]> git.proxmox.com Git - rustc.git/blob - src/libgraphviz/lib.rs
Imported Upstream version 1.3.0+dfsg1
[rustc.git] / src / libgraphviz / lib.rs
1 // Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Generate files suitable for use with [Graphviz](http://www.graphviz.org/)
12 //!
13 //! The `render` function generates output (e.g. an `output.dot` file) for
14 //! use with [Graphviz](http://www.graphviz.org/) by walking a labelled
15 //! graph. (Graphviz can then automatically lay out the nodes and edges
16 //! of the graph, and also optionally render the graph as an image or
17 //! other [output formats](
18 //! http://www.graphviz.org/content/output-formats), such as SVG.)
19 //!
20 //! Rather than impose some particular graph data structure on clients,
21 //! this library exposes two traits that clients can implement on their
22 //! own structs before handing them over to the rendering function.
23 //!
24 //! Note: This library does not yet provide access to the full
25 //! expressiveness of the [DOT language](
26 //! http://www.graphviz.org/doc/info/lang.html). For example, there are
27 //! many [attributes](http://www.graphviz.org/content/attrs) related to
28 //! providing layout hints (e.g. left-to-right versus top-down, which
29 //! algorithm to use, etc). The current intention of this library is to
30 //! emit a human-readable .dot file with very regular structure suitable
31 //! for easy post-processing.
32 //!
33 //! # Examples
34 //!
35 //! The first example uses a very simple graph representation: a list of
36 //! pairs of ints, representing the edges (the node set is implicit).
37 //! Each node label is derived directly from the int representing the node,
38 //! while the edge labels are all empty strings.
39 //!
40 //! This example also illustrates how to use `Cow<[T]>` to return
41 //! an owned vector or a borrowed slice as appropriate: we construct the
42 //! node vector from scratch, but borrow the edge list (rather than
43 //! constructing a copy of all the edges from scratch).
44 //!
45 //! The output from this example renders five nodes, with the first four
46 //! forming a diamond-shaped acyclic graph and then pointing to the fifth
47 //! which is cyclic.
48 //!
49 //! ```rust
50 //! #![feature(rustc_private, core, into_cow)]
51 //!
52 //! use std::borrow::IntoCow;
53 //! use std::io::Write;
54 //! use graphviz as dot;
55 //!
56 //! type Nd = isize;
57 //! type Ed = (isize,isize);
58 //! struct Edges(Vec<Ed>);
59 //!
60 //! pub fn render_to<W: Write>(output: &mut W) {
61 //! let edges = Edges(vec!((0,1), (0,2), (1,3), (2,3), (3,4), (4,4)));
62 //! dot::render(&edges, output).unwrap()
63 //! }
64 //!
65 //! impl<'a> dot::Labeller<'a, Nd, Ed> for Edges {
66 //! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example1").unwrap() }
67 //!
68 //! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
69 //! dot::Id::new(format!("N{}", *n)).unwrap()
70 //! }
71 //! }
72 //!
73 //! impl<'a> dot::GraphWalk<'a, Nd, Ed> for Edges {
74 //! fn nodes(&self) -> dot::Nodes<'a,Nd> {
75 //! // (assumes that |N| \approxeq |E|)
76 //! let &Edges(ref v) = self;
77 //! let mut nodes = Vec::with_capacity(v.len());
78 //! for &(s,t) in v {
79 //! nodes.push(s); nodes.push(t);
80 //! }
81 //! nodes.sort();
82 //! nodes.dedup();
83 //! nodes.into_cow()
84 //! }
85 //!
86 //! fn edges(&'a self) -> dot::Edges<'a,Ed> {
87 //! let &Edges(ref edges) = self;
88 //! (&edges[..]).into_cow()
89 //! }
90 //!
91 //! fn source(&self, e: &Ed) -> Nd { let &(s,_) = e; s }
92 //!
93 //! fn target(&self, e: &Ed) -> Nd { let &(_,t) = e; t }
94 //! }
95 //!
96 //! # pub fn main() { render_to(&mut Vec::new()) }
97 //! ```
98 //!
99 //! ```no_run
100 //! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
101 //! pub fn main() {
102 //! use std::fs::File;
103 //! let mut f = File::create("example1.dot").unwrap();
104 //! render_to(&mut f)
105 //! }
106 //! ```
107 //!
108 //! Output from first example (in `example1.dot`):
109 //!
110 //! ```ignore
111 //! digraph example1 {
112 //! N0[label="N0"];
113 //! N1[label="N1"];
114 //! N2[label="N2"];
115 //! N3[label="N3"];
116 //! N4[label="N4"];
117 //! N0 -> N1[label=""];
118 //! N0 -> N2[label=""];
119 //! N1 -> N3[label=""];
120 //! N2 -> N3[label=""];
121 //! N3 -> N4[label=""];
122 //! N4 -> N4[label=""];
123 //! }
124 //! ```
125 //!
126 //! The second example illustrates using `node_label` and `edge_label` to
127 //! add labels to the nodes and edges in the rendered graph. The graph
128 //! here carries both `nodes` (the label text to use for rendering a
129 //! particular node), and `edges` (again a list of `(source,target)`
130 //! indices).
131 //!
132 //! This example also illustrates how to use a type (in this case the edge
133 //! type) that shares substructure with the graph: the edge type here is a
134 //! direct reference to the `(source,target)` pair stored in the graph's
135 //! internal vector (rather than passing around a copy of the pair
136 //! itself). Note that this implies that `fn edges(&'a self)` must
137 //! construct a fresh `Vec<&'a (usize,usize)>` from the `Vec<(usize,usize)>`
138 //! edges stored in `self`.
139 //!
140 //! Since both the set of nodes and the set of edges are always
141 //! constructed from scratch via iterators, we use the `collect()` method
142 //! from the `Iterator` trait to collect the nodes and edges into freshly
143 //! constructed growable `Vec` values (rather use the `into_cow`
144 //! from the `IntoCow` trait as was used in the first example
145 //! above).
146 //!
147 //! The output from this example renders four nodes that make up the
148 //! Hasse-diagram for the subsets of the set `{x, y}`. Each edge is
149 //! labelled with the &sube; character (specified using the HTML character
150 //! entity `&sube`).
151 //!
152 //! ```rust
153 //! #![feature(rustc_private, core, into_cow)]
154 //!
155 //! use std::borrow::IntoCow;
156 //! use std::io::Write;
157 //! use graphviz as dot;
158 //!
159 //! type Nd = usize;
160 //! type Ed<'a> = &'a (usize, usize);
161 //! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
162 //!
163 //! pub fn render_to<W: Write>(output: &mut W) {
164 //! let nodes = vec!("{x,y}","{x}","{y}","{}");
165 //! let edges = vec!((0,1), (0,2), (1,3), (2,3));
166 //! let graph = Graph { nodes: nodes, edges: edges };
167 //!
168 //! dot::render(&graph, output).unwrap()
169 //! }
170 //!
171 //! impl<'a> dot::Labeller<'a, Nd, Ed<'a>> for Graph {
172 //! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example2").unwrap() }
173 //! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
174 //! dot::Id::new(format!("N{}", n)).unwrap()
175 //! }
176 //! fn node_label<'b>(&'b self, n: &Nd) -> dot::LabelText<'b> {
177 //! dot::LabelText::LabelStr(self.nodes[*n].as_slice().into_cow())
178 //! }
179 //! fn edge_label<'b>(&'b self, _: &Ed) -> dot::LabelText<'b> {
180 //! dot::LabelText::LabelStr("&sube;".into_cow())
181 //! }
182 //! }
183 //!
184 //! impl<'a> dot::GraphWalk<'a, Nd, Ed<'a>> for Graph {
185 //! fn nodes(&self) -> dot::Nodes<'a,Nd> { (0..self.nodes.len()).collect() }
186 //! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> { self.edges.iter().collect() }
187 //! fn source(&self, e: &Ed) -> Nd { let & &(s,_) = e; s }
188 //! fn target(&self, e: &Ed) -> Nd { let & &(_,t) = e; t }
189 //! }
190 //!
191 //! # pub fn main() { render_to(&mut Vec::new()) }
192 //! ```
193 //!
194 //! ```no_run
195 //! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
196 //! pub fn main() {
197 //! use std::fs::File;
198 //! let mut f = File::create("example2.dot").unwrap();
199 //! render_to(&mut f)
200 //! }
201 //! ```
202 //!
203 //! The third example is similar to the second, except now each node and
204 //! edge now carries a reference to the string label for each node as well
205 //! as that node's index. (This is another illustration of how to share
206 //! structure with the graph itself, and why one might want to do so.)
207 //!
208 //! The output from this example is the same as the second example: the
209 //! Hasse-diagram for the subsets of the set `{x, y}`.
210 //!
211 //! ```rust
212 //! #![feature(rustc_private, core, into_cow)]
213 //!
214 //! use std::borrow::IntoCow;
215 //! use std::io::Write;
216 //! use graphviz as dot;
217 //!
218 //! type Nd<'a> = (usize, &'a str);
219 //! type Ed<'a> = (Nd<'a>, Nd<'a>);
220 //! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
221 //!
222 //! pub fn render_to<W: Write>(output: &mut W) {
223 //! let nodes = vec!("{x,y}","{x}","{y}","{}");
224 //! let edges = vec!((0,1), (0,2), (1,3), (2,3));
225 //! let graph = Graph { nodes: nodes, edges: edges };
226 //!
227 //! dot::render(&graph, output).unwrap()
228 //! }
229 //!
230 //! impl<'a> dot::Labeller<'a, Nd<'a>, Ed<'a>> for Graph {
231 //! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example3").unwrap() }
232 //! fn node_id(&'a self, n: &Nd<'a>) -> dot::Id<'a> {
233 //! dot::Id::new(format!("N{}", n.0)).unwrap()
234 //! }
235 //! fn node_label<'b>(&'b self, n: &Nd<'b>) -> dot::LabelText<'b> {
236 //! let &(i, _) = n;
237 //! dot::LabelText::LabelStr(self.nodes[i].into_cow())
238 //! }
239 //! fn edge_label<'b>(&'b self, _: &Ed<'b>) -> dot::LabelText<'b> {
240 //! dot::LabelText::LabelStr("&sube;".into_cow())
241 //! }
242 //! }
243 //!
244 //! impl<'a> dot::GraphWalk<'a, Nd<'a>, Ed<'a>> for Graph {
245 //! fn nodes(&'a self) -> dot::Nodes<'a,Nd<'a>> {
246 //! self.nodes.iter().map(|s| &s[..]).enumerate().collect()
247 //! }
248 //! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> {
249 //! self.edges.iter()
250 //! .map(|&(i,j)|((i, &self.nodes[i][..]),
251 //! (j, &self.nodes[j][..])))
252 //! .collect()
253 //! }
254 //! fn source(&self, e: &Ed<'a>) -> Nd<'a> { let &(s,_) = e; s }
255 //! fn target(&self, e: &Ed<'a>) -> Nd<'a> { let &(_,t) = e; t }
256 //! }
257 //!
258 //! # pub fn main() { render_to(&mut Vec::new()) }
259 //! ```
260 //!
261 //! ```no_run
262 //! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
263 //! pub fn main() {
264 //! use std::fs::File;
265 //! let mut f = File::create("example3.dot").unwrap();
266 //! render_to(&mut f)
267 //! }
268 //! ```
269 //!
270 //! # References
271 //!
272 //! * [Graphviz](http://www.graphviz.org/)
273 //!
274 //! * [DOT language](http://www.graphviz.org/doc/info/lang.html)
275
276 // Do not remove on snapshot creation. Needed for bootstrap. (Issue #22364)
277 #![cfg_attr(stage0, feature(custom_attribute))]
278 #![crate_name = "graphviz"]
279 #![unstable(feature = "rustc_private")]
280 #![feature(staged_api)]
281 #![staged_api]
282 #![crate_type = "rlib"]
283 #![crate_type = "dylib"]
284 #![doc(html_logo_url = "http://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
285 html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
286 html_root_url = "http://doc.rust-lang.org/nightly/")]
287
288 #![feature(into_cow)]
289 #![feature(str_escape)]
290
291 use self::LabelText::*;
292
293 use std::borrow::{IntoCow, Cow};
294 use std::io::prelude::*;
295 use std::io;
296
297 /// The text for a graphviz label on a node or edge.
298 pub enum LabelText<'a> {
299 /// This kind of label preserves the text directly as is.
300 ///
301 /// Occurrences of backslashes (`\`) are escaped, and thus appear
302 /// as backslashes in the rendered label.
303 LabelStr(Cow<'a, str>),
304
305 /// This kind of label uses the graphviz label escString type:
306 /// http://www.graphviz.org/content/attrs#kescString
307 ///
308 /// Occurrences of backslashes (`\`) are not escaped; instead they
309 /// are interpreted as initiating an escString escape sequence.
310 ///
311 /// Escape sequences of particular interest: in addition to `\n`
312 /// to break a line (centering the line preceding the `\n`), there
313 /// are also the escape sequences `\l` which left-justifies the
314 /// preceding line and `\r` which right-justifies it.
315 EscStr(Cow<'a, str>),
316 }
317
318 /// The style for a node or edge.
319 /// See http://www.graphviz.org/doc/info/attrs.html#k:style for descriptions.
320 /// Note that some of these are not valid for edges.
321 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
322 pub enum Style {
323 None,
324 Solid,
325 Dashed,
326 Dotted,
327 Bold,
328 Rounded,
329 Diagonals,
330 Filled,
331 Striped,
332 Wedged,
333 }
334
335 impl Style {
336 pub fn as_slice(self) -> &'static str {
337 match self {
338 Style::None => "",
339 Style::Solid => "solid",
340 Style::Dashed => "dashed",
341 Style::Dotted => "dotted",
342 Style::Bold => "bold",
343 Style::Rounded => "rounded",
344 Style::Diagonals => "diagonals",
345 Style::Filled => "filled",
346 Style::Striped => "striped",
347 Style::Wedged => "wedged",
348 }
349 }
350 }
351
352 // There is a tension in the design of the labelling API.
353 //
354 // For example, I considered making a `Labeller<T>` trait that
355 // provides labels for `T`, and then making the graph type `G`
356 // implement `Labeller<Node>` and `Labeller<Edge>`. However, this is
357 // not possible without functional dependencies. (One could work
358 // around that, but I did not explore that avenue heavily.)
359 //
360 // Another approach that I actually used for a while was to make a
361 // `Label<Context>` trait that is implemented by the client-specific
362 // Node and Edge types (as well as an implementation on Graph itself
363 // for the overall name for the graph). The main disadvantage of this
364 // second approach (compared to having the `G` type parameter
365 // implement a Labelling service) that I have encountered is that it
366 // makes it impossible to use types outside of the current crate
367 // directly as Nodes/Edges; you need to wrap them in newtype'd
368 // structs. See e.g. the `No` and `Ed` structs in the examples. (In
369 // practice clients using a graph in some other crate would need to
370 // provide some sort of adapter shim over the graph anyway to
371 // interface with this library).
372 //
373 // Another approach would be to make a single `Labeller<N,E>` trait
374 // that provides three methods (graph_label, node_label, edge_label),
375 // and then make `G` implement `Labeller<N,E>`. At first this did not
376 // appeal to me, since I had thought I would need separate methods on
377 // each data variant for dot-internal identifiers versus user-visible
378 // labels. However, the identifier/label distinction only arises for
379 // nodes; graphs themselves only have identifiers, and edges only have
380 // labels.
381 //
382 // So in the end I decided to use the third approach described above.
383
384 /// `Id` is a Graphviz `ID`.
385 pub struct Id<'a> {
386 name: Cow<'a, str>,
387 }
388
389 impl<'a> Id<'a> {
390 /// Creates an `Id` named `name`.
391 ///
392 /// The caller must ensure that the input conforms to an
393 /// identifier format: it must be a non-empty string made up of
394 /// alphanumeric or underscore characters, not beginning with a
395 /// digit (i.e. the regular expression `[a-zA-Z_][a-zA-Z_0-9]*`).
396 ///
397 /// (Note: this format is a strict subset of the `ID` format
398 /// defined by the DOT language. This function may change in the
399 /// future to accept a broader subset, or the entirety, of DOT's
400 /// `ID` format.)
401 ///
402 /// Passing an invalid string (containing spaces, brackets,
403 /// quotes, ...) will return an empty `Err` value.
404 pub fn new<Name: IntoCow<'a, str>>(name: Name) -> Result<Id<'a>, ()> {
405 let name = name.into_cow();
406 {
407 let mut chars = name.chars();
408 match chars.next() {
409 Some(c) if is_letter_or_underscore(c) => { ; },
410 _ => return Err(())
411 }
412 if !chars.all(is_constituent) {
413 return Err(())
414 }
415 }
416 return Ok(Id{ name: name });
417
418 fn is_letter_or_underscore(c: char) -> bool {
419 in_range('a', c, 'z') || in_range('A', c, 'Z') || c == '_'
420 }
421 fn is_constituent(c: char) -> bool {
422 is_letter_or_underscore(c) || in_range('0', c, '9')
423 }
424 fn in_range(low: char, c: char, high: char) -> bool {
425 low as usize <= c as usize && c as usize <= high as usize
426 }
427 }
428
429 pub fn as_slice(&'a self) -> &'a str {
430 &*self.name
431 }
432
433 pub fn name(self) -> Cow<'a, str> {
434 self.name
435 }
436 }
437
438 /// Each instance of a type that implements `Label<C>` maps to a
439 /// unique identifier with respect to `C`, which is used to identify
440 /// it in the generated .dot file. They can also provide more
441 /// elaborate (and non-unique) label text that is used in the graphviz
442 /// rendered output.
443
444 /// The graph instance is responsible for providing the DOT compatible
445 /// identifiers for the nodes and (optionally) rendered labels for the nodes and
446 /// edges, as well as an identifier for the graph itself.
447 pub trait Labeller<'a,N,E> {
448 /// Must return a DOT compatible identifier naming the graph.
449 fn graph_id(&'a self) -> Id<'a>;
450
451 /// Maps `n` to a unique identifier with respect to `self`. The
452 /// implementer is responsible for ensuring that the returned name
453 /// is a valid DOT identifier.
454 fn node_id(&'a self, n: &N) -> Id<'a>;
455
456 /// Maps `n` to a label that will be used in the rendered output.
457 /// The label need not be unique, and may be the empty string; the
458 /// default is just the output from `node_id`.
459 fn node_label(&'a self, n: &N) -> LabelText<'a> {
460 LabelStr(self.node_id(n).name)
461 }
462
463 /// Maps `e` to a label that will be used in the rendered output.
464 /// The label need not be unique, and may be the empty string; the
465 /// default is in fact the empty string.
466 fn edge_label(&'a self, e: &E) -> LabelText<'a> {
467 let _ignored = e;
468 LabelStr("".into_cow())
469 }
470
471 /// Maps `n` to a style that will be used in the rendered output.
472 fn node_style(&'a self, _n: &N) -> Style {
473 Style::None
474 }
475
476 /// Maps `e` to a style that will be used in the rendered output.
477 fn edge_style(&'a self, _e: &E) -> Style {
478 Style::None
479 }
480 }
481
482 impl<'a> LabelText<'a> {
483 pub fn label<S:IntoCow<'a, str>>(s: S) -> LabelText<'a> {
484 LabelStr(s.into_cow())
485 }
486
487 pub fn escaped<S:IntoCow<'a, str>>(s: S) -> LabelText<'a> {
488 EscStr(s.into_cow())
489 }
490
491 fn escape_char<F>(c: char, mut f: F) where F: FnMut(char) {
492 match c {
493 // not escaping \\, since Graphviz escString needs to
494 // interpret backslashes; see EscStr above.
495 '\\' => f(c),
496 _ => for c in c.escape_default() { f(c) }
497 }
498 }
499 fn escape_str(s: &str) -> String {
500 let mut out = String::with_capacity(s.len());
501 for c in s.chars() {
502 LabelText::escape_char(c, |c| out.push(c));
503 }
504 out
505 }
506
507 /// Renders text as string suitable for a label in a .dot file.
508 pub fn escape(&self) -> String {
509 match self {
510 &LabelStr(ref s) => s.escape_default(),
511 &EscStr(ref s) => LabelText::escape_str(&s[..]),
512 }
513 }
514
515 /// Decomposes content into string suitable for making EscStr that
516 /// yields same content as self. The result obeys the law
517 /// render(`lt`) == render(`EscStr(lt.pre_escaped_content())`) for
518 /// all `lt: LabelText`.
519 fn pre_escaped_content(self) -> Cow<'a, str> {
520 match self {
521 EscStr(s) => s,
522 LabelStr(s) => if s.contains('\\') {
523 (&*s).escape_default().into_cow()
524 } else {
525 s
526 },
527 }
528 }
529
530 /// Puts `prefix` on a line above this label, with a blank line separator.
531 pub fn prefix_line(self, prefix: LabelText) -> LabelText<'static> {
532 prefix.suffix_line(self)
533 }
534
535 /// Puts `suffix` on a line below this label, with a blank line separator.
536 pub fn suffix_line(self, suffix: LabelText) -> LabelText<'static> {
537 let mut prefix = self.pre_escaped_content().into_owned();
538 let suffix = suffix.pre_escaped_content();
539 prefix.push_str(r"\n\n");
540 prefix.push_str(&suffix[..]);
541 EscStr(prefix.into_cow())
542 }
543 }
544
545 pub type Nodes<'a,N> = Cow<'a,[N]>;
546 pub type Edges<'a,E> = Cow<'a,[E]>;
547
548 // (The type parameters in GraphWalk should be associated items,
549 // when/if Rust supports such.)
550
551 /// GraphWalk is an abstraction over a directed graph = (nodes,edges)
552 /// made up of node handles `N` and edge handles `E`, where each `E`
553 /// can be mapped to its source and target nodes.
554 ///
555 /// The lifetime parameter `'a` is exposed in this trait (rather than
556 /// introduced as a generic parameter on each method declaration) so
557 /// that a client impl can choose `N` and `E` that have substructure
558 /// that is bound by the self lifetime `'a`.
559 ///
560 /// The `nodes` and `edges` method each return instantiations of
561 /// `Cow<[T]>` to leave implementers the freedom to create
562 /// entirely new vectors or to pass back slices into internally owned
563 /// vectors.
564 pub trait GraphWalk<'a, N, E> {
565 /// Returns all the nodes in this graph.
566 fn nodes(&'a self) -> Nodes<'a, N>;
567 /// Returns all of the edges in this graph.
568 fn edges(&'a self) -> Edges<'a, E>;
569 /// The source node for `edge`.
570 fn source(&'a self, edge: &E) -> N;
571 /// The target node for `edge`.
572 fn target(&'a self, edge: &E) -> N;
573 }
574
575 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
576 pub enum RenderOption {
577 NoEdgeLabels,
578 NoNodeLabels,
579 NoEdgeStyles,
580 NoNodeStyles,
581 }
582
583 /// Returns vec holding all the default render options.
584 pub fn default_options() -> Vec<RenderOption> { vec![] }
585
586 /// Renders directed graph `g` into the writer `w` in DOT syntax.
587 /// (Simple wrapper around `render_opts` that passes a default set of options.)
588 pub fn render<'a, N:Clone+'a, E:Clone+'a, G:Labeller<'a,N,E>+GraphWalk<'a,N,E>, W:Write>(
589 g: &'a G,
590 w: &mut W) -> io::Result<()> {
591 render_opts(g, w, &[])
592 }
593
594 /// Renders directed graph `g` into the writer `w` in DOT syntax.
595 /// (Main entry point for the library.)
596 pub fn render_opts<'a, N:Clone+'a, E:Clone+'a, G:Labeller<'a,N,E>+GraphWalk<'a,N,E>, W:Write>(
597 g: &'a G,
598 w: &mut W,
599 options: &[RenderOption]) -> io::Result<()>
600 {
601 fn writeln<W:Write>(w: &mut W, arg: &[&str]) -> io::Result<()> {
602 for &s in arg { try!(w.write_all(s.as_bytes())); }
603 write!(w, "\n")
604 }
605
606 fn indent<W:Write>(w: &mut W) -> io::Result<()> {
607 w.write_all(b" ")
608 }
609
610 try!(writeln(w, &["digraph ", g.graph_id().as_slice(), " {"]));
611 for n in g.nodes().iter() {
612 try!(indent(w));
613 let id = g.node_id(n);
614
615 let escaped = &g.node_label(n).escape();
616
617 let mut text = vec![id.as_slice()];
618
619 if !options.contains(&RenderOption::NoNodeLabels) {
620 text.push("[label=\"");
621 text.push(escaped);
622 text.push("\"]");
623 }
624
625 let style = g.node_style(n);
626 if !options.contains(&RenderOption::NoNodeStyles) && style != Style::None {
627 text.push("[style=\"");
628 text.push(style.as_slice());
629 text.push("\"]");
630 }
631
632 text.push(";");
633 try!(writeln(w, &text));
634 }
635
636 for e in g.edges().iter() {
637 let escaped_label = &g.edge_label(e).escape();
638 try!(indent(w));
639 let source = g.source(e);
640 let target = g.target(e);
641 let source_id = g.node_id(&source);
642 let target_id = g.node_id(&target);
643
644 let mut text = vec![source_id.as_slice(), " -> ", target_id.as_slice()];
645
646 if !options.contains(&RenderOption::NoEdgeLabels) {
647 text.push("[label=\"");
648 text.push(escaped_label);
649 text.push("\"]");
650 }
651
652 let style = g.edge_style(e);
653 if !options.contains(&RenderOption::NoEdgeStyles) && style != Style::None {
654 text.push("[style=\"");
655 text.push(style.as_slice());
656 text.push("\"]");
657 }
658
659 text.push(";");
660 try!(writeln(w, &text));
661 }
662
663 writeln(w, &["}"])
664 }
665
666 #[cfg(test)]
667 mod tests {
668 use self::NodeLabels::*;
669 use super::{Id, Labeller, Nodes, Edges, GraphWalk, render, Style};
670 use super::LabelText::{self, LabelStr, EscStr};
671 use std::io;
672 use std::io::prelude::*;
673 use std::borrow::IntoCow;
674
675 /// each node is an index in a vector in the graph.
676 type Node = usize;
677 struct Edge {
678 from: usize,
679 to: usize,
680 label: &'static str,
681 style: Style,
682 }
683
684 fn edge(from: usize, to: usize, label: &'static str, style: Style) -> Edge {
685 Edge { from: from, to: to, label: label, style: style }
686 }
687
688 struct LabelledGraph {
689 /// The name for this graph. Used for labelling generated `digraph`.
690 name: &'static str,
691
692 /// Each node is an index into `node_labels`; these labels are
693 /// used as the label text for each node. (The node *names*,
694 /// which are unique identifiers, are derived from their index
695 /// in this array.)
696 ///
697 /// If a node maps to None here, then just use its name as its
698 /// text.
699 node_labels: Vec<Option<&'static str>>,
700
701 node_styles: Vec<Style>,
702
703 /// Each edge relates a from-index to a to-index along with a
704 /// label; `edges` collects them.
705 edges: Vec<Edge>,
706 }
707
708 // A simple wrapper around LabelledGraph that forces the labels to
709 // be emitted as EscStr.
710 struct LabelledGraphWithEscStrs {
711 graph: LabelledGraph
712 }
713
714 enum NodeLabels<L> {
715 AllNodesLabelled(Vec<L>),
716 UnlabelledNodes(usize),
717 SomeNodesLabelled(Vec<Option<L>>),
718 }
719
720 type Trivial = NodeLabels<&'static str>;
721
722 impl NodeLabels<&'static str> {
723 fn to_opt_strs(self) -> Vec<Option<&'static str>> {
724 match self {
725 UnlabelledNodes(len)
726 => vec![None; len],
727 AllNodesLabelled(lbls)
728 => lbls.into_iter().map(
729 |l|Some(l)).collect(),
730 SomeNodesLabelled(lbls)
731 => lbls.into_iter().collect(),
732 }
733 }
734
735 fn len(&self) -> usize {
736 match self {
737 &UnlabelledNodes(len) => len,
738 &AllNodesLabelled(ref lbls) => lbls.len(),
739 &SomeNodesLabelled(ref lbls) => lbls.len(),
740 }
741 }
742 }
743
744 impl LabelledGraph {
745 fn new(name: &'static str,
746 node_labels: Trivial,
747 edges: Vec<Edge>,
748 node_styles: Option<Vec<Style>>) -> LabelledGraph {
749 let count = node_labels.len();
750 LabelledGraph {
751 name: name,
752 node_labels: node_labels.to_opt_strs(),
753 edges: edges,
754 node_styles: match node_styles {
755 Some(nodes) => nodes,
756 None => vec![Style::None; count],
757 }
758 }
759 }
760 }
761
762 impl LabelledGraphWithEscStrs {
763 fn new(name: &'static str,
764 node_labels: Trivial,
765 edges: Vec<Edge>) -> LabelledGraphWithEscStrs {
766 LabelledGraphWithEscStrs {
767 graph: LabelledGraph::new(name,
768 node_labels,
769 edges,
770 None)
771 }
772 }
773 }
774
775 fn id_name<'a>(n: &Node) -> Id<'a> {
776 Id::new(format!("N{}", *n)).unwrap()
777 }
778
779 impl<'a> Labeller<'a, Node, &'a Edge> for LabelledGraph {
780 fn graph_id(&'a self) -> Id<'a> {
781 Id::new(&self.name[..]).unwrap()
782 }
783 fn node_id(&'a self, n: &Node) -> Id<'a> {
784 id_name(n)
785 }
786 fn node_label(&'a self, n: &Node) -> LabelText<'a> {
787 match self.node_labels[*n] {
788 Some(ref l) => LabelStr(l.into_cow()),
789 None => LabelStr(id_name(n).name()),
790 }
791 }
792 fn edge_label(&'a self, e: & &'a Edge) -> LabelText<'a> {
793 LabelStr(e.label.into_cow())
794 }
795 fn node_style(&'a self, n: &Node) -> Style {
796 self.node_styles[*n]
797 }
798 fn edge_style(&'a self, e: & &'a Edge) -> Style {
799 e.style
800 }
801 }
802
803 impl<'a> Labeller<'a, Node, &'a Edge> for LabelledGraphWithEscStrs {
804 fn graph_id(&'a self) -> Id<'a> { self.graph.graph_id() }
805 fn node_id(&'a self, n: &Node) -> Id<'a> { self.graph.node_id(n) }
806 fn node_label(&'a self, n: &Node) -> LabelText<'a> {
807 match self.graph.node_label(n) {
808 LabelStr(s) | EscStr(s) => EscStr(s),
809 }
810 }
811 fn edge_label(&'a self, e: & &'a Edge) -> LabelText<'a> {
812 match self.graph.edge_label(e) {
813 LabelStr(s) | EscStr(s) => EscStr(s),
814 }
815 }
816 }
817
818 impl<'a> GraphWalk<'a, Node, &'a Edge> for LabelledGraph {
819 fn nodes(&'a self) -> Nodes<'a,Node> {
820 (0..self.node_labels.len()).collect()
821 }
822 fn edges(&'a self) -> Edges<'a,&'a Edge> {
823 self.edges.iter().collect()
824 }
825 fn source(&'a self, edge: & &'a Edge) -> Node {
826 edge.from
827 }
828 fn target(&'a self, edge: & &'a Edge) -> Node {
829 edge.to
830 }
831 }
832
833 impl<'a> GraphWalk<'a, Node, &'a Edge> for LabelledGraphWithEscStrs {
834 fn nodes(&'a self) -> Nodes<'a,Node> {
835 self.graph.nodes()
836 }
837 fn edges(&'a self) -> Edges<'a,&'a Edge> {
838 self.graph.edges()
839 }
840 fn source(&'a self, edge: & &'a Edge) -> Node {
841 edge.from
842 }
843 fn target(&'a self, edge: & &'a Edge) -> Node {
844 edge.to
845 }
846 }
847
848 fn test_input(g: LabelledGraph) -> io::Result<String> {
849 let mut writer = Vec::new();
850 render(&g, &mut writer).unwrap();
851 let mut s = String::new();
852 try!(Read::read_to_string(&mut &*writer, &mut s));
853 Ok(s)
854 }
855
856 // All of the tests use raw-strings as the format for the expected outputs,
857 // so that you can cut-and-paste the content into a .dot file yourself to
858 // see what the graphviz visualizer would produce.
859
860 #[test]
861 fn empty_graph() {
862 let labels : Trivial = UnlabelledNodes(0);
863 let r = test_input(LabelledGraph::new("empty_graph", labels, vec![], None));
864 assert_eq!(r.unwrap(),
865 r#"digraph empty_graph {
866 }
867 "#);
868 }
869
870 #[test]
871 fn single_node() {
872 let labels : Trivial = UnlabelledNodes(1);
873 let r = test_input(LabelledGraph::new("single_node", labels, vec![], None));
874 assert_eq!(r.unwrap(),
875 r#"digraph single_node {
876 N0[label="N0"];
877 }
878 "#);
879 }
880
881 #[test]
882 fn single_node_with_style() {
883 let labels : Trivial = UnlabelledNodes(1);
884 let styles = Some(vec![Style::Dashed]);
885 let r = test_input(LabelledGraph::new("single_node", labels, vec![], styles));
886 assert_eq!(r.unwrap(),
887 r#"digraph single_node {
888 N0[label="N0"][style="dashed"];
889 }
890 "#);
891 }
892
893 #[test]
894 fn single_edge() {
895 let labels : Trivial = UnlabelledNodes(2);
896 let result = test_input(LabelledGraph::new("single_edge", labels,
897 vec![edge(0, 1, "E", Style::None)], None));
898 assert_eq!(result.unwrap(),
899 r#"digraph single_edge {
900 N0[label="N0"];
901 N1[label="N1"];
902 N0 -> N1[label="E"];
903 }
904 "#);
905 }
906
907 #[test]
908 fn single_edge_with_style() {
909 let labels : Trivial = UnlabelledNodes(2);
910 let result = test_input(LabelledGraph::new("single_edge", labels,
911 vec![edge(0, 1, "E", Style::Bold)], None));
912 assert_eq!(result.unwrap(),
913 r#"digraph single_edge {
914 N0[label="N0"];
915 N1[label="N1"];
916 N0 -> N1[label="E"][style="bold"];
917 }
918 "#);
919 }
920
921 #[test]
922 fn test_some_labelled() {
923 let labels : Trivial = SomeNodesLabelled(vec![Some("A"), None]);
924 let styles = Some(vec![Style::None, Style::Dotted]);
925 let result = test_input(LabelledGraph::new("test_some_labelled", labels,
926 vec![edge(0, 1, "A-1", Style::None)], styles));
927 assert_eq!(result.unwrap(),
928 r#"digraph test_some_labelled {
929 N0[label="A"];
930 N1[label="N1"][style="dotted"];
931 N0 -> N1[label="A-1"];
932 }
933 "#);
934 }
935
936 #[test]
937 fn single_cyclic_node() {
938 let labels : Trivial = UnlabelledNodes(1);
939 let r = test_input(LabelledGraph::new("single_cyclic_node", labels,
940 vec![edge(0, 0, "E", Style::None)], None));
941 assert_eq!(r.unwrap(),
942 r#"digraph single_cyclic_node {
943 N0[label="N0"];
944 N0 -> N0[label="E"];
945 }
946 "#);
947 }
948
949 #[test]
950 fn hasse_diagram() {
951 let labels = AllNodesLabelled(vec!("{x,y}", "{x}", "{y}", "{}"));
952 let r = test_input(LabelledGraph::new(
953 "hasse_diagram", labels,
954 vec![edge(0, 1, "", Style::None), edge(0, 2, "", Style::None),
955 edge(1, 3, "", Style::None), edge(2, 3, "", Style::None)],
956 None));
957 assert_eq!(r.unwrap(),
958 r#"digraph hasse_diagram {
959 N0[label="{x,y}"];
960 N1[label="{x}"];
961 N2[label="{y}"];
962 N3[label="{}"];
963 N0 -> N1[label=""];
964 N0 -> N2[label=""];
965 N1 -> N3[label=""];
966 N2 -> N3[label=""];
967 }
968 "#);
969 }
970
971 #[test]
972 fn left_aligned_text() {
973 let labels = AllNodesLabelled(vec!(
974 "if test {\
975 \\l branch1\
976 \\l} else {\
977 \\l branch2\
978 \\l}\
979 \\lafterward\
980 \\l",
981 "branch1",
982 "branch2",
983 "afterward"));
984
985 let mut writer = Vec::new();
986
987 let g = LabelledGraphWithEscStrs::new(
988 "syntax_tree", labels,
989 vec![edge(0, 1, "then", Style::None), edge(0, 2, "else", Style::None),
990 edge(1, 3, ";", Style::None), edge(2, 3, ";", Style::None)]);
991
992 render(&g, &mut writer).unwrap();
993 let mut r = String::new();
994 Read::read_to_string(&mut &*writer, &mut r).unwrap();
995
996 assert_eq!(r,
997 r#"digraph syntax_tree {
998 N0[label="if test {\l branch1\l} else {\l branch2\l}\lafterward\l"];
999 N1[label="branch1"];
1000 N2[label="branch2"];
1001 N3[label="afterward"];
1002 N0 -> N1[label="then"];
1003 N0 -> N2[label="else"];
1004 N1 -> N3[label=";"];
1005 N2 -> N3[label=";"];
1006 }
1007 "#);
1008 }
1009
1010 #[test]
1011 fn simple_id_construction() {
1012 let id1 = Id::new("hello");
1013 match id1 {
1014 Ok(_) => {;},
1015 Err(..) => panic!("'hello' is not a valid value for id anymore")
1016 }
1017 }
1018
1019 #[test]
1020 fn badly_formatted_id() {
1021 let id2 = Id::new("Weird { struct : ure } !!!");
1022 match id2 {
1023 Ok(_) => panic!("graphviz id suddenly allows spaces, brackets and stuff"),
1024 Err(..) => {;}
1025 }
1026 }
1027 }