst: *mut T, src: T) -> T;
100 pub fn atomic_nand_relaxed<T>(dst: *mut T, src: T) -> T;
101
102 pub fn atomic_or<T>(dst: *mut T, src: T) -> T;
103 pub fn atomic_or_acq<T>(dst: *mut T, src: T) -> T;
104 pub fn atomic_or_rel<T>(dst: *mut T, src: T) -> T;
105 pub fn atomic_or_acqrel<T>(dst: *mut T, src: T) -> T;
106 pub fn atomic_or_relaxed<T>(dst: *mut T, src: T) -> T;
107
108 pub fn atomic_xor<T>(dst: *mut T, src: T) -> T;
109 pub fn atomic_xor_acq<T>(dst: *mut T, src: T) -> T;
110 pub fn atomic_xor_rel<T>(dst: *mut T, src: T) -> T;
111 pub fn atomic_xor_acqrel<T>(dst: *mut T, src: T) -> T;
112 pub fn atomic_xor_relaxed<T>(dst: *mut T, src: T) -> T;
113
114 pub fn atomic_max<T>(dst: *mut T, src: T) -> T;
115 pub fn atomic_max_acq<T>(dst: *mut T, src: T) -> T;
116 pub fn atomic_max_rel<T>(dst: *mut T, src: T) -> T;
117 pub fn atomic_max_acqrel<T>(dst: *mut T, src: T) -> T;
118 pub fn atomic_max_relaxed<T>(dst: *mut T, src: T) -> T;
119
120 pub fn atomic_min<T>(dst: *mut T, src: T) -> T;
121 pub fn atomic_min_acq<T>(dst: *mut T, src: T) -> T;
122 pub fn atomic_min_rel<T>(dst: *mut T, src: T) -> T;
123 pub fn atomic_min_acqrel<T>(dst: *mut T, src: T) -> T;
124 pub fn atomic_min_relaxed<T>(dst: *mut T, src: T) -> T;
125
126 pub fn atomic_umin<T>(dst: *mut T, src: T) -> T;
127 pub fn atomic_umin_acq<T>(dst: *mut T, src: T) -> T;
128 pub fn atomic_umin_rel<T>(dst: *mut T, src: T) -> T;
129 pub fn atomic_umin_acqrel<T>(dst: *mut T, src: T) -> T;
130 pub fn atomic_umin_relaxed<T>(dst: *mut T, src: T) -> T;
131
132 pub fn atomic_umax<T>(dst: *mut T, src: T) -> T;
133 pub fn atomic_umax_acq<T>(dst: *mut T, src: T) -> T;
134 pub fn atomic_umax_rel<T>(dst: *mut T, src: T) -> T;
135 pub fn atomic_umax_acqrel<T>(dst: *mut T, src: T) -> T;
136 pub fn atomic_umax_relaxed<T>(dst: *mut T, src: T) -> T;
137 }
138
139 extern "rust-intrinsic" {
140
141 pub fn atomic_fence();
142 pub fn atomic_fence_acq();
143 pub fn atomic_fence_rel();
144 pub fn atomic_fence_acqrel();
145
146 /// A compiler-only memory barrier.
147 ///
148 /// Memory accesses will never be reordered across this barrier by the
149 /// compiler, but no instructions will be emitted for it. This is
150 /// appropriate for operations on the same thread that may be preempted,
151 /// such as when interacting with signal handlers.
152 pub fn atomic_singlethreadfence();
153 pub fn atomic_singlethreadfence_acq();
154 pub fn atomic_singlethreadfence_rel();
155 pub fn atomic_singlethreadfence_acqrel();
156
157 /// Aborts the execution of the process.
158 pub fn abort() -> !;
159
160 /// Tells LLVM that this point in the code is not reachable,
161 /// enabling further optimizations.
162 ///
163 /// NB: This is very different from the `unreachable!()` macro!
164 pub fn unreachable() -> !;
165
166 /// Informs the optimizer that a condition is always true.
167 /// If the condition is false, the behavior is undefined.
168 ///
169 /// No code is generated for this intrinsic, but the optimizer will try
170 /// to preserve it (and its condition) between passes, which may interfere
171 /// with optimization of surrounding code and reduce performance. It should
172 /// not be used if the invariant can be discovered by the optimizer on its
173 /// own, or if it does not enable any significant optimizations.
174 pub fn assume(b: bool);
175
176 /// Executes a breakpoint trap, for inspection by a debugger.
177 pub fn breakpoint();
178
179 /// The size of a type in bytes.
180 ///
181 /// This is the exact number of bytes in memory taken up by a
182 /// value of the given type. In other words, a memset of this size
183 /// would *exactly* overwrite a value. When laid out in vectors
184 /// and structures there may be additional padding between
185 /// elements.
186 pub fn size_of<T>() -> usize;
187
188 /// Moves a value to an uninitialized memory location.
189 ///
190 /// Drop glue is not run on the destination.
191 pub fn move_val_init<T>(dst: *mut T, src: T);
192
193 pub fn min_align_of<T>() -> usize;
194 pub fn pref_align_of<T>() -> usize;
195
196 pub fn size_of_val<T: ?Sized>(_: &T) -> usize;
197 pub fn min_align_of_val<T: ?Sized>(_: &T) -> usize;
198 pub fn drop_in_place<T: ?Sized>(_: *mut T);
199
200 /// Gets a static string slice containing the name of a type.
201 pub fn type_name<T: ?Sized>() -> &'static str;
202
203 /// Gets an identifier which is globally unique to the specified type. This
204 /// function will return the same value for a type regardless of whichever
205 /// crate it is invoked in.
206 pub fn type_id<T: ?Sized + 'static>() -> u64;
207
208 /// Creates a value initialized to so that its drop flag,
209 /// if any, says that it has been dropped.
210 ///
211 /// `init_dropped` is unsafe because it returns a datum with all
212 /// of its bytes set to the drop flag, which generally does not
213 /// correspond to a valid value.
214 ///
215 /// This intrinsic is likely to be deprecated in the future when
216 /// Rust moves to non-zeroing dynamic drop (and thus removes the
217 /// embedded drop flags that are being established by this
218 /// intrinsic).
219 pub fn init_dropped<T>() -> T;
220
221 /// Creates a value initialized to zero.
222 ///
223 /// `init` is unsafe because it returns a zeroed-out datum,
224 /// which is unsafe unless T is `Copy`. Also, even if T is
225 /// `Copy`, an all-zero value may not correspond to any legitimate
226 /// state for the type in question.
227 pub fn init<T>() -> T;
228
229 /// Creates an uninitialized value.
230 ///
231 /// `uninit` is unsafe because there is no guarantee of what its
232 /// contents are. In particular its drop-flag may be set to any
233 /// state, which means it may claim either dropped or
234 /// undropped. In the general case one must use `ptr::write` to
235 /// initialize memory previous set to the result of `uninit`.
236 pub fn uninit<T>() -> T;
237
238 /// Moves a value out of scope without running drop glue.
239 pub fn forget<T>(_: T) -> ();
240
241 /// Unsafely transforms a value of one type into a value of another type.
242 ///
243 /// Both types must have the same size.
244 ///
245 /// # Examples
246 ///
247 /// ```
248 /// use std::mem;
249 ///
250 /// let array: &[u8] = unsafe { mem::transmute("Rust") };
251 /// assert_eq!(array, [82, 117, 115, 116]);
252 /// ```
253 #[stable(feature = "rust1", since = "1.0.0")]
254 pub fn transmute<T, U>(e: T) -> U;
255
256 /// Gives the address for the return value of the enclosing function.
257 ///
258 /// Using this intrinsic in a function that does not use an out pointer
259 /// will trigger a compiler error.
260 pub fn return_address() -> *const u8;
261
262 /// Returns `true` if the actual type given as `T` requires drop
263 /// glue; returns `false` if the actual type provided for `T`
264 /// implements `Copy`.
265 ///
266 /// If the actual type neither requires drop glue nor implements
267 /// `Copy`, then may return `true` or `false`.
268 pub fn needs_drop<T>() -> bool;
269
270 /// Calculates the offset from a pointer.
271 ///
272 /// This is implemented as an intrinsic to avoid converting to and from an
273 /// integer, since the conversion would throw away aliasing information.
274 ///
275 /// # Safety
276 ///
277 /// Both the starting and resulting pointer must be either in bounds or one
278 /// byte past the end of an allocated object. If either pointer is out of
279 /// bounds or arithmetic overflow occurs then any further use of the
280 /// returned value will result in undefined behavior.
281 pub fn offset<T>(dst: *const T, offset: isize) -> *const T;
282
283 /// Calculates the offset from a pointer, potentially wrapping.
284 ///
285 /// This is implemented as an intrinsic to avoid converting to and from an
286 /// integer, since the conversion inhibits certain optimizations.
287 ///
288 /// # Safety
289 ///
290 /// Unlike the `offset` intrinsic, this intrinsic does not restrict the
291 /// resulting pointer to point into or one byte past the end of an allocated
292 /// object, and it wraps with two's complement arithmetic. The resulting
293 /// value is not necessarily valid to be used to actually access memory.
294 pub fn arith_offset<T>(dst: *const T, offset: isize) -> *const T;
295
296 /// Copies `count * size_of<T>` bytes from `src` to `dst`. The source
297 /// and destination may *not* overlap.
298 ///
299 /// `copy_nonoverlapping` is semantically equivalent to C's `memcpy`.
300 ///
301 /// # Safety
302 ///
303 /// Beyond requiring that the program must be allowed to access both regions
304 /// of memory, it is Undefined Behaviour for source and destination to
305 /// overlap. Care must also be taken with the ownership of `src` and
306 /// `dst`. This method semantically moves the values of `src` into `dst`.
307 /// However it does not drop the contents of `dst`, or prevent the contents
308 /// of `src` from being dropped or used.
309 ///
310 /// # Examples
311 ///
312 /// A safe swap function:
313 ///
314 /// ```
315 /// use std::mem;
316 /// use std::ptr;
317 ///
318 /// fn swap<T>(x: &mut T, y: &mut T) {
319 /// unsafe {
320 /// // Give ourselves some scratch space to work with
321 /// let mut t: T = mem::uninitialized();
322 ///
323 /// // Perform the swap, `&mut` pointers never alias
324 /// ptr::copy_nonoverlapping(x, &mut t, 1);
325 /// ptr::copy_nonoverlapping(y, x, 1);
326 /// ptr::copy_nonoverlapping(&t, y, 1);
327 ///
328 /// // y and t now point to the same thing, but we need to completely forget `tmp`
329 /// // because it's no longer relevant.
330 /// mem::forget(t);
331 /// }
332 /// }
333 /// ```
334 #[stable(feature = "rust1", since = "1.0.0")]
335 pub fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize);
336
337 /// Copies `count * size_of<T>` bytes from `src` to `dst`. The source
338 /// and destination may overlap.
339 ///
340 /// `copy` is semantically equivalent to C's `memmove`.
341 ///
342 /// # Safety
343 ///
344 /// Care must be taken with the ownership of `src` and `dst`.
345 /// This method semantically moves the values of `src` into `dst`.
346 /// However it does not drop the contents of `dst`, or prevent the contents of `src`
347 /// from being dropped or used.
348 ///
349 /// # Examples
350 ///
351 /// Efficiently create a Rust vector from an unsafe buffer:
352 ///
353 /// ```
354 /// use std::ptr;
355 ///
356 /// unsafe fn from_buf_raw<T>(ptr: *const T, elts: usize) -> Vec<T> {
357 /// let mut dst = Vec::with_capacity(elts);
358 /// dst.set_len(elts);
359 /// ptr::copy(ptr, dst.as_mut_ptr(), elts);
360 /// dst
361 /// }
362 /// ```
363 ///
364 #[stable(feature = "rust1", since = "1.0.0")]
365 pub fn copy<T>(src: *const T, dst: *mut T, count: usize);
366
367 /// Invokes memset on the specified pointer, setting `count * size_of::<T>()`
368 /// bytes of memory starting at `dst` to `c`.
369 #[stable(feature = "rust1", since = "1.0.0")]
370 pub fn write_bytes<T>(dst: *mut T, val: u8, count: usize);
371
372 /// Equivalent to the appropriate `llvm.memcpy.p0i8.0i8.*` intrinsic, with
373 /// a size of `count` * `size_of::<T>()` and an alignment of
374 /// `min_align_of::<T>()`
375 ///
376 /// The volatile parameter parameter is set to `true`, so it will not be optimized out.
377 pub fn volatile_copy_nonoverlapping_memory<T>(dst: *mut T, src: *const T,
378 count: usize);
379 /// Equivalent to the appropriate `llvm.memmove.p0i8.0i8.*` intrinsic, with
380 /// a size of `count` * `size_of::<T>()` and an alignment of
381 /// `min_align_of::<T>()`
382 ///
383 /// The volatile parameter parameter is set to `true`, so it will not be optimized out.
384 pub fn volatile_copy_memory<T>(dst: *mut T, src: *const T, count: usize);
385 /// Equivalent to the appropriate `llvm.memset.p0i8.*` intrinsic, with a
386 /// size of `count` * `size_of::<T>()` and an alignment of
387 /// `min_align_of::<T>()`.
388 ///
389 /// The volatile parameter parameter is set to `true`, so it will not be optimized out.
390 pub fn volatile_set_memory<T>(dst: *mut T, val: u8, count: usize);
391
392 /// Perform a volatile load from the `src` pointer.
393 pub fn volatile_load<T>(src: *const T) -> T;
394 /// Perform a volatile store to the `dst` pointer.
395 pub fn volatile_store<T>(dst: *mut T, val: T);
396
397 /// Returns the square root of an `f32`
398 pub fn sqrtf32(x: f32) -> f32;
399 /// Returns the square root of an `f64`
400 pub fn sqrtf64(x: f64) -> f64;
401
402 /// Raises an `f32` to an integer power.
403 pub fn powif32(a: f32, x: i32) -> f32;
404 /// Raises an `f64` to an integer power.
405 pub fn powif64(a: f64, x: i32) -> f64;
406
407 /// Returns the sine of an `f32`.
408 pub fn sinf32(x: f32) -> f32;
409 /// Returns the sine of an `f64`.
410 pub fn sinf64(x: f64) -> f64;
411
412 /// Returns the cosine of an `f32`.
413 pub fn cosf32(x: f32) -> f32;
414 /// Returns the cosine of an `f64`.
415 pub fn cosf64(x: f64) -> f64;
416
417 /// Raises an `f32` to an `f32` power.
418 pub fn powf32(a: f32, x: f32) -> f32;
419 /// Raises an `f64` to an `f64` power.
420 pub fn powf64(a: f64, x: f64) -> f64;
421
422 /// Returns the exponential of an `f32`.
423 pub fn expf32(x: f32) -> f32;
424 /// Returns the exponential of an `f64`.
425 pub fn expf64(x: f64) -> f64;
426
427 /// Returns 2 raised to the power of an `f32`.
428 pub fn exp2f32(x: f32) -> f32;
429 /// Returns 2 raised to the power of an `f64`.
430 pub fn exp2f64(x: f64) -> f64;
431
432 /// Returns the natural logarithm of an `f32`.
433 pub fn logf32(x: f32) -> f32;
434 /// Returns the natural logarithm of an `f64`.
435 pub fn logf64(x: f64) -> f64;
436
437 /// Returns the base 10 logarithm of an `f32`.
438 pub fn log10f32(x: f32) -> f32;
439 /// Returns the base 10 logarithm of an `f64`.
440 pub fn log10f64(x: f64) -> f64;
441
442 /// Returns the base 2 logarithm of an `f32`.
443 pub fn log2f32(x: f32) -> f32;
444 /// Returns the base 2 logarithm of an `f64`.
445 pub fn log2f64(x: f64) -> f64;
446
447 /// Returns `a * b + c` for `f32` values.
448 pub fn fmaf32(a: f32, b: f32, c: f32) -> f32;
449 /// Returns `a * b + c` for `f64` values.
450 pub fn fmaf64(a: f64, b: f64, c: f64) -> f64;
451
452 /// Returns the absolute value of an `f32`.
453 pub fn fabsf32(x: f32) -> f32;
454 /// Returns the absolute value of an `f64`.
455 pub fn fabsf64(x: f64) -> f64;
456
457 /// Copies the sign from `y` to `x` for `f32` values.
458 pub fn copysignf32(x: f32, y: f32) -> f32;
459 /// Copies the sign from `y` to `x` for `f64` values.
460 pub fn copysignf64(x: f64, y: f64) -> f64;
461
462 /// Returns the largest integer less than or equal to an `f32`.
463 pub fn floorf32(x: f32) -> f32;
464 /// Returns the largest integer less than or equal to an `f64`.
465 pub fn floorf64(x: f64) -> f64;
466
467 /// Returns the smallest integer greater than or equal to an `f32`.
468 pub fn ceilf32(x: f32) -> f32;
469 /// Returns the smallest integer greater than or equal to an `f64`.
470 pub fn ceilf64(x: f64) -> f64;
471
472 /// Returns the integer part of an `f32`.
473 pub fn truncf32(x: f32) -> f32;
474 /// Returns the integer part of an `f64`.
475 pub fn truncf64(x: f64) -> f64;
476
477 /// Returns the nearest integer to an `f32`. May raise an inexact floating-point exception
478 /// if the argument is not an integer.
479 pub fn rintf32(x: f32) -> f32;
480 /// Returns the nearest integer to an `f64`. May raise an inexact floating-point exception
481 /// if the argument is not an integer.
482 pub fn rintf64(x: f64) -> f64;
483
484 /// Returns the nearest integer to an `f32`.
485 pub fn nearbyintf32(x: f32) -> f32;
486 /// Returns the nearest integer to an `f64`.
487 pub fn nearbyintf64(x: f64) -> f64;
488
489 /// Returns the nearest integer to an `f32`. Rounds half-way cases away from zero.
490 pub fn roundf32(x: f32) -> f32;
491 /// Returns the nearest integer to an `f64`. Rounds half-way cases away from zero.
492 pub fn roundf64(x: f64) -> f64;
493
494 /// Returns the number of bits set in a `u8`.
495 pub fn ctpop8(x: u8) -> u8;
496 /// Returns the number of bits set in a `u16`.
497 pub fn ctpop16(x: u16) -> u16;
498 /// Returns the number of bits set in a `u32`.
499 pub fn ctpop32(x: u32) -> u32;
500 /// Returns the number of bits set in a `u64`.
501 pub fn ctpop64(x: u64) -> u64;
502
503 /// Returns the number of leading bits unset in a `u8`.
504 pub fn ctlz8(x: u8) -> u8;
505 /// Returns the number of leading bits unset in a `u16`.
506 pub fn ctlz16(x: u16) -> u16;
507 /// Returns the number of leading bits unset in a `u32`.
508 pub fn ctlz32(x: u32) -> u32;
509 /// Returns the number of leading bits unset in a `u64`.
510 pub fn ctlz64(x: u64) -> u64;
511
512 /// Returns the number of trailing bits unset in a `u8`.
513 pub fn cttz8(x: u8) -> u8;
514 /// Returns the number of trailing bits unset in a `u16`.
515 pub fn cttz16(x: u16) -> u16;
516 /// Returns the number of trailing bits unset in a `u32`.
517 pub fn cttz32(x: u32) -> u32;
518 /// Returns the number of trailing bits unset in a `u64`.
519 pub fn cttz64(x: u64) -> u64;
520
521 /// Reverses the bytes in a `u16`.
522 pub fn bswap16(x: u16) -> u16;
523 /// Reverses the bytes in a `u32`.
524 pub fn bswap32(x: u32) -> u32;
525 /// Reverses the bytes in a `u64`.
526 pub fn bswap64(x: u64) -> u64;
527
528 /// Performs checked `i8` addition.
529 pub fn i8_add_with_overflow(x: i8, y: i8) -> (i8, bool);
530 /// Performs checked `i16` addition.
531 pub fn i16_add_with_overflow(x: i16, y: i16) -> (i16, bool);
532 /// Performs checked `i32` addition.
533 pub fn i32_add_with_overflow(x: i32, y: i32) -> (i32, bool);
534 /// Performs checked `i64` addition.
535 pub fn i64_add_with_overflow(x: i64, y: i64) -> (i64, bool);
536
537 /// Performs checked `u8` addition.
538 pub fn u8_add_with_overflow(x: u8, y: u8) -> (u8, bool);
539 /// Performs checked `u16` addition.
540 pub fn u16_add_with_overflow(x: u16, y: u16) -> (u16, bool);
541 /// Performs checked `u32` addition.
542 pub fn u32_add_with_overflow(x: u32, y: u32) -> (u32, bool);
543 /// Performs checked `u64` addition.
544 pub fn u64_add_with_overflow(x: u64, y: u64) -> (u64, bool);
545
546 /// Performs checked `i8` subtraction.
547 pub fn i8_sub_with_overflow(x: i8, y: i8) -> (i8, bool);
548 /// Performs checked `i16` subtraction.
549 pub fn i16_sub_with_overflow(x: i16, y: i16) -> (i16, bool);
550 /// Performs checked `i32` subtraction.
551 pub fn i32_sub_with_overflow(x: i32, y: i32) -> (i32, bool);
552 /// Performs checked `i64` subtraction.
553 pub fn i64_sub_with_overflow(x: i64, y: i64) -> (i64, bool);
554
555 /// Performs checked `u8` subtraction.
556 pub fn u8_sub_with_overflow(x: u8, y: u8) -> (u8, bool);
557 /// Performs checked `u16` subtraction.
558 pub fn u16_sub_with_overflow(x: u16, y: u16) -> (u16, bool);
559 /// Performs checked `u32` subtraction.
560 pub fn u32_sub_with_overflow(x: u32, y: u32) -> (u32, bool);
561 /// Performs checked `u64` subtraction.
562 pub fn u64_sub_with_overflow(x: u64, y: u64) -> (u64, bool);
563
564 /// Performs checked `i8` multiplication.
565 pub fn i8_mul_with_overflow(x: i8, y: i8) -> (i8, bool);
566 /// Performs checked `i16` multiplication.
567 pub fn i16_mul_with_overflow(x: i16, y: i16) -> (i16, bool);
568 /// Performs checked `i32` multiplication.
569 pub fn i32_mul_with_overflow(x: i32, y: i32) -> (i32, bool);
570 /// Performs checked `i64` multiplication.
571 pub fn i64_mul_with_overflow(x: i64, y: i64) -> (i64, bool);
572
573 /// Performs checked `u8` multiplication.
574 pub fn u8_mul_with_overflow(x: u8, y: u8) -> (u8, bool);
575 /// Performs checked `u16` multiplication.
576 pub fn u16_mul_with_overflow(x: u16, y: u16) -> (u16, bool);
577 /// Performs checked `u32` multiplication.
578 pub fn u32_mul_with_overflow(x: u32, y: u32) -> (u32, bool);
579 /// Performs checked `u64` multiplication.
580 pub fn u64_mul_with_overflow(x: u64, y: u64) -> (u64, bool);
581
582 /// Returns (a + b) mod 2^N, where N is the width of N in bits.
583 pub fn overflowing_add<T>(a: T, b: T) -> T;
584 /// Returns (a - b) mod 2^N, where N is the width of N in bits.
585 pub fn overflowing_sub<T>(a: T, b: T) -> T;
586 /// Returns (a * b) mod 2^N, where N is the width of N in bits.
587 pub fn overflowing_mul<T>(a: T, b: T) -> T;
588
589 /// Performs an unchecked signed division, which results in undefined behavior,
590 /// in cases where y == 0, or x == isize::MIN and y == -1
591 pub fn unchecked_sdiv<T>(x: T, y: T) -> T;
592 /// Performs an unchecked unsigned division, which results in undefined behavior,
593 /// in cases where y == 0
594 pub fn unchecked_udiv<T>(x: T, y: T) -> T;
595
596 /// Returns the remainder of an unchecked signed division, which results in
597 /// undefined behavior, in cases where y == 0, or x == isize::MIN and y == -1
598 pub fn unchecked_srem<T>(x: T, y: T) -> T;
599 /// Returns the remainder of an unchecked unsigned division, which results in
600 /// undefined behavior, in cases where y == 0
601 pub fn unchecked_urem<T>(x: T, y: T) -> T;
602
603 /// Returns the value of the discriminant for the variant in 'v',
604 /// cast to a `u64`; if `T` has no discriminant, returns 0.
605 pub fn discriminant_value<T>(v: &T) -> u64;
606
607 /// Rust's "try catch" construct which invokes the function pointer `f` with
608 /// the data pointer `data`, returning the exception payload if an exception
609 /// is thrown (aka the thread panics).
610 pub fn try(f: fn(*mut u8), data: *mut u8) -> *mut u8;
611 }