]> git.proxmox.com Git - rustc.git/blob - src/libcore/num/f32.rs
43d38926c9718c37e6da208ed0a83c9702162932
[rustc.git] / src / libcore / num / f32.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Operations and constants for 32-bits floats (`f32` type)
12
13 #![stable(feature = "rust1", since = "1.0.0")]
14
15 use intrinsics;
16 use mem;
17 use num::Float;
18 use num::FpCategory as Fp;
19
20 /// The radix or base of the internal representation of `f32`.
21 #[stable(feature = "rust1", since = "1.0.0")]
22 pub const RADIX: u32 = 2;
23
24 /// Number of significant digits in base 2.
25 #[stable(feature = "rust1", since = "1.0.0")]
26 pub const MANTISSA_DIGITS: u32 = 24;
27 /// Approximate number of significant digits in base 10.
28 #[stable(feature = "rust1", since = "1.0.0")]
29 pub const DIGITS: u32 = 6;
30
31 /// Difference between `1.0` and the next largest representable number.
32 #[stable(feature = "rust1", since = "1.0.0")]
33 pub const EPSILON: f32 = 1.19209290e-07_f32;
34
35 /// Smallest finite `f32` value.
36 #[stable(feature = "rust1", since = "1.0.0")]
37 pub const MIN: f32 = -3.40282347e+38_f32;
38 /// Smallest positive normal `f32` value.
39 #[stable(feature = "rust1", since = "1.0.0")]
40 pub const MIN_POSITIVE: f32 = 1.17549435e-38_f32;
41 /// Largest finite `f32` value.
42 #[stable(feature = "rust1", since = "1.0.0")]
43 pub const MAX: f32 = 3.40282347e+38_f32;
44
45 /// One greater than the minimum possible normal power of 2 exponent.
46 #[stable(feature = "rust1", since = "1.0.0")]
47 pub const MIN_EXP: i32 = -125;
48 /// Maximum possible power of 2 exponent.
49 #[stable(feature = "rust1", since = "1.0.0")]
50 pub const MAX_EXP: i32 = 128;
51
52 /// Minimum possible normal power of 10 exponent.
53 #[stable(feature = "rust1", since = "1.0.0")]
54 pub const MIN_10_EXP: i32 = -37;
55 /// Maximum possible power of 10 exponent.
56 #[stable(feature = "rust1", since = "1.0.0")]
57 pub const MAX_10_EXP: i32 = 38;
58
59 /// Not a Number (NaN).
60 #[stable(feature = "rust1", since = "1.0.0")]
61 pub const NAN: f32 = 0.0_f32 / 0.0_f32;
62 /// Infinity (∞).
63 #[stable(feature = "rust1", since = "1.0.0")]
64 pub const INFINITY: f32 = 1.0_f32 / 0.0_f32;
65 /// Negative infinity (-∞).
66 #[stable(feature = "rust1", since = "1.0.0")]
67 pub const NEG_INFINITY: f32 = -1.0_f32 / 0.0_f32;
68
69 /// Basic mathematical constants.
70 #[stable(feature = "rust1", since = "1.0.0")]
71 pub mod consts {
72 // FIXME: replace with mathematical constants from cmath.
73
74 /// Archimedes' constant (π)
75 #[stable(feature = "rust1", since = "1.0.0")]
76 pub const PI: f32 = 3.14159265358979323846264338327950288_f32;
77
78 /// π/2
79 #[stable(feature = "rust1", since = "1.0.0")]
80 pub const FRAC_PI_2: f32 = 1.57079632679489661923132169163975144_f32;
81
82 /// π/3
83 #[stable(feature = "rust1", since = "1.0.0")]
84 pub const FRAC_PI_3: f32 = 1.04719755119659774615421446109316763_f32;
85
86 /// π/4
87 #[stable(feature = "rust1", since = "1.0.0")]
88 pub const FRAC_PI_4: f32 = 0.785398163397448309615660845819875721_f32;
89
90 /// π/6
91 #[stable(feature = "rust1", since = "1.0.0")]
92 pub const FRAC_PI_6: f32 = 0.52359877559829887307710723054658381_f32;
93
94 /// π/8
95 #[stable(feature = "rust1", since = "1.0.0")]
96 pub const FRAC_PI_8: f32 = 0.39269908169872415480783042290993786_f32;
97
98 /// 1/π
99 #[stable(feature = "rust1", since = "1.0.0")]
100 pub const FRAC_1_PI: f32 = 0.318309886183790671537767526745028724_f32;
101
102 /// 2/π
103 #[stable(feature = "rust1", since = "1.0.0")]
104 pub const FRAC_2_PI: f32 = 0.636619772367581343075535053490057448_f32;
105
106 /// 2/sqrt(π)
107 #[stable(feature = "rust1", since = "1.0.0")]
108 pub const FRAC_2_SQRT_PI: f32 = 1.12837916709551257389615890312154517_f32;
109
110 /// sqrt(2)
111 #[stable(feature = "rust1", since = "1.0.0")]
112 pub const SQRT_2: f32 = 1.41421356237309504880168872420969808_f32;
113
114 /// 1/sqrt(2)
115 #[stable(feature = "rust1", since = "1.0.0")]
116 pub const FRAC_1_SQRT_2: f32 = 0.707106781186547524400844362104849039_f32;
117
118 /// Euler's number (e)
119 #[stable(feature = "rust1", since = "1.0.0")]
120 pub const E: f32 = 2.71828182845904523536028747135266250_f32;
121
122 /// log<sub>2</sub>(e)
123 #[stable(feature = "rust1", since = "1.0.0")]
124 pub const LOG2_E: f32 = 1.44269504088896340735992468100189214_f32;
125
126 /// log<sub>10</sub>(e)
127 #[stable(feature = "rust1", since = "1.0.0")]
128 pub const LOG10_E: f32 = 0.434294481903251827651128918916605082_f32;
129
130 /// ln(2)
131 #[stable(feature = "rust1", since = "1.0.0")]
132 pub const LN_2: f32 = 0.693147180559945309417232121458176568_f32;
133
134 /// ln(10)
135 #[stable(feature = "rust1", since = "1.0.0")]
136 pub const LN_10: f32 = 2.30258509299404568401799145468436421_f32;
137 }
138
139 #[unstable(feature = "core_float",
140 reason = "stable interface is via `impl f{32,64}` in later crates",
141 issue = "32110")]
142 impl Float for f32 {
143 /// Returns `true` if the number is NaN.
144 #[inline]
145 fn is_nan(self) -> bool {
146 self != self
147 }
148
149 /// Returns `true` if the number is infinite.
150 #[inline]
151 fn is_infinite(self) -> bool {
152 self == INFINITY || self == NEG_INFINITY
153 }
154
155 /// Returns `true` if the number is neither infinite or NaN.
156 #[inline]
157 fn is_finite(self) -> bool {
158 !(self.is_nan() || self.is_infinite())
159 }
160
161 /// Returns `true` if the number is neither zero, infinite, subnormal or NaN.
162 #[inline]
163 fn is_normal(self) -> bool {
164 self.classify() == Fp::Normal
165 }
166
167 /// Returns the floating point category of the number. If only one property
168 /// is going to be tested, it is generally faster to use the specific
169 /// predicate instead.
170 fn classify(self) -> Fp {
171 const EXP_MASK: u32 = 0x7f800000;
172 const MAN_MASK: u32 = 0x007fffff;
173
174 let bits: u32 = unsafe { mem::transmute(self) };
175 match (bits & MAN_MASK, bits & EXP_MASK) {
176 (0, 0) => Fp::Zero,
177 (_, 0) => Fp::Subnormal,
178 (0, EXP_MASK) => Fp::Infinite,
179 (_, EXP_MASK) => Fp::Nan,
180 _ => Fp::Normal,
181 }
182 }
183
184 /// Computes the absolute value of `self`. Returns `Float::nan()` if the
185 /// number is `Float::nan()`.
186 #[inline]
187 fn abs(self) -> f32 {
188 unsafe { intrinsics::fabsf32(self) }
189 }
190
191 /// Returns a number that represents the sign of `self`.
192 ///
193 /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
194 /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
195 /// - `Float::nan()` if the number is `Float::nan()`
196 #[inline]
197 fn signum(self) -> f32 {
198 if self.is_nan() {
199 NAN
200 } else {
201 unsafe { intrinsics::copysignf32(1.0, self) }
202 }
203 }
204
205 /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaN`s with
206 /// positive sign bit and positive infinity.
207 #[inline]
208 fn is_sign_positive(self) -> bool {
209 !self.is_sign_negative()
210 }
211
212 /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaN`s with
213 /// negative sign bit and negative infinity.
214 #[inline]
215 fn is_sign_negative(self) -> bool {
216 // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
217 // applies to zeros and NaNs as well.
218 #[repr(C)]
219 union F32Bytes {
220 f: f32,
221 b: u32
222 }
223 unsafe { F32Bytes { f: self }.b & 0x8000_0000 != 0 }
224 }
225
226 /// Returns the reciprocal (multiplicative inverse) of the number.
227 #[inline]
228 fn recip(self) -> f32 {
229 1.0 / self
230 }
231
232 #[inline]
233 fn powi(self, n: i32) -> f32 {
234 unsafe { intrinsics::powif32(self, n) }
235 }
236
237 /// Converts to degrees, assuming the number is in radians.
238 #[inline]
239 fn to_degrees(self) -> f32 {
240 self * (180.0f32 / consts::PI)
241 }
242
243 /// Converts to radians, assuming the number is in degrees.
244 #[inline]
245 fn to_radians(self) -> f32 {
246 let value: f32 = consts::PI;
247 self * (value / 180.0f32)
248 }
249
250 /// Returns the maximum of the two numbers.
251 #[inline]
252 fn max(self, other: f32) -> f32 {
253 // IEEE754 says: maxNum(x, y) is the canonicalized number y if x < y, x if y < x, the
254 // canonicalized number if one operand is a number and the other a quiet NaN. Otherwise it
255 // is either x or y, canonicalized (this means results might differ among implementations).
256 // When either x or y is a signalingNaN, then the result is according to 6.2.
257 //
258 // Since we do not support sNaN in Rust yet, we do not need to handle them.
259 // FIXME(nagisa): due to https://bugs.llvm.org/show_bug.cgi?id=33303 we canonicalize by
260 // multiplying by 1.0. Should switch to the `canonicalize` when it works.
261 (if self < other || self.is_nan() { other } else { self }) * 1.0
262 }
263
264 /// Returns the minimum of the two numbers.
265 #[inline]
266 fn min(self, other: f32) -> f32 {
267 // IEEE754 says: minNum(x, y) is the canonicalized number x if x < y, y if y < x, the
268 // canonicalized number if one operand is a number and the other a quiet NaN. Otherwise it
269 // is either x or y, canonicalized (this means results might differ among implementations).
270 // When either x or y is a signalingNaN, then the result is according to 6.2.
271 //
272 // Since we do not support sNaN in Rust yet, we do not need to handle them.
273 // FIXME(nagisa): due to https://bugs.llvm.org/show_bug.cgi?id=33303 we canonicalize by
274 // multiplying by 1.0. Should switch to the `canonicalize` when it works.
275 (if self < other || other.is_nan() { self } else { other }) * 1.0
276 }
277 }