1 // Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
11 //! Interface to random number generators in Rust.
13 //! This is an experimental library which lives underneath the standard library
14 //! in its dependency chain. This library is intended to define the interface
15 //! for random number generation and also provide utilities around doing so. It
16 //! is not recommended to use this library directly, but rather the official
17 //! interface through `std::rand`.
19 #![crate_name = "rand"]
20 #![crate_type = "rlib"]
21 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
22 html_favicon_url
= "https://doc.rust-lang.org/favicon.ico",
23 html_root_url
= "https://doc.rust-lang.org/nightly/",
24 html_playground_url
= "https://play.rust-lang.org/",
25 test(attr(deny(warnings
))))]
26 #![cfg_attr(not(stage0), deny(warnings))]
28 #![unstable(feature = "rand",
29 reason
= "use `rand` from crates.io",
31 #![feature(core_float)]
32 #![feature(core_intrinsics)]
33 #![feature(staged_api)]
35 #![feature(custom_attribute)]
36 #![allow(unused_attributes)]
38 #![cfg_attr(test, feature(test, rand))]
48 use core
::marker
::PhantomData
;
50 pub use isaac
::{IsaacRng, Isaac64Rng}
;
51 pub use chacha
::ChaChaRng
;
53 use distributions
::{Range, IndependentSample}
;
54 use distributions
::range
::SampleRange
;
57 const RAND_BENCH_N
: u64 = 100;
59 pub mod distributions
;
65 // Temporary trait to implement a few floating-point routines
66 // needed by librand; this is necessary because librand doesn't
67 // depend on libstd. This will go away when librand is integrated
70 trait FloatMath
: Sized
{
73 fn sqrt(self) -> Self;
74 fn powf(self, n
: Self) -> Self;
77 impl FloatMath
for f64 {
80 unsafe { intrinsics::expf64(self) }
85 unsafe { intrinsics::logf64(self) }
89 fn powf(self, n
: f64) -> f64 {
90 unsafe { intrinsics::powf64(self, n) }
94 fn sqrt(self) -> f64 {
98 unsafe { intrinsics::sqrtf64(self) }
103 /// A type that can be randomly generated using an `Rng`.
105 pub trait Rand
: Sized
{
106 /// Generates a random instance of this type using the specified source of
108 fn rand
<R
: Rng
>(rng
: &mut R
) -> Self;
111 /// A random number generator.
112 pub trait Rng
: Sized
{
113 /// Return the next random u32.
115 /// This rarely needs to be called directly, prefer `r.gen()` to
117 // FIXME #7771: Should be implemented in terms of next_u64
118 fn next_u32(&mut self) -> u32;
120 /// Return the next random u64.
122 /// By default this is implemented in terms of `next_u32`. An
123 /// implementation of this trait must provide at least one of
124 /// these two methods. Similarly to `next_u32`, this rarely needs
125 /// to be called directly, prefer `r.gen()` to `r.next_u64()`.
126 fn next_u64(&mut self) -> u64 {
127 ((self.next_u32() as u64) << 32) | (self.next_u32() as u64)
130 /// Return the next random f32 selected from the half-open
131 /// interval `[0, 1)`.
133 /// By default this is implemented in terms of `next_u32`, but a
134 /// random number generator which can generate numbers satisfying
135 /// the requirements directly can overload this for performance.
136 /// It is required that the return value lies in `[0, 1)`.
138 /// See `Closed01` for the closed interval `[0,1]`, and
139 /// `Open01` for the open interval `(0,1)`.
140 fn next_f32(&mut self) -> f32 {
141 const MANTISSA_BITS
: usize = 24;
142 const IGNORED_BITS
: usize = 8;
143 const SCALE
: f32 = (1u64 << MANTISSA_BITS
) as f32;
145 // using any more than `MANTISSA_BITS` bits will
146 // cause (e.g.) 0xffff_ffff to correspond to 1
147 // exactly, so we need to drop some (8 for f32, 11
148 // for f64) to guarantee the open end.
149 (self.next_u32() >> IGNORED_BITS
) as f32 / SCALE
152 /// Return the next random f64 selected from the half-open
153 /// interval `[0, 1)`.
155 /// By default this is implemented in terms of `next_u64`, but a
156 /// random number generator which can generate numbers satisfying
157 /// the requirements directly can overload this for performance.
158 /// It is required that the return value lies in `[0, 1)`.
160 /// See `Closed01` for the closed interval `[0,1]`, and
161 /// `Open01` for the open interval `(0,1)`.
162 fn next_f64(&mut self) -> f64 {
163 const MANTISSA_BITS
: usize = 53;
164 const IGNORED_BITS
: usize = 11;
165 const SCALE
: f64 = (1u64 << MANTISSA_BITS
) as f64;
167 (self.next_u64() >> IGNORED_BITS
) as f64 / SCALE
170 /// Fill `dest` with random data.
172 /// This has a default implementation in terms of `next_u64` and
173 /// `next_u32`, but should be overridden by implementations that
174 /// offer a more efficient solution than just calling those
175 /// methods repeatedly.
177 /// This method does *not* have a requirement to bear any fixed
178 /// relationship to the other methods, for example, it does *not*
179 /// have to result in the same output as progressively filling
180 /// `dest` with `self.gen::<u8>()`, and any such behaviour should
181 /// not be relied upon.
183 /// This method should guarantee that `dest` is entirely filled
184 /// with new data, and may panic if this is impossible
185 /// (e.g. reading past the end of a file that is being used as the
186 /// source of randomness).
187 fn fill_bytes(&mut self, dest
: &mut [u8]) {
188 // this could, in theory, be done by transmuting dest to a
189 // [u64], but this is (1) likely to be undefined behaviour for
190 // LLVM, (2) has to be very careful about alignment concerns,
191 // (3) adds more `unsafe` that needs to be checked, (4)
192 // probably doesn't give much performance gain if
193 // optimisations are on.
198 // we could micro-optimise here by generating a u32 if
199 // we only need a few more bytes to fill the vector
201 num
= self.next_u64();
205 *byte
= (num
& 0xff) as u8;
211 /// Return a random value of a `Rand` type.
213 fn gen
<T
: Rand
>(&mut self) -> T
{
217 /// Return an iterator that will yield an infinite number of randomly
219 fn gen_iter
<'a
, T
: Rand
>(&'a
mut self) -> Generator
<'a
, T
, Self> {
222 _marker
: PhantomData
,
226 /// Generate a random value in the range [`low`, `high`).
228 /// This is a convenience wrapper around
229 /// `distributions::Range`. If this function will be called
230 /// repeatedly with the same arguments, one should use `Range`, as
231 /// that will amortize the computations that allow for perfect
232 /// uniformity, as they only happen on initialization.
236 /// Panics if `low >= high`.
237 fn gen_range
<T
: PartialOrd
+ SampleRange
>(&mut self, low
: T
, high
: T
) -> T
{
238 assert
!(low
< high
, "Rng.gen_range called with low >= high");
239 Range
::new(low
, high
).ind_sample(self)
242 /// Return a bool with a 1 in n chance of true
243 fn gen_weighted_bool(&mut self, n
: usize) -> bool
{
244 n
<= 1 || self.gen_range(0, n
) == 0
247 /// Return an iterator of random characters from the set A-Z,a-z,0-9.
248 fn gen_ascii_chars
<'a
>(&'a
mut self) -> AsciiGenerator
<'a
, Self> {
249 AsciiGenerator { rng: self }
252 /// Return a random element from `values`.
254 /// Return `None` if `values` is empty.
255 fn choose
<'a
, T
>(&mut self, values
: &'a
[T
]) -> Option
<&'a T
> {
256 if values
.is_empty() {
259 Some(&values
[self.gen_range(0, values
.len())])
263 /// Shuffle a mutable slice in place.
264 fn shuffle
<T
>(&mut self, values
: &mut [T
]) {
265 let mut i
= values
.len();
267 // invariant: elements with index >= i have been locked in place.
269 // lock element i in place.
270 values
.swap(i
, self.gen_range(0, i
+ 1));
275 /// Iterator which will generate a stream of random items.
277 /// This iterator is created via the `gen_iter` method on `Rng`.
278 pub struct Generator
<'a
, T
, R
: 'a
> {
280 _marker
: PhantomData
<T
>,
283 impl<'a
, T
: Rand
, R
: Rng
> Iterator
for Generator
<'a
, T
, R
> {
286 fn next(&mut self) -> Option
<T
> {
291 /// Iterator which will continuously generate random ascii characters.
293 /// This iterator is created via the `gen_ascii_chars` method on `Rng`.
294 pub struct AsciiGenerator
<'a
, R
: 'a
> {
298 impl<'a
, R
: Rng
> Iterator
for AsciiGenerator
<'a
, R
> {
301 fn next(&mut self) -> Option
<char> {
302 const GEN_ASCII_STR_CHARSET
: &'
static [u8] = b
"ABCDEFGHIJKLMNOPQRSTUVWXYZ\
303 abcdefghijklmnopqrstuvwxyz\
305 Some(*self.rng
.choose(GEN_ASCII_STR_CHARSET
).unwrap() as char)
309 /// A random number generator that can be explicitly seeded to produce
310 /// the same stream of randomness multiple times.
311 pub trait SeedableRng
<Seed
>: Rng
{
312 /// Reseed an RNG with the given seed.
313 fn reseed(&mut self, Seed
);
315 /// Create a new RNG with the given seed.
316 fn from_seed(seed
: Seed
) -> Self;
319 /// An Xorshift[1] random number
322 /// The Xorshift algorithm is not suitable for cryptographic purposes
323 /// but is very fast. If you do not know for sure that it fits your
324 /// requirements, use a more secure one such as `IsaacRng` or `OsRng`.
326 /// [1]: Marsaglia, George (July 2003). ["Xorshift
327 /// RNGs"](http://www.jstatsoft.org/v08/i14/paper). *Journal of
328 /// Statistical Software*. Vol. 8 (Issue 14).
330 pub struct XorShiftRng
{
338 /// Creates a new XorShiftRng instance which is not seeded.
340 /// The initial values of this RNG are constants, so all generators created
341 /// by this function will yield the same stream of random numbers. It is
342 /// highly recommended that this is created through `SeedableRng` instead of
344 pub fn new_unseeded() -> XorShiftRng
{
354 impl Rng
for XorShiftRng
{
356 fn next_u32(&mut self) -> u32 {
358 let t
= x ^
(x
<< 11);
363 self.w
= w ^
(w
>> 19) ^
(t ^
(t
>> 8));
368 impl SeedableRng
<[u32; 4]> for XorShiftRng
{
369 /// Reseed an XorShiftRng. This will panic if `seed` is entirely 0.
370 fn reseed(&mut self, seed
: [u32; 4]) {
371 assert
!(!seed
.iter().all(|&x
| x
== 0),
372 "XorShiftRng.reseed called with an all zero seed.");
380 /// Create a new XorShiftRng. This will panic if `seed` is entirely 0.
381 fn from_seed(seed
: [u32; 4]) -> XorShiftRng
{
382 assert
!(!seed
.iter().all(|&x
| x
== 0),
383 "XorShiftRng::from_seed called with an all zero seed.");
394 impl Rand
for XorShiftRng
{
395 fn rand
<R
: Rng
>(rng
: &mut R
) -> XorShiftRng
{
396 let mut tuple
: (u32, u32, u32, u32) = rng
.gen();
397 while tuple
== (0, 0, 0, 0) {
400 let (x
, y
, z
, w
) = tuple
;
410 /// A wrapper for generating floating point numbers uniformly in the
411 /// open interval `(0,1)` (not including either endpoint).
413 /// Use `Closed01` for the closed interval `[0,1]`, and the default
414 /// `Rand` implementation for `f32` and `f64` for the half-open
416 pub struct Open01
<F
>(pub F
);
418 /// A wrapper for generating floating point numbers uniformly in the
419 /// closed interval `[0,1]` (including both endpoints).
421 /// Use `Open01` for the closed interval `(0,1)`, and the default
422 /// `Rand` implementation of `f32` and `f64` for the half-open
424 pub struct Closed01
<F
>(pub F
);
428 use std
::__rand
as rand
;
430 pub struct MyRng
<R
> {
434 impl<R
: rand
::Rng
> ::Rng
for MyRng
<R
> {
435 fn next_u32(&mut self) -> u32 {
436 rand
::Rng
::next_u32(&mut self.inner
)
440 pub fn rng() -> MyRng
<rand
::ThreadRng
> {
441 MyRng { inner: rand::thread_rng() }
444 pub fn weak_rng() -> MyRng
<rand
::ThreadRng
> {
445 MyRng { inner: rand::thread_rng() }