]> git.proxmox.com Git - rustc.git/blob - src/librustc/hir/lowering.rs
New upstream version 1.34.2+dfsg1
[rustc.git] / src / librustc / hir / lowering.rs
1 //! Lowers the AST to the HIR.
2 //!
3 //! Since the AST and HIR are fairly similar, this is mostly a simple procedure,
4 //! much like a fold. Where lowering involves a bit more work things get more
5 //! interesting and there are some invariants you should know about. These mostly
6 //! concern spans and IDs.
7 //!
8 //! Spans are assigned to AST nodes during parsing and then are modified during
9 //! expansion to indicate the origin of a node and the process it went through
10 //! being expanded. IDs are assigned to AST nodes just before lowering.
11 //!
12 //! For the simpler lowering steps, IDs and spans should be preserved. Unlike
13 //! expansion we do not preserve the process of lowering in the spans, so spans
14 //! should not be modified here. When creating a new node (as opposed to
15 //! 'folding' an existing one), then you create a new ID using `next_id()`.
16 //!
17 //! You must ensure that IDs are unique. That means that you should only use the
18 //! ID from an AST node in a single HIR node (you can assume that AST node IDs
19 //! are unique). Every new node must have a unique ID. Avoid cloning HIR nodes.
20 //! If you do, you must then set the new node's ID to a fresh one.
21 //!
22 //! Spans are used for error messages and for tools to map semantics back to
23 //! source code. It is therefore not as important with spans as IDs to be strict
24 //! about use (you can't break the compiler by screwing up a span). Obviously, a
25 //! HIR node can only have a single span. But multiple nodes can have the same
26 //! span and spans don't need to be kept in order, etc. Where code is preserved
27 //! by lowering, it should have the same span as in the AST. Where HIR nodes are
28 //! new it is probably best to give a span for the whole AST node being lowered.
29 //! All nodes should have real spans, don't use dummy spans. Tools are likely to
30 //! get confused if the spans from leaf AST nodes occur in multiple places
31 //! in the HIR, especially for multiple identifiers.
32
33 use crate::dep_graph::DepGraph;
34 use crate::hir::{self, ParamName};
35 use crate::hir::HirVec;
36 use crate::hir::map::{DefKey, DefPathData, Definitions};
37 use crate::hir::def_id::{DefId, DefIndex, DefIndexAddressSpace, CRATE_DEF_INDEX};
38 use crate::hir::def::{Def, PathResolution, PerNS};
39 use crate::hir::{GenericArg, ConstArg};
40 use crate::lint::builtin::{self, PARENTHESIZED_PARAMS_IN_TYPES_AND_MODULES,
41 ELIDED_LIFETIMES_IN_PATHS};
42 use crate::middle::cstore::CrateStore;
43 use crate::session::Session;
44 use crate::session::config::nightly_options;
45 use crate::util::common::FN_OUTPUT_NAME;
46 use crate::util::nodemap::{DefIdMap, NodeMap};
47 use errors::Applicability;
48 use rustc_data_structures::fx::FxHashSet;
49 use rustc_data_structures::indexed_vec::IndexVec;
50 use rustc_data_structures::thin_vec::ThinVec;
51 use rustc_data_structures::sync::Lrc;
52
53 use std::collections::{BTreeSet, BTreeMap};
54 use std::fmt::Debug;
55 use std::mem;
56 use smallvec::SmallVec;
57 use syntax::attr;
58 use syntax::ast;
59 use syntax::ast::*;
60 use syntax::errors;
61 use syntax::ext::hygiene::{Mark, SyntaxContext};
62 use syntax::print::pprust;
63 use syntax::ptr::P;
64 use syntax::source_map::{self, respan, CompilerDesugaringKind, Spanned};
65 use syntax::std_inject;
66 use syntax::symbol::{keywords, Symbol};
67 use syntax::tokenstream::{TokenStream, TokenTree};
68 use syntax::parse::token::Token;
69 use syntax::visit::{self, Visitor};
70 use syntax_pos::{Span, MultiSpan};
71
72 const HIR_ID_COUNTER_LOCKED: u32 = 0xFFFFFFFF;
73
74 pub struct LoweringContext<'a> {
75 crate_root: Option<&'static str>,
76
77 // Used to assign ids to HIR nodes that do not directly correspond to an AST node.
78 sess: &'a Session,
79
80 cstore: &'a dyn CrateStore,
81
82 resolver: &'a mut dyn Resolver,
83
84 /// The items being lowered are collected here.
85 items: BTreeMap<NodeId, hir::Item>,
86
87 trait_items: BTreeMap<hir::TraitItemId, hir::TraitItem>,
88 impl_items: BTreeMap<hir::ImplItemId, hir::ImplItem>,
89 bodies: BTreeMap<hir::BodyId, hir::Body>,
90 exported_macros: Vec<hir::MacroDef>,
91
92 trait_impls: BTreeMap<DefId, Vec<NodeId>>,
93 trait_auto_impl: BTreeMap<DefId, NodeId>,
94
95 modules: BTreeMap<NodeId, hir::ModuleItems>,
96
97 is_generator: bool,
98
99 catch_scopes: Vec<NodeId>,
100 loop_scopes: Vec<NodeId>,
101 is_in_loop_condition: bool,
102 is_in_trait_impl: bool,
103
104 /// What to do when we encounter either an "anonymous lifetime
105 /// reference". The term "anonymous" is meant to encompass both
106 /// `'_` lifetimes as well as fully elided cases where nothing is
107 /// written at all (e.g., `&T` or `std::cell::Ref<T>`).
108 anonymous_lifetime_mode: AnonymousLifetimeMode,
109
110 // Used to create lifetime definitions from in-band lifetime usages.
111 // e.g., `fn foo(x: &'x u8) -> &'x u8` to `fn foo<'x>(x: &'x u8) -> &'x u8`
112 // When a named lifetime is encountered in a function or impl header and
113 // has not been defined
114 // (i.e., it doesn't appear in the in_scope_lifetimes list), it is added
115 // to this list. The results of this list are then added to the list of
116 // lifetime definitions in the corresponding impl or function generics.
117 lifetimes_to_define: Vec<(Span, ParamName)>,
118
119 // Whether or not in-band lifetimes are being collected. This is used to
120 // indicate whether or not we're in a place where new lifetimes will result
121 // in in-band lifetime definitions, such a function or an impl header,
122 // including implicit lifetimes from `impl_header_lifetime_elision`.
123 is_collecting_in_band_lifetimes: bool,
124
125 // Currently in-scope lifetimes defined in impl headers, fn headers, or HRTB.
126 // When `is_collectin_in_band_lifetimes` is true, each lifetime is checked
127 // against this list to see if it is already in-scope, or if a definition
128 // needs to be created for it.
129 in_scope_lifetimes: Vec<Ident>,
130
131 current_module: NodeId,
132
133 type_def_lifetime_params: DefIdMap<usize>,
134
135 current_hir_id_owner: Vec<(DefIndex, u32)>,
136 item_local_id_counters: NodeMap<u32>,
137 node_id_to_hir_id: IndexVec<NodeId, hir::HirId>,
138 }
139
140 pub trait Resolver {
141 /// Resolve a path generated by the lowerer when expanding `for`, `if let`, etc.
142 fn resolve_hir_path(
143 &mut self,
144 path: &ast::Path,
145 is_value: bool,
146 ) -> hir::Path;
147
148 /// Obtain the resolution for a `NodeId`.
149 fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution>;
150
151 /// Obtain the possible resolutions for the given `use` statement.
152 fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>>;
153
154 /// We must keep the set of definitions up to date as we add nodes that weren't in the AST.
155 /// This should only return `None` during testing.
156 fn definitions(&mut self) -> &mut Definitions;
157
158 /// Given suffix `["b", "c", "d"]`, creates a HIR path for `[::crate_root]::b::c::d` and
159 /// resolves it based on `is_value`.
160 fn resolve_str_path(
161 &mut self,
162 span: Span,
163 crate_root: Option<&str>,
164 components: &[&str],
165 is_value: bool,
166 ) -> hir::Path;
167 }
168
169 #[derive(Debug)]
170 enum ImplTraitContext<'a> {
171 /// Treat `impl Trait` as shorthand for a new universal generic parameter.
172 /// Example: `fn foo(x: impl Debug)`, where `impl Debug` is conceptually
173 /// equivalent to a fresh universal parameter like `fn foo<T: Debug>(x: T)`.
174 ///
175 /// Newly generated parameters should be inserted into the given `Vec`.
176 Universal(&'a mut Vec<hir::GenericParam>),
177
178 /// Treat `impl Trait` as shorthand for a new existential parameter.
179 /// Example: `fn foo() -> impl Debug`, where `impl Debug` is conceptually
180 /// equivalent to a fresh existential parameter like `existential type T; fn foo() -> T`.
181 ///
182 /// We optionally store a `DefId` for the parent item here so we can look up necessary
183 /// information later. It is `None` when no information about the context should be stored,
184 /// e.g., for consts and statics.
185 Existential(Option<DefId>),
186
187 /// `impl Trait` is not accepted in this position.
188 Disallowed(ImplTraitPosition),
189 }
190
191 /// Position in which `impl Trait` is disallowed. Used for error reporting.
192 #[derive(Debug, Copy, Clone, PartialEq, Eq)]
193 enum ImplTraitPosition {
194 Binding,
195 Other,
196 }
197
198 impl<'a> ImplTraitContext<'a> {
199 #[inline]
200 fn disallowed() -> Self {
201 ImplTraitContext::Disallowed(ImplTraitPosition::Other)
202 }
203
204 fn reborrow(&'b mut self) -> ImplTraitContext<'b> {
205 use self::ImplTraitContext::*;
206 match self {
207 Universal(params) => Universal(params),
208 Existential(did) => Existential(*did),
209 Disallowed(pos) => Disallowed(*pos),
210 }
211 }
212 }
213
214 pub fn lower_crate(
215 sess: &Session,
216 cstore: &dyn CrateStore,
217 dep_graph: &DepGraph,
218 krate: &Crate,
219 resolver: &mut dyn Resolver,
220 ) -> hir::Crate {
221 // We're constructing the HIR here; we don't care what we will
222 // read, since we haven't even constructed the *input* to
223 // incr. comp. yet.
224 dep_graph.assert_ignored();
225
226 LoweringContext {
227 crate_root: std_inject::injected_crate_name(),
228 sess,
229 cstore,
230 resolver,
231 items: BTreeMap::new(),
232 trait_items: BTreeMap::new(),
233 impl_items: BTreeMap::new(),
234 bodies: BTreeMap::new(),
235 trait_impls: BTreeMap::new(),
236 trait_auto_impl: BTreeMap::new(),
237 modules: BTreeMap::new(),
238 exported_macros: Vec::new(),
239 catch_scopes: Vec::new(),
240 loop_scopes: Vec::new(),
241 is_in_loop_condition: false,
242 anonymous_lifetime_mode: AnonymousLifetimeMode::PassThrough,
243 type_def_lifetime_params: Default::default(),
244 current_module: CRATE_NODE_ID,
245 current_hir_id_owner: vec![(CRATE_DEF_INDEX, 0)],
246 item_local_id_counters: Default::default(),
247 node_id_to_hir_id: IndexVec::new(),
248 is_generator: false,
249 is_in_trait_impl: false,
250 lifetimes_to_define: Vec::new(),
251 is_collecting_in_band_lifetimes: false,
252 in_scope_lifetimes: Vec::new(),
253 }.lower_crate(krate)
254 }
255
256 #[derive(Copy, Clone, PartialEq)]
257 enum ParamMode {
258 /// Any path in a type context.
259 Explicit,
260 /// The `module::Type` in `module::Type::method` in an expression.
261 Optional,
262 }
263
264 #[derive(Debug)]
265 struct LoweredNodeId {
266 node_id: NodeId,
267 hir_id: hir::HirId,
268 }
269
270 enum ParenthesizedGenericArgs {
271 Ok,
272 Warn,
273 Err,
274 }
275
276 /// What to do when we encounter an **anonymous** lifetime
277 /// reference. Anonymous lifetime references come in two flavors. You
278 /// have implicit, or fully elided, references to lifetimes, like the
279 /// one in `&T` or `Ref<T>`, and you have `'_` lifetimes, like `&'_ T`
280 /// or `Ref<'_, T>`. These often behave the same, but not always:
281 ///
282 /// - certain usages of implicit references are deprecated, like
283 /// `Ref<T>`, and we sometimes just give hard errors in those cases
284 /// as well.
285 /// - for object bounds there is a difference: `Box<dyn Foo>` is not
286 /// the same as `Box<dyn Foo + '_>`.
287 ///
288 /// We describe the effects of the various modes in terms of three cases:
289 ///
290 /// - **Modern** -- includes all uses of `'_`, but also the lifetime arg
291 /// of a `&` (e.g., the missing lifetime in something like `&T`)
292 /// - **Dyn Bound** -- if you have something like `Box<dyn Foo>`,
293 /// there is an elided lifetime bound (`Box<dyn Foo + 'X>`). These
294 /// elided bounds follow special rules. Note that this only covers
295 /// cases where *nothing* is written; the `'_` in `Box<dyn Foo +
296 /// '_>` is a case of "modern" elision.
297 /// - **Deprecated** -- this coverse cases like `Ref<T>`, where the lifetime
298 /// parameter to ref is completely elided. `Ref<'_, T>` would be the modern,
299 /// non-deprecated equivalent.
300 ///
301 /// Currently, the handling of lifetime elision is somewhat spread out
302 /// between HIR lowering and -- as described below -- the
303 /// `resolve_lifetime` module. Often we "fallthrough" to that code by generating
304 /// an "elided" or "underscore" lifetime name. In the future, we probably want to move
305 /// everything into HIR lowering.
306 #[derive(Copy, Clone)]
307 enum AnonymousLifetimeMode {
308 /// For **Modern** cases, create a new anonymous region parameter
309 /// and reference that.
310 ///
311 /// For **Dyn Bound** cases, pass responsibility to
312 /// `resolve_lifetime` code.
313 ///
314 /// For **Deprecated** cases, report an error.
315 CreateParameter,
316
317 /// Give a hard error when either `&` or `'_` is written. Used to
318 /// rule out things like `where T: Foo<'_>`. Does not imply an
319 /// error on default object bounds (e.g., `Box<dyn Foo>`).
320 ReportError,
321
322 /// Pass responsibility to `resolve_lifetime` code for all cases.
323 PassThrough,
324 }
325
326 struct ImplTraitTypeIdVisitor<'a> { ids: &'a mut SmallVec<[hir::ItemId; 1]> }
327
328 impl<'a, 'b> Visitor<'a> for ImplTraitTypeIdVisitor<'b> {
329 fn visit_ty(&mut self, ty: &'a Ty) {
330 match ty.node {
331 | TyKind::Typeof(_)
332 | TyKind::BareFn(_)
333 => return,
334
335 TyKind::ImplTrait(id, _) => self.ids.push(hir::ItemId { id }),
336 _ => {},
337 }
338 visit::walk_ty(self, ty);
339 }
340
341 fn visit_path_segment(
342 &mut self,
343 path_span: Span,
344 path_segment: &'v PathSegment,
345 ) {
346 if let Some(ref p) = path_segment.args {
347 if let GenericArgs::Parenthesized(_) = **p {
348 return;
349 }
350 }
351 visit::walk_path_segment(self, path_span, path_segment)
352 }
353 }
354
355 impl<'a> LoweringContext<'a> {
356 fn lower_crate(mut self, c: &Crate) -> hir::Crate {
357 /// Full-crate AST visitor that inserts into a fresh
358 /// `LoweringContext` any information that may be
359 /// needed from arbitrary locations in the crate,
360 /// e.g., the number of lifetime generic parameters
361 /// declared for every type and trait definition.
362 struct MiscCollector<'lcx, 'interner: 'lcx> {
363 lctx: &'lcx mut LoweringContext<'interner>,
364 }
365
366 impl<'lcx, 'interner> Visitor<'lcx> for MiscCollector<'lcx, 'interner> {
367 fn visit_item(&mut self, item: &'lcx Item) {
368 self.lctx.allocate_hir_id_counter(item.id, item);
369
370 match item.node {
371 ItemKind::Struct(_, ref generics)
372 | ItemKind::Union(_, ref generics)
373 | ItemKind::Enum(_, ref generics)
374 | ItemKind::Ty(_, ref generics)
375 | ItemKind::Existential(_, ref generics)
376 | ItemKind::Trait(_, _, ref generics, ..) => {
377 let def_id = self.lctx.resolver.definitions().local_def_id(item.id);
378 let count = generics
379 .params
380 .iter()
381 .filter(|param| match param.kind {
382 ast::GenericParamKind::Lifetime { .. } => true,
383 _ => false,
384 })
385 .count();
386 self.lctx.type_def_lifetime_params.insert(def_id, count);
387 }
388 _ => {}
389 }
390 visit::walk_item(self, item);
391 }
392
393 fn visit_trait_item(&mut self, item: &'lcx TraitItem) {
394 self.lctx.allocate_hir_id_counter(item.id, item);
395 visit::walk_trait_item(self, item);
396 }
397
398 fn visit_impl_item(&mut self, item: &'lcx ImplItem) {
399 self.lctx.allocate_hir_id_counter(item.id, item);
400 visit::walk_impl_item(self, item);
401 }
402 }
403
404 struct ItemLowerer<'lcx, 'interner: 'lcx> {
405 lctx: &'lcx mut LoweringContext<'interner>,
406 }
407
408 impl<'lcx, 'interner> ItemLowerer<'lcx, 'interner> {
409 fn with_trait_impl_ref<F>(&mut self, trait_impl_ref: &Option<TraitRef>, f: F)
410 where
411 F: FnOnce(&mut Self),
412 {
413 let old = self.lctx.is_in_trait_impl;
414 self.lctx.is_in_trait_impl = if let &None = trait_impl_ref {
415 false
416 } else {
417 true
418 };
419 f(self);
420 self.lctx.is_in_trait_impl = old;
421 }
422 }
423
424 impl<'lcx, 'interner> Visitor<'lcx> for ItemLowerer<'lcx, 'interner> {
425 fn visit_mod(&mut self, m: &'lcx Mod, _s: Span, _attrs: &[Attribute], n: NodeId) {
426 self.lctx.modules.insert(n, hir::ModuleItems {
427 items: BTreeSet::new(),
428 trait_items: BTreeSet::new(),
429 impl_items: BTreeSet::new(),
430 });
431
432 let old = self.lctx.current_module;
433 self.lctx.current_module = n;
434 visit::walk_mod(self, m);
435 self.lctx.current_module = old;
436 }
437
438 fn visit_item(&mut self, item: &'lcx Item) {
439 let mut item_lowered = true;
440 self.lctx.with_hir_id_owner(item.id, |lctx| {
441 if let Some(hir_item) = lctx.lower_item(item) {
442 lctx.insert_item(item.id, hir_item);
443 } else {
444 item_lowered = false;
445 }
446 });
447
448 if item_lowered {
449 let item_generics = match self.lctx.items.get(&item.id).unwrap().node {
450 hir::ItemKind::Impl(_, _, _, ref generics, ..)
451 | hir::ItemKind::Trait(_, _, ref generics, ..) => {
452 generics.params.clone()
453 }
454 _ => HirVec::new(),
455 };
456
457 self.lctx.with_parent_impl_lifetime_defs(&item_generics, |this| {
458 let this = &mut ItemLowerer { lctx: this };
459 if let ItemKind::Impl(.., ref opt_trait_ref, _, _) = item.node {
460 this.with_trait_impl_ref(opt_trait_ref, |this| {
461 visit::walk_item(this, item)
462 });
463 } else {
464 visit::walk_item(this, item);
465 }
466 });
467 }
468 }
469
470 fn visit_trait_item(&mut self, item: &'lcx TraitItem) {
471 self.lctx.with_hir_id_owner(item.id, |lctx| {
472 let id = hir::TraitItemId { node_id: item.id };
473 let hir_item = lctx.lower_trait_item(item);
474 lctx.trait_items.insert(id, hir_item);
475 lctx.modules.get_mut(&lctx.current_module).unwrap().trait_items.insert(id);
476 });
477
478 visit::walk_trait_item(self, item);
479 }
480
481 fn visit_impl_item(&mut self, item: &'lcx ImplItem) {
482 self.lctx.with_hir_id_owner(item.id, |lctx| {
483 let id = hir::ImplItemId { node_id: item.id };
484 let hir_item = lctx.lower_impl_item(item);
485 lctx.impl_items.insert(id, hir_item);
486 lctx.modules.get_mut(&lctx.current_module).unwrap().impl_items.insert(id);
487 });
488 visit::walk_impl_item(self, item);
489 }
490 }
491
492 self.lower_node_id(CRATE_NODE_ID);
493 debug_assert!(self.node_id_to_hir_id[CRATE_NODE_ID] == hir::CRATE_HIR_ID);
494
495 visit::walk_crate(&mut MiscCollector { lctx: &mut self }, c);
496 visit::walk_crate(&mut ItemLowerer { lctx: &mut self }, c);
497
498 let module = self.lower_mod(&c.module);
499 let attrs = self.lower_attrs(&c.attrs);
500 let body_ids = body_ids(&self.bodies);
501
502 self.resolver
503 .definitions()
504 .init_node_id_to_hir_id_mapping(self.node_id_to_hir_id);
505
506 hir::Crate {
507 module,
508 attrs,
509 span: c.span,
510 exported_macros: hir::HirVec::from(self.exported_macros),
511 items: self.items,
512 trait_items: self.trait_items,
513 impl_items: self.impl_items,
514 bodies: self.bodies,
515 body_ids,
516 trait_impls: self.trait_impls,
517 trait_auto_impl: self.trait_auto_impl,
518 modules: self.modules,
519 }
520 }
521
522 fn insert_item(&mut self, id: NodeId, item: hir::Item) {
523 self.items.insert(id, item);
524 self.modules.get_mut(&self.current_module).unwrap().items.insert(id);
525 }
526
527 fn allocate_hir_id_counter<T: Debug>(&mut self, owner: NodeId, debug: &T) -> LoweredNodeId {
528 if self.item_local_id_counters.insert(owner, 0).is_some() {
529 bug!(
530 "Tried to allocate item_local_id_counter for {:?} twice",
531 debug
532 );
533 }
534 // Always allocate the first `HirId` for the owner itself.
535 self.lower_node_id_with_owner(owner, owner)
536 }
537
538 fn lower_node_id_generic<F>(&mut self, ast_node_id: NodeId, alloc_hir_id: F) -> LoweredNodeId
539 where
540 F: FnOnce(&mut Self) -> hir::HirId,
541 {
542 if ast_node_id == DUMMY_NODE_ID {
543 return LoweredNodeId {
544 node_id: DUMMY_NODE_ID,
545 hir_id: hir::DUMMY_HIR_ID,
546 };
547 }
548
549 let min_size = ast_node_id.as_usize() + 1;
550
551 if min_size > self.node_id_to_hir_id.len() {
552 self.node_id_to_hir_id.resize(min_size, hir::DUMMY_HIR_ID);
553 }
554
555 let existing_hir_id = self.node_id_to_hir_id[ast_node_id];
556
557 if existing_hir_id == hir::DUMMY_HIR_ID {
558 // Generate a new `HirId`.
559 let hir_id = alloc_hir_id(self);
560 self.node_id_to_hir_id[ast_node_id] = hir_id;
561 LoweredNodeId {
562 node_id: ast_node_id,
563 hir_id,
564 }
565 } else {
566 LoweredNodeId {
567 node_id: ast_node_id,
568 hir_id: existing_hir_id,
569 }
570 }
571 }
572
573 fn with_hir_id_owner<F, T>(&mut self, owner: NodeId, f: F) -> T
574 where
575 F: FnOnce(&mut Self) -> T,
576 {
577 let counter = self.item_local_id_counters
578 .insert(owner, HIR_ID_COUNTER_LOCKED)
579 .unwrap_or_else(|| panic!("No item_local_id_counters entry for {:?}", owner));
580 let def_index = self.resolver.definitions().opt_def_index(owner).unwrap();
581 self.current_hir_id_owner.push((def_index, counter));
582 let ret = f(self);
583 let (new_def_index, new_counter) = self.current_hir_id_owner.pop().unwrap();
584
585 debug_assert!(def_index == new_def_index);
586 debug_assert!(new_counter >= counter);
587
588 let prev = self.item_local_id_counters
589 .insert(owner, new_counter)
590 .unwrap();
591 debug_assert!(prev == HIR_ID_COUNTER_LOCKED);
592 ret
593 }
594
595 /// This method allocates a new `HirId` for the given `NodeId` and stores it in
596 /// the `LoweringContext`'s `NodeId => HirId` map.
597 /// Take care not to call this method if the resulting `HirId` is then not
598 /// actually used in the HIR, as that would trigger an assertion in the
599 /// `HirIdValidator` later on, which makes sure that all `NodeId`s got mapped
600 /// properly. Calling the method twice with the same `NodeId` is fine though.
601 fn lower_node_id(&mut self, ast_node_id: NodeId) -> LoweredNodeId {
602 self.lower_node_id_generic(ast_node_id, |this| {
603 let &mut (def_index, ref mut local_id_counter) =
604 this.current_hir_id_owner.last_mut().unwrap();
605 let local_id = *local_id_counter;
606 *local_id_counter += 1;
607 hir::HirId {
608 owner: def_index,
609 local_id: hir::ItemLocalId::from_u32(local_id),
610 }
611 })
612 }
613
614 fn lower_node_id_with_owner(&mut self, ast_node_id: NodeId, owner: NodeId) -> LoweredNodeId {
615 self.lower_node_id_generic(ast_node_id, |this| {
616 let local_id_counter = this
617 .item_local_id_counters
618 .get_mut(&owner)
619 .expect("called lower_node_id_with_owner before allocate_hir_id_counter");
620 let local_id = *local_id_counter;
621
622 // We want to be sure not to modify the counter in the map while it
623 // is also on the stack. Otherwise we'll get lost updates when writing
624 // back from the stack to the map.
625 debug_assert!(local_id != HIR_ID_COUNTER_LOCKED);
626
627 *local_id_counter += 1;
628 let def_index = this
629 .resolver
630 .definitions()
631 .opt_def_index(owner)
632 .expect("You forgot to call `create_def_with_parent` or are lowering node ids \
633 that do not belong to the current owner");
634
635 hir::HirId {
636 owner: def_index,
637 local_id: hir::ItemLocalId::from_u32(local_id),
638 }
639 })
640 }
641
642 fn record_body(&mut self, value: hir::Expr, decl: Option<&FnDecl>) -> hir::BodyId {
643 let body = hir::Body {
644 arguments: decl.map_or(hir_vec![], |decl| {
645 decl.inputs.iter().map(|x| self.lower_arg(x)).collect()
646 }),
647 is_generator: self.is_generator,
648 value,
649 };
650 let id = body.id();
651 self.bodies.insert(id, body);
652 id
653 }
654
655 fn next_id(&mut self) -> LoweredNodeId {
656 self.lower_node_id(self.sess.next_node_id())
657 }
658
659 fn expect_full_def(&mut self, id: NodeId) -> Def {
660 self.resolver.get_resolution(id).map_or(Def::Err, |pr| {
661 if pr.unresolved_segments() != 0 {
662 bug!("path not fully resolved: {:?}", pr);
663 }
664 pr.base_def()
665 })
666 }
667
668 fn expect_full_def_from_use(&mut self, id: NodeId) -> impl Iterator<Item = Def> {
669 self.resolver.get_import(id).present_items().map(|pr| {
670 if pr.unresolved_segments() != 0 {
671 bug!("path not fully resolved: {:?}", pr);
672 }
673 pr.base_def()
674 })
675 }
676
677 fn diagnostic(&self) -> &errors::Handler {
678 self.sess.diagnostic()
679 }
680
681 fn str_to_ident(&self, s: &'static str) -> Ident {
682 Ident::with_empty_ctxt(Symbol::gensym(s))
683 }
684
685 /// Reuses the span but adds information like the kind of the desugaring and features that are
686 /// allowed inside this span.
687 fn mark_span_with_reason(
688 &self,
689 reason: CompilerDesugaringKind,
690 span: Span,
691 allow_internal_unstable: Option<Lrc<[Symbol]>>,
692 ) -> Span {
693 let mark = Mark::fresh(Mark::root());
694 mark.set_expn_info(source_map::ExpnInfo {
695 call_site: span,
696 def_site: Some(span),
697 format: source_map::CompilerDesugaring(reason),
698 allow_internal_unstable,
699 allow_internal_unsafe: false,
700 local_inner_macros: false,
701 edition: source_map::hygiene::default_edition(),
702 });
703 span.with_ctxt(SyntaxContext::empty().apply_mark(mark))
704 }
705
706 fn with_anonymous_lifetime_mode<R>(
707 &mut self,
708 anonymous_lifetime_mode: AnonymousLifetimeMode,
709 op: impl FnOnce(&mut Self) -> R,
710 ) -> R {
711 let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
712 self.anonymous_lifetime_mode = anonymous_lifetime_mode;
713 let result = op(self);
714 self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
715 result
716 }
717
718 /// Creates a new hir::GenericParam for every new lifetime and
719 /// type parameter encountered while evaluating `f`. Definitions
720 /// are created with the parent provided. If no `parent_id` is
721 /// provided, no definitions will be returned.
722 ///
723 /// Presuming that in-band lifetimes are enabled, then
724 /// `self.anonymous_lifetime_mode` will be updated to match the
725 /// argument while `f` is running (and restored afterwards).
726 fn collect_in_band_defs<T, F>(
727 &mut self,
728 parent_id: DefId,
729 anonymous_lifetime_mode: AnonymousLifetimeMode,
730 f: F,
731 ) -> (Vec<hir::GenericParam>, T)
732 where
733 F: FnOnce(&mut LoweringContext<'_>) -> (Vec<hir::GenericParam>, T),
734 {
735 assert!(!self.is_collecting_in_band_lifetimes);
736 assert!(self.lifetimes_to_define.is_empty());
737 let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
738
739 self.anonymous_lifetime_mode = anonymous_lifetime_mode;
740 self.is_collecting_in_band_lifetimes = true;
741
742 let (in_band_ty_params, res) = f(self);
743
744 self.is_collecting_in_band_lifetimes = false;
745 self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
746
747 let lifetimes_to_define = self.lifetimes_to_define.split_off(0);
748
749 let params = lifetimes_to_define
750 .into_iter()
751 .map(|(span, hir_name)| {
752 let LoweredNodeId { node_id, hir_id } = self.next_id();
753
754 // Get the name we'll use to make the def-path. Note
755 // that collisions are ok here and this shouldn't
756 // really show up for end-user.
757 let (str_name, kind) = match hir_name {
758 ParamName::Plain(ident) => (
759 ident.as_interned_str(),
760 hir::LifetimeParamKind::InBand,
761 ),
762 ParamName::Fresh(_) => (
763 keywords::UnderscoreLifetime.name().as_interned_str(),
764 hir::LifetimeParamKind::Elided,
765 ),
766 ParamName::Error => (
767 keywords::UnderscoreLifetime.name().as_interned_str(),
768 hir::LifetimeParamKind::Error,
769 ),
770 };
771
772 // Add a definition for the in-band lifetime def.
773 self.resolver.definitions().create_def_with_parent(
774 parent_id.index,
775 node_id,
776 DefPathData::LifetimeParam(str_name),
777 DefIndexAddressSpace::High,
778 Mark::root(),
779 span,
780 );
781
782 hir::GenericParam {
783 id: node_id,
784 hir_id,
785 name: hir_name,
786 attrs: hir_vec![],
787 bounds: hir_vec![],
788 span,
789 pure_wrt_drop: false,
790 kind: hir::GenericParamKind::Lifetime { kind }
791 }
792 })
793 .chain(in_band_ty_params.into_iter())
794 .collect();
795
796 (params, res)
797 }
798
799 /// When there is a reference to some lifetime `'a`, and in-band
800 /// lifetimes are enabled, then we want to push that lifetime into
801 /// the vector of names to define later. In that case, it will get
802 /// added to the appropriate generics.
803 fn maybe_collect_in_band_lifetime(&mut self, ident: Ident) {
804 if !self.is_collecting_in_band_lifetimes {
805 return;
806 }
807
808 if !self.sess.features_untracked().in_band_lifetimes {
809 return;
810 }
811
812 if self.in_scope_lifetimes.contains(&ident.modern()) {
813 return;
814 }
815
816 let hir_name = ParamName::Plain(ident);
817
818 if self.lifetimes_to_define.iter()
819 .any(|(_, lt_name)| lt_name.modern() == hir_name.modern()) {
820 return;
821 }
822
823 self.lifetimes_to_define.push((ident.span, hir_name));
824 }
825
826 /// When we have either an elided or `'_` lifetime in an impl
827 /// header, we convert it to an in-band lifetime.
828 fn collect_fresh_in_band_lifetime(&mut self, span: Span) -> ParamName {
829 assert!(self.is_collecting_in_band_lifetimes);
830 let index = self.lifetimes_to_define.len();
831 let hir_name = ParamName::Fresh(index);
832 self.lifetimes_to_define.push((span, hir_name));
833 hir_name
834 }
835
836 // Evaluates `f` with the lifetimes in `params` in-scope.
837 // This is used to track which lifetimes have already been defined, and
838 // which are new in-band lifetimes that need to have a definition created
839 // for them.
840 fn with_in_scope_lifetime_defs<T, F>(&mut self, params: &[GenericParam], f: F) -> T
841 where
842 F: FnOnce(&mut LoweringContext<'_>) -> T,
843 {
844 let old_len = self.in_scope_lifetimes.len();
845 let lt_def_names = params.iter().filter_map(|param| match param.kind {
846 GenericParamKind::Lifetime { .. } => Some(param.ident.modern()),
847 _ => None,
848 });
849 self.in_scope_lifetimes.extend(lt_def_names);
850
851 let res = f(self);
852
853 self.in_scope_lifetimes.truncate(old_len);
854 res
855 }
856
857 // Same as the method above, but accepts `hir::GenericParam`s
858 // instead of `ast::GenericParam`s.
859 // This should only be used with generics that have already had their
860 // in-band lifetimes added. In practice, this means that this function is
861 // only used when lowering a child item of a trait or impl.
862 fn with_parent_impl_lifetime_defs<T, F>(&mut self,
863 params: &HirVec<hir::GenericParam>,
864 f: F
865 ) -> T where
866 F: FnOnce(&mut LoweringContext<'_>) -> T,
867 {
868 let old_len = self.in_scope_lifetimes.len();
869 let lt_def_names = params.iter().filter_map(|param| match param.kind {
870 hir::GenericParamKind::Lifetime { .. } => Some(param.name.ident().modern()),
871 _ => None,
872 });
873 self.in_scope_lifetimes.extend(lt_def_names);
874
875 let res = f(self);
876
877 self.in_scope_lifetimes.truncate(old_len);
878 res
879 }
880
881 /// Appends in-band lifetime defs and argument-position `impl
882 /// Trait` defs to the existing set of generics.
883 ///
884 /// Presuming that in-band lifetimes are enabled, then
885 /// `self.anonymous_lifetime_mode` will be updated to match the
886 /// argument while `f` is running (and restored afterwards).
887 fn add_in_band_defs<F, T>(
888 &mut self,
889 generics: &Generics,
890 parent_id: DefId,
891 anonymous_lifetime_mode: AnonymousLifetimeMode,
892 f: F,
893 ) -> (hir::Generics, T)
894 where
895 F: FnOnce(&mut LoweringContext<'_>, &mut Vec<hir::GenericParam>) -> T,
896 {
897 let (in_band_defs, (mut lowered_generics, res)) = self.with_in_scope_lifetime_defs(
898 &generics.params,
899 |this| {
900 this.collect_in_band_defs(parent_id, anonymous_lifetime_mode, |this| {
901 let mut params = Vec::new();
902 let generics = this.lower_generics(
903 generics,
904 ImplTraitContext::Universal(&mut params),
905 );
906 let res = f(this, &mut params);
907 (params, (generics, res))
908 })
909 },
910 );
911
912 lowered_generics.params = lowered_generics
913 .params
914 .iter()
915 .cloned()
916 .chain(in_band_defs)
917 .collect();
918
919 (lowered_generics, res)
920 }
921
922 fn with_catch_scope<T, F>(&mut self, catch_id: NodeId, f: F) -> T
923 where
924 F: FnOnce(&mut LoweringContext<'_>) -> T,
925 {
926 let len = self.catch_scopes.len();
927 self.catch_scopes.push(catch_id);
928
929 let result = f(self);
930 assert_eq!(
931 len + 1,
932 self.catch_scopes.len(),
933 "catch scopes should be added and removed in stack order"
934 );
935
936 self.catch_scopes.pop().unwrap();
937
938 result
939 }
940
941 fn make_async_expr(
942 &mut self,
943 capture_clause: CaptureBy,
944 closure_node_id: NodeId,
945 ret_ty: Option<&Ty>,
946 body: impl FnOnce(&mut LoweringContext<'_>) -> hir::Expr,
947 ) -> hir::ExprKind {
948 let prev_is_generator = mem::replace(&mut self.is_generator, true);
949 let body_expr = body(self);
950 let span = body_expr.span;
951 let output = match ret_ty {
952 Some(ty) => FunctionRetTy::Ty(P(ty.clone())),
953 None => FunctionRetTy::Default(span),
954 };
955 let decl = FnDecl {
956 inputs: vec![],
957 output,
958 variadic: false
959 };
960 let body_id = self.record_body(body_expr, Some(&decl));
961 self.is_generator = prev_is_generator;
962
963 let capture_clause = self.lower_capture_clause(capture_clause);
964 let closure_hir_id = self.lower_node_id(closure_node_id).hir_id;
965 let decl = self.lower_fn_decl(&decl, None, /* impl trait allowed */ false, None);
966 let generator = hir::Expr {
967 id: closure_node_id,
968 hir_id: closure_hir_id,
969 node: hir::ExprKind::Closure(capture_clause, decl, body_id, span,
970 Some(hir::GeneratorMovability::Static)),
971 span,
972 attrs: ThinVec::new(),
973 };
974
975 let unstable_span = self.mark_span_with_reason(
976 CompilerDesugaringKind::Async,
977 span,
978 Some(vec![
979 Symbol::intern("gen_future"),
980 ].into()),
981 );
982 let gen_future = self.expr_std_path(
983 unstable_span, &["future", "from_generator"], None, ThinVec::new());
984 hir::ExprKind::Call(P(gen_future), hir_vec![generator])
985 }
986
987 fn lower_body<F>(&mut self, decl: Option<&FnDecl>, f: F) -> hir::BodyId
988 where
989 F: FnOnce(&mut LoweringContext<'_>) -> hir::Expr,
990 {
991 let prev = mem::replace(&mut self.is_generator, false);
992 let result = f(self);
993 let r = self.record_body(result, decl);
994 self.is_generator = prev;
995 return r;
996 }
997
998 fn with_loop_scope<T, F>(&mut self, loop_id: NodeId, f: F) -> T
999 where
1000 F: FnOnce(&mut LoweringContext<'_>) -> T,
1001 {
1002 // We're no longer in the base loop's condition; we're in another loop.
1003 let was_in_loop_condition = self.is_in_loop_condition;
1004 self.is_in_loop_condition = false;
1005
1006 let len = self.loop_scopes.len();
1007 self.loop_scopes.push(loop_id);
1008
1009 let result = f(self);
1010 assert_eq!(
1011 len + 1,
1012 self.loop_scopes.len(),
1013 "Loop scopes should be added and removed in stack order"
1014 );
1015
1016 self.loop_scopes.pop().unwrap();
1017
1018 self.is_in_loop_condition = was_in_loop_condition;
1019
1020 result
1021 }
1022
1023 fn with_loop_condition_scope<T, F>(&mut self, f: F) -> T
1024 where
1025 F: FnOnce(&mut LoweringContext<'_>) -> T,
1026 {
1027 let was_in_loop_condition = self.is_in_loop_condition;
1028 self.is_in_loop_condition = true;
1029
1030 let result = f(self);
1031
1032 self.is_in_loop_condition = was_in_loop_condition;
1033
1034 result
1035 }
1036
1037 fn with_new_scopes<T, F>(&mut self, f: F) -> T
1038 where
1039 F: FnOnce(&mut LoweringContext<'_>) -> T,
1040 {
1041 let was_in_loop_condition = self.is_in_loop_condition;
1042 self.is_in_loop_condition = false;
1043
1044 let catch_scopes = mem::replace(&mut self.catch_scopes, Vec::new());
1045 let loop_scopes = mem::replace(&mut self.loop_scopes, Vec::new());
1046 let ret = f(self);
1047 self.catch_scopes = catch_scopes;
1048 self.loop_scopes = loop_scopes;
1049
1050 self.is_in_loop_condition = was_in_loop_condition;
1051
1052 ret
1053 }
1054
1055 fn def_key(&mut self, id: DefId) -> DefKey {
1056 if id.is_local() {
1057 self.resolver.definitions().def_key(id.index)
1058 } else {
1059 self.cstore.def_key(id)
1060 }
1061 }
1062
1063 fn lower_label(&mut self, label: Option<Label>) -> Option<hir::Label> {
1064 label.map(|label| hir::Label {
1065 ident: label.ident,
1066 })
1067 }
1068
1069 fn lower_loop_destination(&mut self, destination: Option<(NodeId, Label)>) -> hir::Destination {
1070 let target_id = match destination {
1071 Some((id, _)) => {
1072 if let Def::Label(loop_id) = self.expect_full_def(id) {
1073 Ok(self.lower_node_id(loop_id).node_id)
1074 } else {
1075 Err(hir::LoopIdError::UnresolvedLabel)
1076 }
1077 }
1078 None => {
1079 self.loop_scopes
1080 .last()
1081 .cloned()
1082 .map(|id| Ok(self.lower_node_id(id).node_id))
1083 .unwrap_or(Err(hir::LoopIdError::OutsideLoopScope))
1084 .into()
1085 }
1086 };
1087 hir::Destination {
1088 label: self.lower_label(destination.map(|(_, label)| label)),
1089 target_id,
1090 }
1091 }
1092
1093 fn lower_attrs(&mut self, attrs: &[Attribute]) -> hir::HirVec<Attribute> {
1094 attrs
1095 .iter()
1096 .map(|a| self.lower_attr(a))
1097 .collect()
1098 }
1099
1100 fn lower_attr(&mut self, attr: &Attribute) -> Attribute {
1101 // Note that we explicitly do not walk the path. Since we don't really
1102 // lower attributes (we use the AST version) there is nowhere to keep
1103 // the `HirId`s. We don't actually need HIR version of attributes anyway.
1104 Attribute {
1105 id: attr.id,
1106 style: attr.style,
1107 path: attr.path.clone(),
1108 tokens: self.lower_token_stream(attr.tokens.clone()),
1109 is_sugared_doc: attr.is_sugared_doc,
1110 span: attr.span,
1111 }
1112 }
1113
1114 fn lower_token_stream(&mut self, tokens: TokenStream) -> TokenStream {
1115 tokens
1116 .into_trees()
1117 .flat_map(|tree| self.lower_token_tree(tree).into_trees())
1118 .collect()
1119 }
1120
1121 fn lower_token_tree(&mut self, tree: TokenTree) -> TokenStream {
1122 match tree {
1123 TokenTree::Token(span, token) => self.lower_token(token, span),
1124 TokenTree::Delimited(span, delim, tts) => TokenTree::Delimited(
1125 span,
1126 delim,
1127 self.lower_token_stream(tts),
1128 ).into(),
1129 }
1130 }
1131
1132 fn lower_token(&mut self, token: Token, span: Span) -> TokenStream {
1133 match token {
1134 Token::Interpolated(nt) => {
1135 let tts = nt.to_tokenstream(&self.sess.parse_sess, span);
1136 self.lower_token_stream(tts)
1137 }
1138 other => TokenTree::Token(span, other).into(),
1139 }
1140 }
1141
1142 fn lower_arm(&mut self, arm: &Arm) -> hir::Arm {
1143 hir::Arm {
1144 attrs: self.lower_attrs(&arm.attrs),
1145 pats: arm.pats.iter().map(|x| self.lower_pat(x)).collect(),
1146 guard: match arm.guard {
1147 Some(Guard::If(ref x)) => Some(hir::Guard::If(P(self.lower_expr(x)))),
1148 _ => None,
1149 },
1150 body: P(self.lower_expr(&arm.body)),
1151 }
1152 }
1153
1154 fn lower_ty_binding(&mut self, b: &TypeBinding,
1155 itctx: ImplTraitContext<'_>) -> hir::TypeBinding {
1156 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(b.id);
1157
1158 hir::TypeBinding {
1159 id: node_id,
1160 hir_id,
1161 ident: b.ident,
1162 ty: self.lower_ty(&b.ty, itctx),
1163 span: b.span,
1164 }
1165 }
1166
1167 fn lower_generic_arg(&mut self,
1168 arg: &ast::GenericArg,
1169 itctx: ImplTraitContext<'_>)
1170 -> hir::GenericArg {
1171 match arg {
1172 ast::GenericArg::Lifetime(lt) => GenericArg::Lifetime(self.lower_lifetime(&lt)),
1173 ast::GenericArg::Type(ty) => GenericArg::Type(self.lower_ty_direct(&ty, itctx)),
1174 ast::GenericArg::Const(ct) => {
1175 GenericArg::Const(ConstArg {
1176 value: self.lower_anon_const(&ct),
1177 span: ct.value.span,
1178 })
1179 }
1180 }
1181 }
1182
1183 fn lower_ty(&mut self, t: &Ty, itctx: ImplTraitContext<'_>) -> P<hir::Ty> {
1184 P(self.lower_ty_direct(t, itctx))
1185 }
1186
1187 fn lower_ty_direct(&mut self, t: &Ty, mut itctx: ImplTraitContext<'_>) -> hir::Ty {
1188 let kind = match t.node {
1189 TyKind::Infer => hir::TyKind::Infer,
1190 TyKind::Err => hir::TyKind::Err,
1191 TyKind::Slice(ref ty) => hir::TyKind::Slice(self.lower_ty(ty, itctx)),
1192 TyKind::Ptr(ref mt) => hir::TyKind::Ptr(self.lower_mt(mt, itctx)),
1193 TyKind::Rptr(ref region, ref mt) => {
1194 let span = self.sess.source_map().next_point(t.span.shrink_to_lo());
1195 let lifetime = match *region {
1196 Some(ref lt) => self.lower_lifetime(lt),
1197 None => self.elided_ref_lifetime(span),
1198 };
1199 hir::TyKind::Rptr(lifetime, self.lower_mt(mt, itctx))
1200 }
1201 TyKind::BareFn(ref f) => self.with_in_scope_lifetime_defs(
1202 &f.generic_params,
1203 |this| {
1204 this.with_anonymous_lifetime_mode(
1205 AnonymousLifetimeMode::PassThrough,
1206 |this| {
1207 hir::TyKind::BareFn(P(hir::BareFnTy {
1208 generic_params: this.lower_generic_params(
1209 &f.generic_params,
1210 &NodeMap::default(),
1211 ImplTraitContext::disallowed(),
1212 ),
1213 unsafety: this.lower_unsafety(f.unsafety),
1214 abi: f.abi,
1215 decl: this.lower_fn_decl(&f.decl, None, false, None),
1216 arg_names: this.lower_fn_args_to_names(&f.decl),
1217 }))
1218 },
1219 )
1220 },
1221 ),
1222 TyKind::Never => hir::TyKind::Never,
1223 TyKind::Tup(ref tys) => {
1224 hir::TyKind::Tup(tys.iter().map(|ty| {
1225 self.lower_ty_direct(ty, itctx.reborrow())
1226 }).collect())
1227 }
1228 TyKind::Paren(ref ty) => {
1229 return self.lower_ty_direct(ty, itctx);
1230 }
1231 TyKind::Path(ref qself, ref path) => {
1232 let id = self.lower_node_id(t.id);
1233 let qpath = self.lower_qpath(t.id, qself, path, ParamMode::Explicit, itctx);
1234 let ty = self.ty_path(id, t.span, qpath);
1235 if let hir::TyKind::TraitObject(..) = ty.node {
1236 self.maybe_lint_bare_trait(t.span, t.id, qself.is_none() && path.is_global());
1237 }
1238 return ty;
1239 }
1240 TyKind::ImplicitSelf => hir::TyKind::Path(hir::QPath::Resolved(
1241 None,
1242 P(hir::Path {
1243 def: self.expect_full_def(t.id),
1244 segments: hir_vec![hir::PathSegment::from_ident(keywords::SelfUpper.ident())],
1245 span: t.span,
1246 }),
1247 )),
1248 TyKind::Array(ref ty, ref length) => {
1249 hir::TyKind::Array(self.lower_ty(ty, itctx), self.lower_anon_const(length))
1250 }
1251 TyKind::Typeof(ref expr) => {
1252 hir::TyKind::Typeof(self.lower_anon_const(expr))
1253 }
1254 TyKind::TraitObject(ref bounds, kind) => {
1255 let mut lifetime_bound = None;
1256 let bounds = bounds
1257 .iter()
1258 .filter_map(|bound| match *bound {
1259 GenericBound::Trait(ref ty, TraitBoundModifier::None) => {
1260 Some(self.lower_poly_trait_ref(ty, itctx.reborrow()))
1261 }
1262 GenericBound::Trait(_, TraitBoundModifier::Maybe) => None,
1263 GenericBound::Outlives(ref lifetime) => {
1264 if lifetime_bound.is_none() {
1265 lifetime_bound = Some(self.lower_lifetime(lifetime));
1266 }
1267 None
1268 }
1269 })
1270 .collect();
1271 let lifetime_bound =
1272 lifetime_bound.unwrap_or_else(|| self.elided_dyn_bound(t.span));
1273 if kind != TraitObjectSyntax::Dyn {
1274 self.maybe_lint_bare_trait(t.span, t.id, false);
1275 }
1276 hir::TyKind::TraitObject(bounds, lifetime_bound)
1277 }
1278 TyKind::ImplTrait(def_node_id, ref bounds) => {
1279 let span = t.span;
1280 match itctx {
1281 ImplTraitContext::Existential(fn_def_id) => {
1282 self.lower_existential_impl_trait(
1283 span, fn_def_id, def_node_id,
1284 |this| this.lower_param_bounds(bounds, itctx),
1285 )
1286 }
1287 ImplTraitContext::Universal(in_band_ty_params) => {
1288 let LoweredNodeId { node_id: _, hir_id } = self.lower_node_id(def_node_id);
1289 // Add a definition for the in-band `Param`.
1290 let def_index = self
1291 .resolver
1292 .definitions()
1293 .opt_def_index(def_node_id)
1294 .unwrap();
1295
1296 let hir_bounds = self.lower_param_bounds(
1297 bounds,
1298 ImplTraitContext::Universal(in_band_ty_params),
1299 );
1300 // Set the name to `impl Bound1 + Bound2`.
1301 let ident = Ident::from_str(&pprust::ty_to_string(t)).with_span_pos(span);
1302 in_band_ty_params.push(hir::GenericParam {
1303 id: def_node_id,
1304 hir_id,
1305 name: ParamName::Plain(ident),
1306 pure_wrt_drop: false,
1307 attrs: hir_vec![],
1308 bounds: hir_bounds,
1309 span,
1310 kind: hir::GenericParamKind::Type {
1311 default: None,
1312 synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
1313 }
1314 });
1315
1316 hir::TyKind::Path(hir::QPath::Resolved(
1317 None,
1318 P(hir::Path {
1319 span,
1320 def: Def::TyParam(DefId::local(def_index)),
1321 segments: hir_vec![hir::PathSegment::from_ident(ident)],
1322 }),
1323 ))
1324 }
1325 ImplTraitContext::Disallowed(pos) => {
1326 let allowed_in = if self.sess.features_untracked()
1327 .impl_trait_in_bindings {
1328 "bindings or function and inherent method return types"
1329 } else {
1330 "function and inherent method return types"
1331 };
1332 let mut err = struct_span_err!(
1333 self.sess,
1334 t.span,
1335 E0562,
1336 "`impl Trait` not allowed outside of {}",
1337 allowed_in,
1338 );
1339 if pos == ImplTraitPosition::Binding &&
1340 nightly_options::is_nightly_build() {
1341 help!(err,
1342 "add #![feature(impl_trait_in_bindings)] to the crate attributes \
1343 to enable");
1344 }
1345 err.emit();
1346 hir::TyKind::Err
1347 }
1348 }
1349 }
1350 TyKind::Mac(_) => panic!("TyMac should have been expanded by now."),
1351 };
1352
1353 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(t.id);
1354 hir::Ty {
1355 id: node_id,
1356 node: kind,
1357 span: t.span,
1358 hir_id,
1359 }
1360 }
1361
1362 fn lower_existential_impl_trait(
1363 &mut self,
1364 span: Span,
1365 fn_def_id: Option<DefId>,
1366 exist_ty_node_id: NodeId,
1367 lower_bounds: impl FnOnce(&mut LoweringContext<'_>) -> hir::GenericBounds,
1368 ) -> hir::TyKind {
1369 // Make sure we know that some funky desugaring has been going on here.
1370 // This is a first: there is code in other places like for loop
1371 // desugaring that explicitly states that we don't want to track that.
1372 // Not tracking it makes lints in rustc and clippy very fragile as
1373 // frequently opened issues show.
1374 let exist_ty_span = self.mark_span_with_reason(
1375 CompilerDesugaringKind::ExistentialReturnType,
1376 span,
1377 None,
1378 );
1379
1380 let exist_ty_def_index = self
1381 .resolver
1382 .definitions()
1383 .opt_def_index(exist_ty_node_id)
1384 .unwrap();
1385
1386 self.allocate_hir_id_counter(exist_ty_node_id, &"existential impl trait");
1387
1388 let hir_bounds = self.with_hir_id_owner(exist_ty_node_id, lower_bounds);
1389
1390 let (lifetimes, lifetime_defs) = self.lifetimes_from_impl_trait_bounds(
1391 exist_ty_node_id,
1392 exist_ty_def_index,
1393 &hir_bounds,
1394 );
1395
1396 self.with_hir_id_owner(exist_ty_node_id, |lctx| {
1397 let LoweredNodeId { node_id, hir_id } = lctx.next_id();
1398 let exist_ty_item_kind = hir::ItemKind::Existential(hir::ExistTy {
1399 generics: hir::Generics {
1400 params: lifetime_defs,
1401 where_clause: hir::WhereClause {
1402 id: node_id,
1403 hir_id,
1404 predicates: Vec::new().into(),
1405 },
1406 span,
1407 },
1408 bounds: hir_bounds,
1409 impl_trait_fn: fn_def_id,
1410 });
1411 let exist_ty_id = lctx.lower_node_id(exist_ty_node_id);
1412 // Generate an `existential type Foo: Trait;` declaration.
1413 trace!("creating existential type with id {:#?}", exist_ty_id);
1414
1415 trace!("exist ty def index: {:#?}", exist_ty_def_index);
1416 let exist_ty_item = hir::Item {
1417 id: exist_ty_id.node_id,
1418 hir_id: exist_ty_id.hir_id,
1419 ident: keywords::Invalid.ident(),
1420 attrs: Default::default(),
1421 node: exist_ty_item_kind,
1422 vis: respan(span.shrink_to_lo(), hir::VisibilityKind::Inherited),
1423 span: exist_ty_span,
1424 };
1425
1426 // Insert the item into the global list. This usually happens
1427 // automatically for all AST items. But this existential type item
1428 // does not actually exist in the AST.
1429 lctx.insert_item(exist_ty_id.node_id, exist_ty_item);
1430
1431 // `impl Trait` now just becomes `Foo<'a, 'b, ..>`.
1432 hir::TyKind::Def(hir::ItemId { id: exist_ty_id.node_id }, lifetimes)
1433 })
1434 }
1435
1436 fn lifetimes_from_impl_trait_bounds(
1437 &mut self,
1438 exist_ty_id: NodeId,
1439 parent_index: DefIndex,
1440 bounds: &hir::GenericBounds,
1441 ) -> (HirVec<hir::GenericArg>, HirVec<hir::GenericParam>) {
1442 // This visitor walks over impl trait bounds and creates defs for all lifetimes which
1443 // appear in the bounds, excluding lifetimes that are created within the bounds.
1444 // E.g., `'a`, `'b`, but not `'c` in `impl for<'c> SomeTrait<'a, 'b, 'c>`.
1445 struct ImplTraitLifetimeCollector<'r, 'a: 'r> {
1446 context: &'r mut LoweringContext<'a>,
1447 parent: DefIndex,
1448 exist_ty_id: NodeId,
1449 collect_elided_lifetimes: bool,
1450 currently_bound_lifetimes: Vec<hir::LifetimeName>,
1451 already_defined_lifetimes: FxHashSet<hir::LifetimeName>,
1452 output_lifetimes: Vec<hir::GenericArg>,
1453 output_lifetime_params: Vec<hir::GenericParam>,
1454 }
1455
1456 impl<'r, 'a: 'r, 'v> hir::intravisit::Visitor<'v> for ImplTraitLifetimeCollector<'r, 'a> {
1457 fn nested_visit_map<'this>(
1458 &'this mut self,
1459 ) -> hir::intravisit::NestedVisitorMap<'this, 'v> {
1460 hir::intravisit::NestedVisitorMap::None
1461 }
1462
1463 fn visit_generic_args(&mut self, span: Span, parameters: &'v hir::GenericArgs) {
1464 // Don't collect elided lifetimes used inside of `Fn()` syntax.
1465 if parameters.parenthesized {
1466 let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1467 self.collect_elided_lifetimes = false;
1468 hir::intravisit::walk_generic_args(self, span, parameters);
1469 self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1470 } else {
1471 hir::intravisit::walk_generic_args(self, span, parameters);
1472 }
1473 }
1474
1475 fn visit_ty(&mut self, t: &'v hir::Ty) {
1476 // Don't collect elided lifetimes used inside of `fn()` syntax.
1477 if let hir::TyKind::BareFn(_) = t.node {
1478 let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1479 self.collect_elided_lifetimes = false;
1480
1481 // Record the "stack height" of `for<'a>` lifetime bindings
1482 // to be able to later fully undo their introduction.
1483 let old_len = self.currently_bound_lifetimes.len();
1484 hir::intravisit::walk_ty(self, t);
1485 self.currently_bound_lifetimes.truncate(old_len);
1486
1487 self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1488 } else {
1489 hir::intravisit::walk_ty(self, t)
1490 }
1491 }
1492
1493 fn visit_poly_trait_ref(
1494 &mut self,
1495 trait_ref: &'v hir::PolyTraitRef,
1496 modifier: hir::TraitBoundModifier,
1497 ) {
1498 // Record the "stack height" of `for<'a>` lifetime bindings
1499 // to be able to later fully undo their introduction.
1500 let old_len = self.currently_bound_lifetimes.len();
1501 hir::intravisit::walk_poly_trait_ref(self, trait_ref, modifier);
1502 self.currently_bound_lifetimes.truncate(old_len);
1503 }
1504
1505 fn visit_generic_param(&mut self, param: &'v hir::GenericParam) {
1506 // Record the introduction of 'a in `for<'a> ...`.
1507 if let hir::GenericParamKind::Lifetime { .. } = param.kind {
1508 // Introduce lifetimes one at a time so that we can handle
1509 // cases like `fn foo<'d>() -> impl for<'a, 'b: 'a, 'c: 'b + 'd>`.
1510 let lt_name = hir::LifetimeName::Param(param.name);
1511 self.currently_bound_lifetimes.push(lt_name);
1512 }
1513
1514 hir::intravisit::walk_generic_param(self, param);
1515 }
1516
1517 fn visit_lifetime(&mut self, lifetime: &'v hir::Lifetime) {
1518 let name = match lifetime.name {
1519 hir::LifetimeName::Implicit | hir::LifetimeName::Underscore => {
1520 if self.collect_elided_lifetimes {
1521 // Use `'_` for both implicit and underscore lifetimes in
1522 // `abstract type Foo<'_>: SomeTrait<'_>;`.
1523 hir::LifetimeName::Underscore
1524 } else {
1525 return;
1526 }
1527 }
1528 hir::LifetimeName::Param(_) => lifetime.name,
1529 hir::LifetimeName::Error | hir::LifetimeName::Static => return,
1530 };
1531
1532 if !self.currently_bound_lifetimes.contains(&name)
1533 && !self.already_defined_lifetimes.contains(&name) {
1534 self.already_defined_lifetimes.insert(name);
1535
1536 let LoweredNodeId { node_id, hir_id } = self.context.next_id();
1537 self.output_lifetimes.push(hir::GenericArg::Lifetime(hir::Lifetime {
1538 id: node_id,
1539 hir_id,
1540 span: lifetime.span,
1541 name,
1542 }));
1543
1544 // We need to manually create the ids here, because the
1545 // definitions will go into the explicit `existential type`
1546 // declaration and thus need to have their owner set to that item
1547 let def_node_id = self.context.sess.next_node_id();
1548 let LoweredNodeId { node_id: _, hir_id } =
1549 self.context.lower_node_id_with_owner(def_node_id, self.exist_ty_id);
1550 self.context.resolver.definitions().create_def_with_parent(
1551 self.parent,
1552 def_node_id,
1553 DefPathData::LifetimeParam(name.ident().as_interned_str()),
1554 DefIndexAddressSpace::High,
1555 Mark::root(),
1556 lifetime.span,
1557 );
1558
1559 let (name, kind) = match name {
1560 hir::LifetimeName::Underscore => (
1561 hir::ParamName::Plain(keywords::UnderscoreLifetime.ident()),
1562 hir::LifetimeParamKind::Elided,
1563 ),
1564 hir::LifetimeName::Param(param_name) => (
1565 param_name,
1566 hir::LifetimeParamKind::Explicit,
1567 ),
1568 _ => bug!("expected LifetimeName::Param or ParamName::Plain"),
1569 };
1570
1571 self.output_lifetime_params.push(hir::GenericParam {
1572 id: def_node_id,
1573 hir_id,
1574 name,
1575 span: lifetime.span,
1576 pure_wrt_drop: false,
1577 attrs: hir_vec![],
1578 bounds: hir_vec![],
1579 kind: hir::GenericParamKind::Lifetime { kind }
1580 });
1581 }
1582 }
1583 }
1584
1585 let mut lifetime_collector = ImplTraitLifetimeCollector {
1586 context: self,
1587 parent: parent_index,
1588 exist_ty_id,
1589 collect_elided_lifetimes: true,
1590 currently_bound_lifetimes: Vec::new(),
1591 already_defined_lifetimes: FxHashSet::default(),
1592 output_lifetimes: Vec::new(),
1593 output_lifetime_params: Vec::new(),
1594 };
1595
1596 for bound in bounds {
1597 hir::intravisit::walk_param_bound(&mut lifetime_collector, &bound);
1598 }
1599
1600 (
1601 lifetime_collector.output_lifetimes.into(),
1602 lifetime_collector.output_lifetime_params.into(),
1603 )
1604 }
1605
1606 fn lower_foreign_mod(&mut self, fm: &ForeignMod) -> hir::ForeignMod {
1607 hir::ForeignMod {
1608 abi: fm.abi,
1609 items: fm.items
1610 .iter()
1611 .map(|x| self.lower_foreign_item(x))
1612 .collect(),
1613 }
1614 }
1615
1616 fn lower_global_asm(&mut self, ga: &GlobalAsm) -> P<hir::GlobalAsm> {
1617 P(hir::GlobalAsm {
1618 asm: ga.asm,
1619 ctxt: ga.ctxt,
1620 })
1621 }
1622
1623 fn lower_variant(&mut self, v: &Variant) -> hir::Variant {
1624 Spanned {
1625 node: hir::VariantKind {
1626 ident: v.node.ident,
1627 attrs: self.lower_attrs(&v.node.attrs),
1628 data: self.lower_variant_data(&v.node.data),
1629 disr_expr: v.node.disr_expr.as_ref().map(|e| self.lower_anon_const(e)),
1630 },
1631 span: v.span,
1632 }
1633 }
1634
1635 fn lower_qpath(
1636 &mut self,
1637 id: NodeId,
1638 qself: &Option<QSelf>,
1639 p: &Path,
1640 param_mode: ParamMode,
1641 mut itctx: ImplTraitContext<'_>,
1642 ) -> hir::QPath {
1643 let qself_position = qself.as_ref().map(|q| q.position);
1644 let qself = qself.as_ref().map(|q| self.lower_ty(&q.ty, itctx.reborrow()));
1645
1646 let resolution = self.resolver
1647 .get_resolution(id)
1648 .unwrap_or_else(|| PathResolution::new(Def::Err));
1649
1650 let proj_start = p.segments.len() - resolution.unresolved_segments();
1651 let path = P(hir::Path {
1652 def: resolution.base_def(),
1653 segments: p.segments[..proj_start]
1654 .iter()
1655 .enumerate()
1656 .map(|(i, segment)| {
1657 let param_mode = match (qself_position, param_mode) {
1658 (Some(j), ParamMode::Optional) if i < j => {
1659 // This segment is part of the trait path in a
1660 // qualified path - one of `a`, `b` or `Trait`
1661 // in `<X as a::b::Trait>::T::U::method`.
1662 ParamMode::Explicit
1663 }
1664 _ => param_mode,
1665 };
1666
1667 // Figure out if this is a type/trait segment,
1668 // which may need lifetime elision performed.
1669 let parent_def_id = |this: &mut Self, def_id: DefId| DefId {
1670 krate: def_id.krate,
1671 index: this.def_key(def_id).parent.expect("missing parent"),
1672 };
1673 let type_def_id = match resolution.base_def() {
1674 Def::AssociatedTy(def_id) if i + 2 == proj_start => {
1675 Some(parent_def_id(self, def_id))
1676 }
1677 Def::Variant(def_id) if i + 1 == proj_start => {
1678 Some(parent_def_id(self, def_id))
1679 }
1680 Def::Struct(def_id)
1681 | Def::Union(def_id)
1682 | Def::Enum(def_id)
1683 | Def::TyAlias(def_id)
1684 | Def::Trait(def_id) if i + 1 == proj_start =>
1685 {
1686 Some(def_id)
1687 }
1688 _ => None,
1689 };
1690 let parenthesized_generic_args = match resolution.base_def() {
1691 // `a::b::Trait(Args)`
1692 Def::Trait(..) if i + 1 == proj_start => ParenthesizedGenericArgs::Ok,
1693 // `a::b::Trait(Args)::TraitItem`
1694 Def::Method(..) | Def::AssociatedConst(..) | Def::AssociatedTy(..)
1695 if i + 2 == proj_start =>
1696 {
1697 ParenthesizedGenericArgs::Ok
1698 }
1699 // Avoid duplicated errors.
1700 Def::Err => ParenthesizedGenericArgs::Ok,
1701 // An error
1702 Def::Struct(..)
1703 | Def::Enum(..)
1704 | Def::Union(..)
1705 | Def::TyAlias(..)
1706 | Def::Variant(..) if i + 1 == proj_start =>
1707 {
1708 ParenthesizedGenericArgs::Err
1709 }
1710 // A warning for now, for compatibility reasons
1711 _ => ParenthesizedGenericArgs::Warn,
1712 };
1713
1714 let num_lifetimes = type_def_id.map_or(0, |def_id| {
1715 if let Some(&n) = self.type_def_lifetime_params.get(&def_id) {
1716 return n;
1717 }
1718 assert!(!def_id.is_local());
1719 let item_generics =
1720 self.cstore.item_generics_cloned_untracked(def_id, self.sess);
1721 let n = item_generics.own_counts().lifetimes;
1722 self.type_def_lifetime_params.insert(def_id, n);
1723 n
1724 });
1725 self.lower_path_segment(
1726 p.span,
1727 segment,
1728 param_mode,
1729 num_lifetimes,
1730 parenthesized_generic_args,
1731 itctx.reborrow(),
1732 None,
1733 )
1734 })
1735 .collect(),
1736 span: p.span,
1737 });
1738
1739 // Simple case, either no projections, or only fully-qualified.
1740 // E.g., `std::mem::size_of` or `<I as Iterator>::Item`.
1741 if resolution.unresolved_segments() == 0 {
1742 return hir::QPath::Resolved(qself, path);
1743 }
1744
1745 // Create the innermost type that we're projecting from.
1746 let mut ty = if path.segments.is_empty() {
1747 // If the base path is empty that means there exists a
1748 // syntactical `Self`, e.g., `&i32` in `<&i32>::clone`.
1749 qself.expect("missing QSelf for <T>::...")
1750 } else {
1751 // Otherwise, the base path is an implicit `Self` type path,
1752 // e.g., `Vec` in `Vec::new` or `<I as Iterator>::Item` in
1753 // `<I as Iterator>::Item::default`.
1754 let new_id = self.next_id();
1755 P(self.ty_path(new_id, p.span, hir::QPath::Resolved(qself, path)))
1756 };
1757
1758 // Anything after the base path are associated "extensions",
1759 // out of which all but the last one are associated types,
1760 // e.g., for `std::vec::Vec::<T>::IntoIter::Item::clone`:
1761 // * base path is `std::vec::Vec<T>`
1762 // * "extensions" are `IntoIter`, `Item` and `clone`
1763 // * type nodes are:
1764 // 1. `std::vec::Vec<T>` (created above)
1765 // 2. `<std::vec::Vec<T>>::IntoIter`
1766 // 3. `<<std::vec::Vec<T>>::IntoIter>::Item`
1767 // * final path is `<<<std::vec::Vec<T>>::IntoIter>::Item>::clone`
1768 for (i, segment) in p.segments.iter().enumerate().skip(proj_start) {
1769 let segment = P(self.lower_path_segment(
1770 p.span,
1771 segment,
1772 param_mode,
1773 0,
1774 ParenthesizedGenericArgs::Warn,
1775 itctx.reborrow(),
1776 None,
1777 ));
1778 let qpath = hir::QPath::TypeRelative(ty, segment);
1779
1780 // It's finished, return the extension of the right node type.
1781 if i == p.segments.len() - 1 {
1782 return qpath;
1783 }
1784
1785 // Wrap the associated extension in another type node.
1786 let new_id = self.next_id();
1787 ty = P(self.ty_path(new_id, p.span, qpath));
1788 }
1789
1790 // We should've returned in the for loop above.
1791 span_bug!(
1792 p.span,
1793 "lower_qpath: no final extension segment in {}..{}",
1794 proj_start,
1795 p.segments.len()
1796 )
1797 }
1798
1799 fn lower_path_extra(
1800 &mut self,
1801 def: Def,
1802 p: &Path,
1803 param_mode: ParamMode,
1804 explicit_owner: Option<NodeId>,
1805 ) -> hir::Path {
1806 hir::Path {
1807 def,
1808 segments: p.segments
1809 .iter()
1810 .map(|segment| {
1811 self.lower_path_segment(
1812 p.span,
1813 segment,
1814 param_mode,
1815 0,
1816 ParenthesizedGenericArgs::Err,
1817 ImplTraitContext::disallowed(),
1818 explicit_owner,
1819 )
1820 })
1821 .collect(),
1822 span: p.span,
1823 }
1824 }
1825
1826 fn lower_path(&mut self, id: NodeId, p: &Path, param_mode: ParamMode) -> hir::Path {
1827 let def = self.expect_full_def(id);
1828 self.lower_path_extra(def, p, param_mode, None)
1829 }
1830
1831 fn lower_path_segment(
1832 &mut self,
1833 path_span: Span,
1834 segment: &PathSegment,
1835 param_mode: ParamMode,
1836 expected_lifetimes: usize,
1837 parenthesized_generic_args: ParenthesizedGenericArgs,
1838 itctx: ImplTraitContext<'_>,
1839 explicit_owner: Option<NodeId>,
1840 ) -> hir::PathSegment {
1841 let (mut generic_args, infer_types) = if let Some(ref generic_args) = segment.args {
1842 let msg = "parenthesized type parameters may only be used with a `Fn` trait";
1843 match **generic_args {
1844 GenericArgs::AngleBracketed(ref data) => {
1845 self.lower_angle_bracketed_parameter_data(data, param_mode, itctx)
1846 }
1847 GenericArgs::Parenthesized(ref data) => match parenthesized_generic_args {
1848 ParenthesizedGenericArgs::Ok => self.lower_parenthesized_parameter_data(data),
1849 ParenthesizedGenericArgs::Warn => {
1850 self.sess.buffer_lint(
1851 PARENTHESIZED_PARAMS_IN_TYPES_AND_MODULES,
1852 CRATE_NODE_ID,
1853 data.span,
1854 msg.into(),
1855 );
1856 (hir::GenericArgs::none(), true)
1857 }
1858 ParenthesizedGenericArgs::Err => {
1859 let mut err = struct_span_err!(self.sess, data.span, E0214, "{}", msg);
1860 err.span_label(data.span, "only `Fn` traits may use parentheses");
1861 if let Ok(snippet) = self.sess.source_map().span_to_snippet(data.span) {
1862 // Do not suggest going from `Trait()` to `Trait<>`
1863 if data.inputs.len() > 0 {
1864 err.span_suggestion(
1865 data.span,
1866 "use angle brackets instead",
1867 format!("<{}>", &snippet[1..snippet.len() - 1]),
1868 Applicability::MaybeIncorrect,
1869 );
1870 }
1871 };
1872 err.emit();
1873 (self.lower_angle_bracketed_parameter_data(
1874 &data.as_angle_bracketed_args(),
1875 param_mode,
1876 itctx).0,
1877 false)
1878 }
1879 },
1880 }
1881 } else {
1882 self.lower_angle_bracketed_parameter_data(&Default::default(), param_mode, itctx)
1883 };
1884
1885 let has_lifetimes = generic_args.args.iter().any(|arg| match arg {
1886 GenericArg::Lifetime(_) => true,
1887 _ => false,
1888 });
1889 let first_generic_span = generic_args.args.iter().map(|a| a.span())
1890 .chain(generic_args.bindings.iter().map(|b| b.span)).next();
1891 if !generic_args.parenthesized && !has_lifetimes {
1892 generic_args.args =
1893 self.elided_path_lifetimes(path_span, expected_lifetimes)
1894 .into_iter()
1895 .map(|lt| GenericArg::Lifetime(lt))
1896 .chain(generic_args.args.into_iter())
1897 .collect();
1898 if expected_lifetimes > 0 && param_mode == ParamMode::Explicit {
1899 let anon_lt_suggestion = vec!["'_"; expected_lifetimes].join(", ");
1900 let no_ty_args = generic_args.args.len() == expected_lifetimes;
1901 let no_bindings = generic_args.bindings.is_empty();
1902 let (incl_angl_brckt, insertion_span, suggestion) = if no_ty_args && no_bindings {
1903 // If there are no (non-implicit) generic args or associated-type
1904 // bindings, our suggestion includes the angle brackets.
1905 (true, path_span.shrink_to_hi(), format!("<{}>", anon_lt_suggestion))
1906 } else {
1907 // Otherwise—sorry, this is kind of gross—we need to infer the
1908 // place to splice in the `'_, ` from the generics that do exist.
1909 let first_generic_span = first_generic_span
1910 .expect("already checked that type args or bindings exist");
1911 (false, first_generic_span.shrink_to_lo(), format!("{}, ", anon_lt_suggestion))
1912 };
1913 self.sess.buffer_lint_with_diagnostic(
1914 ELIDED_LIFETIMES_IN_PATHS,
1915 CRATE_NODE_ID,
1916 path_span,
1917 "hidden lifetime parameters in types are deprecated",
1918 builtin::BuiltinLintDiagnostics::ElidedLifetimesInPaths(
1919 expected_lifetimes, path_span, incl_angl_brckt, insertion_span, suggestion
1920 )
1921 );
1922 }
1923 }
1924
1925 let def = self.expect_full_def(segment.id);
1926 let id = if let Some(owner) = explicit_owner {
1927 self.lower_node_id_with_owner(segment.id, owner)
1928 } else {
1929 self.lower_node_id(segment.id)
1930 };
1931 debug!(
1932 "lower_path_segment: ident={:?} original-id={:?} new-id={:?}",
1933 segment.ident, segment.id, id,
1934 );
1935
1936 hir::PathSegment::new(
1937 segment.ident,
1938 Some(id.node_id),
1939 Some(id.hir_id),
1940 Some(def),
1941 generic_args,
1942 infer_types,
1943 )
1944 }
1945
1946 fn lower_angle_bracketed_parameter_data(
1947 &mut self,
1948 data: &AngleBracketedArgs,
1949 param_mode: ParamMode,
1950 mut itctx: ImplTraitContext<'_>,
1951 ) -> (hir::GenericArgs, bool) {
1952 let &AngleBracketedArgs { ref args, ref bindings, .. } = data;
1953 let has_types = args.iter().any(|arg| match arg {
1954 ast::GenericArg::Type(_) => true,
1955 _ => false,
1956 });
1957 (hir::GenericArgs {
1958 args: args.iter().map(|a| self.lower_generic_arg(a, itctx.reborrow())).collect(),
1959 bindings: bindings.iter().map(|b| self.lower_ty_binding(b, itctx.reborrow())).collect(),
1960 parenthesized: false,
1961 },
1962 !has_types && param_mode == ParamMode::Optional)
1963 }
1964
1965 fn lower_parenthesized_parameter_data(
1966 &mut self,
1967 data: &ParenthesizedArgs,
1968 ) -> (hir::GenericArgs, bool) {
1969 // Switch to `PassThrough` mode for anonymous lifetimes: this
1970 // means that we permit things like `&Ref<T>`, where `Ref` has
1971 // a hidden lifetime parameter. This is needed for backwards
1972 // compatibility, even in contexts like an impl header where
1973 // we generally don't permit such things (see #51008).
1974 self.with_anonymous_lifetime_mode(
1975 AnonymousLifetimeMode::PassThrough,
1976 |this| {
1977 let &ParenthesizedArgs { ref inputs, ref output, span } = data;
1978 let inputs = inputs
1979 .iter()
1980 .map(|ty| this.lower_ty_direct(ty, ImplTraitContext::disallowed()))
1981 .collect();
1982 let mk_tup = |this: &mut Self, tys, span| {
1983 let LoweredNodeId { node_id, hir_id } = this.next_id();
1984 hir::Ty { node: hir::TyKind::Tup(tys), id: node_id, hir_id, span }
1985 };
1986 let LoweredNodeId { node_id, hir_id } = this.next_id();
1987
1988 (
1989 hir::GenericArgs {
1990 args: hir_vec![GenericArg::Type(mk_tup(this, inputs, span))],
1991 bindings: hir_vec![
1992 hir::TypeBinding {
1993 id: node_id,
1994 hir_id,
1995 ident: Ident::from_str(FN_OUTPUT_NAME),
1996 ty: output
1997 .as_ref()
1998 .map(|ty| this.lower_ty(&ty, ImplTraitContext::disallowed()))
1999 .unwrap_or_else(|| P(mk_tup(this, hir::HirVec::new(), span))),
2000 span: output.as_ref().map_or(span, |ty| ty.span),
2001 }
2002 ],
2003 parenthesized: true,
2004 },
2005 false,
2006 )
2007 }
2008 )
2009 }
2010
2011 fn lower_local(&mut self, l: &Local) -> (hir::Local, SmallVec<[hir::ItemId; 1]>) {
2012 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(l.id);
2013 let mut ids = SmallVec::<[hir::ItemId; 1]>::new();
2014 if self.sess.features_untracked().impl_trait_in_bindings {
2015 if let Some(ref ty) = l.ty {
2016 let mut visitor = ImplTraitTypeIdVisitor { ids: &mut ids };
2017 visitor.visit_ty(ty);
2018 }
2019 }
2020 let parent_def_id = DefId::local(self.current_hir_id_owner.last().unwrap().0);
2021 (hir::Local {
2022 id: node_id,
2023 hir_id,
2024 ty: l.ty
2025 .as_ref()
2026 .map(|t| self.lower_ty(t,
2027 if self.sess.features_untracked().impl_trait_in_bindings {
2028 ImplTraitContext::Existential(Some(parent_def_id))
2029 } else {
2030 ImplTraitContext::Disallowed(ImplTraitPosition::Binding)
2031 }
2032 )),
2033 pat: self.lower_pat(&l.pat),
2034 init: l.init.as_ref().map(|e| P(self.lower_expr(e))),
2035 span: l.span,
2036 attrs: l.attrs.clone(),
2037 source: hir::LocalSource::Normal,
2038 }, ids)
2039 }
2040
2041 fn lower_mutability(&mut self, m: Mutability) -> hir::Mutability {
2042 match m {
2043 Mutability::Mutable => hir::MutMutable,
2044 Mutability::Immutable => hir::MutImmutable,
2045 }
2046 }
2047
2048 fn lower_arg(&mut self, arg: &Arg) -> hir::Arg {
2049 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(arg.id);
2050 hir::Arg {
2051 id: node_id,
2052 hir_id,
2053 pat: self.lower_pat(&arg.pat),
2054 }
2055 }
2056
2057 fn lower_fn_args_to_names(&mut self, decl: &FnDecl) -> hir::HirVec<Ident> {
2058 decl.inputs
2059 .iter()
2060 .map(|arg| match arg.pat.node {
2061 PatKind::Ident(_, ident, _) => ident,
2062 _ => Ident::new(keywords::Invalid.name(), arg.pat.span),
2063 })
2064 .collect()
2065 }
2066
2067 // Lowers a function declaration.
2068 //
2069 // decl: the unlowered (ast) function declaration.
2070 // fn_def_id: if `Some`, impl Trait arguments are lowered into generic parameters on the
2071 // given DefId, otherwise impl Trait is disallowed. Must be `Some` if
2072 // make_ret_async is also `Some`.
2073 // impl_trait_return_allow: determines whether impl Trait can be used in return position.
2074 // This guards against trait declarations and implementations where impl Trait is
2075 // disallowed.
2076 // make_ret_async: if `Some`, converts `-> T` into `-> impl Future<Output = T>` in the
2077 // return type. This is used for `async fn` declarations. The `NodeId` is the id of the
2078 // return type impl Trait item.
2079 fn lower_fn_decl(
2080 &mut self,
2081 decl: &FnDecl,
2082 mut in_band_ty_params: Option<(DefId, &mut Vec<hir::GenericParam>)>,
2083 impl_trait_return_allow: bool,
2084 make_ret_async: Option<NodeId>,
2085 ) -> P<hir::FnDecl> {
2086 let inputs = decl.inputs
2087 .iter()
2088 .map(|arg| {
2089 if let Some((_, ref mut ibty)) = in_band_ty_params {
2090 self.lower_ty_direct(&arg.ty, ImplTraitContext::Universal(ibty))
2091 } else {
2092 self.lower_ty_direct(&arg.ty, ImplTraitContext::disallowed())
2093 }
2094 })
2095 .collect::<HirVec<_>>();
2096
2097 let output = if let Some(ret_id) = make_ret_async {
2098 self.lower_async_fn_ret_ty(
2099 &inputs,
2100 &decl.output,
2101 in_band_ty_params.expect("make_ret_async but no fn_def_id").0,
2102 ret_id,
2103 )
2104 } else {
2105 match decl.output {
2106 FunctionRetTy::Ty(ref ty) => match in_band_ty_params {
2107 Some((def_id, _)) if impl_trait_return_allow => {
2108 hir::Return(self.lower_ty(ty,
2109 ImplTraitContext::Existential(Some(def_id))))
2110 }
2111 _ => {
2112 hir::Return(self.lower_ty(ty, ImplTraitContext::disallowed()))
2113 }
2114 },
2115 FunctionRetTy::Default(span) => hir::DefaultReturn(span),
2116 }
2117 };
2118
2119 P(hir::FnDecl {
2120 inputs,
2121 output,
2122 variadic: decl.variadic,
2123 implicit_self: decl.inputs.get(0).map_or(
2124 hir::ImplicitSelfKind::None,
2125 |arg| {
2126 let is_mutable_pat = match arg.pat.node {
2127 PatKind::Ident(BindingMode::ByValue(mt), _, _) |
2128 PatKind::Ident(BindingMode::ByRef(mt), _, _) =>
2129 mt == Mutability::Mutable,
2130 _ => false,
2131 };
2132
2133 match arg.ty.node {
2134 TyKind::ImplicitSelf if is_mutable_pat => hir::ImplicitSelfKind::Mut,
2135 TyKind::ImplicitSelf => hir::ImplicitSelfKind::Imm,
2136 // Given we are only considering `ImplicitSelf` types, we needn't consider
2137 // the case where we have a mutable pattern to a reference as that would
2138 // no longer be an `ImplicitSelf`.
2139 TyKind::Rptr(_, ref mt) if mt.ty.node.is_implicit_self() &&
2140 mt.mutbl == ast::Mutability::Mutable =>
2141 hir::ImplicitSelfKind::MutRef,
2142 TyKind::Rptr(_, ref mt) if mt.ty.node.is_implicit_self() =>
2143 hir::ImplicitSelfKind::ImmRef,
2144 _ => hir::ImplicitSelfKind::None,
2145 }
2146 },
2147 ),
2148 })
2149 }
2150
2151 // Transform `-> T` into `-> impl Future<Output = T>` for `async fn`
2152 //
2153 // fn_span: the span of the async function declaration. Used for error reporting.
2154 // inputs: lowered types of arguments to the function. Used to collect lifetimes.
2155 // output: unlowered output type (`T` in `-> T`)
2156 // fn_def_id: DefId of the parent function. Used to create child impl trait definition.
2157 fn lower_async_fn_ret_ty(
2158 &mut self,
2159 inputs: &[hir::Ty],
2160 output: &FunctionRetTy,
2161 fn_def_id: DefId,
2162 return_impl_trait_id: NodeId,
2163 ) -> hir::FunctionRetTy {
2164 // Get lifetimes used in the input arguments to the function. Our output type must also
2165 // have the same lifetime.
2166 // FIXME(cramertj): multiple different lifetimes are not allowed because
2167 // `impl Trait + 'a + 'b` doesn't allow for capture `'a` and `'b` where neither is a subset
2168 // of the other. We really want some new lifetime that is a subset of all input lifetimes,
2169 // but that doesn't exist at the moment.
2170
2171 struct AsyncFnLifetimeCollector<'r, 'a: 'r> {
2172 context: &'r mut LoweringContext<'a>,
2173 // Lifetimes bound by HRTB.
2174 currently_bound_lifetimes: Vec<hir::LifetimeName>,
2175 // Whether to count elided lifetimes.
2176 // Disabled inside of `Fn` or `fn` syntax.
2177 collect_elided_lifetimes: bool,
2178 // The lifetime found.
2179 // Multiple different or elided lifetimes cannot appear in async fn for now.
2180 output_lifetime: Option<(hir::LifetimeName, Span)>,
2181 }
2182
2183 impl<'r, 'a: 'r, 'v> hir::intravisit::Visitor<'v> for AsyncFnLifetimeCollector<'r, 'a> {
2184 fn nested_visit_map<'this>(
2185 &'this mut self,
2186 ) -> hir::intravisit::NestedVisitorMap<'this, 'v> {
2187 hir::intravisit::NestedVisitorMap::None
2188 }
2189
2190 fn visit_generic_args(&mut self, span: Span, parameters: &'v hir::GenericArgs) {
2191 // Don't collect elided lifetimes used inside of `Fn()` syntax.
2192 if parameters.parenthesized {
2193 let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
2194 self.collect_elided_lifetimes = false;
2195 hir::intravisit::walk_generic_args(self, span, parameters);
2196 self.collect_elided_lifetimes = old_collect_elided_lifetimes;
2197 } else {
2198 hir::intravisit::walk_generic_args(self, span, parameters);
2199 }
2200 }
2201
2202 fn visit_ty(&mut self, t: &'v hir::Ty) {
2203 // Don't collect elided lifetimes used inside of `fn()` syntax.
2204 if let &hir::TyKind::BareFn(_) = &t.node {
2205 let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
2206 self.collect_elided_lifetimes = false;
2207
2208 // Record the "stack height" of `for<'a>` lifetime bindings
2209 // to be able to later fully undo their introduction.
2210 let old_len = self.currently_bound_lifetimes.len();
2211 hir::intravisit::walk_ty(self, t);
2212 self.currently_bound_lifetimes.truncate(old_len);
2213
2214 self.collect_elided_lifetimes = old_collect_elided_lifetimes;
2215 } else {
2216 hir::intravisit::walk_ty(self, t);
2217 }
2218 }
2219
2220 fn visit_poly_trait_ref(
2221 &mut self,
2222 trait_ref: &'v hir::PolyTraitRef,
2223 modifier: hir::TraitBoundModifier,
2224 ) {
2225 // Record the "stack height" of `for<'a>` lifetime bindings
2226 // to be able to later fully undo their introduction.
2227 let old_len = self.currently_bound_lifetimes.len();
2228 hir::intravisit::walk_poly_trait_ref(self, trait_ref, modifier);
2229 self.currently_bound_lifetimes.truncate(old_len);
2230 }
2231
2232 fn visit_generic_param(&mut self, param: &'v hir::GenericParam) {
2233 // Record the introduction of 'a in `for<'a> ...`
2234 if let hir::GenericParamKind::Lifetime { .. } = param.kind {
2235 // Introduce lifetimes one at a time so that we can handle
2236 // cases like `fn foo<'d>() -> impl for<'a, 'b: 'a, 'c: 'b + 'd>`
2237 let lt_name = hir::LifetimeName::Param(param.name);
2238 self.currently_bound_lifetimes.push(lt_name);
2239 }
2240
2241 hir::intravisit::walk_generic_param(self, param);
2242 }
2243
2244 fn visit_lifetime(&mut self, lifetime: &'v hir::Lifetime) {
2245 let name = match lifetime.name {
2246 hir::LifetimeName::Implicit | hir::LifetimeName::Underscore => {
2247 if self.collect_elided_lifetimes {
2248 // Use `'_` for both implicit and underscore lifetimes in
2249 // `abstract type Foo<'_>: SomeTrait<'_>;`
2250 hir::LifetimeName::Underscore
2251 } else {
2252 return;
2253 }
2254 }
2255 hir::LifetimeName::Param(_) => lifetime.name,
2256 hir::LifetimeName::Error | hir::LifetimeName::Static => return,
2257 };
2258
2259 if !self.currently_bound_lifetimes.contains(&name) {
2260 if let Some((current_lt_name, current_lt_span)) = self.output_lifetime {
2261 // We don't currently have a reliable way to desugar `async fn` with
2262 // multiple potentially unrelated input lifetimes into
2263 // `-> impl Trait + 'lt`, so we report an error in this case.
2264 if current_lt_name != name {
2265 struct_span_err!(
2266 self.context.sess,
2267 MultiSpan::from_spans(vec![current_lt_span, lifetime.span]),
2268 E0709,
2269 "multiple different lifetimes used in arguments of `async fn`",
2270 )
2271 .span_label(current_lt_span, "first lifetime here")
2272 .span_label(lifetime.span, "different lifetime here")
2273 .help("`async fn` can only accept borrowed values \
2274 with identical lifetimes")
2275 .emit()
2276 } else if current_lt_name.is_elided() && name.is_elided() {
2277 struct_span_err!(
2278 self.context.sess,
2279 MultiSpan::from_spans(vec![current_lt_span, lifetime.span]),
2280 E0707,
2281 "multiple elided lifetimes used in arguments of `async fn`",
2282 )
2283 .span_label(current_lt_span, "first lifetime here")
2284 .span_label(lifetime.span, "different lifetime here")
2285 .help("consider giving these arguments named lifetimes")
2286 .emit()
2287 }
2288 } else {
2289 self.output_lifetime = Some((name, lifetime.span));
2290 }
2291 }
2292 }
2293 }
2294
2295 let bound_lifetime = {
2296 let mut lifetime_collector = AsyncFnLifetimeCollector {
2297 context: self,
2298 currently_bound_lifetimes: Vec::new(),
2299 collect_elided_lifetimes: true,
2300 output_lifetime: None,
2301 };
2302
2303 for arg in inputs {
2304 hir::intravisit::walk_ty(&mut lifetime_collector, arg);
2305 }
2306 lifetime_collector.output_lifetime
2307 };
2308
2309 let span = match output {
2310 FunctionRetTy::Ty(ty) => ty.span,
2311 FunctionRetTy::Default(span) => *span,
2312 };
2313
2314 let impl_trait_ty = self.lower_existential_impl_trait(
2315 span, Some(fn_def_id), return_impl_trait_id, |this| {
2316 let output_ty = match output {
2317 FunctionRetTy::Ty(ty) => {
2318 this.lower_ty(ty, ImplTraitContext::Existential(Some(fn_def_id)))
2319 }
2320 FunctionRetTy::Default(span) => {
2321 let LoweredNodeId { node_id, hir_id } = this.next_id();
2322 P(hir::Ty {
2323 id: node_id,
2324 hir_id,
2325 node: hir::TyKind::Tup(hir_vec![]),
2326 span: *span,
2327 })
2328 }
2329 };
2330
2331 // "<Output = T>"
2332 let LoweredNodeId { node_id, hir_id } = this.next_id();
2333 let future_params = P(hir::GenericArgs {
2334 args: hir_vec![],
2335 bindings: hir_vec![hir::TypeBinding {
2336 ident: Ident::from_str(FN_OUTPUT_NAME),
2337 ty: output_ty,
2338 id: node_id,
2339 hir_id,
2340 span,
2341 }],
2342 parenthesized: false,
2343 });
2344
2345 let future_path =
2346 this.std_path(span, &["future", "Future"], Some(future_params), false);
2347
2348 let LoweredNodeId { node_id, hir_id } = this.next_id();
2349 let mut bounds = vec![
2350 hir::GenericBound::Trait(
2351 hir::PolyTraitRef {
2352 trait_ref: hir::TraitRef {
2353 path: future_path,
2354 ref_id: node_id,
2355 hir_ref_id: hir_id,
2356 },
2357 bound_generic_params: hir_vec![],
2358 span,
2359 },
2360 hir::TraitBoundModifier::None
2361 ),
2362 ];
2363
2364 if let Some((name, span)) = bound_lifetime {
2365 let LoweredNodeId { node_id, hir_id } = this.next_id();
2366 bounds.push(hir::GenericBound::Outlives(
2367 hir::Lifetime { id: node_id, hir_id, name, span }));
2368 }
2369
2370 hir::HirVec::from(bounds)
2371 });
2372
2373 let LoweredNodeId { node_id, hir_id } = self.next_id();
2374 let impl_trait_ty = P(hir::Ty {
2375 id: node_id,
2376 node: impl_trait_ty,
2377 span,
2378 hir_id,
2379 });
2380
2381 hir::FunctionRetTy::Return(impl_trait_ty)
2382 }
2383
2384 fn lower_param_bound(
2385 &mut self,
2386 tpb: &GenericBound,
2387 itctx: ImplTraitContext<'_>,
2388 ) -> hir::GenericBound {
2389 match *tpb {
2390 GenericBound::Trait(ref ty, modifier) => {
2391 hir::GenericBound::Trait(
2392 self.lower_poly_trait_ref(ty, itctx),
2393 self.lower_trait_bound_modifier(modifier),
2394 )
2395 }
2396 GenericBound::Outlives(ref lifetime) => {
2397 hir::GenericBound::Outlives(self.lower_lifetime(lifetime))
2398 }
2399 }
2400 }
2401
2402 fn lower_lifetime(&mut self, l: &Lifetime) -> hir::Lifetime {
2403 let span = l.ident.span;
2404 match l.ident {
2405 ident if ident.name == keywords::StaticLifetime.name() =>
2406 self.new_named_lifetime(l.id, span, hir::LifetimeName::Static),
2407 ident if ident.name == keywords::UnderscoreLifetime.name() =>
2408 match self.anonymous_lifetime_mode {
2409 AnonymousLifetimeMode::CreateParameter => {
2410 let fresh_name = self.collect_fresh_in_band_lifetime(span);
2411 self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(fresh_name))
2412 }
2413
2414 AnonymousLifetimeMode::PassThrough => {
2415 self.new_named_lifetime(l.id, span, hir::LifetimeName::Underscore)
2416 }
2417
2418 AnonymousLifetimeMode::ReportError => self.new_error_lifetime(Some(l.id), span),
2419 },
2420 ident => {
2421 self.maybe_collect_in_band_lifetime(ident);
2422 let param_name = ParamName::Plain(ident);
2423 self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(param_name))
2424 }
2425 }
2426 }
2427
2428 fn new_named_lifetime(
2429 &mut self,
2430 id: NodeId,
2431 span: Span,
2432 name: hir::LifetimeName,
2433 ) -> hir::Lifetime {
2434 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(id);
2435
2436 hir::Lifetime {
2437 id: node_id,
2438 hir_id,
2439 span,
2440 name: name,
2441 }
2442 }
2443
2444 fn lower_generic_params(
2445 &mut self,
2446 params: &[GenericParam],
2447 add_bounds: &NodeMap<Vec<GenericBound>>,
2448 mut itctx: ImplTraitContext<'_>,
2449 ) -> hir::HirVec<hir::GenericParam> {
2450 params.iter().map(|param| {
2451 self.lower_generic_param(param, add_bounds, itctx.reborrow())
2452 }).collect()
2453 }
2454
2455 fn lower_generic_param(&mut self,
2456 param: &GenericParam,
2457 add_bounds: &NodeMap<Vec<GenericBound>>,
2458 mut itctx: ImplTraitContext<'_>)
2459 -> hir::GenericParam {
2460 let mut bounds = self.with_anonymous_lifetime_mode(
2461 AnonymousLifetimeMode::ReportError,
2462 |this| this.lower_param_bounds(&param.bounds, itctx.reborrow()),
2463 );
2464
2465 let (name, kind) = match param.kind {
2466 GenericParamKind::Lifetime => {
2467 let was_collecting_in_band = self.is_collecting_in_band_lifetimes;
2468 self.is_collecting_in_band_lifetimes = false;
2469
2470 let lt = self.with_anonymous_lifetime_mode(
2471 AnonymousLifetimeMode::ReportError,
2472 |this| this.lower_lifetime(&Lifetime { id: param.id, ident: param.ident }),
2473 );
2474 let param_name = match lt.name {
2475 hir::LifetimeName::Param(param_name) => param_name,
2476 hir::LifetimeName::Implicit
2477 | hir::LifetimeName::Underscore
2478 | hir::LifetimeName::Static => hir::ParamName::Plain(lt.name.ident()),
2479 hir::LifetimeName::Error => ParamName::Error,
2480 };
2481
2482 let kind = hir::GenericParamKind::Lifetime {
2483 kind: hir::LifetimeParamKind::Explicit
2484 };
2485
2486 self.is_collecting_in_band_lifetimes = was_collecting_in_band;
2487
2488 (param_name, kind)
2489 }
2490 GenericParamKind::Type { ref default, .. } => {
2491 // Don't expose `Self` (recovered "keyword used as ident" parse error).
2492 // `rustc::ty` expects `Self` to be only used for a trait's `Self`.
2493 // Instead, use `gensym("Self")` to create a distinct name that looks the same.
2494 let ident = if param.ident.name == keywords::SelfUpper.name() {
2495 param.ident.gensym()
2496 } else {
2497 param.ident
2498 };
2499
2500 let add_bounds = add_bounds.get(&param.id).map_or(&[][..], |x| &x);
2501 if !add_bounds.is_empty() {
2502 let params = self.lower_param_bounds(add_bounds, itctx.reborrow()).into_iter();
2503 bounds = bounds.into_iter()
2504 .chain(params)
2505 .collect();
2506 }
2507
2508 let kind = hir::GenericParamKind::Type {
2509 default: default.as_ref().map(|x| {
2510 self.lower_ty(x, ImplTraitContext::disallowed())
2511 }),
2512 synthetic: param.attrs.iter()
2513 .filter(|attr| attr.check_name("rustc_synthetic"))
2514 .map(|_| hir::SyntheticTyParamKind::ImplTrait)
2515 .next(),
2516 };
2517
2518 (hir::ParamName::Plain(ident), kind)
2519 }
2520 GenericParamKind::Const { ref ty } => {
2521 (hir::ParamName::Plain(param.ident), hir::GenericParamKind::Const {
2522 ty: self.lower_ty(&ty, ImplTraitContext::disallowed()),
2523 })
2524 }
2525 };
2526
2527 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(param.id);
2528
2529 hir::GenericParam {
2530 id: node_id,
2531 hir_id,
2532 name,
2533 span: param.ident.span,
2534 pure_wrt_drop: attr::contains_name(&param.attrs, "may_dangle"),
2535 attrs: self.lower_attrs(&param.attrs),
2536 bounds,
2537 kind,
2538 }
2539 }
2540
2541 fn lower_generics(
2542 &mut self,
2543 generics: &Generics,
2544 itctx: ImplTraitContext<'_>)
2545 -> hir::Generics
2546 {
2547 // Collect `?Trait` bounds in where clause and move them to parameter definitions.
2548 // FIXME: this could probably be done with less rightward drift. Also looks like two control
2549 // paths where report_error is called are also the only paths that advance to after
2550 // the match statement, so the error reporting could probably just be moved there.
2551 let mut add_bounds: NodeMap<Vec<_>> = Default::default();
2552 for pred in &generics.where_clause.predicates {
2553 if let WherePredicate::BoundPredicate(ref bound_pred) = *pred {
2554 'next_bound: for bound in &bound_pred.bounds {
2555 if let GenericBound::Trait(_, TraitBoundModifier::Maybe) = *bound {
2556 let report_error = |this: &mut Self| {
2557 this.diagnostic().span_err(
2558 bound_pred.bounded_ty.span,
2559 "`?Trait` bounds are only permitted at the \
2560 point where a type parameter is declared",
2561 );
2562 };
2563 // Check if the where clause type is a plain type parameter.
2564 match bound_pred.bounded_ty.node {
2565 TyKind::Path(None, ref path)
2566 if path.segments.len() == 1
2567 && bound_pred.bound_generic_params.is_empty() =>
2568 {
2569 if let Some(Def::TyParam(def_id)) = self.resolver
2570 .get_resolution(bound_pred.bounded_ty.id)
2571 .map(|d| d.base_def())
2572 {
2573 if let Some(node_id) =
2574 self.resolver.definitions().as_local_node_id(def_id)
2575 {
2576 for param in &generics.params {
2577 match param.kind {
2578 GenericParamKind::Type { .. } => {
2579 if node_id == param.id {
2580 add_bounds.entry(param.id)
2581 .or_default()
2582 .push(bound.clone());
2583 continue 'next_bound;
2584 }
2585 }
2586 _ => {}
2587 }
2588 }
2589 }
2590 }
2591 report_error(self)
2592 }
2593 _ => report_error(self),
2594 }
2595 }
2596 }
2597 }
2598 }
2599
2600 hir::Generics {
2601 params: self.lower_generic_params(&generics.params, &add_bounds, itctx),
2602 where_clause: self.lower_where_clause(&generics.where_clause),
2603 span: generics.span,
2604 }
2605 }
2606
2607 fn lower_where_clause(&mut self, wc: &WhereClause) -> hir::WhereClause {
2608 self.with_anonymous_lifetime_mode(
2609 AnonymousLifetimeMode::ReportError,
2610 |this| {
2611 let LoweredNodeId { node_id, hir_id } = this.lower_node_id(wc.id);
2612
2613 hir::WhereClause {
2614 id: node_id,
2615 hir_id,
2616 predicates: wc.predicates
2617 .iter()
2618 .map(|predicate| this.lower_where_predicate(predicate))
2619 .collect(),
2620 }
2621 },
2622 )
2623 }
2624
2625 fn lower_where_predicate(&mut self, pred: &WherePredicate) -> hir::WherePredicate {
2626 match *pred {
2627 WherePredicate::BoundPredicate(WhereBoundPredicate {
2628 ref bound_generic_params,
2629 ref bounded_ty,
2630 ref bounds,
2631 span,
2632 }) => {
2633 self.with_in_scope_lifetime_defs(
2634 &bound_generic_params,
2635 |this| {
2636 hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
2637 bound_generic_params: this.lower_generic_params(
2638 bound_generic_params,
2639 &NodeMap::default(),
2640 ImplTraitContext::disallowed(),
2641 ),
2642 bounded_ty: this.lower_ty(bounded_ty, ImplTraitContext::disallowed()),
2643 bounds: bounds
2644 .iter()
2645 .filter_map(|bound| match *bound {
2646 // Ignore `?Trait` bounds.
2647 // They were copied into type parameters already.
2648 GenericBound::Trait(_, TraitBoundModifier::Maybe) => None,
2649 _ => Some(this.lower_param_bound(
2650 bound,
2651 ImplTraitContext::disallowed(),
2652 )),
2653 })
2654 .collect(),
2655 span,
2656 })
2657 },
2658 )
2659 }
2660 WherePredicate::RegionPredicate(WhereRegionPredicate {
2661 ref lifetime,
2662 ref bounds,
2663 span,
2664 }) => hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate {
2665 span,
2666 lifetime: self.lower_lifetime(lifetime),
2667 bounds: self.lower_param_bounds(bounds, ImplTraitContext::disallowed()),
2668 }),
2669 WherePredicate::EqPredicate(WhereEqPredicate {
2670 id,
2671 ref lhs_ty,
2672 ref rhs_ty,
2673 span,
2674 }) => {
2675 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(id);
2676
2677 hir::WherePredicate::EqPredicate(hir::WhereEqPredicate {
2678 id: node_id,
2679 hir_id,
2680 lhs_ty: self.lower_ty(lhs_ty, ImplTraitContext::disallowed()),
2681 rhs_ty: self.lower_ty(rhs_ty, ImplTraitContext::disallowed()),
2682 span,
2683 })
2684 },
2685 }
2686 }
2687
2688 fn lower_variant_data(&mut self, vdata: &VariantData) -> hir::VariantData {
2689 match *vdata {
2690 VariantData::Struct(ref fields, id) => {
2691 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(id);
2692
2693 hir::VariantData::Struct(
2694 fields
2695 .iter()
2696 .enumerate()
2697 .map(|f| self.lower_struct_field(f))
2698 .collect(),
2699 node_id,
2700 hir_id,
2701 )
2702 },
2703 VariantData::Tuple(ref fields, id) => {
2704 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(id);
2705
2706 hir::VariantData::Tuple(
2707 fields
2708 .iter()
2709 .enumerate()
2710 .map(|f| self.lower_struct_field(f))
2711 .collect(),
2712 node_id,
2713 hir_id,
2714 )
2715 },
2716 VariantData::Unit(id) => {
2717 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(id);
2718
2719 hir::VariantData::Unit(node_id, hir_id)
2720 },
2721 }
2722 }
2723
2724 fn lower_trait_ref(&mut self, p: &TraitRef, itctx: ImplTraitContext<'_>) -> hir::TraitRef {
2725 let path = match self.lower_qpath(p.ref_id, &None, &p.path, ParamMode::Explicit, itctx) {
2726 hir::QPath::Resolved(None, path) => path.and_then(|path| path),
2727 qpath => bug!("lower_trait_ref: unexpected QPath `{:?}`", qpath),
2728 };
2729 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(p.ref_id);
2730 hir::TraitRef {
2731 path,
2732 ref_id: node_id,
2733 hir_ref_id: hir_id,
2734 }
2735 }
2736
2737 fn lower_poly_trait_ref(
2738 &mut self,
2739 p: &PolyTraitRef,
2740 mut itctx: ImplTraitContext<'_>,
2741 ) -> hir::PolyTraitRef {
2742 let bound_generic_params = self.lower_generic_params(
2743 &p.bound_generic_params,
2744 &NodeMap::default(),
2745 itctx.reborrow(),
2746 );
2747 let trait_ref = self.with_parent_impl_lifetime_defs(
2748 &bound_generic_params,
2749 |this| this.lower_trait_ref(&p.trait_ref, itctx),
2750 );
2751
2752 hir::PolyTraitRef {
2753 bound_generic_params,
2754 trait_ref,
2755 span: p.span,
2756 }
2757 }
2758
2759 fn lower_struct_field(&mut self, (index, f): (usize, &StructField)) -> hir::StructField {
2760 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(f.id);
2761
2762 hir::StructField {
2763 span: f.span,
2764 id: node_id,
2765 hir_id,
2766 ident: match f.ident {
2767 Some(ident) => ident,
2768 // FIXME(jseyfried): positional field hygiene
2769 None => Ident::new(Symbol::intern(&index.to_string()), f.span),
2770 },
2771 vis: self.lower_visibility(&f.vis, None),
2772 ty: self.lower_ty(&f.ty, ImplTraitContext::disallowed()),
2773 attrs: self.lower_attrs(&f.attrs),
2774 }
2775 }
2776
2777 fn lower_field(&mut self, f: &Field) -> hir::Field {
2778 let LoweredNodeId { node_id, hir_id } = self.next_id();
2779
2780 hir::Field {
2781 id: node_id,
2782 hir_id,
2783 ident: f.ident,
2784 expr: P(self.lower_expr(&f.expr)),
2785 span: f.span,
2786 is_shorthand: f.is_shorthand,
2787 }
2788 }
2789
2790 fn lower_mt(&mut self, mt: &MutTy, itctx: ImplTraitContext<'_>) -> hir::MutTy {
2791 hir::MutTy {
2792 ty: self.lower_ty(&mt.ty, itctx),
2793 mutbl: self.lower_mutability(mt.mutbl),
2794 }
2795 }
2796
2797 fn lower_param_bounds(&mut self, bounds: &[GenericBound], mut itctx: ImplTraitContext<'_>)
2798 -> hir::GenericBounds {
2799 bounds.iter().map(|bound| self.lower_param_bound(bound, itctx.reborrow())).collect()
2800 }
2801
2802 fn lower_block(&mut self, b: &Block, targeted_by_break: bool) -> P<hir::Block> {
2803 let mut expr = None;
2804
2805 let mut stmts = vec![];
2806
2807 for (index, stmt) in b.stmts.iter().enumerate() {
2808 if index == b.stmts.len() - 1 {
2809 if let StmtKind::Expr(ref e) = stmt.node {
2810 expr = Some(P(self.lower_expr(e)));
2811 } else {
2812 stmts.extend(self.lower_stmt(stmt));
2813 }
2814 } else {
2815 stmts.extend(self.lower_stmt(stmt));
2816 }
2817 }
2818
2819 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(b.id);
2820
2821 P(hir::Block {
2822 id: node_id,
2823 hir_id,
2824 stmts: stmts.into(),
2825 expr,
2826 rules: self.lower_block_check_mode(&b.rules),
2827 span: b.span,
2828 targeted_by_break,
2829 })
2830 }
2831
2832 fn lower_async_body(
2833 &mut self,
2834 decl: &FnDecl,
2835 asyncness: IsAsync,
2836 body: &Block,
2837 ) -> hir::BodyId {
2838 self.lower_body(Some(decl), |this| {
2839 if let IsAsync::Async { closure_id, .. } = asyncness {
2840 let async_expr = this.make_async_expr(
2841 CaptureBy::Value, closure_id, None,
2842 |this| {
2843 let body = this.lower_block(body, false);
2844 this.expr_block(body, ThinVec::new())
2845 });
2846 this.expr(body.span, async_expr, ThinVec::new())
2847 } else {
2848 let body = this.lower_block(body, false);
2849 this.expr_block(body, ThinVec::new())
2850 }
2851 })
2852 }
2853
2854 fn lower_item_kind(
2855 &mut self,
2856 id: NodeId,
2857 ident: &mut Ident,
2858 attrs: &hir::HirVec<Attribute>,
2859 vis: &mut hir::Visibility,
2860 i: &ItemKind,
2861 ) -> hir::ItemKind {
2862 match *i {
2863 ItemKind::ExternCrate(orig_name) => hir::ItemKind::ExternCrate(orig_name),
2864 ItemKind::Use(ref use_tree) => {
2865 // Start with an empty prefix
2866 let prefix = Path {
2867 segments: vec![],
2868 span: use_tree.span,
2869 };
2870
2871 self.lower_use_tree(use_tree, &prefix, id, vis, ident, attrs)
2872 }
2873 ItemKind::Static(ref t, m, ref e) => {
2874 let value = self.lower_body(None, |this| this.lower_expr(e));
2875 hir::ItemKind::Static(
2876 self.lower_ty(
2877 t,
2878 if self.sess.features_untracked().impl_trait_in_bindings {
2879 ImplTraitContext::Existential(None)
2880 } else {
2881 ImplTraitContext::Disallowed(ImplTraitPosition::Binding)
2882 }
2883 ),
2884 self.lower_mutability(m),
2885 value,
2886 )
2887 }
2888 ItemKind::Const(ref t, ref e) => {
2889 let value = self.lower_body(None, |this| this.lower_expr(e));
2890 hir::ItemKind::Const(
2891 self.lower_ty(
2892 t,
2893 if self.sess.features_untracked().impl_trait_in_bindings {
2894 ImplTraitContext::Existential(None)
2895 } else {
2896 ImplTraitContext::Disallowed(ImplTraitPosition::Binding)
2897 }
2898 ),
2899 value
2900 )
2901 }
2902 ItemKind::Fn(ref decl, header, ref generics, ref body) => {
2903 let fn_def_id = self.resolver.definitions().local_def_id(id);
2904 self.with_new_scopes(|this| {
2905 // Note: we don't need to change the return type from `T` to
2906 // `impl Future<Output = T>` here because lower_body
2907 // only cares about the input argument patterns in the function
2908 // declaration (decl), not the return types.
2909 let body_id = this.lower_async_body(decl, header.asyncness, body);
2910
2911 let (generics, fn_decl) = this.add_in_band_defs(
2912 generics,
2913 fn_def_id,
2914 AnonymousLifetimeMode::PassThrough,
2915 |this, idty| this.lower_fn_decl(
2916 decl,
2917 Some((fn_def_id, idty)),
2918 true,
2919 header.asyncness.opt_return_id()
2920 ),
2921 );
2922
2923 hir::ItemKind::Fn(
2924 fn_decl,
2925 this.lower_fn_header(header),
2926 generics,
2927 body_id,
2928 )
2929 })
2930 }
2931 ItemKind::Mod(ref m) => hir::ItemKind::Mod(self.lower_mod(m)),
2932 ItemKind::ForeignMod(ref nm) => hir::ItemKind::ForeignMod(self.lower_foreign_mod(nm)),
2933 ItemKind::GlobalAsm(ref ga) => hir::ItemKind::GlobalAsm(self.lower_global_asm(ga)),
2934 ItemKind::Ty(ref t, ref generics) => hir::ItemKind::Ty(
2935 self.lower_ty(t, ImplTraitContext::disallowed()),
2936 self.lower_generics(generics, ImplTraitContext::disallowed()),
2937 ),
2938 ItemKind::Existential(ref b, ref generics) => hir::ItemKind::Existential(hir::ExistTy {
2939 generics: self.lower_generics(generics, ImplTraitContext::disallowed()),
2940 bounds: self.lower_param_bounds(b, ImplTraitContext::disallowed()),
2941 impl_trait_fn: None,
2942 }),
2943 ItemKind::Enum(ref enum_definition, ref generics) => hir::ItemKind::Enum(
2944 hir::EnumDef {
2945 variants: enum_definition
2946 .variants
2947 .iter()
2948 .map(|x| self.lower_variant(x))
2949 .collect(),
2950 },
2951 self.lower_generics(generics, ImplTraitContext::disallowed()),
2952 ),
2953 ItemKind::Struct(ref struct_def, ref generics) => {
2954 let struct_def = self.lower_variant_data(struct_def);
2955 hir::ItemKind::Struct(
2956 struct_def,
2957 self.lower_generics(generics, ImplTraitContext::disallowed()),
2958 )
2959 }
2960 ItemKind::Union(ref vdata, ref generics) => {
2961 let vdata = self.lower_variant_data(vdata);
2962 hir::ItemKind::Union(
2963 vdata,
2964 self.lower_generics(generics, ImplTraitContext::disallowed()),
2965 )
2966 }
2967 ItemKind::Impl(
2968 unsafety,
2969 polarity,
2970 defaultness,
2971 ref ast_generics,
2972 ref trait_ref,
2973 ref ty,
2974 ref impl_items,
2975 ) => {
2976 let def_id = self.resolver.definitions().local_def_id(id);
2977
2978 // Lower the "impl header" first. This ordering is important
2979 // for in-band lifetimes! Consider `'a` here:
2980 //
2981 // impl Foo<'a> for u32 {
2982 // fn method(&'a self) { .. }
2983 // }
2984 //
2985 // Because we start by lowering the `Foo<'a> for u32`
2986 // part, we will add `'a` to the list of generics on
2987 // the impl. When we then encounter it later in the
2988 // method, it will not be considered an in-band
2989 // lifetime to be added, but rather a reference to a
2990 // parent lifetime.
2991 let (generics, (trait_ref, lowered_ty)) = self.add_in_band_defs(
2992 ast_generics,
2993 def_id,
2994 AnonymousLifetimeMode::CreateParameter,
2995 |this, _| {
2996 let trait_ref = trait_ref.as_ref().map(|trait_ref| {
2997 this.lower_trait_ref(trait_ref, ImplTraitContext::disallowed())
2998 });
2999
3000 if let Some(ref trait_ref) = trait_ref {
3001 if let Def::Trait(def_id) = trait_ref.path.def {
3002 this.trait_impls.entry(def_id).or_default().push(id);
3003 }
3004 }
3005
3006 let lowered_ty = this.lower_ty(ty, ImplTraitContext::disallowed());
3007
3008 (trait_ref, lowered_ty)
3009 },
3010 );
3011
3012 let new_impl_items = self.with_in_scope_lifetime_defs(
3013 &ast_generics.params,
3014 |this| {
3015 impl_items
3016 .iter()
3017 .map(|item| this.lower_impl_item_ref(item))
3018 .collect()
3019 },
3020 );
3021
3022 hir::ItemKind::Impl(
3023 self.lower_unsafety(unsafety),
3024 self.lower_impl_polarity(polarity),
3025 self.lower_defaultness(defaultness, true /* [1] */),
3026 generics,
3027 trait_ref,
3028 lowered_ty,
3029 new_impl_items,
3030 )
3031 }
3032 ItemKind::Trait(is_auto, unsafety, ref generics, ref bounds, ref items) => {
3033 let bounds = self.lower_param_bounds(bounds, ImplTraitContext::disallowed());
3034 let items = items
3035 .iter()
3036 .map(|item| self.lower_trait_item_ref(item))
3037 .collect();
3038 hir::ItemKind::Trait(
3039 self.lower_is_auto(is_auto),
3040 self.lower_unsafety(unsafety),
3041 self.lower_generics(generics, ImplTraitContext::disallowed()),
3042 bounds,
3043 items,
3044 )
3045 }
3046 ItemKind::TraitAlias(ref generics, ref bounds) => hir::ItemKind::TraitAlias(
3047 self.lower_generics(generics, ImplTraitContext::disallowed()),
3048 self.lower_param_bounds(bounds, ImplTraitContext::disallowed()),
3049 ),
3050 ItemKind::MacroDef(..) | ItemKind::Mac(..) => panic!("Shouldn't still be around"),
3051 }
3052
3053 // [1] `defaultness.has_value()` is never called for an `impl`, always `true` in order to
3054 // not cause an assertion failure inside the `lower_defaultness` function.
3055 }
3056
3057 fn lower_use_tree(
3058 &mut self,
3059 tree: &UseTree,
3060 prefix: &Path,
3061 id: NodeId,
3062 vis: &mut hir::Visibility,
3063 ident: &mut Ident,
3064 attrs: &hir::HirVec<Attribute>,
3065 ) -> hir::ItemKind {
3066 debug!("lower_use_tree(tree={:?})", tree);
3067 debug!("lower_use_tree: vis = {:?}", vis);
3068
3069 let path = &tree.prefix;
3070 let segments = prefix
3071 .segments
3072 .iter()
3073 .chain(path.segments.iter())
3074 .cloned()
3075 .collect();
3076
3077 match tree.kind {
3078 UseTreeKind::Simple(rename, id1, id2) => {
3079 *ident = tree.ident();
3080
3081 // First, apply the prefix to the path.
3082 let mut path = Path {
3083 segments,
3084 span: path.span,
3085 };
3086
3087 // Correctly resolve `self` imports.
3088 if path.segments.len() > 1
3089 && path.segments.last().unwrap().ident.name == keywords::SelfLower.name()
3090 {
3091 let _ = path.segments.pop();
3092 if rename.is_none() {
3093 *ident = path.segments.last().unwrap().ident;
3094 }
3095 }
3096
3097 let parent_def_index = self.current_hir_id_owner.last().unwrap().0;
3098 let mut defs = self.expect_full_def_from_use(id);
3099 // We want to return *something* from this function, so hold onto the first item
3100 // for later.
3101 let ret_def = defs.next().unwrap_or(Def::Err);
3102
3103 // Here, we are looping over namespaces, if they exist for the definition
3104 // being imported. We only handle type and value namespaces because we
3105 // won't be dealing with macros in the rest of the compiler.
3106 // Essentially a single `use` which imports two names is desugared into
3107 // two imports.
3108 for (def, &new_node_id) in defs.zip([id1, id2].iter()) {
3109 let vis = vis.clone();
3110 let ident = ident.clone();
3111 let mut path = path.clone();
3112 for seg in &mut path.segments {
3113 seg.id = self.sess.next_node_id();
3114 }
3115 let span = path.span;
3116 self.resolver.definitions().create_def_with_parent(
3117 parent_def_index,
3118 new_node_id,
3119 DefPathData::Misc,
3120 DefIndexAddressSpace::High,
3121 Mark::root(),
3122 span);
3123 self.allocate_hir_id_counter(new_node_id, &path);
3124
3125 self.with_hir_id_owner(new_node_id, |this| {
3126 let new_id = this.lower_node_id(new_node_id);
3127 let path =
3128 this.lower_path_extra(def, &path, ParamMode::Explicit, None);
3129 let item = hir::ItemKind::Use(P(path), hir::UseKind::Single);
3130 let vis_kind = match vis.node {
3131 hir::VisibilityKind::Public => hir::VisibilityKind::Public,
3132 hir::VisibilityKind::Crate(sugar) => hir::VisibilityKind::Crate(sugar),
3133 hir::VisibilityKind::Inherited => hir::VisibilityKind::Inherited,
3134 hir::VisibilityKind::Restricted { ref path, id: _, hir_id: _ } => {
3135 let id = this.next_id();
3136 let path = this.renumber_segment_ids(path);
3137 hir::VisibilityKind::Restricted {
3138 path,
3139 id: id.node_id,
3140 hir_id: id.hir_id,
3141 }
3142 }
3143 };
3144 let vis = respan(vis.span, vis_kind);
3145
3146 this.insert_item(
3147 new_id.node_id,
3148 hir::Item {
3149 id: new_id.node_id,
3150 hir_id: new_id.hir_id,
3151 ident,
3152 attrs: attrs.clone(),
3153 node: item,
3154 vis,
3155 span,
3156 },
3157 );
3158 });
3159 }
3160
3161 let path =
3162 P(self.lower_path_extra(ret_def, &path, ParamMode::Explicit, None));
3163 hir::ItemKind::Use(path, hir::UseKind::Single)
3164 }
3165 UseTreeKind::Glob => {
3166 let path = P(self.lower_path(
3167 id,
3168 &Path {
3169 segments,
3170 span: path.span,
3171 },
3172 ParamMode::Explicit,
3173 ));
3174 hir::ItemKind::Use(path, hir::UseKind::Glob)
3175 }
3176 UseTreeKind::Nested(ref trees) => {
3177 // Nested imports are desugared into simple imports.
3178 // So, if we start with
3179 //
3180 // ```
3181 // pub(x) use foo::{a, b};
3182 // ```
3183 //
3184 // we will create three items:
3185 //
3186 // ```
3187 // pub(x) use foo::a;
3188 // pub(x) use foo::b;
3189 // pub(x) use foo::{}; // <-- this is called the `ListStem`
3190 // ```
3191 //
3192 // The first two are produced by recursively invoking
3193 // `lower_use_tree` (and indeed there may be things
3194 // like `use foo::{a::{b, c}}` and so forth). They
3195 // wind up being directly added to
3196 // `self.items`. However, the structure of this
3197 // function also requires us to return one item, and
3198 // for that we return the `{}` import (called the
3199 // `ListStem`).
3200
3201 let prefix = Path {
3202 segments,
3203 span: prefix.span.to(path.span),
3204 };
3205
3206 // Add all the nested `PathListItem`s to the HIR.
3207 for &(ref use_tree, id) in trees {
3208 self.allocate_hir_id_counter(id, &use_tree);
3209
3210 let LoweredNodeId {
3211 node_id: new_id,
3212 hir_id: new_hir_id,
3213 } = self.lower_node_id(id);
3214
3215 let mut vis = vis.clone();
3216 let mut ident = ident.clone();
3217 let mut prefix = prefix.clone();
3218
3219 // Give the segments new node-ids since they are being cloned.
3220 for seg in &mut prefix.segments {
3221 seg.id = self.sess.next_node_id();
3222 }
3223
3224 // Each `use` import is an item and thus are owners of the
3225 // names in the path. Up to this point the nested import is
3226 // the current owner, since we want each desugared import to
3227 // own its own names, we have to adjust the owner before
3228 // lowering the rest of the import.
3229 self.with_hir_id_owner(new_id, |this| {
3230 let item = this.lower_use_tree(use_tree,
3231 &prefix,
3232 new_id,
3233 &mut vis,
3234 &mut ident,
3235 attrs);
3236
3237 let vis_kind = match vis.node {
3238 hir::VisibilityKind::Public => hir::VisibilityKind::Public,
3239 hir::VisibilityKind::Crate(sugar) => hir::VisibilityKind::Crate(sugar),
3240 hir::VisibilityKind::Inherited => hir::VisibilityKind::Inherited,
3241 hir::VisibilityKind::Restricted { ref path, id: _, hir_id: _ } => {
3242 let id = this.next_id();
3243 let path = this.renumber_segment_ids(path);
3244 hir::VisibilityKind::Restricted {
3245 path: path,
3246 id: id.node_id,
3247 hir_id: id.hir_id,
3248 }
3249 }
3250 };
3251 let vis = respan(vis.span, vis_kind);
3252
3253 this.insert_item(
3254 new_id,
3255 hir::Item {
3256 id: new_id,
3257 hir_id: new_hir_id,
3258 ident,
3259 attrs: attrs.clone(),
3260 node: item,
3261 vis,
3262 span: use_tree.span,
3263 },
3264 );
3265 });
3266 }
3267
3268 // Subtle and a bit hacky: we lower the privacy level
3269 // of the list stem to "private" most of the time, but
3270 // not for "restricted" paths. The key thing is that
3271 // we don't want it to stay as `pub` (with no caveats)
3272 // because that affects rustdoc and also the lints
3273 // about `pub` items. But we can't *always* make it
3274 // private -- particularly not for restricted paths --
3275 // because it contains node-ids that would then be
3276 // unused, failing the check that HirIds are "densely
3277 // assigned".
3278 match vis.node {
3279 hir::VisibilityKind::Public |
3280 hir::VisibilityKind::Crate(_) |
3281 hir::VisibilityKind::Inherited => {
3282 *vis = respan(prefix.span.shrink_to_lo(), hir::VisibilityKind::Inherited);
3283 }
3284 hir::VisibilityKind::Restricted { .. } => {
3285 // Do nothing here, as described in the comment on the match.
3286 }
3287 }
3288
3289 let def = self.expect_full_def_from_use(id).next().unwrap_or(Def::Err);
3290 let path = P(self.lower_path_extra(def, &prefix, ParamMode::Explicit, None));
3291 hir::ItemKind::Use(path, hir::UseKind::ListStem)
3292 }
3293 }
3294 }
3295
3296 /// Paths like the visibility path in `pub(super) use foo::{bar, baz}` are repeated
3297 /// many times in the HIR tree; for each occurrence, we need to assign distinct
3298 /// `NodeId`s. (See, e.g., #56128.)
3299 fn renumber_segment_ids(&mut self, path: &P<hir::Path>) -> P<hir::Path> {
3300 debug!("renumber_segment_ids(path = {:?})", path);
3301 let mut path = path.clone();
3302 for seg in path.segments.iter_mut() {
3303 if seg.id.is_some() {
3304 let next_id = self.next_id();
3305 seg.id = Some(next_id.node_id);
3306 seg.hir_id = Some(next_id.hir_id);
3307 }
3308 }
3309 path
3310 }
3311
3312 fn lower_trait_item(&mut self, i: &TraitItem) -> hir::TraitItem {
3313 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(i.id);
3314 let trait_item_def_id = self.resolver.definitions().local_def_id(node_id);
3315
3316 let (generics, node) = match i.node {
3317 TraitItemKind::Const(ref ty, ref default) => (
3318 self.lower_generics(&i.generics, ImplTraitContext::disallowed()),
3319 hir::TraitItemKind::Const(
3320 self.lower_ty(ty, ImplTraitContext::disallowed()),
3321 default
3322 .as_ref()
3323 .map(|x| self.lower_body(None, |this| this.lower_expr(x))),
3324 ),
3325 ),
3326 TraitItemKind::Method(ref sig, None) => {
3327 let names = self.lower_fn_args_to_names(&sig.decl);
3328 let (generics, sig) = self.lower_method_sig(
3329 &i.generics,
3330 sig,
3331 trait_item_def_id,
3332 false,
3333 None,
3334 );
3335 (generics, hir::TraitItemKind::Method(sig, hir::TraitMethod::Required(names)))
3336 }
3337 TraitItemKind::Method(ref sig, Some(ref body)) => {
3338 let body_id = self.lower_body(Some(&sig.decl), |this| {
3339 let body = this.lower_block(body, false);
3340 this.expr_block(body, ThinVec::new())
3341 });
3342 let (generics, sig) = self.lower_method_sig(
3343 &i.generics,
3344 sig,
3345 trait_item_def_id,
3346 false,
3347 None,
3348 );
3349 (generics, hir::TraitItemKind::Method(sig, hir::TraitMethod::Provided(body_id)))
3350 }
3351 TraitItemKind::Type(ref bounds, ref default) => (
3352 self.lower_generics(&i.generics, ImplTraitContext::disallowed()),
3353 hir::TraitItemKind::Type(
3354 self.lower_param_bounds(bounds, ImplTraitContext::disallowed()),
3355 default
3356 .as_ref()
3357 .map(|x| self.lower_ty(x, ImplTraitContext::disallowed())),
3358 ),
3359 ),
3360 TraitItemKind::Macro(..) => panic!("Shouldn't exist any more"),
3361 };
3362
3363 hir::TraitItem {
3364 id: node_id,
3365 hir_id,
3366 ident: i.ident,
3367 attrs: self.lower_attrs(&i.attrs),
3368 generics,
3369 node,
3370 span: i.span,
3371 }
3372 }
3373
3374 fn lower_trait_item_ref(&mut self, i: &TraitItem) -> hir::TraitItemRef {
3375 let (kind, has_default) = match i.node {
3376 TraitItemKind::Const(_, ref default) => {
3377 (hir::AssociatedItemKind::Const, default.is_some())
3378 }
3379 TraitItemKind::Type(_, ref default) => {
3380 (hir::AssociatedItemKind::Type, default.is_some())
3381 }
3382 TraitItemKind::Method(ref sig, ref default) => (
3383 hir::AssociatedItemKind::Method {
3384 has_self: sig.decl.has_self(),
3385 },
3386 default.is_some(),
3387 ),
3388 TraitItemKind::Macro(..) => unimplemented!(),
3389 };
3390 hir::TraitItemRef {
3391 id: hir::TraitItemId { node_id: i.id },
3392 ident: i.ident,
3393 span: i.span,
3394 defaultness: self.lower_defaultness(Defaultness::Default, has_default),
3395 kind,
3396 }
3397 }
3398
3399 fn lower_impl_item(&mut self, i: &ImplItem) -> hir::ImplItem {
3400 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(i.id);
3401 let impl_item_def_id = self.resolver.definitions().local_def_id(node_id);
3402
3403 let (generics, node) = match i.node {
3404 ImplItemKind::Const(ref ty, ref expr) => {
3405 let body_id = self.lower_body(None, |this| this.lower_expr(expr));
3406 (
3407 self.lower_generics(&i.generics, ImplTraitContext::disallowed()),
3408 hir::ImplItemKind::Const(
3409 self.lower_ty(ty, ImplTraitContext::disallowed()),
3410 body_id,
3411 ),
3412 )
3413 }
3414 ImplItemKind::Method(ref sig, ref body) => {
3415 let body_id = self.lower_async_body(&sig.decl, sig.header.asyncness, body);
3416 let impl_trait_return_allow = !self.is_in_trait_impl;
3417 let (generics, sig) = self.lower_method_sig(
3418 &i.generics,
3419 sig,
3420 impl_item_def_id,
3421 impl_trait_return_allow,
3422 sig.header.asyncness.opt_return_id(),
3423 );
3424 (generics, hir::ImplItemKind::Method(sig, body_id))
3425 }
3426 ImplItemKind::Type(ref ty) => (
3427 self.lower_generics(&i.generics, ImplTraitContext::disallowed()),
3428 hir::ImplItemKind::Type(self.lower_ty(ty, ImplTraitContext::disallowed())),
3429 ),
3430 ImplItemKind::Existential(ref bounds) => (
3431 self.lower_generics(&i.generics, ImplTraitContext::disallowed()),
3432 hir::ImplItemKind::Existential(
3433 self.lower_param_bounds(bounds, ImplTraitContext::disallowed()),
3434 ),
3435 ),
3436 ImplItemKind::Macro(..) => panic!("Shouldn't exist any more"),
3437 };
3438
3439 hir::ImplItem {
3440 id: node_id,
3441 hir_id,
3442 ident: i.ident,
3443 attrs: self.lower_attrs(&i.attrs),
3444 generics,
3445 vis: self.lower_visibility(&i.vis, None),
3446 defaultness: self.lower_defaultness(i.defaultness, true /* [1] */),
3447 node,
3448 span: i.span,
3449 }
3450
3451 // [1] since `default impl` is not yet implemented, this is always true in impls
3452 }
3453
3454 fn lower_impl_item_ref(&mut self, i: &ImplItem) -> hir::ImplItemRef {
3455 hir::ImplItemRef {
3456 id: hir::ImplItemId { node_id: i.id },
3457 ident: i.ident,
3458 span: i.span,
3459 vis: self.lower_visibility(&i.vis, Some(i.id)),
3460 defaultness: self.lower_defaultness(i.defaultness, true /* [1] */),
3461 kind: match i.node {
3462 ImplItemKind::Const(..) => hir::AssociatedItemKind::Const,
3463 ImplItemKind::Type(..) => hir::AssociatedItemKind::Type,
3464 ImplItemKind::Existential(..) => hir::AssociatedItemKind::Existential,
3465 ImplItemKind::Method(ref sig, _) => hir::AssociatedItemKind::Method {
3466 has_self: sig.decl.has_self(),
3467 },
3468 ImplItemKind::Macro(..) => unimplemented!(),
3469 },
3470 }
3471
3472 // [1] since `default impl` is not yet implemented, this is always true in impls
3473 }
3474
3475 fn lower_mod(&mut self, m: &Mod) -> hir::Mod {
3476 hir::Mod {
3477 inner: m.inner,
3478 item_ids: m.items.iter().flat_map(|x| self.lower_item_id(x)).collect(),
3479 }
3480 }
3481
3482 fn lower_item_id(&mut self, i: &Item) -> SmallVec<[hir::ItemId; 1]> {
3483 match i.node {
3484 ItemKind::Use(ref use_tree) => {
3485 let mut vec = smallvec![hir::ItemId { id: i.id }];
3486 self.lower_item_id_use_tree(use_tree, i.id, &mut vec);
3487 vec
3488 }
3489 ItemKind::MacroDef(..) => SmallVec::new(),
3490 ItemKind::Fn(..) |
3491 ItemKind::Impl(.., None, _, _) => smallvec![hir::ItemId { id: i.id }],
3492 ItemKind::Static(ref ty, ..) => {
3493 let mut ids = smallvec![hir::ItemId { id: i.id }];
3494 if self.sess.features_untracked().impl_trait_in_bindings {
3495 let mut visitor = ImplTraitTypeIdVisitor { ids: &mut ids };
3496 visitor.visit_ty(ty);
3497 }
3498 ids
3499 },
3500 ItemKind::Const(ref ty, ..) => {
3501 let mut ids = smallvec![hir::ItemId { id: i.id }];
3502 if self.sess.features_untracked().impl_trait_in_bindings {
3503 let mut visitor = ImplTraitTypeIdVisitor { ids: &mut ids };
3504 visitor.visit_ty(ty);
3505 }
3506 ids
3507 },
3508 _ => smallvec![hir::ItemId { id: i.id }],
3509 }
3510 }
3511
3512 fn lower_item_id_use_tree(&mut self,
3513 tree: &UseTree,
3514 base_id: NodeId,
3515 vec: &mut SmallVec<[hir::ItemId; 1]>)
3516 {
3517 match tree.kind {
3518 UseTreeKind::Nested(ref nested_vec) => for &(ref nested, id) in nested_vec {
3519 vec.push(hir::ItemId { id });
3520 self.lower_item_id_use_tree(nested, id, vec);
3521 },
3522 UseTreeKind::Glob => {}
3523 UseTreeKind::Simple(_, id1, id2) => {
3524 for (_, &id) in self.expect_full_def_from_use(base_id)
3525 .skip(1)
3526 .zip([id1, id2].iter())
3527 {
3528 vec.push(hir::ItemId { id });
3529 }
3530 },
3531 }
3532 }
3533
3534 pub fn lower_item(&mut self, i: &Item) -> Option<hir::Item> {
3535 let mut ident = i.ident;
3536 let mut vis = self.lower_visibility(&i.vis, None);
3537 let attrs = self.lower_attrs(&i.attrs);
3538 if let ItemKind::MacroDef(ref def) = i.node {
3539 if !def.legacy || attr::contains_name(&i.attrs, "macro_export") ||
3540 attr::contains_name(&i.attrs, "rustc_doc_only_macro") {
3541 let body = self.lower_token_stream(def.stream());
3542 let hir_id = self.lower_node_id(i.id).hir_id;
3543 self.exported_macros.push(hir::MacroDef {
3544 name: ident.name,
3545 vis,
3546 attrs,
3547 id: i.id,
3548 hir_id,
3549 span: i.span,
3550 body,
3551 legacy: def.legacy,
3552 });
3553 }
3554 return None;
3555 }
3556
3557 let node = self.lower_item_kind(i.id, &mut ident, &attrs, &mut vis, &i.node);
3558
3559 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(i.id);
3560
3561 Some(hir::Item {
3562 id: node_id,
3563 hir_id,
3564 ident,
3565 attrs,
3566 node,
3567 vis,
3568 span: i.span,
3569 })
3570 }
3571
3572 fn lower_foreign_item(&mut self, i: &ForeignItem) -> hir::ForeignItem {
3573 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(i.id);
3574 let def_id = self.resolver.definitions().local_def_id(node_id);
3575 hir::ForeignItem {
3576 id: node_id,
3577 hir_id,
3578 ident: i.ident,
3579 attrs: self.lower_attrs(&i.attrs),
3580 node: match i.node {
3581 ForeignItemKind::Fn(ref fdec, ref generics) => {
3582 let (generics, (fn_dec, fn_args)) = self.add_in_band_defs(
3583 generics,
3584 def_id,
3585 AnonymousLifetimeMode::PassThrough,
3586 |this, _| {
3587 (
3588 // Disallow impl Trait in foreign items
3589 this.lower_fn_decl(fdec, None, false, None),
3590 this.lower_fn_args_to_names(fdec),
3591 )
3592 },
3593 );
3594
3595 hir::ForeignItemKind::Fn(fn_dec, fn_args, generics)
3596 }
3597 ForeignItemKind::Static(ref t, m) => {
3598 hir::ForeignItemKind::Static(
3599 self.lower_ty(t, ImplTraitContext::disallowed()), m)
3600 }
3601 ForeignItemKind::Ty => hir::ForeignItemKind::Type,
3602 ForeignItemKind::Macro(_) => panic!("shouldn't exist here"),
3603 },
3604 vis: self.lower_visibility(&i.vis, None),
3605 span: i.span,
3606 }
3607 }
3608
3609 fn lower_method_sig(
3610 &mut self,
3611 generics: &Generics,
3612 sig: &MethodSig,
3613 fn_def_id: DefId,
3614 impl_trait_return_allow: bool,
3615 is_async: Option<NodeId>,
3616 ) -> (hir::Generics, hir::MethodSig) {
3617 let header = self.lower_fn_header(sig.header);
3618 let (generics, decl) = self.add_in_band_defs(
3619 generics,
3620 fn_def_id,
3621 AnonymousLifetimeMode::PassThrough,
3622 |this, idty| this.lower_fn_decl(
3623 &sig.decl,
3624 Some((fn_def_id, idty)),
3625 impl_trait_return_allow,
3626 is_async,
3627 ),
3628 );
3629 (generics, hir::MethodSig { header, decl })
3630 }
3631
3632 fn lower_is_auto(&mut self, a: IsAuto) -> hir::IsAuto {
3633 match a {
3634 IsAuto::Yes => hir::IsAuto::Yes,
3635 IsAuto::No => hir::IsAuto::No,
3636 }
3637 }
3638
3639 fn lower_fn_header(&mut self, h: FnHeader) -> hir::FnHeader {
3640 hir::FnHeader {
3641 unsafety: self.lower_unsafety(h.unsafety),
3642 asyncness: self.lower_asyncness(h.asyncness),
3643 constness: self.lower_constness(h.constness),
3644 abi: h.abi,
3645 }
3646 }
3647
3648 fn lower_unsafety(&mut self, u: Unsafety) -> hir::Unsafety {
3649 match u {
3650 Unsafety::Unsafe => hir::Unsafety::Unsafe,
3651 Unsafety::Normal => hir::Unsafety::Normal,
3652 }
3653 }
3654
3655 fn lower_constness(&mut self, c: Spanned<Constness>) -> hir::Constness {
3656 match c.node {
3657 Constness::Const => hir::Constness::Const,
3658 Constness::NotConst => hir::Constness::NotConst,
3659 }
3660 }
3661
3662 fn lower_asyncness(&mut self, a: IsAsync) -> hir::IsAsync {
3663 match a {
3664 IsAsync::Async { .. } => hir::IsAsync::Async,
3665 IsAsync::NotAsync => hir::IsAsync::NotAsync,
3666 }
3667 }
3668
3669 fn lower_unop(&mut self, u: UnOp) -> hir::UnOp {
3670 match u {
3671 UnOp::Deref => hir::UnDeref,
3672 UnOp::Not => hir::UnNot,
3673 UnOp::Neg => hir::UnNeg,
3674 }
3675 }
3676
3677 fn lower_binop(&mut self, b: BinOp) -> hir::BinOp {
3678 Spanned {
3679 node: match b.node {
3680 BinOpKind::Add => hir::BinOpKind::Add,
3681 BinOpKind::Sub => hir::BinOpKind::Sub,
3682 BinOpKind::Mul => hir::BinOpKind::Mul,
3683 BinOpKind::Div => hir::BinOpKind::Div,
3684 BinOpKind::Rem => hir::BinOpKind::Rem,
3685 BinOpKind::And => hir::BinOpKind::And,
3686 BinOpKind::Or => hir::BinOpKind::Or,
3687 BinOpKind::BitXor => hir::BinOpKind::BitXor,
3688 BinOpKind::BitAnd => hir::BinOpKind::BitAnd,
3689 BinOpKind::BitOr => hir::BinOpKind::BitOr,
3690 BinOpKind::Shl => hir::BinOpKind::Shl,
3691 BinOpKind::Shr => hir::BinOpKind::Shr,
3692 BinOpKind::Eq => hir::BinOpKind::Eq,
3693 BinOpKind::Lt => hir::BinOpKind::Lt,
3694 BinOpKind::Le => hir::BinOpKind::Le,
3695 BinOpKind::Ne => hir::BinOpKind::Ne,
3696 BinOpKind::Ge => hir::BinOpKind::Ge,
3697 BinOpKind::Gt => hir::BinOpKind::Gt,
3698 },
3699 span: b.span,
3700 }
3701 }
3702
3703 fn lower_pat(&mut self, p: &Pat) -> P<hir::Pat> {
3704 let node = match p.node {
3705 PatKind::Wild => hir::PatKind::Wild,
3706 PatKind::Ident(ref binding_mode, ident, ref sub) => {
3707 match self.resolver.get_resolution(p.id).map(|d| d.base_def()) {
3708 // `None` can occur in body-less function signatures
3709 def @ None | def @ Some(Def::Local(_)) => {
3710 let canonical_id = match def {
3711 Some(Def::Local(id)) => id,
3712 _ => p.id,
3713 };
3714 let hir_id = self.lower_node_id(canonical_id).hir_id;
3715 hir::PatKind::Binding(
3716 self.lower_binding_mode(binding_mode),
3717 canonical_id,
3718 hir_id,
3719 ident,
3720 sub.as_ref().map(|x| self.lower_pat(x)),
3721 )
3722 }
3723 Some(def) => hir::PatKind::Path(hir::QPath::Resolved(
3724 None,
3725 P(hir::Path {
3726 span: ident.span,
3727 def,
3728 segments: hir_vec![hir::PathSegment::from_ident(ident)],
3729 }),
3730 )),
3731 }
3732 }
3733 PatKind::Lit(ref e) => hir::PatKind::Lit(P(self.lower_expr(e))),
3734 PatKind::TupleStruct(ref path, ref pats, ddpos) => {
3735 let qpath = self.lower_qpath(
3736 p.id,
3737 &None,
3738 path,
3739 ParamMode::Optional,
3740 ImplTraitContext::disallowed(),
3741 );
3742 hir::PatKind::TupleStruct(
3743 qpath,
3744 pats.iter().map(|x| self.lower_pat(x)).collect(),
3745 ddpos,
3746 )
3747 }
3748 PatKind::Path(ref qself, ref path) => {
3749 let qpath = self.lower_qpath(
3750 p.id,
3751 qself,
3752 path,
3753 ParamMode::Optional,
3754 ImplTraitContext::disallowed(),
3755 );
3756 hir::PatKind::Path(qpath)
3757 }
3758 PatKind::Struct(ref path, ref fields, etc) => {
3759 let qpath = self.lower_qpath(
3760 p.id,
3761 &None,
3762 path,
3763 ParamMode::Optional,
3764 ImplTraitContext::disallowed(),
3765 );
3766
3767 let fs = fields
3768 .iter()
3769 .map(|f| {
3770 let LoweredNodeId { node_id, hir_id } = self.next_id();
3771
3772 Spanned {
3773 span: f.span,
3774 node: hir::FieldPat {
3775 id: node_id,
3776 hir_id,
3777 ident: f.node.ident,
3778 pat: self.lower_pat(&f.node.pat),
3779 is_shorthand: f.node.is_shorthand,
3780 },
3781 }
3782 })
3783 .collect();
3784 hir::PatKind::Struct(qpath, fs, etc)
3785 }
3786 PatKind::Tuple(ref elts, ddpos) => {
3787 hir::PatKind::Tuple(elts.iter().map(|x| self.lower_pat(x)).collect(), ddpos)
3788 }
3789 PatKind::Box(ref inner) => hir::PatKind::Box(self.lower_pat(inner)),
3790 PatKind::Ref(ref inner, mutbl) => {
3791 hir::PatKind::Ref(self.lower_pat(inner), self.lower_mutability(mutbl))
3792 }
3793 PatKind::Range(ref e1, ref e2, Spanned { node: ref end, .. }) => hir::PatKind::Range(
3794 P(self.lower_expr(e1)),
3795 P(self.lower_expr(e2)),
3796 self.lower_range_end(end),
3797 ),
3798 PatKind::Slice(ref before, ref slice, ref after) => hir::PatKind::Slice(
3799 before.iter().map(|x| self.lower_pat(x)).collect(),
3800 slice.as_ref().map(|x| self.lower_pat(x)),
3801 after.iter().map(|x| self.lower_pat(x)).collect(),
3802 ),
3803 PatKind::Paren(ref inner) => return self.lower_pat(inner),
3804 PatKind::Mac(_) => panic!("Shouldn't exist here"),
3805 };
3806
3807 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(p.id);
3808 P(hir::Pat {
3809 id: node_id,
3810 hir_id,
3811 node,
3812 span: p.span,
3813 })
3814 }
3815
3816 fn lower_range_end(&mut self, e: &RangeEnd) -> hir::RangeEnd {
3817 match *e {
3818 RangeEnd::Included(_) => hir::RangeEnd::Included,
3819 RangeEnd::Excluded => hir::RangeEnd::Excluded,
3820 }
3821 }
3822
3823 fn lower_anon_const(&mut self, c: &AnonConst) -> hir::AnonConst {
3824 self.with_new_scopes(|this| {
3825 let LoweredNodeId { node_id, hir_id } = this.lower_node_id(c.id);
3826 hir::AnonConst {
3827 id: node_id,
3828 hir_id,
3829 body: this.lower_body(None, |this| this.lower_expr(&c.value)),
3830 }
3831 })
3832 }
3833
3834 fn lower_expr(&mut self, e: &Expr) -> hir::Expr {
3835 let kind = match e.node {
3836 ExprKind::Box(ref inner) => hir::ExprKind::Box(P(self.lower_expr(inner))),
3837 ExprKind::ObsoleteInPlace(..) => {
3838 self.sess.abort_if_errors();
3839 span_bug!(e.span, "encountered ObsoleteInPlace expr during lowering");
3840 }
3841 ExprKind::Array(ref exprs) => {
3842 hir::ExprKind::Array(exprs.iter().map(|x| self.lower_expr(x)).collect())
3843 }
3844 ExprKind::Repeat(ref expr, ref count) => {
3845 let expr = P(self.lower_expr(expr));
3846 let count = self.lower_anon_const(count);
3847 hir::ExprKind::Repeat(expr, count)
3848 }
3849 ExprKind::Tup(ref elts) => {
3850 hir::ExprKind::Tup(elts.iter().map(|x| self.lower_expr(x)).collect())
3851 }
3852 ExprKind::Call(ref f, ref args) => {
3853 let f = P(self.lower_expr(f));
3854 hir::ExprKind::Call(f, args.iter().map(|x| self.lower_expr(x)).collect())
3855 }
3856 ExprKind::MethodCall(ref seg, ref args) => {
3857 let hir_seg = P(self.lower_path_segment(
3858 e.span,
3859 seg,
3860 ParamMode::Optional,
3861 0,
3862 ParenthesizedGenericArgs::Err,
3863 ImplTraitContext::disallowed(),
3864 None,
3865 ));
3866 let args = args.iter().map(|x| self.lower_expr(x)).collect();
3867 hir::ExprKind::MethodCall(hir_seg, seg.ident.span, args)
3868 }
3869 ExprKind::Binary(binop, ref lhs, ref rhs) => {
3870 let binop = self.lower_binop(binop);
3871 let lhs = P(self.lower_expr(lhs));
3872 let rhs = P(self.lower_expr(rhs));
3873 hir::ExprKind::Binary(binop, lhs, rhs)
3874 }
3875 ExprKind::Unary(op, ref ohs) => {
3876 let op = self.lower_unop(op);
3877 let ohs = P(self.lower_expr(ohs));
3878 hir::ExprKind::Unary(op, ohs)
3879 }
3880 ExprKind::Lit(ref l) => hir::ExprKind::Lit((*l).clone()),
3881 ExprKind::Cast(ref expr, ref ty) => {
3882 let expr = P(self.lower_expr(expr));
3883 hir::ExprKind::Cast(expr, self.lower_ty(ty, ImplTraitContext::disallowed()))
3884 }
3885 ExprKind::Type(ref expr, ref ty) => {
3886 let expr = P(self.lower_expr(expr));
3887 hir::ExprKind::Type(expr, self.lower_ty(ty, ImplTraitContext::disallowed()))
3888 }
3889 ExprKind::AddrOf(m, ref ohs) => {
3890 let m = self.lower_mutability(m);
3891 let ohs = P(self.lower_expr(ohs));
3892 hir::ExprKind::AddrOf(m, ohs)
3893 }
3894 // More complicated than you might expect because the else branch
3895 // might be `if let`.
3896 ExprKind::If(ref cond, ref blk, ref else_opt) => {
3897 let else_opt = else_opt.as_ref().map(|els| {
3898 match els.node {
3899 ExprKind::IfLet(..) => {
3900 // Wrap the `if let` expr in a block.
3901 let span = els.span;
3902 let els = P(self.lower_expr(els));
3903 let LoweredNodeId { node_id, hir_id } = self.next_id();
3904 let blk = P(hir::Block {
3905 stmts: hir_vec![],
3906 expr: Some(els),
3907 id: node_id,
3908 hir_id,
3909 rules: hir::DefaultBlock,
3910 span,
3911 targeted_by_break: false,
3912 });
3913 P(self.expr_block(blk, ThinVec::new()))
3914 }
3915 _ => P(self.lower_expr(els)),
3916 }
3917 });
3918
3919 let then_blk = self.lower_block(blk, false);
3920 let then_expr = self.expr_block(then_blk, ThinVec::new());
3921
3922 hir::ExprKind::If(P(self.lower_expr(cond)), P(then_expr), else_opt)
3923 }
3924 ExprKind::While(ref cond, ref body, opt_label) => self.with_loop_scope(e.id, |this| {
3925 hir::ExprKind::While(
3926 this.with_loop_condition_scope(|this| P(this.lower_expr(cond))),
3927 this.lower_block(body, false),
3928 this.lower_label(opt_label),
3929 )
3930 }),
3931 ExprKind::Loop(ref body, opt_label) => self.with_loop_scope(e.id, |this| {
3932 hir::ExprKind::Loop(
3933 this.lower_block(body, false),
3934 this.lower_label(opt_label),
3935 hir::LoopSource::Loop,
3936 )
3937 }),
3938 ExprKind::TryBlock(ref body) => {
3939 self.with_catch_scope(body.id, |this| {
3940 let unstable_span = this.mark_span_with_reason(
3941 CompilerDesugaringKind::TryBlock,
3942 body.span,
3943 Some(vec![
3944 Symbol::intern("try_trait"),
3945 ].into()),
3946 );
3947 let mut block = this.lower_block(body, true).into_inner();
3948 let tail = block.expr.take().map_or_else(
3949 || {
3950 let LoweredNodeId { node_id, hir_id } = this.next_id();
3951 let span = this.sess.source_map().end_point(unstable_span);
3952 hir::Expr {
3953 id: node_id,
3954 span,
3955 node: hir::ExprKind::Tup(hir_vec![]),
3956 attrs: ThinVec::new(),
3957 hir_id,
3958 }
3959 },
3960 |x: P<hir::Expr>| x.into_inner(),
3961 );
3962 block.expr = Some(this.wrap_in_try_constructor(
3963 "from_ok", tail, unstable_span));
3964 hir::ExprKind::Block(P(block), None)
3965 })
3966 }
3967 ExprKind::Match(ref expr, ref arms) => hir::ExprKind::Match(
3968 P(self.lower_expr(expr)),
3969 arms.iter().map(|x| self.lower_arm(x)).collect(),
3970 hir::MatchSource::Normal,
3971 ),
3972 ExprKind::Async(capture_clause, closure_node_id, ref block) => {
3973 self.make_async_expr(capture_clause, closure_node_id, None, |this| {
3974 this.with_new_scopes(|this| {
3975 let block = this.lower_block(block, false);
3976 this.expr_block(block, ThinVec::new())
3977 })
3978 })
3979 }
3980 ExprKind::Closure(
3981 capture_clause, asyncness, movability, ref decl, ref body, fn_decl_span
3982 ) => {
3983 if let IsAsync::Async { closure_id, .. } = asyncness {
3984 let outer_decl = FnDecl {
3985 inputs: decl.inputs.clone(),
3986 output: FunctionRetTy::Default(fn_decl_span),
3987 variadic: false,
3988 };
3989 // We need to lower the declaration outside the new scope, because we
3990 // have to conserve the state of being inside a loop condition for the
3991 // closure argument types.
3992 let fn_decl = self.lower_fn_decl(&outer_decl, None, false, None);
3993
3994 self.with_new_scopes(|this| {
3995 // FIXME(cramertj): allow `async` non-`move` closures with arguments.
3996 if capture_clause == CaptureBy::Ref &&
3997 !decl.inputs.is_empty()
3998 {
3999 struct_span_err!(
4000 this.sess,
4001 fn_decl_span,
4002 E0708,
4003 "`async` non-`move` closures with arguments \
4004 are not currently supported",
4005 )
4006 .help("consider using `let` statements to manually capture \
4007 variables by reference before entering an \
4008 `async move` closure")
4009 .emit();
4010 }
4011
4012 // Transform `async |x: u8| -> X { ... }` into
4013 // `|x: u8| future_from_generator(|| -> X { ... })`.
4014 let body_id = this.lower_body(Some(&outer_decl), |this| {
4015 let async_ret_ty = if let FunctionRetTy::Ty(ty) = &decl.output {
4016 Some(&**ty)
4017 } else { None };
4018 let async_body = this.make_async_expr(
4019 capture_clause, closure_id, async_ret_ty,
4020 |this| {
4021 this.with_new_scopes(|this| this.lower_expr(body))
4022 });
4023 this.expr(fn_decl_span, async_body, ThinVec::new())
4024 });
4025 hir::ExprKind::Closure(
4026 this.lower_capture_clause(capture_clause),
4027 fn_decl,
4028 body_id,
4029 fn_decl_span,
4030 None,
4031 )
4032 })
4033 } else {
4034 // Lower outside new scope to preserve `is_in_loop_condition`.
4035 let fn_decl = self.lower_fn_decl(decl, None, false, None);
4036
4037 self.with_new_scopes(|this| {
4038 let mut is_generator = false;
4039 let body_id = this.lower_body(Some(decl), |this| {
4040 let e = this.lower_expr(body);
4041 is_generator = this.is_generator;
4042 e
4043 });
4044 let generator_option = if is_generator {
4045 if !decl.inputs.is_empty() {
4046 span_err!(
4047 this.sess,
4048 fn_decl_span,
4049 E0628,
4050 "generators cannot have explicit arguments"
4051 );
4052 this.sess.abort_if_errors();
4053 }
4054 Some(match movability {
4055 Movability::Movable => hir::GeneratorMovability::Movable,
4056 Movability::Static => hir::GeneratorMovability::Static,
4057 })
4058 } else {
4059 if movability == Movability::Static {
4060 span_err!(
4061 this.sess,
4062 fn_decl_span,
4063 E0697,
4064 "closures cannot be static"
4065 );
4066 }
4067 None
4068 };
4069 hir::ExprKind::Closure(
4070 this.lower_capture_clause(capture_clause),
4071 fn_decl,
4072 body_id,
4073 fn_decl_span,
4074 generator_option,
4075 )
4076 })
4077 }
4078 }
4079 ExprKind::Block(ref blk, opt_label) => {
4080 hir::ExprKind::Block(self.lower_block(blk,
4081 opt_label.is_some()),
4082 self.lower_label(opt_label))
4083 }
4084 ExprKind::Assign(ref el, ref er) => {
4085 hir::ExprKind::Assign(P(self.lower_expr(el)), P(self.lower_expr(er)))
4086 }
4087 ExprKind::AssignOp(op, ref el, ref er) => hir::ExprKind::AssignOp(
4088 self.lower_binop(op),
4089 P(self.lower_expr(el)),
4090 P(self.lower_expr(er)),
4091 ),
4092 ExprKind::Field(ref el, ident) => hir::ExprKind::Field(P(self.lower_expr(el)), ident),
4093 ExprKind::Index(ref el, ref er) => {
4094 hir::ExprKind::Index(P(self.lower_expr(el)), P(self.lower_expr(er)))
4095 }
4096 // Desugar `<start>..=<end>` into `std::ops::RangeInclusive::new(<start>, <end>)`.
4097 ExprKind::Range(Some(ref e1), Some(ref e2), RangeLimits::Closed) => {
4098 let id = self.next_id();
4099 let e1 = self.lower_expr(e1);
4100 let e2 = self.lower_expr(e2);
4101 let ty_path = P(self.std_path(e.span, &["ops", "RangeInclusive"], None, false));
4102 let ty = P(self.ty_path(id, e.span, hir::QPath::Resolved(None, ty_path)));
4103 let new_seg = P(hir::PathSegment::from_ident(Ident::from_str("new")));
4104 let new_path = hir::QPath::TypeRelative(ty, new_seg);
4105 let new = P(self.expr(e.span, hir::ExprKind::Path(new_path), ThinVec::new()));
4106 hir::ExprKind::Call(new, hir_vec![e1, e2])
4107 }
4108 ExprKind::Range(ref e1, ref e2, lims) => {
4109 use syntax::ast::RangeLimits::*;
4110
4111 let path = match (e1, e2, lims) {
4112 (&None, &None, HalfOpen) => "RangeFull",
4113 (&Some(..), &None, HalfOpen) => "RangeFrom",
4114 (&None, &Some(..), HalfOpen) => "RangeTo",
4115 (&Some(..), &Some(..), HalfOpen) => "Range",
4116 (&None, &Some(..), Closed) => "RangeToInclusive",
4117 (&Some(..), &Some(..), Closed) => unreachable!(),
4118 (_, &None, Closed) => self.diagnostic()
4119 .span_fatal(e.span, "inclusive range with no end")
4120 .raise(),
4121 };
4122
4123 let fields = e1.iter()
4124 .map(|e| ("start", e))
4125 .chain(e2.iter().map(|e| ("end", e)))
4126 .map(|(s, e)| {
4127 let expr = P(self.lower_expr(&e));
4128 let ident = Ident::new(Symbol::intern(s), e.span);
4129 self.field(ident, expr, e.span)
4130 })
4131 .collect::<P<[hir::Field]>>();
4132
4133 let is_unit = fields.is_empty();
4134 let struct_path = ["ops", path];
4135 let struct_path = self.std_path(e.span, &struct_path, None, is_unit);
4136 let struct_path = hir::QPath::Resolved(None, P(struct_path));
4137
4138 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(e.id);
4139
4140 return hir::Expr {
4141 id: node_id,
4142 hir_id,
4143 node: if is_unit {
4144 hir::ExprKind::Path(struct_path)
4145 } else {
4146 hir::ExprKind::Struct(P(struct_path), fields, None)
4147 },
4148 span: e.span,
4149 attrs: e.attrs.clone(),
4150 };
4151 }
4152 ExprKind::Path(ref qself, ref path) => {
4153 let qpath = self.lower_qpath(
4154 e.id,
4155 qself,
4156 path,
4157 ParamMode::Optional,
4158 ImplTraitContext::disallowed(),
4159 );
4160 hir::ExprKind::Path(qpath)
4161 }
4162 ExprKind::Break(opt_label, ref opt_expr) => {
4163 let destination = if self.is_in_loop_condition && opt_label.is_none() {
4164 hir::Destination {
4165 label: None,
4166 target_id: Err(hir::LoopIdError::UnlabeledCfInWhileCondition).into(),
4167 }
4168 } else {
4169 self.lower_loop_destination(opt_label.map(|label| (e.id, label)))
4170 };
4171 hir::ExprKind::Break(
4172 destination,
4173 opt_expr.as_ref().map(|x| P(self.lower_expr(x))),
4174 )
4175 }
4176 ExprKind::Continue(opt_label) => {
4177 hir::ExprKind::Continue(if self.is_in_loop_condition && opt_label.is_none() {
4178 hir::Destination {
4179 label: None,
4180 target_id: Err(hir::LoopIdError::UnlabeledCfInWhileCondition).into(),
4181 }
4182 } else {
4183 self.lower_loop_destination(opt_label.map(|label| (e.id, label)))
4184 })
4185 }
4186 ExprKind::Ret(ref e) => hir::ExprKind::Ret(e.as_ref().map(|x| P(self.lower_expr(x)))),
4187 ExprKind::InlineAsm(ref asm) => {
4188 let hir_asm = hir::InlineAsm {
4189 inputs: asm.inputs.iter().map(|&(ref c, _)| c.clone()).collect(),
4190 outputs: asm.outputs
4191 .iter()
4192 .map(|out| hir::InlineAsmOutput {
4193 constraint: out.constraint.clone(),
4194 is_rw: out.is_rw,
4195 is_indirect: out.is_indirect,
4196 span: out.expr.span,
4197 })
4198 .collect(),
4199 asm: asm.asm.clone(),
4200 asm_str_style: asm.asm_str_style,
4201 clobbers: asm.clobbers.clone().into(),
4202 volatile: asm.volatile,
4203 alignstack: asm.alignstack,
4204 dialect: asm.dialect,
4205 ctxt: asm.ctxt,
4206 };
4207 let outputs = asm.outputs
4208 .iter()
4209 .map(|out| self.lower_expr(&out.expr))
4210 .collect();
4211 let inputs = asm.inputs
4212 .iter()
4213 .map(|&(_, ref input)| self.lower_expr(input))
4214 .collect();
4215 hir::ExprKind::InlineAsm(P(hir_asm), outputs, inputs)
4216 }
4217 ExprKind::Struct(ref path, ref fields, ref maybe_expr) => hir::ExprKind::Struct(
4218 P(self.lower_qpath(
4219 e.id,
4220 &None,
4221 path,
4222 ParamMode::Optional,
4223 ImplTraitContext::disallowed(),
4224 )),
4225 fields.iter().map(|x| self.lower_field(x)).collect(),
4226 maybe_expr.as_ref().map(|x| P(self.lower_expr(x))),
4227 ),
4228 ExprKind::Paren(ref ex) => {
4229 let mut ex = self.lower_expr(ex);
4230 // Include parens in span, but only if it is a super-span.
4231 if e.span.contains(ex.span) {
4232 ex.span = e.span;
4233 }
4234 // Merge attributes into the inner expression.
4235 let mut attrs = e.attrs.clone();
4236 attrs.extend::<Vec<_>>(ex.attrs.into());
4237 ex.attrs = attrs;
4238 return ex;
4239 }
4240
4241 ExprKind::Yield(ref opt_expr) => {
4242 self.is_generator = true;
4243 let expr = opt_expr
4244 .as_ref()
4245 .map(|x| self.lower_expr(x))
4246 .unwrap_or_else(||
4247 self.expr(e.span, hir::ExprKind::Tup(hir_vec![]), ThinVec::new())
4248 );
4249 hir::ExprKind::Yield(P(expr))
4250 }
4251
4252 ExprKind::Err => hir::ExprKind::Err,
4253
4254 // Desugar `ExprIfLet`
4255 // from: `if let <pat> = <sub_expr> <body> [<else_opt>]`
4256 ExprKind::IfLet(ref pats, ref sub_expr, ref body, ref else_opt) => {
4257 // to:
4258 //
4259 // match <sub_expr> {
4260 // <pat> => <body>,
4261 // _ => [<else_opt> | ()]
4262 // }
4263
4264 let mut arms = vec![];
4265
4266 // `<pat> => <body>`
4267 {
4268 let body = self.lower_block(body, false);
4269 let body_expr = P(self.expr_block(body, ThinVec::new()));
4270 let pats = pats.iter().map(|pat| self.lower_pat(pat)).collect();
4271 arms.push(self.arm(pats, body_expr));
4272 }
4273
4274 // _ => [<else_opt>|()]
4275 {
4276 let wildcard_arm: Option<&Expr> = else_opt.as_ref().map(|p| &**p);
4277 let wildcard_pattern = self.pat_wild(e.span);
4278 let body = if let Some(else_expr) = wildcard_arm {
4279 P(self.lower_expr(else_expr))
4280 } else {
4281 self.expr_tuple(e.span, hir_vec![])
4282 };
4283 arms.push(self.arm(hir_vec![wildcard_pattern], body));
4284 }
4285
4286 let contains_else_clause = else_opt.is_some();
4287
4288 let sub_expr = P(self.lower_expr(sub_expr));
4289
4290 hir::ExprKind::Match(
4291 sub_expr,
4292 arms.into(),
4293 hir::MatchSource::IfLetDesugar {
4294 contains_else_clause,
4295 },
4296 )
4297 }
4298
4299 // Desugar `ExprWhileLet`
4300 // from: `[opt_ident]: while let <pat> = <sub_expr> <body>`
4301 ExprKind::WhileLet(ref pats, ref sub_expr, ref body, opt_label) => {
4302 // to:
4303 //
4304 // [opt_ident]: loop {
4305 // match <sub_expr> {
4306 // <pat> => <body>,
4307 // _ => break
4308 // }
4309 // }
4310
4311 // Note that the block AND the condition are evaluated in the loop scope.
4312 // This is done to allow `break` from inside the condition of the loop.
4313 let (body, break_expr, sub_expr) = self.with_loop_scope(e.id, |this| {
4314 (
4315 this.lower_block(body, false),
4316 this.expr_break(e.span, ThinVec::new()),
4317 this.with_loop_condition_scope(|this| P(this.lower_expr(sub_expr))),
4318 )
4319 });
4320
4321 // `<pat> => <body>`
4322 let pat_arm = {
4323 let body_expr = P(self.expr_block(body, ThinVec::new()));
4324 let pats = pats.iter().map(|pat| self.lower_pat(pat)).collect();
4325 self.arm(pats, body_expr)
4326 };
4327
4328 // `_ => break`
4329 let break_arm = {
4330 let pat_under = self.pat_wild(e.span);
4331 self.arm(hir_vec![pat_under], break_expr)
4332 };
4333
4334 // `match <sub_expr> { ... }`
4335 let arms = hir_vec![pat_arm, break_arm];
4336 let match_expr = self.expr(
4337 sub_expr.span,
4338 hir::ExprKind::Match(sub_expr, arms, hir::MatchSource::WhileLetDesugar),
4339 ThinVec::new(),
4340 );
4341
4342 // `[opt_ident]: loop { ... }`
4343 let loop_block = P(self.block_expr(P(match_expr)));
4344 let loop_expr = hir::ExprKind::Loop(
4345 loop_block,
4346 self.lower_label(opt_label),
4347 hir::LoopSource::WhileLet,
4348 );
4349 // Add attributes to the outer returned expr node.
4350 loop_expr
4351 }
4352
4353 // Desugar `ExprForLoop`
4354 // from: `[opt_ident]: for <pat> in <head> <body>`
4355 ExprKind::ForLoop(ref pat, ref head, ref body, opt_label) => {
4356 // to:
4357 //
4358 // {
4359 // let result = match ::std::iter::IntoIterator::into_iter(<head>) {
4360 // mut iter => {
4361 // [opt_ident]: loop {
4362 // let mut __next;
4363 // match ::std::iter::Iterator::next(&mut iter) {
4364 // ::std::option::Option::Some(val) => __next = val,
4365 // ::std::option::Option::None => break
4366 // };
4367 // let <pat> = __next;
4368 // StmtKind::Expr(<body>);
4369 // }
4370 // }
4371 // };
4372 // result
4373 // }
4374
4375 // expand <head>
4376 let head = self.lower_expr(head);
4377 let head_sp = head.span;
4378 let desugared_span = self.mark_span_with_reason(
4379 CompilerDesugaringKind::ForLoop,
4380 head_sp,
4381 None,
4382 );
4383
4384 let iter = self.str_to_ident("iter");
4385
4386 let next_ident = self.str_to_ident("__next");
4387 let next_pat = self.pat_ident_binding_mode(
4388 desugared_span,
4389 next_ident,
4390 hir::BindingAnnotation::Mutable,
4391 );
4392
4393 // `::std::option::Option::Some(val) => next = val`
4394 let pat_arm = {
4395 let val_ident = self.str_to_ident("val");
4396 let val_pat = self.pat_ident(pat.span, val_ident);
4397 let val_expr = P(self.expr_ident(pat.span, val_ident, val_pat.id));
4398 let next_expr = P(self.expr_ident(pat.span, next_ident, next_pat.id));
4399 let assign = P(self.expr(
4400 pat.span,
4401 hir::ExprKind::Assign(next_expr, val_expr),
4402 ThinVec::new(),
4403 ));
4404 let some_pat = self.pat_some(pat.span, val_pat);
4405 self.arm(hir_vec![some_pat], assign)
4406 };
4407
4408 // `::std::option::Option::None => break`
4409 let break_arm = {
4410 let break_expr =
4411 self.with_loop_scope(e.id, |this| this.expr_break(e.span, ThinVec::new()));
4412 let pat = self.pat_none(e.span);
4413 self.arm(hir_vec![pat], break_expr)
4414 };
4415
4416 // `mut iter`
4417 let iter_pat = self.pat_ident_binding_mode(
4418 desugared_span,
4419 iter,
4420 hir::BindingAnnotation::Mutable
4421 );
4422
4423 // `match ::std::iter::Iterator::next(&mut iter) { ... }`
4424 let match_expr = {
4425 let iter = P(self.expr_ident(head_sp, iter, iter_pat.id));
4426 let ref_mut_iter = self.expr_mut_addr_of(head_sp, iter);
4427 let next_path = &["iter", "Iterator", "next"];
4428 let next_path = P(self.expr_std_path(head_sp, next_path, None, ThinVec::new()));
4429 let next_expr = P(self.expr_call(head_sp, next_path, hir_vec![ref_mut_iter]));
4430 let arms = hir_vec![pat_arm, break_arm];
4431
4432 P(self.expr(
4433 head_sp,
4434 hir::ExprKind::Match(
4435 next_expr,
4436 arms,
4437 hir::MatchSource::ForLoopDesugar
4438 ),
4439 ThinVec::new(),
4440 ))
4441 };
4442 let LoweredNodeId { node_id, hir_id } = self.next_id();
4443 let match_stmt = hir::Stmt {
4444 id: node_id,
4445 hir_id,
4446 node: hir::StmtKind::Expr(match_expr),
4447 span: head_sp,
4448 };
4449
4450 let next_expr = P(self.expr_ident(head_sp, next_ident, next_pat.id));
4451
4452 // `let mut __next`
4453 let next_let = self.stmt_let_pat(
4454 desugared_span,
4455 None,
4456 next_pat,
4457 hir::LocalSource::ForLoopDesugar,
4458 );
4459
4460 // `let <pat> = __next`
4461 let pat = self.lower_pat(pat);
4462 let pat_let = self.stmt_let_pat(
4463 head_sp,
4464 Some(next_expr),
4465 pat,
4466 hir::LocalSource::ForLoopDesugar,
4467 );
4468
4469 let body_block = self.with_loop_scope(e.id, |this| this.lower_block(body, false));
4470 let body_expr = P(self.expr_block(body_block, ThinVec::new()));
4471 let LoweredNodeId { node_id, hir_id } = self.next_id();
4472 let body_stmt = hir::Stmt {
4473 id: node_id,
4474 hir_id,
4475 node: hir::StmtKind::Expr(body_expr),
4476 span: body.span,
4477 };
4478
4479 let loop_block = P(self.block_all(
4480 e.span,
4481 hir_vec![next_let, match_stmt, pat_let, body_stmt],
4482 None,
4483 ));
4484
4485 // `[opt_ident]: loop { ... }`
4486 let loop_expr = hir::ExprKind::Loop(
4487 loop_block,
4488 self.lower_label(opt_label),
4489 hir::LoopSource::ForLoop,
4490 );
4491 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(e.id);
4492 let loop_expr = P(hir::Expr {
4493 id: node_id,
4494 hir_id,
4495 node: loop_expr,
4496 span: e.span,
4497 attrs: ThinVec::new(),
4498 });
4499
4500 // `mut iter => { ... }`
4501 let iter_arm = self.arm(hir_vec![iter_pat], loop_expr);
4502
4503 // `match ::std::iter::IntoIterator::into_iter(<head>) { ... }`
4504 let into_iter_expr = {
4505 let into_iter_path = &["iter", "IntoIterator", "into_iter"];
4506 let into_iter = P(self.expr_std_path(
4507 head_sp, into_iter_path, None, ThinVec::new()));
4508 P(self.expr_call(head_sp, into_iter, hir_vec![head]))
4509 };
4510
4511 let match_expr = P(self.expr_match(
4512 head_sp,
4513 into_iter_expr,
4514 hir_vec![iter_arm],
4515 hir::MatchSource::ForLoopDesugar,
4516 ));
4517
4518 // `{ let _result = ...; _result }`
4519 // Underscore prevents an `unused_variables` lint if the head diverges.
4520 let result_ident = self.str_to_ident("_result");
4521 let (let_stmt, let_stmt_binding) =
4522 self.stmt_let(e.span, false, result_ident, match_expr);
4523
4524 let result = P(self.expr_ident(e.span, result_ident, let_stmt_binding));
4525 let block = P(self.block_all(e.span, hir_vec![let_stmt], Some(result)));
4526 // Add the attributes to the outer returned expr node.
4527 return self.expr_block(block, e.attrs.clone());
4528 }
4529
4530 // Desugar `ExprKind::Try`
4531 // from: `<expr>?`
4532 ExprKind::Try(ref sub_expr) => {
4533 // into:
4534 //
4535 // match Try::into_result(<expr>) {
4536 // Ok(val) => #[allow(unreachable_code)] val,
4537 // Err(err) => #[allow(unreachable_code)]
4538 // // If there is an enclosing `catch {...}`
4539 // break 'catch_target Try::from_error(From::from(err)),
4540 // // Otherwise
4541 // return Try::from_error(From::from(err)),
4542 // }
4543
4544 let unstable_span = self.mark_span_with_reason(
4545 CompilerDesugaringKind::QuestionMark,
4546 e.span,
4547 Some(vec![
4548 Symbol::intern("try_trait")
4549 ].into()),
4550 );
4551
4552 // `Try::into_result(<expr>)`
4553 let discr = {
4554 // expand <expr>
4555 let sub_expr = self.lower_expr(sub_expr);
4556
4557 let path = &["ops", "Try", "into_result"];
4558 let path = P(self.expr_std_path(
4559 unstable_span, path, None, ThinVec::new()));
4560 P(self.expr_call(e.span, path, hir_vec![sub_expr]))
4561 };
4562
4563 // `#[allow(unreachable_code)]`
4564 let attr = {
4565 // `allow(unreachable_code)`
4566 let allow = {
4567 let allow_ident = Ident::from_str("allow").with_span_pos(e.span);
4568 let uc_ident = Ident::from_str("unreachable_code").with_span_pos(e.span);
4569 let uc_nested = attr::mk_nested_word_item(uc_ident);
4570 attr::mk_list_item(e.span, allow_ident, vec![uc_nested])
4571 };
4572 attr::mk_spanned_attr_outer(e.span, attr::mk_attr_id(), allow)
4573 };
4574 let attrs = vec![attr];
4575
4576 // `Ok(val) => #[allow(unreachable_code)] val,`
4577 let ok_arm = {
4578 let val_ident = self.str_to_ident("val");
4579 let val_pat = self.pat_ident(e.span, val_ident);
4580 let val_expr = P(self.expr_ident_with_attrs(
4581 e.span,
4582 val_ident,
4583 val_pat.id,
4584 ThinVec::from(attrs.clone()),
4585 ));
4586 let ok_pat = self.pat_ok(e.span, val_pat);
4587
4588 self.arm(hir_vec![ok_pat], val_expr)
4589 };
4590
4591 // `Err(err) => #[allow(unreachable_code)]
4592 // return Try::from_error(From::from(err)),`
4593 let err_arm = {
4594 let err_ident = self.str_to_ident("err");
4595 let err_local = self.pat_ident(e.span, err_ident);
4596 let from_expr = {
4597 let path = &["convert", "From", "from"];
4598 let from = P(self.expr_std_path(
4599 e.span, path, None, ThinVec::new()));
4600 let err_expr = self.expr_ident(e.span, err_ident, err_local.id);
4601
4602 self.expr_call(e.span, from, hir_vec![err_expr])
4603 };
4604 let from_err_expr =
4605 self.wrap_in_try_constructor("from_error", from_expr, unstable_span);
4606 let thin_attrs = ThinVec::from(attrs);
4607 let catch_scope = self.catch_scopes.last().map(|x| *x);
4608 let ret_expr = if let Some(catch_node) = catch_scope {
4609 P(self.expr(
4610 e.span,
4611 hir::ExprKind::Break(
4612 hir::Destination {
4613 label: None,
4614 target_id: Ok(catch_node),
4615 },
4616 Some(from_err_expr),
4617 ),
4618 thin_attrs,
4619 ))
4620 } else {
4621 P(self.expr(e.span, hir::ExprKind::Ret(Some(from_err_expr)), thin_attrs))
4622 };
4623
4624 let err_pat = self.pat_err(e.span, err_local);
4625 self.arm(hir_vec![err_pat], ret_expr)
4626 };
4627
4628 hir::ExprKind::Match(
4629 discr,
4630 hir_vec![err_arm, ok_arm],
4631 hir::MatchSource::TryDesugar,
4632 )
4633 }
4634
4635 ExprKind::Mac(_) => panic!("Shouldn't exist here"),
4636 };
4637
4638 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(e.id);
4639
4640 hir::Expr {
4641 id: node_id,
4642 hir_id,
4643 node: kind,
4644 span: e.span,
4645 attrs: e.attrs.clone(),
4646 }
4647 }
4648
4649 fn lower_stmt(&mut self, s: &Stmt) -> SmallVec<[hir::Stmt; 1]> {
4650 smallvec![match s.node {
4651 StmtKind::Local(ref l) => {
4652 let (l, item_ids) = self.lower_local(l);
4653 let mut ids: SmallVec<[hir::Stmt; 1]> = item_ids
4654 .into_iter()
4655 .map(|item_id| {
4656 let LoweredNodeId { node_id, hir_id } = self.next_id();
4657
4658 hir::Stmt {
4659 id: node_id,
4660 hir_id,
4661 node: hir::StmtKind::Item(item_id),
4662 span: s.span,
4663 }
4664 })
4665 .collect();
4666 ids.push({
4667 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(s.id);
4668
4669 hir::Stmt {
4670 id: node_id,
4671 hir_id,
4672 node: hir::StmtKind::Local(P(l)),
4673 span: s.span,
4674 }
4675 });
4676 return ids;
4677 },
4678 StmtKind::Item(ref it) => {
4679 // Can only use the ID once.
4680 let mut id = Some(s.id);
4681 return self.lower_item_id(it)
4682 .into_iter()
4683 .map(|item_id| {
4684 let LoweredNodeId { node_id, hir_id } = id.take()
4685 .map(|id| self.lower_node_id(id))
4686 .unwrap_or_else(|| self.next_id());
4687
4688 hir::Stmt {
4689 id: node_id,
4690 hir_id,
4691 node: hir::StmtKind::Item(item_id),
4692 span: s.span,
4693 }
4694 })
4695 .collect();
4696 }
4697 StmtKind::Expr(ref e) => {
4698 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(s.id);
4699
4700 hir::Stmt {
4701 id: node_id,
4702 hir_id,
4703 node: hir::StmtKind::Expr(P(self.lower_expr(e))),
4704 span: s.span,
4705 }
4706 },
4707 StmtKind::Semi(ref e) => {
4708 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(s.id);
4709
4710 hir::Stmt {
4711 id: node_id,
4712 hir_id,
4713 node: hir::StmtKind::Semi(P(self.lower_expr(e))),
4714 span: s.span,
4715 }
4716 },
4717 StmtKind::Mac(..) => panic!("Shouldn't exist here"),
4718 }]
4719 }
4720
4721 fn lower_capture_clause(&mut self, c: CaptureBy) -> hir::CaptureClause {
4722 match c {
4723 CaptureBy::Value => hir::CaptureByValue,
4724 CaptureBy::Ref => hir::CaptureByRef,
4725 }
4726 }
4727
4728 /// If an `explicit_owner` is given, this method allocates the `HirId` in
4729 /// the address space of that item instead of the item currently being
4730 /// lowered. This can happen during `lower_impl_item_ref()` where we need to
4731 /// lower a `Visibility` value although we haven't lowered the owning
4732 /// `ImplItem` in question yet.
4733 fn lower_visibility(
4734 &mut self,
4735 v: &Visibility,
4736 explicit_owner: Option<NodeId>,
4737 ) -> hir::Visibility {
4738 let node = match v.node {
4739 VisibilityKind::Public => hir::VisibilityKind::Public,
4740 VisibilityKind::Crate(sugar) => hir::VisibilityKind::Crate(sugar),
4741 VisibilityKind::Restricted { ref path, id } => {
4742 debug!("lower_visibility: restricted path id = {:?}", id);
4743 let lowered_id = if let Some(owner) = explicit_owner {
4744 self.lower_node_id_with_owner(id, owner)
4745 } else {
4746 self.lower_node_id(id)
4747 };
4748 let def = self.expect_full_def(id);
4749 hir::VisibilityKind::Restricted {
4750 path: P(self.lower_path_extra(
4751 def,
4752 path,
4753 ParamMode::Explicit,
4754 explicit_owner,
4755 )),
4756 id: lowered_id.node_id,
4757 hir_id: lowered_id.hir_id,
4758 }
4759 },
4760 VisibilityKind::Inherited => hir::VisibilityKind::Inherited,
4761 };
4762 respan(v.span, node)
4763 }
4764
4765 fn lower_defaultness(&self, d: Defaultness, has_value: bool) -> hir::Defaultness {
4766 match d {
4767 Defaultness::Default => hir::Defaultness::Default {
4768 has_value: has_value,
4769 },
4770 Defaultness::Final => {
4771 assert!(has_value);
4772 hir::Defaultness::Final
4773 }
4774 }
4775 }
4776
4777 fn lower_block_check_mode(&mut self, b: &BlockCheckMode) -> hir::BlockCheckMode {
4778 match *b {
4779 BlockCheckMode::Default => hir::DefaultBlock,
4780 BlockCheckMode::Unsafe(u) => hir::UnsafeBlock(self.lower_unsafe_source(u)),
4781 }
4782 }
4783
4784 fn lower_binding_mode(&mut self, b: &BindingMode) -> hir::BindingAnnotation {
4785 match *b {
4786 BindingMode::ByValue(Mutability::Immutable) => hir::BindingAnnotation::Unannotated,
4787 BindingMode::ByRef(Mutability::Immutable) => hir::BindingAnnotation::Ref,
4788 BindingMode::ByValue(Mutability::Mutable) => hir::BindingAnnotation::Mutable,
4789 BindingMode::ByRef(Mutability::Mutable) => hir::BindingAnnotation::RefMut,
4790 }
4791 }
4792
4793 fn lower_unsafe_source(&mut self, u: UnsafeSource) -> hir::UnsafeSource {
4794 match u {
4795 CompilerGenerated => hir::CompilerGenerated,
4796 UserProvided => hir::UserProvided,
4797 }
4798 }
4799
4800 fn lower_impl_polarity(&mut self, i: ImplPolarity) -> hir::ImplPolarity {
4801 match i {
4802 ImplPolarity::Positive => hir::ImplPolarity::Positive,
4803 ImplPolarity::Negative => hir::ImplPolarity::Negative,
4804 }
4805 }
4806
4807 fn lower_trait_bound_modifier(&mut self, f: TraitBoundModifier) -> hir::TraitBoundModifier {
4808 match f {
4809 TraitBoundModifier::None => hir::TraitBoundModifier::None,
4810 TraitBoundModifier::Maybe => hir::TraitBoundModifier::Maybe,
4811 }
4812 }
4813
4814 // Helper methods for building HIR.
4815
4816 fn arm(&mut self, pats: hir::HirVec<P<hir::Pat>>, expr: P<hir::Expr>) -> hir::Arm {
4817 hir::Arm {
4818 attrs: hir_vec![],
4819 pats,
4820 guard: None,
4821 body: expr,
4822 }
4823 }
4824
4825 fn field(&mut self, ident: Ident, expr: P<hir::Expr>, span: Span) -> hir::Field {
4826 let LoweredNodeId { node_id, hir_id } = self.next_id();
4827
4828 hir::Field {
4829 id: node_id,
4830 hir_id,
4831 ident,
4832 span,
4833 expr,
4834 is_shorthand: false,
4835 }
4836 }
4837
4838 fn expr_break(&mut self, span: Span, attrs: ThinVec<Attribute>) -> P<hir::Expr> {
4839 let expr_break = hir::ExprKind::Break(self.lower_loop_destination(None), None);
4840 P(self.expr(span, expr_break, attrs))
4841 }
4842
4843 fn expr_call(
4844 &mut self,
4845 span: Span,
4846 e: P<hir::Expr>,
4847 args: hir::HirVec<hir::Expr>,
4848 ) -> hir::Expr {
4849 self.expr(span, hir::ExprKind::Call(e, args), ThinVec::new())
4850 }
4851
4852 fn expr_ident(&mut self, span: Span, ident: Ident, binding: NodeId) -> hir::Expr {
4853 self.expr_ident_with_attrs(span, ident, binding, ThinVec::new())
4854 }
4855
4856 fn expr_ident_with_attrs(
4857 &mut self,
4858 span: Span,
4859 ident: Ident,
4860 binding: NodeId,
4861 attrs: ThinVec<Attribute>,
4862 ) -> hir::Expr {
4863 let expr_path = hir::ExprKind::Path(hir::QPath::Resolved(
4864 None,
4865 P(hir::Path {
4866 span,
4867 def: Def::Local(binding),
4868 segments: hir_vec![hir::PathSegment::from_ident(ident)],
4869 }),
4870 ));
4871
4872 self.expr(span, expr_path, attrs)
4873 }
4874
4875 fn expr_mut_addr_of(&mut self, span: Span, e: P<hir::Expr>) -> hir::Expr {
4876 self.expr(span, hir::ExprKind::AddrOf(hir::MutMutable, e), ThinVec::new())
4877 }
4878
4879 fn expr_std_path(
4880 &mut self,
4881 span: Span,
4882 components: &[&str],
4883 params: Option<P<hir::GenericArgs>>,
4884 attrs: ThinVec<Attribute>,
4885 ) -> hir::Expr {
4886 let path = self.std_path(span, components, params, true);
4887 self.expr(
4888 span,
4889 hir::ExprKind::Path(hir::QPath::Resolved(None, P(path))),
4890 attrs,
4891 )
4892 }
4893
4894 fn expr_match(
4895 &mut self,
4896 span: Span,
4897 arg: P<hir::Expr>,
4898 arms: hir::HirVec<hir::Arm>,
4899 source: hir::MatchSource,
4900 ) -> hir::Expr {
4901 self.expr(span, hir::ExprKind::Match(arg, arms, source), ThinVec::new())
4902 }
4903
4904 fn expr_block(&mut self, b: P<hir::Block>, attrs: ThinVec<Attribute>) -> hir::Expr {
4905 self.expr(b.span, hir::ExprKind::Block(b, None), attrs)
4906 }
4907
4908 fn expr_tuple(&mut self, sp: Span, exprs: hir::HirVec<hir::Expr>) -> P<hir::Expr> {
4909 P(self.expr(sp, hir::ExprKind::Tup(exprs), ThinVec::new()))
4910 }
4911
4912 fn expr(&mut self, span: Span, node: hir::ExprKind, attrs: ThinVec<Attribute>) -> hir::Expr {
4913 let LoweredNodeId { node_id, hir_id } = self.next_id();
4914 hir::Expr {
4915 id: node_id,
4916 hir_id,
4917 node,
4918 span,
4919 attrs,
4920 }
4921 }
4922
4923 fn stmt_let_pat(
4924 &mut self,
4925 sp: Span,
4926 ex: Option<P<hir::Expr>>,
4927 pat: P<hir::Pat>,
4928 source: hir::LocalSource,
4929 ) -> hir::Stmt {
4930 let LoweredNodeId { node_id, hir_id } = self.next_id();
4931
4932 let local = hir::Local {
4933 pat,
4934 ty: None,
4935 init: ex,
4936 id: node_id,
4937 hir_id,
4938 span: sp,
4939 attrs: ThinVec::new(),
4940 source,
4941 };
4942
4943 let LoweredNodeId { node_id, hir_id } = self.next_id();
4944 hir::Stmt {
4945 id: node_id,
4946 hir_id,
4947 node: hir::StmtKind::Local(P(local)),
4948 span: sp
4949 }
4950 }
4951
4952 fn stmt_let(
4953 &mut self,
4954 sp: Span,
4955 mutbl: bool,
4956 ident: Ident,
4957 ex: P<hir::Expr>,
4958 ) -> (hir::Stmt, NodeId) {
4959 let pat = if mutbl {
4960 self.pat_ident_binding_mode(sp, ident, hir::BindingAnnotation::Mutable)
4961 } else {
4962 self.pat_ident(sp, ident)
4963 };
4964 let pat_id = pat.id;
4965 (
4966 self.stmt_let_pat(sp, Some(ex), pat, hir::LocalSource::Normal),
4967 pat_id,
4968 )
4969 }
4970
4971 fn block_expr(&mut self, expr: P<hir::Expr>) -> hir::Block {
4972 self.block_all(expr.span, hir::HirVec::new(), Some(expr))
4973 }
4974
4975 fn block_all(
4976 &mut self,
4977 span: Span,
4978 stmts: hir::HirVec<hir::Stmt>,
4979 expr: Option<P<hir::Expr>>,
4980 ) -> hir::Block {
4981 let LoweredNodeId { node_id, hir_id } = self.next_id();
4982
4983 hir::Block {
4984 stmts,
4985 expr,
4986 id: node_id,
4987 hir_id,
4988 rules: hir::DefaultBlock,
4989 span,
4990 targeted_by_break: false,
4991 }
4992 }
4993
4994 fn pat_ok(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
4995 self.pat_std_enum(span, &["result", "Result", "Ok"], hir_vec![pat])
4996 }
4997
4998 fn pat_err(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
4999 self.pat_std_enum(span, &["result", "Result", "Err"], hir_vec![pat])
5000 }
5001
5002 fn pat_some(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
5003 self.pat_std_enum(span, &["option", "Option", "Some"], hir_vec![pat])
5004 }
5005
5006 fn pat_none(&mut self, span: Span) -> P<hir::Pat> {
5007 self.pat_std_enum(span, &["option", "Option", "None"], hir_vec![])
5008 }
5009
5010 fn pat_std_enum(
5011 &mut self,
5012 span: Span,
5013 components: &[&str],
5014 subpats: hir::HirVec<P<hir::Pat>>,
5015 ) -> P<hir::Pat> {
5016 let path = self.std_path(span, components, None, true);
5017 let qpath = hir::QPath::Resolved(None, P(path));
5018 let pt = if subpats.is_empty() {
5019 hir::PatKind::Path(qpath)
5020 } else {
5021 hir::PatKind::TupleStruct(qpath, subpats, None)
5022 };
5023 self.pat(span, pt)
5024 }
5025
5026 fn pat_ident(&mut self, span: Span, ident: Ident) -> P<hir::Pat> {
5027 self.pat_ident_binding_mode(span, ident, hir::BindingAnnotation::Unannotated)
5028 }
5029
5030 fn pat_ident_binding_mode(
5031 &mut self,
5032 span: Span,
5033 ident: Ident,
5034 bm: hir::BindingAnnotation,
5035 ) -> P<hir::Pat> {
5036 let LoweredNodeId { node_id, hir_id } = self.next_id();
5037
5038 P(hir::Pat {
5039 id: node_id,
5040 hir_id,
5041 node: hir::PatKind::Binding(bm, node_id, hir_id, ident.with_span_pos(span), None),
5042 span,
5043 })
5044 }
5045
5046 fn pat_wild(&mut self, span: Span) -> P<hir::Pat> {
5047 self.pat(span, hir::PatKind::Wild)
5048 }
5049
5050 fn pat(&mut self, span: Span, pat: hir::PatKind) -> P<hir::Pat> {
5051 let LoweredNodeId { node_id, hir_id } = self.next_id();
5052 P(hir::Pat {
5053 id: node_id,
5054 hir_id,
5055 node: pat,
5056 span,
5057 })
5058 }
5059
5060 /// Given suffix ["b","c","d"], returns path `::std::b::c::d` when
5061 /// `fld.cx.use_std`, and `::core::b::c::d` otherwise.
5062 /// The path is also resolved according to `is_value`.
5063 fn std_path(
5064 &mut self,
5065 span: Span,
5066 components: &[&str],
5067 params: Option<P<hir::GenericArgs>>,
5068 is_value: bool
5069 ) -> hir::Path {
5070 let mut path = self.resolver
5071 .resolve_str_path(span, self.crate_root, components, is_value);
5072 path.segments.last_mut().unwrap().args = params;
5073
5074
5075 for seg in path.segments.iter_mut() {
5076 if let Some(id) = seg.id {
5077 seg.id = Some(self.lower_node_id(id).node_id);
5078 }
5079 }
5080 path
5081 }
5082
5083 fn ty_path(&mut self, id: LoweredNodeId, span: Span, qpath: hir::QPath) -> hir::Ty {
5084 let mut id = id;
5085 let node = match qpath {
5086 hir::QPath::Resolved(None, path) => {
5087 // Turn trait object paths into `TyKind::TraitObject` instead.
5088 match path.def {
5089 Def::Trait(_) | Def::TraitAlias(_) => {
5090 let principal = hir::PolyTraitRef {
5091 bound_generic_params: hir::HirVec::new(),
5092 trait_ref: hir::TraitRef {
5093 path: path.and_then(|path| path),
5094 ref_id: id.node_id,
5095 hir_ref_id: id.hir_id,
5096 },
5097 span,
5098 };
5099
5100 // The original ID is taken by the `PolyTraitRef`,
5101 // so the `Ty` itself needs a different one.
5102 id = self.next_id();
5103 hir::TyKind::TraitObject(hir_vec![principal], self.elided_dyn_bound(span))
5104 }
5105 _ => hir::TyKind::Path(hir::QPath::Resolved(None, path)),
5106 }
5107 }
5108 _ => hir::TyKind::Path(qpath),
5109 };
5110 hir::Ty {
5111 id: id.node_id,
5112 hir_id: id.hir_id,
5113 node,
5114 span,
5115 }
5116 }
5117
5118 /// Invoked to create the lifetime argument for a type `&T`
5119 /// with no explicit lifetime.
5120 fn elided_ref_lifetime(&mut self, span: Span) -> hir::Lifetime {
5121 match self.anonymous_lifetime_mode {
5122 // Intercept when we are in an impl header and introduce an in-band lifetime.
5123 // Hence `impl Foo for &u32` becomes `impl<'f> Foo for &'f u32` for some fresh
5124 // `'f`.
5125 AnonymousLifetimeMode::CreateParameter => {
5126 let fresh_name = self.collect_fresh_in_band_lifetime(span);
5127 let LoweredNodeId { node_id, hir_id } = self.next_id();
5128 hir::Lifetime {
5129 id: node_id,
5130 hir_id,
5131 span,
5132 name: hir::LifetimeName::Param(fresh_name),
5133 }
5134 }
5135
5136 AnonymousLifetimeMode::ReportError => self.new_error_lifetime(None, span),
5137
5138 AnonymousLifetimeMode::PassThrough => self.new_implicit_lifetime(span),
5139 }
5140 }
5141
5142 /// Report an error on illegal use of `'_` or a `&T` with no explicit lifetime;
5143 /// return a "error lifetime".
5144 fn new_error_lifetime(&mut self, id: Option<NodeId>, span: Span) -> hir::Lifetime {
5145 let (id, msg, label) = match id {
5146 Some(id) => (id, "`'_` cannot be used here", "`'_` is a reserved lifetime name"),
5147
5148 None => (
5149 self.next_id().node_id,
5150 "`&` without an explicit lifetime name cannot be used here",
5151 "explicit lifetime name needed here",
5152 ),
5153 };
5154
5155 let mut err = struct_span_err!(
5156 self.sess,
5157 span,
5158 E0637,
5159 "{}",
5160 msg,
5161 );
5162 err.span_label(span, label);
5163 err.emit();
5164
5165 self.new_named_lifetime(id, span, hir::LifetimeName::Error)
5166 }
5167
5168 /// Invoked to create the lifetime argument(s) for a path like
5169 /// `std::cell::Ref<T>`; note that implicit lifetimes in these
5170 /// sorts of cases are deprecated. This may therefore report a warning or an
5171 /// error, depending on the mode.
5172 fn elided_path_lifetimes(&mut self, span: Span, count: usize) -> P<[hir::Lifetime]> {
5173 match self.anonymous_lifetime_mode {
5174 // N.B., We intentionally ignore the create-parameter mode here
5175 // and instead "pass through" to resolve-lifetimes, which will then
5176 // report an error. This is because we don't want to support
5177 // impl elision for deprecated forms like
5178 //
5179 // impl Foo for std::cell::Ref<u32> // note lack of '_
5180 AnonymousLifetimeMode::CreateParameter => {}
5181
5182 AnonymousLifetimeMode::ReportError => {
5183 return (0..count)
5184 .map(|_| self.new_error_lifetime(None, span))
5185 .collect();
5186 }
5187
5188 // This is the normal case.
5189 AnonymousLifetimeMode::PassThrough => {}
5190 }
5191
5192 (0..count)
5193 .map(|_| self.new_implicit_lifetime(span))
5194 .collect()
5195 }
5196
5197 /// Invoked to create the lifetime argument(s) for an elided trait object
5198 /// bound, like the bound in `Box<dyn Debug>`. This method is not invoked
5199 /// when the bound is written, even if it is written with `'_` like in
5200 /// `Box<dyn Debug + '_>`. In those cases, `lower_lifetime` is invoked.
5201 fn elided_dyn_bound(&mut self, span: Span) -> hir::Lifetime {
5202 match self.anonymous_lifetime_mode {
5203 // NB. We intentionally ignore the create-parameter mode here.
5204 // and instead "pass through" to resolve-lifetimes, which will apply
5205 // the object-lifetime-defaulting rules. Elided object lifetime defaults
5206 // do not act like other elided lifetimes. In other words, given this:
5207 //
5208 // impl Foo for Box<dyn Debug>
5209 //
5210 // we do not introduce a fresh `'_` to serve as the bound, but instead
5211 // ultimately translate to the equivalent of:
5212 //
5213 // impl Foo for Box<dyn Debug + 'static>
5214 //
5215 // `resolve_lifetime` has the code to make that happen.
5216 AnonymousLifetimeMode::CreateParameter => {}
5217
5218 AnonymousLifetimeMode::ReportError => {
5219 // ReportError applies to explicit use of `'_`.
5220 }
5221
5222 // This is the normal case.
5223 AnonymousLifetimeMode::PassThrough => {}
5224 }
5225
5226 self.new_implicit_lifetime(span)
5227 }
5228
5229 fn new_implicit_lifetime(&mut self, span: Span) -> hir::Lifetime {
5230 let LoweredNodeId { node_id, hir_id } = self.next_id();
5231
5232 hir::Lifetime {
5233 id: node_id,
5234 hir_id,
5235 span,
5236 name: hir::LifetimeName::Implicit,
5237 }
5238 }
5239
5240 fn maybe_lint_bare_trait(&self, span: Span, id: NodeId, is_global: bool) {
5241 self.sess.buffer_lint_with_diagnostic(
5242 builtin::BARE_TRAIT_OBJECTS,
5243 id,
5244 span,
5245 "trait objects without an explicit `dyn` are deprecated",
5246 builtin::BuiltinLintDiagnostics::BareTraitObject(span, is_global),
5247 )
5248 }
5249
5250 fn wrap_in_try_constructor(
5251 &mut self,
5252 method: &'static str,
5253 e: hir::Expr,
5254 unstable_span: Span,
5255 ) -> P<hir::Expr> {
5256 let path = &["ops", "Try", method];
5257 let from_err = P(self.expr_std_path(unstable_span, path, None,
5258 ThinVec::new()));
5259 P(self.expr_call(e.span, from_err, hir_vec![e]))
5260 }
5261 }
5262
5263 fn body_ids(bodies: &BTreeMap<hir::BodyId, hir::Body>) -> Vec<hir::BodyId> {
5264 // Sorting by span ensures that we get things in order within a
5265 // file, and also puts the files in a sensible order.
5266 let mut body_ids: Vec<_> = bodies.keys().cloned().collect();
5267 body_ids.sort_by_key(|b| bodies[b].value.span);
5268 body_ids
5269 }