]> git.proxmox.com Git - rustc.git/blob - src/librustc/infer/error_reporting/mod.rs
New upstream version 1.41.1+dfsg1
[rustc.git] / src / librustc / infer / error_reporting / mod.rs
1 //! Error Reporting Code for the inference engine
2 //!
3 //! Because of the way inference, and in particular region inference,
4 //! works, it often happens that errors are not detected until far after
5 //! the relevant line of code has been type-checked. Therefore, there is
6 //! an elaborate system to track why a particular constraint in the
7 //! inference graph arose so that we can explain to the user what gave
8 //! rise to a particular error.
9 //!
10 //! The basis of the system are the "origin" types. An "origin" is the
11 //! reason that a constraint or inference variable arose. There are
12 //! different "origin" enums for different kinds of constraints/variables
13 //! (e.g., `TypeOrigin`, `RegionVariableOrigin`). An origin always has
14 //! a span, but also more information so that we can generate a meaningful
15 //! error message.
16 //!
17 //! Having a catalog of all the different reasons an error can arise is
18 //! also useful for other reasons, like cross-referencing FAQs etc, though
19 //! we are not really taking advantage of this yet.
20 //!
21 //! # Region Inference
22 //!
23 //! Region inference is particularly tricky because it always succeeds "in
24 //! the moment" and simply registers a constraint. Then, at the end, we
25 //! can compute the full graph and report errors, so we need to be able to
26 //! store and later report what gave rise to the conflicting constraints.
27 //!
28 //! # Subtype Trace
29 //!
30 //! Determining whether `T1 <: T2` often involves a number of subtypes and
31 //! subconstraints along the way. A "TypeTrace" is an extended version
32 //! of an origin that traces the types and other values that were being
33 //! compared. It is not necessarily comprehensive (in fact, at the time of
34 //! this writing it only tracks the root values being compared) but I'd
35 //! like to extend it to include significant "waypoints". For example, if
36 //! you are comparing `(T1, T2) <: (T3, T4)`, and the problem is that `T2
37 //! <: T4` fails, I'd like the trace to include enough information to say
38 //! "in the 2nd element of the tuple". Similarly, failures when comparing
39 //! arguments or return types in fn types should be able to cite the
40 //! specific position, etc.
41 //!
42 //! # Reality vs plan
43 //!
44 //! Of course, there is still a LOT of code in typeck that has yet to be
45 //! ported to this system, and which relies on string concatenation at the
46 //! time of error detection.
47
48 use super::lexical_region_resolve::RegionResolutionError;
49 use super::region_constraints::GenericKind;
50 use super::{InferCtxt, RegionVariableOrigin, SubregionOrigin, TypeTrace, ValuePairs};
51
52 use crate::hir;
53 use crate::hir::def_id::DefId;
54 use crate::hir::Node;
55 use crate::infer::{self, SuppressRegionErrors};
56 use crate::infer::opaque_types;
57 use crate::middle::region;
58 use crate::traits::{
59 IfExpressionCause, MatchExpressionArmCause, ObligationCause, ObligationCauseCode,
60 };
61 use crate::ty::error::TypeError;
62 use crate::ty::{self, subst::{Subst, SubstsRef}, Region, Ty, TyCtxt, TypeFoldable};
63
64 use errors::{Applicability, DiagnosticBuilder, DiagnosticStyledString};
65 use rustc_error_codes::*;
66 use rustc_target::spec::abi;
67 use syntax_pos::{Pos, Span};
68 use std::{cmp, fmt};
69
70 mod note;
71
72 mod need_type_info;
73 pub use need_type_info::TypeAnnotationNeeded;
74
75 pub mod nice_region_error;
76
77 impl<'tcx> TyCtxt<'tcx> {
78 pub fn note_and_explain_region(
79 self,
80 region_scope_tree: &region::ScopeTree,
81 err: &mut DiagnosticBuilder<'_>,
82 prefix: &str,
83 region: ty::Region<'tcx>,
84 suffix: &str,
85 ) {
86 let (description, span) = match *region {
87 ty::ReScope(scope) => {
88 let new_string;
89 let unknown_scope = || {
90 format!(
91 "{}unknown scope: {:?}{}. Please report a bug.",
92 prefix, scope, suffix
93 )
94 };
95 let span = scope.span(self, region_scope_tree);
96 let tag = match self.hir().find(scope.hir_id(region_scope_tree)) {
97 Some(Node::Block(_)) => "block",
98 Some(Node::Expr(expr)) => match expr.kind {
99 hir::ExprKind::Call(..) => "call",
100 hir::ExprKind::MethodCall(..) => "method call",
101 hir::ExprKind::Match(.., hir::MatchSource::IfLetDesugar { .. }) => "if let",
102 hir::ExprKind::Match(.., hir::MatchSource::WhileLetDesugar) => "while let",
103 hir::ExprKind::Match(.., hir::MatchSource::ForLoopDesugar) => "for",
104 hir::ExprKind::Match(..) => "match",
105 _ => "expression",
106 },
107 Some(Node::Stmt(_)) => "statement",
108 Some(Node::Item(it)) => Self::item_scope_tag(&it),
109 Some(Node::TraitItem(it)) => Self::trait_item_scope_tag(&it),
110 Some(Node::ImplItem(it)) => Self::impl_item_scope_tag(&it),
111 Some(_) | None => {
112 err.span_note(span, &unknown_scope());
113 return;
114 }
115 };
116 let scope_decorated_tag = match scope.data {
117 region::ScopeData::Node => tag,
118 region::ScopeData::CallSite => "scope of call-site for function",
119 region::ScopeData::Arguments => "scope of function body",
120 region::ScopeData::Destruction => {
121 new_string = format!("destruction scope surrounding {}", tag);
122 &new_string[..]
123 }
124 region::ScopeData::Remainder(first_statement_index) => {
125 new_string = format!(
126 "block suffix following statement {}",
127 first_statement_index.index()
128 );
129 &new_string[..]
130 }
131 };
132 self.explain_span(scope_decorated_tag, span)
133 }
134
135 ty::ReEarlyBound(_) | ty::ReFree(_) | ty::ReStatic => {
136 self.msg_span_from_free_region(region)
137 }
138
139 ty::ReEmpty => ("the empty lifetime".to_owned(), None),
140
141 ty::RePlaceholder(_) => (format!("any other region"), None),
142
143 // FIXME(#13998) RePlaceholder should probably print like
144 // ReFree rather than dumping Debug output on the user.
145 //
146 // We shouldn't really be having unification failures with ReVar
147 // and ReLateBound though.
148 ty::ReVar(_) | ty::ReLateBound(..) | ty::ReErased => {
149 (format!("lifetime {:?}", region), None)
150 }
151
152 // We shouldn't encounter an error message with ReClosureBound.
153 ty::ReClosureBound(..) => {
154 bug!("encountered unexpected ReClosureBound: {:?}", region,);
155 }
156 };
157
158 TyCtxt::emit_msg_span(err, prefix, description, span, suffix);
159 }
160
161 pub fn note_and_explain_free_region(
162 self,
163 err: &mut DiagnosticBuilder<'_>,
164 prefix: &str,
165 region: ty::Region<'tcx>,
166 suffix: &str,
167 ) {
168 let (description, span) = self.msg_span_from_free_region(region);
169
170 TyCtxt::emit_msg_span(err, prefix, description, span, suffix);
171 }
172
173 fn msg_span_from_free_region(self, region: ty::Region<'tcx>) -> (String, Option<Span>) {
174 match *region {
175 ty::ReEarlyBound(_) | ty::ReFree(_) => {
176 self.msg_span_from_early_bound_and_free_regions(region)
177 }
178 ty::ReStatic => ("the static lifetime".to_owned(), None),
179 ty::ReEmpty => ("an empty lifetime".to_owned(), None),
180 _ => bug!("{:?}", region),
181 }
182 }
183
184 fn msg_span_from_early_bound_and_free_regions(
185 self,
186 region: ty::Region<'tcx>,
187 ) -> (String, Option<Span>) {
188 let cm = self.sess.source_map();
189
190 let scope = region.free_region_binding_scope(self);
191 let node = self.hir().as_local_hir_id(scope).unwrap_or(hir::DUMMY_HIR_ID);
192 let tag = match self.hir().find(node) {
193 Some(Node::Block(_)) | Some(Node::Expr(_)) => "body",
194 Some(Node::Item(it)) => Self::item_scope_tag(&it),
195 Some(Node::TraitItem(it)) => Self::trait_item_scope_tag(&it),
196 Some(Node::ImplItem(it)) => Self::impl_item_scope_tag(&it),
197 _ => unreachable!(),
198 };
199 let (prefix, span) = match *region {
200 ty::ReEarlyBound(ref br) => {
201 let mut sp = cm.def_span(self.hir().span(node));
202 if let Some(param) = self.hir()
203 .get_generics(scope)
204 .and_then(|generics| generics.get_named(br.name))
205 {
206 sp = param.span;
207 }
208 (format!("the lifetime `{}` as defined on", br.name), sp)
209 }
210 ty::ReFree(ty::FreeRegion {
211 bound_region: ty::BoundRegion::BrNamed(_, name),
212 ..
213 }) => {
214 let mut sp = cm.def_span(self.hir().span(node));
215 if let Some(param) = self.hir()
216 .get_generics(scope)
217 .and_then(|generics| generics.get_named(name))
218 {
219 sp = param.span;
220 }
221 (format!("the lifetime `{}` as defined on", name), sp)
222 }
223 ty::ReFree(ref fr) => match fr.bound_region {
224 ty::BrAnon(idx) => (
225 format!("the anonymous lifetime #{} defined on", idx + 1),
226 self.hir().span(node),
227 ),
228 _ => (
229 format!("the lifetime `{}` as defined on", region),
230 cm.def_span(self.hir().span(node)),
231 ),
232 },
233 _ => bug!(),
234 };
235 let (msg, opt_span) = self.explain_span(tag, span);
236 (format!("{} {}", prefix, msg), opt_span)
237 }
238
239 fn emit_msg_span(
240 err: &mut DiagnosticBuilder<'_>,
241 prefix: &str,
242 description: String,
243 span: Option<Span>,
244 suffix: &str,
245 ) {
246 let message = format!("{}{}{}", prefix, description, suffix);
247
248 if let Some(span) = span {
249 err.span_note(span, &message);
250 } else {
251 err.note(&message);
252 }
253 }
254
255 fn item_scope_tag(item: &hir::Item) -> &'static str {
256 match item.kind {
257 hir::ItemKind::Impl(..) => "impl",
258 hir::ItemKind::Struct(..) => "struct",
259 hir::ItemKind::Union(..) => "union",
260 hir::ItemKind::Enum(..) => "enum",
261 hir::ItemKind::Trait(..) => "trait",
262 hir::ItemKind::Fn(..) => "function body",
263 _ => "item",
264 }
265 }
266
267 fn trait_item_scope_tag(item: &hir::TraitItem) -> &'static str {
268 match item.kind {
269 hir::TraitItemKind::Method(..) => "method body",
270 hir::TraitItemKind::Const(..) | hir::TraitItemKind::Type(..) => "associated item",
271 }
272 }
273
274 fn impl_item_scope_tag(item: &hir::ImplItem) -> &'static str {
275 match item.kind {
276 hir::ImplItemKind::Method(..) => "method body",
277 hir::ImplItemKind::Const(..)
278 | hir::ImplItemKind::OpaqueTy(..)
279 | hir::ImplItemKind::TyAlias(..) => "associated item",
280 }
281 }
282
283 fn explain_span(self, heading: &str, span: Span) -> (String, Option<Span>) {
284 let lo = self.sess.source_map().lookup_char_pos(span.lo());
285 (
286 format!("the {} at {}:{}", heading, lo.line, lo.col.to_usize() + 1),
287 Some(span),
288 )
289 }
290 }
291
292 impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
293 pub fn report_region_errors(
294 &self,
295 region_scope_tree: &region::ScopeTree,
296 errors: &Vec<RegionResolutionError<'tcx>>,
297 suppress: SuppressRegionErrors,
298 ) {
299 debug!(
300 "report_region_errors(): {} errors to start, suppress = {:?}",
301 errors.len(),
302 suppress
303 );
304
305 if suppress.suppressed() {
306 return;
307 }
308
309 // try to pre-process the errors, which will group some of them
310 // together into a `ProcessedErrors` group:
311 let errors = self.process_errors(errors);
312
313 debug!(
314 "report_region_errors: {} errors after preprocessing",
315 errors.len()
316 );
317
318 for error in errors {
319 debug!("report_region_errors: error = {:?}", error);
320
321 if !self.try_report_nice_region_error(&error) {
322 match error.clone() {
323 // These errors could indicate all manner of different
324 // problems with many different solutions. Rather
325 // than generate a "one size fits all" error, what we
326 // attempt to do is go through a number of specific
327 // scenarios and try to find the best way to present
328 // the error. If all of these fails, we fall back to a rather
329 // general bit of code that displays the error information
330 RegionResolutionError::ConcreteFailure(origin, sub, sup) => {
331 if sub.is_placeholder() || sup.is_placeholder() {
332 self.report_placeholder_failure(region_scope_tree, origin, sub, sup)
333 .emit();
334 } else {
335 self.report_concrete_failure(region_scope_tree, origin, sub, sup)
336 .emit();
337 }
338 }
339
340 RegionResolutionError::GenericBoundFailure(origin, param_ty, sub) => {
341 self.report_generic_bound_failure(
342 region_scope_tree,
343 origin.span(),
344 Some(origin),
345 param_ty,
346 sub,
347 );
348 }
349
350 RegionResolutionError::SubSupConflict(
351 _,
352 var_origin,
353 sub_origin,
354 sub_r,
355 sup_origin,
356 sup_r,
357 ) => {
358 if sub_r.is_placeholder() {
359 self.report_placeholder_failure(
360 region_scope_tree,
361 sub_origin,
362 sub_r,
363 sup_r,
364 )
365 .emit();
366 } else if sup_r.is_placeholder() {
367 self.report_placeholder_failure(
368 region_scope_tree,
369 sup_origin,
370 sub_r,
371 sup_r,
372 )
373 .emit();
374 } else {
375 self.report_sub_sup_conflict(
376 region_scope_tree,
377 var_origin,
378 sub_origin,
379 sub_r,
380 sup_origin,
381 sup_r,
382 );
383 }
384 }
385
386 RegionResolutionError::MemberConstraintFailure {
387 opaque_type_def_id,
388 hidden_ty,
389 member_region,
390 span: _,
391 choice_regions: _,
392 } => {
393 let hidden_ty = self.resolve_vars_if_possible(&hidden_ty);
394 opaque_types::unexpected_hidden_region_diagnostic(
395 self.tcx,
396 Some(region_scope_tree),
397 opaque_type_def_id,
398 hidden_ty,
399 member_region,
400 ).emit();
401 }
402 }
403 }
404 }
405 }
406
407 // This method goes through all the errors and try to group certain types
408 // of error together, for the purpose of suggesting explicit lifetime
409 // parameters to the user. This is done so that we can have a more
410 // complete view of what lifetimes should be the same.
411 // If the return value is an empty vector, it means that processing
412 // failed (so the return value of this method should not be used).
413 //
414 // The method also attempts to weed out messages that seem like
415 // duplicates that will be unhelpful to the end-user. But
416 // obviously it never weeds out ALL errors.
417 fn process_errors(
418 &self,
419 errors: &Vec<RegionResolutionError<'tcx>>,
420 ) -> Vec<RegionResolutionError<'tcx>> {
421 debug!("process_errors()");
422
423 // We want to avoid reporting generic-bound failures if we can
424 // avoid it: these have a very high rate of being unhelpful in
425 // practice. This is because they are basically secondary
426 // checks that test the state of the region graph after the
427 // rest of inference is done, and the other kinds of errors
428 // indicate that the region constraint graph is internally
429 // inconsistent, so these test results are likely to be
430 // meaningless.
431 //
432 // Therefore, we filter them out of the list unless they are
433 // the only thing in the list.
434
435 let is_bound_failure = |e: &RegionResolutionError<'tcx>| match *e {
436 RegionResolutionError::GenericBoundFailure(..) => true,
437 RegionResolutionError::ConcreteFailure(..)
438 | RegionResolutionError::SubSupConflict(..)
439 | RegionResolutionError::MemberConstraintFailure { .. } => false,
440 };
441
442 let mut errors = if errors.iter().all(|e| is_bound_failure(e)) {
443 errors.clone()
444 } else {
445 errors
446 .iter()
447 .filter(|&e| !is_bound_failure(e))
448 .cloned()
449 .collect()
450 };
451
452 // sort the errors by span, for better error message stability.
453 errors.sort_by_key(|u| match *u {
454 RegionResolutionError::ConcreteFailure(ref sro, _, _) => sro.span(),
455 RegionResolutionError::GenericBoundFailure(ref sro, _, _) => sro.span(),
456 RegionResolutionError::SubSupConflict(_, ref rvo, _, _, _, _) => rvo.span(),
457 RegionResolutionError::MemberConstraintFailure { span, .. } => span,
458 });
459 errors
460 }
461
462 /// Adds a note if the types come from similarly named crates
463 fn check_and_note_conflicting_crates(
464 &self,
465 err: &mut DiagnosticBuilder<'_>,
466 terr: &TypeError<'tcx>,
467 ) {
468 use hir::def_id::CrateNum;
469 use hir::map::DisambiguatedDefPathData;
470 use ty::print::Printer;
471 use ty::subst::GenericArg;
472
473 struct AbsolutePathPrinter<'tcx> {
474 tcx: TyCtxt<'tcx>,
475 }
476
477 struct NonTrivialPath;
478
479 impl<'tcx> Printer<'tcx> for AbsolutePathPrinter<'tcx> {
480 type Error = NonTrivialPath;
481
482 type Path = Vec<String>;
483 type Region = !;
484 type Type = !;
485 type DynExistential = !;
486 type Const = !;
487
488 fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
489 self.tcx
490 }
491
492 fn print_region(
493 self,
494 _region: ty::Region<'_>,
495 ) -> Result<Self::Region, Self::Error> {
496 Err(NonTrivialPath)
497 }
498
499 fn print_type(
500 self,
501 _ty: Ty<'tcx>,
502 ) -> Result<Self::Type, Self::Error> {
503 Err(NonTrivialPath)
504 }
505
506 fn print_dyn_existential(
507 self,
508 _predicates: &'tcx ty::List<ty::ExistentialPredicate<'tcx>>,
509 ) -> Result<Self::DynExistential, Self::Error> {
510 Err(NonTrivialPath)
511 }
512
513 fn print_const(
514 self,
515 _ct: &'tcx ty::Const<'tcx>,
516 ) -> Result<Self::Const, Self::Error> {
517 Err(NonTrivialPath)
518 }
519
520 fn path_crate(
521 self,
522 cnum: CrateNum,
523 ) -> Result<Self::Path, Self::Error> {
524 Ok(vec![self.tcx.original_crate_name(cnum).to_string()])
525 }
526 fn path_qualified(
527 self,
528 _self_ty: Ty<'tcx>,
529 _trait_ref: Option<ty::TraitRef<'tcx>>,
530 ) -> Result<Self::Path, Self::Error> {
531 Err(NonTrivialPath)
532 }
533
534 fn path_append_impl(
535 self,
536 _print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
537 _disambiguated_data: &DisambiguatedDefPathData,
538 _self_ty: Ty<'tcx>,
539 _trait_ref: Option<ty::TraitRef<'tcx>>,
540 ) -> Result<Self::Path, Self::Error> {
541 Err(NonTrivialPath)
542 }
543 fn path_append(
544 self,
545 print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
546 disambiguated_data: &DisambiguatedDefPathData,
547 ) -> Result<Self::Path, Self::Error> {
548 let mut path = print_prefix(self)?;
549 path.push(disambiguated_data.data.as_symbol().to_string());
550 Ok(path)
551 }
552 fn path_generic_args(
553 self,
554 print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
555 _args: &[GenericArg<'tcx>],
556 ) -> Result<Self::Path, Self::Error> {
557 print_prefix(self)
558 }
559 }
560
561 let report_path_match = |err: &mut DiagnosticBuilder<'_>, did1: DefId, did2: DefId| {
562 // Only external crates, if either is from a local
563 // module we could have false positives
564 if !(did1.is_local() || did2.is_local()) && did1.krate != did2.krate {
565 let abs_path = |def_id| {
566 AbsolutePathPrinter { tcx: self.tcx }
567 .print_def_path(def_id, &[])
568 };
569
570 // We compare strings because DefPath can be different
571 // for imported and non-imported crates
572 let same_path = || -> Result<_, NonTrivialPath> {
573 Ok(
574 self.tcx.def_path_str(did1) == self.tcx.def_path_str(did2) ||
575 abs_path(did1)? == abs_path(did2)?
576 )
577 };
578 if same_path().unwrap_or(false) {
579 let crate_name = self.tcx.crate_name(did1.krate);
580 err.note(&format!(
581 "perhaps two different versions of crate `{}` are being used?",
582 crate_name
583 ));
584 }
585 }
586 };
587 match *terr {
588 TypeError::Sorts(ref exp_found) => {
589 // if they are both "path types", there's a chance of ambiguity
590 // due to different versions of the same crate
591 if let (&ty::Adt(exp_adt, _), &ty::Adt(found_adt, _))
592 = (&exp_found.expected.kind, &exp_found.found.kind)
593 {
594 report_path_match(err, exp_adt.did, found_adt.did);
595 }
596 }
597 TypeError::Traits(ref exp_found) => {
598 report_path_match(err, exp_found.expected, exp_found.found);
599 }
600 _ => (), // FIXME(#22750) handle traits and stuff
601 }
602 }
603
604 fn note_error_origin(
605 &self,
606 err: &mut DiagnosticBuilder<'tcx>,
607 cause: &ObligationCause<'tcx>,
608 exp_found: Option<ty::error::ExpectedFound<Ty<'tcx>>>,
609 ) {
610 match cause.code {
611 ObligationCauseCode::MatchExpressionArmPattern { span, ty } => {
612 if ty.is_suggestable() { // don't show type `_`
613 err.span_label(span, format!("this match expression has type `{}`", ty));
614 }
615 if let Some(ty::error::ExpectedFound { found, .. }) = exp_found {
616 if ty.is_box() && ty.boxed_ty() == found {
617 if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
618 err.span_suggestion(
619 span,
620 "consider dereferencing the boxed value",
621 format!("*{}", snippet),
622 Applicability::MachineApplicable,
623 );
624 }
625 }
626 }
627 }
628 ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
629 source,
630 ref prior_arms,
631 last_ty,
632 discrim_hir_id,
633 ..
634 }) => match source {
635 hir::MatchSource::IfLetDesugar { .. } => {
636 let msg = "`if let` arms have incompatible types";
637 err.span_label(cause.span, msg);
638 }
639 hir::MatchSource::TryDesugar => {
640 if let Some(ty::error::ExpectedFound { expected, .. }) = exp_found {
641 let discrim_expr = self.tcx.hir().expect_expr(discrim_hir_id);
642 let discrim_ty = if let hir::ExprKind::Call(_, args) = &discrim_expr.kind {
643 let arg_expr = args.first().expect("try desugaring call w/out arg");
644 self.in_progress_tables.and_then(|tables| {
645 tables.borrow().expr_ty_opt(arg_expr)
646 })
647 } else {
648 bug!("try desugaring w/out call expr as discriminant");
649 };
650
651 match discrim_ty {
652 Some(ty) if expected == ty => {
653 let source_map = self.tcx.sess.source_map();
654 err.span_suggestion(
655 source_map.end_point(cause.span),
656 "try removing this `?`",
657 "".to_string(),
658 Applicability::MachineApplicable,
659 );
660 },
661 _ => {},
662 }
663 }
664 }
665 _ => {
666 // `last_ty` can be `!`, `expected` will have better info when present.
667 let t = self.resolve_vars_if_possible(&match exp_found {
668 Some(ty::error::ExpectedFound { expected, .. }) => expected,
669 _ => last_ty,
670 });
671 let msg = "`match` arms have incompatible types";
672 err.span_label(cause.span, msg);
673 if prior_arms.len() <= 4 {
674 for sp in prior_arms {
675 err.span_label( *sp, format!("this is found to be of type `{}`", t));
676 }
677 } else if let Some(sp) = prior_arms.last() {
678 err.span_label(
679 *sp,
680 format!("this and all prior arms are found to be of type `{}`", t),
681 );
682 }
683 }
684 },
685 ObligationCauseCode::IfExpression(box IfExpressionCause { then, outer, semicolon }) => {
686 err.span_label(then, "expected because of this");
687 outer.map(|sp| err.span_label(sp, "if and else have incompatible types"));
688 if let Some(sp) = semicolon {
689 err.span_suggestion_short(
690 sp,
691 "consider removing this semicolon",
692 String::new(),
693 Applicability::MachineApplicable,
694 );
695 }
696 }
697 _ => (),
698 }
699 }
700
701 /// Given that `other_ty` is the same as a type argument for `name` in `sub`, populate `value`
702 /// highlighting `name` and every type argument that isn't at `pos` (which is `other_ty`), and
703 /// populate `other_value` with `other_ty`.
704 ///
705 /// ```text
706 /// Foo<Bar<Qux>>
707 /// ^^^^--------^ this is highlighted
708 /// | |
709 /// | this type argument is exactly the same as the other type, not highlighted
710 /// this is highlighted
711 /// Bar<Qux>
712 /// -------- this type is the same as a type argument in the other type, not highlighted
713 /// ```
714 fn highlight_outer(
715 &self,
716 value: &mut DiagnosticStyledString,
717 other_value: &mut DiagnosticStyledString,
718 name: String,
719 sub: ty::subst::SubstsRef<'tcx>,
720 pos: usize,
721 other_ty: Ty<'tcx>,
722 ) {
723 // `value` and `other_value` hold two incomplete type representation for display.
724 // `name` is the path of both types being compared. `sub`
725 value.push_highlighted(name);
726 let len = sub.len();
727 if len > 0 {
728 value.push_highlighted("<");
729 }
730
731 // Output the lifetimes for the first type
732 let lifetimes = sub.regions()
733 .map(|lifetime| {
734 let s = lifetime.to_string();
735 if s.is_empty() {
736 "'_".to_string()
737 } else {
738 s
739 }
740 })
741 .collect::<Vec<_>>()
742 .join(", ");
743 if !lifetimes.is_empty() {
744 if sub.regions().count() < len {
745 value.push_normal(lifetimes + &", ");
746 } else {
747 value.push_normal(lifetimes);
748 }
749 }
750
751 // Highlight all the type arguments that aren't at `pos` and compare the type argument at
752 // `pos` and `other_ty`.
753 for (i, type_arg) in sub.types().enumerate() {
754 if i == pos {
755 let values = self.cmp(type_arg, other_ty);
756 value.0.extend((values.0).0);
757 other_value.0.extend((values.1).0);
758 } else {
759 value.push_highlighted(type_arg.to_string());
760 }
761
762 if len > 0 && i != len - 1 {
763 value.push_normal(", ");
764 }
765 }
766 if len > 0 {
767 value.push_highlighted(">");
768 }
769 }
770
771 /// If `other_ty` is the same as a type argument present in `sub`, highlight `path` in `t1_out`,
772 /// as that is the difference to the other type.
773 ///
774 /// For the following code:
775 ///
776 /// ```norun
777 /// let x: Foo<Bar<Qux>> = foo::<Bar<Qux>>();
778 /// ```
779 ///
780 /// The type error output will behave in the following way:
781 ///
782 /// ```text
783 /// Foo<Bar<Qux>>
784 /// ^^^^--------^ this is highlighted
785 /// | |
786 /// | this type argument is exactly the same as the other type, not highlighted
787 /// this is highlighted
788 /// Bar<Qux>
789 /// -------- this type is the same as a type argument in the other type, not highlighted
790 /// ```
791 fn cmp_type_arg(
792 &self,
793 mut t1_out: &mut DiagnosticStyledString,
794 mut t2_out: &mut DiagnosticStyledString,
795 path: String,
796 sub: ty::subst::SubstsRef<'tcx>,
797 other_path: String,
798 other_ty: Ty<'tcx>,
799 ) -> Option<()> {
800 for (i, ta) in sub.types().enumerate() {
801 if ta == other_ty {
802 self.highlight_outer(&mut t1_out, &mut t2_out, path, sub, i, &other_ty);
803 return Some(());
804 }
805 if let &ty::Adt(def, _) = &ta.kind {
806 let path_ = self.tcx.def_path_str(def.did.clone());
807 if path_ == other_path {
808 self.highlight_outer(&mut t1_out, &mut t2_out, path, sub, i, &other_ty);
809 return Some(());
810 }
811 }
812 }
813 None
814 }
815
816 /// Adds a `,` to the type representation only if it is appropriate.
817 fn push_comma(
818 &self,
819 value: &mut DiagnosticStyledString,
820 other_value: &mut DiagnosticStyledString,
821 len: usize,
822 pos: usize,
823 ) {
824 if len > 0 && pos != len - 1 {
825 value.push_normal(", ");
826 other_value.push_normal(", ");
827 }
828 }
829
830 /// For generic types with parameters with defaults, remove the parameters corresponding to
831 /// the defaults. This repeats a lot of the logic found in `ty::print::pretty`.
832 fn strip_generic_default_params(
833 &self,
834 def_id: DefId,
835 substs: ty::subst::SubstsRef<'tcx>,
836 ) -> SubstsRef<'tcx> {
837 let generics = self.tcx.generics_of(def_id);
838 let mut num_supplied_defaults = 0;
839 let mut type_params = generics.params.iter().rev().filter_map(|param| match param.kind {
840 ty::GenericParamDefKind::Lifetime => None,
841 ty::GenericParamDefKind::Type { has_default, .. } => Some((param.def_id, has_default)),
842 ty::GenericParamDefKind::Const => None, // FIXME(const_generics:defaults)
843 }).peekable();
844 let has_default = {
845 let has_default = type_params.peek().map(|(_, has_default)| has_default);
846 *has_default.unwrap_or(&false)
847 };
848 if has_default {
849 let types = substs.types().rev();
850 for ((def_id, has_default), actual) in type_params.zip(types) {
851 if !has_default {
852 break;
853 }
854 if self.tcx.type_of(def_id).subst(self.tcx, substs) != actual {
855 break;
856 }
857 num_supplied_defaults += 1;
858 }
859 }
860 let len = generics.params.len();
861 let mut generics = generics.clone();
862 generics.params.truncate(len - num_supplied_defaults);
863 substs.truncate_to(self.tcx, &generics)
864 }
865
866 /// Given two `fn` signatures highlight only sub-parts that are different.
867 fn cmp_fn_sig(
868 &self,
869 sig1: &ty::PolyFnSig<'tcx>,
870 sig2: &ty::PolyFnSig<'tcx>,
871 ) -> (DiagnosticStyledString, DiagnosticStyledString) {
872 let get_lifetimes = |sig| {
873 use crate::hir::def::Namespace;
874 let mut s = String::new();
875 let (_, (sig, reg)) = ty::print::FmtPrinter::new(self.tcx, &mut s, Namespace::TypeNS)
876 .name_all_regions(sig)
877 .unwrap();
878 let lts: Vec<String> = reg.into_iter().map(|(_, kind)| kind.to_string()).collect();
879 (if lts.is_empty() {
880 String::new()
881 } else {
882 format!("for<{}> ", lts.join(", "))
883 }, sig)
884 };
885
886 let (lt1, sig1) = get_lifetimes(sig1);
887 let (lt2, sig2) = get_lifetimes(sig2);
888
889 // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
890 let mut values = (
891 DiagnosticStyledString::normal("".to_string()),
892 DiagnosticStyledString::normal("".to_string()),
893 );
894
895 // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
896 // ^^^^^^
897 values.0.push(sig1.unsafety.prefix_str(), sig1.unsafety != sig2.unsafety);
898 values.1.push(sig2.unsafety.prefix_str(), sig1.unsafety != sig2.unsafety);
899
900 // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
901 // ^^^^^^^^^^
902 if sig1.abi != abi::Abi::Rust {
903 values.0.push(format!("extern {} ", sig1.abi), sig1.abi != sig2.abi);
904 }
905 if sig2.abi != abi::Abi::Rust {
906 values.1.push(format!("extern {} ", sig2.abi), sig1.abi != sig2.abi);
907 }
908
909 // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
910 // ^^^^^^^^
911 let lifetime_diff = lt1 != lt2;
912 values.0.push(lt1, lifetime_diff);
913 values.1.push(lt2, lifetime_diff);
914
915 // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
916 // ^^^
917 values.0.push_normal("fn(");
918 values.1.push_normal("fn(");
919
920 // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
921 // ^^^^^
922 let len1 = sig1.inputs().len();
923 let len2 = sig2.inputs().len();
924 if len1 == len2 {
925 for (i, (l, r)) in sig1.inputs().iter().zip(sig2.inputs().iter()).enumerate() {
926 let (x1, x2) = self.cmp(l, r);
927 (values.0).0.extend(x1.0);
928 (values.1).0.extend(x2.0);
929 self.push_comma(&mut values.0, &mut values.1, len1, i);
930 }
931 } else {
932 for (i, l) in sig1.inputs().iter().enumerate() {
933 values.0.push_highlighted(l.to_string());
934 if i != len1 - 1 {
935 values.0.push_highlighted(", ");
936 }
937 }
938 for (i, r) in sig2.inputs().iter().enumerate() {
939 values.1.push_highlighted(r.to_string());
940 if i != len2 - 1 {
941 values.1.push_highlighted(", ");
942 }
943 }
944 }
945
946 if sig1.c_variadic {
947 if len1 > 0 {
948 values.0.push_normal(", ");
949 }
950 values.0.push("...", !sig2.c_variadic);
951 }
952 if sig2.c_variadic {
953 if len2 > 0 {
954 values.1.push_normal(", ");
955 }
956 values.1.push("...", !sig1.c_variadic);
957 }
958
959 // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
960 // ^
961 values.0.push_normal(")");
962 values.1.push_normal(")");
963
964 // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
965 // ^^^^^^^^
966 let output1 = sig1.output();
967 let output2 = sig2.output();
968 let (x1, x2) = self.cmp(output1, output2);
969 if !output1.is_unit() {
970 values.0.push_normal(" -> ");
971 (values.0).0.extend(x1.0);
972 }
973 if !output2.is_unit() {
974 values.1.push_normal(" -> ");
975 (values.1).0.extend(x2.0);
976 }
977 values
978 }
979
980 /// Compares two given types, eliding parts that are the same between them and highlighting
981 /// relevant differences, and return two representation of those types for highlighted printing.
982 fn cmp(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) -> (DiagnosticStyledString, DiagnosticStyledString) {
983 debug!("cmp(t1={}, t1.kind={:?}, t2={}, t2.kind={:?})", t1, t1.kind, t2, t2.kind);
984
985 // helper functions
986 fn equals<'tcx>(a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
987 match (&a.kind, &b.kind) {
988 (a, b) if *a == *b => true,
989 (&ty::Int(_), &ty::Infer(ty::InferTy::IntVar(_)))
990 | (&ty::Infer(ty::InferTy::IntVar(_)), &ty::Int(_))
991 | (&ty::Infer(ty::InferTy::IntVar(_)), &ty::Infer(ty::InferTy::IntVar(_)))
992 | (&ty::Float(_), &ty::Infer(ty::InferTy::FloatVar(_)))
993 | (&ty::Infer(ty::InferTy::FloatVar(_)), &ty::Float(_))
994 | (&ty::Infer(ty::InferTy::FloatVar(_)), &ty::Infer(ty::InferTy::FloatVar(_))) => {
995 true
996 }
997 _ => false,
998 }
999 }
1000
1001 fn push_ty_ref<'tcx>(
1002 r: &ty::Region<'tcx>,
1003 ty: Ty<'tcx>,
1004 mutbl: hir::Mutability,
1005 s: &mut DiagnosticStyledString,
1006 ) {
1007 let mut r = r.to_string();
1008 if r == "'_" {
1009 r.clear();
1010 } else {
1011 r.push(' ');
1012 }
1013 s.push_highlighted(format!("&{}{}", r, mutbl.prefix_str()));
1014 s.push_normal(ty.to_string());
1015 }
1016
1017 // process starts here
1018 match (&t1.kind, &t2.kind) {
1019 (&ty::Adt(def1, sub1), &ty::Adt(def2, sub2)) => {
1020 let sub_no_defaults_1 = self.strip_generic_default_params(def1.did, sub1);
1021 let sub_no_defaults_2 = self.strip_generic_default_params(def2.did, sub2);
1022 let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
1023 let path1 = self.tcx.def_path_str(def1.did.clone());
1024 let path2 = self.tcx.def_path_str(def2.did.clone());
1025 if def1.did == def2.did {
1026 // Easy case. Replace same types with `_` to shorten the output and highlight
1027 // the differing ones.
1028 // let x: Foo<Bar, Qux> = y::<Foo<Quz, Qux>>();
1029 // Foo<Bar, _>
1030 // Foo<Quz, _>
1031 // --- ^ type argument elided
1032 // |
1033 // highlighted in output
1034 values.0.push_normal(path1);
1035 values.1.push_normal(path2);
1036
1037 // Avoid printing out default generic parameters that are common to both
1038 // types.
1039 let len1 = sub_no_defaults_1.len();
1040 let len2 = sub_no_defaults_2.len();
1041 let common_len = cmp::min(len1, len2);
1042 let remainder1: Vec<_> = sub1.types().skip(common_len).collect();
1043 let remainder2: Vec<_> = sub2.types().skip(common_len).collect();
1044 let common_default_params = remainder1
1045 .iter()
1046 .rev()
1047 .zip(remainder2.iter().rev())
1048 .filter(|(a, b)| a == b)
1049 .count();
1050 let len = sub1.len() - common_default_params;
1051 let consts_offset = len - sub1.consts().count();
1052
1053 // Only draw `<...>` if there're lifetime/type arguments.
1054 if len > 0 {
1055 values.0.push_normal("<");
1056 values.1.push_normal("<");
1057 }
1058
1059 fn lifetime_display(lifetime: Region<'_>) -> String {
1060 let s = lifetime.to_string();
1061 if s.is_empty() {
1062 "'_".to_string()
1063 } else {
1064 s
1065 }
1066 }
1067 // At one point we'd like to elide all lifetimes here, they are irrelevant for
1068 // all diagnostics that use this output
1069 //
1070 // Foo<'x, '_, Bar>
1071 // Foo<'y, '_, Qux>
1072 // ^^ ^^ --- type arguments are not elided
1073 // | |
1074 // | elided as they were the same
1075 // not elided, they were different, but irrelevant
1076 let lifetimes = sub1.regions().zip(sub2.regions());
1077 for (i, lifetimes) in lifetimes.enumerate() {
1078 let l1 = lifetime_display(lifetimes.0);
1079 let l2 = lifetime_display(lifetimes.1);
1080 if lifetimes.0 == lifetimes.1 {
1081 values.0.push_normal("'_");
1082 values.1.push_normal("'_");
1083 } else {
1084 values.0.push_highlighted(l1);
1085 values.1.push_highlighted(l2);
1086 }
1087 self.push_comma(&mut values.0, &mut values.1, len, i);
1088 }
1089
1090 // We're comparing two types with the same path, so we compare the type
1091 // arguments for both. If they are the same, do not highlight and elide from the
1092 // output.
1093 // Foo<_, Bar>
1094 // Foo<_, Qux>
1095 // ^ elided type as this type argument was the same in both sides
1096 let type_arguments = sub1.types().zip(sub2.types());
1097 let regions_len = sub1.regions().count();
1098 let num_display_types = consts_offset - regions_len;
1099 for (i, (ta1, ta2)) in type_arguments.take(num_display_types).enumerate() {
1100 let i = i + regions_len;
1101 if ta1 == ta2 {
1102 values.0.push_normal("_");
1103 values.1.push_normal("_");
1104 } else {
1105 let (x1, x2) = self.cmp(ta1, ta2);
1106 (values.0).0.extend(x1.0);
1107 (values.1).0.extend(x2.0);
1108 }
1109 self.push_comma(&mut values.0, &mut values.1, len, i);
1110 }
1111
1112 // Do the same for const arguments, if they are equal, do not highlight and
1113 // elide them from the output.
1114 let const_arguments = sub1.consts().zip(sub2.consts());
1115 for (i, (ca1, ca2)) in const_arguments.enumerate() {
1116 let i = i + consts_offset;
1117 if ca1 == ca2 {
1118 values.0.push_normal("_");
1119 values.1.push_normal("_");
1120 } else {
1121 values.0.push_highlighted(ca1.to_string());
1122 values.1.push_highlighted(ca2.to_string());
1123 }
1124 self.push_comma(&mut values.0, &mut values.1, len, i);
1125 }
1126
1127 // Close the type argument bracket.
1128 // Only draw `<...>` if there're lifetime/type arguments.
1129 if len > 0 {
1130 values.0.push_normal(">");
1131 values.1.push_normal(">");
1132 }
1133 values
1134 } else {
1135 // Check for case:
1136 // let x: Foo<Bar<Qux> = foo::<Bar<Qux>>();
1137 // Foo<Bar<Qux>
1138 // ------- this type argument is exactly the same as the other type
1139 // Bar<Qux>
1140 if self.cmp_type_arg(
1141 &mut values.0,
1142 &mut values.1,
1143 path1.clone(),
1144 sub_no_defaults_1,
1145 path2.clone(),
1146 &t2,
1147 ).is_some()
1148 {
1149 return values;
1150 }
1151 // Check for case:
1152 // let x: Bar<Qux> = y:<Foo<Bar<Qux>>>();
1153 // Bar<Qux>
1154 // Foo<Bar<Qux>>
1155 // ------- this type argument is exactly the same as the other type
1156 if self.cmp_type_arg(
1157 &mut values.1,
1158 &mut values.0,
1159 path2,
1160 sub_no_defaults_2,
1161 path1,
1162 &t1,
1163 ).is_some()
1164 {
1165 return values;
1166 }
1167
1168 // We can't find anything in common, highlight relevant part of type path.
1169 // let x: foo::bar::Baz<Qux> = y:<foo::bar::Bar<Zar>>();
1170 // foo::bar::Baz<Qux>
1171 // foo::bar::Bar<Zar>
1172 // -------- this part of the path is different
1173
1174 let t1_str = t1.to_string();
1175 let t2_str = t2.to_string();
1176 let min_len = t1_str.len().min(t2_str.len());
1177
1178 const SEPARATOR: &str = "::";
1179 let separator_len = SEPARATOR.len();
1180 let split_idx: usize =
1181 t1_str.split(SEPARATOR)
1182 .zip(t2_str.split(SEPARATOR))
1183 .take_while(|(mod1_str, mod2_str)| mod1_str == mod2_str)
1184 .map(|(mod_str, _)| mod_str.len() + separator_len)
1185 .sum();
1186
1187 debug!("cmp: separator_len={}, split_idx={}, min_len={}",
1188 separator_len, split_idx, min_len
1189 );
1190
1191 if split_idx >= min_len {
1192 // paths are identical, highlight everything
1193 (
1194 DiagnosticStyledString::highlighted(t1_str),
1195 DiagnosticStyledString::highlighted(t2_str)
1196 )
1197 } else {
1198 let (common, uniq1) = t1_str.split_at(split_idx);
1199 let (_, uniq2) = t2_str.split_at(split_idx);
1200 debug!("cmp: common={}, uniq1={}, uniq2={}", common, uniq1, uniq2);
1201
1202 values.0.push_normal(common);
1203 values.0.push_highlighted(uniq1);
1204 values.1.push_normal(common);
1205 values.1.push_highlighted(uniq2);
1206
1207 values
1208 }
1209 }
1210 }
1211
1212 // When finding T != &T, highlight only the borrow
1213 (&ty::Ref(r1, ref_ty1, mutbl1), _) if equals(&ref_ty1, &t2) => {
1214 let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
1215 push_ty_ref(&r1, ref_ty1, mutbl1, &mut values.0);
1216 values.1.push_normal(t2.to_string());
1217 values
1218 }
1219 (_, &ty::Ref(r2, ref_ty2, mutbl2)) if equals(&t1, &ref_ty2) => {
1220 let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
1221 values.0.push_normal(t1.to_string());
1222 push_ty_ref(&r2, ref_ty2, mutbl2, &mut values.1);
1223 values
1224 }
1225
1226 // When encountering &T != &mut T, highlight only the borrow
1227 (&ty::Ref(r1, ref_ty1, mutbl1), &ty::Ref(r2, ref_ty2, mutbl2))
1228 if equals(&ref_ty1, &ref_ty2) =>
1229 {
1230 let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
1231 push_ty_ref(&r1, ref_ty1, mutbl1, &mut values.0);
1232 push_ty_ref(&r2, ref_ty2, mutbl2, &mut values.1);
1233 values
1234 }
1235
1236 // When encountering tuples of the same size, highlight only the differing types
1237 (&ty::Tuple(substs1), &ty::Tuple(substs2)) if substs1.len() == substs2.len() => {
1238 let mut values = (
1239 DiagnosticStyledString::normal("("),
1240 DiagnosticStyledString::normal("("),
1241 );
1242 let len = substs1.len();
1243 for (i, (left, right)) in substs1.types().zip(substs2.types()).enumerate() {
1244 let (x1, x2) = self.cmp(left, right);
1245 (values.0).0.extend(x1.0);
1246 (values.1).0.extend(x2.0);
1247 self.push_comma(&mut values.0, &mut values.1, len, i);
1248 }
1249 if len == 1 { // Keep the output for single element tuples as `(ty,)`.
1250 values.0.push_normal(",");
1251 values.1.push_normal(",");
1252 }
1253 values.0.push_normal(")");
1254 values.1.push_normal(")");
1255 values
1256 }
1257
1258 (ty::FnDef(did1, substs1), ty::FnDef(did2, substs2)) => {
1259 let sig1 = self.tcx.fn_sig(*did1).subst(self.tcx, substs1);
1260 let sig2 = self.tcx.fn_sig(*did2).subst(self.tcx, substs2);
1261 let mut values = self.cmp_fn_sig(&sig1, &sig2);
1262 let path1 = format!(" {{{}}}", self.tcx.def_path_str_with_substs(*did1, substs1));
1263 let path2 = format!(" {{{}}}", self.tcx.def_path_str_with_substs(*did2, substs2));
1264 let same_path = path1 == path2;
1265 values.0.push(path1, !same_path);
1266 values.1.push(path2, !same_path);
1267 values
1268 }
1269
1270 (ty::FnDef(did1, substs1), ty::FnPtr(sig2)) => {
1271 let sig1 = self.tcx.fn_sig(*did1).subst(self.tcx, substs1);
1272 let mut values = self.cmp_fn_sig(&sig1, sig2);
1273 values.0.push_normal(format!(
1274 " {{{}}}",
1275 self.tcx.def_path_str_with_substs(*did1, substs1)),
1276 );
1277 values
1278 }
1279
1280 (ty::FnPtr(sig1), ty::FnDef(did2, substs2)) => {
1281 let sig2 = self.tcx.fn_sig(*did2).subst(self.tcx, substs2);
1282 let mut values = self.cmp_fn_sig(sig1, &sig2);
1283 values.1.push_normal(format!(
1284 " {{{}}}",
1285 self.tcx.def_path_str_with_substs(*did2, substs2)),
1286 );
1287 values
1288 }
1289
1290 (ty::FnPtr(sig1), ty::FnPtr(sig2)) => {
1291 self.cmp_fn_sig(sig1, sig2)
1292 }
1293
1294 _ => {
1295 if t1 == t2 {
1296 // The two types are the same, elide and don't highlight.
1297 (
1298 DiagnosticStyledString::normal("_"),
1299 DiagnosticStyledString::normal("_"),
1300 )
1301 } else {
1302 // We couldn't find anything in common, highlight everything.
1303 (
1304 DiagnosticStyledString::highlighted(t1.to_string()),
1305 DiagnosticStyledString::highlighted(t2.to_string()),
1306 )
1307 }
1308 }
1309 }
1310 }
1311
1312 pub fn note_type_err(
1313 &self,
1314 diag: &mut DiagnosticBuilder<'tcx>,
1315 cause: &ObligationCause<'tcx>,
1316 secondary_span: Option<(Span, String)>,
1317 mut values: Option<ValuePairs<'tcx>>,
1318 terr: &TypeError<'tcx>,
1319 ) {
1320 // For some types of errors, expected-found does not make
1321 // sense, so just ignore the values we were given.
1322 match terr {
1323 TypeError::CyclicTy(_) => {
1324 values = None;
1325 }
1326 _ => {}
1327 }
1328
1329 debug!("note_type_err(diag={:?})", diag);
1330 let (expected_found, exp_found, is_simple_error) = match values {
1331 None => (None, None, false),
1332 Some(values) => {
1333 let (is_simple_error, exp_found) = match values {
1334 ValuePairs::Types(exp_found) => {
1335 let is_simple_err = exp_found.expected.is_simple_text()
1336 && exp_found.found.is_simple_text();
1337
1338 (is_simple_err, Some(exp_found))
1339 }
1340 _ => (false, None),
1341 };
1342 let vals = match self.values_str(&values) {
1343 Some((expected, found)) => Some((expected, found)),
1344 None => {
1345 // Derived error. Cancel the emitter.
1346 diag.cancel();
1347 return;
1348 }
1349 };
1350 (vals, exp_found, is_simple_error)
1351 }
1352 };
1353
1354 let span = cause.span(self.tcx);
1355
1356 // Ignore msg for object safe coercion
1357 // since E0038 message will be printed
1358 match terr {
1359 TypeError::ObjectUnsafeCoercion(_) => {}
1360 _ => {
1361 diag.span_label(span, terr.to_string());
1362 if let Some((sp, msg)) = secondary_span {
1363 diag.span_label(sp, msg);
1364 }
1365 }
1366 };
1367
1368 if let Some((expected, found)) = expected_found {
1369 let expected_label = exp_found.map_or("type".into(), |ef| ef.expected.prefix_string());
1370 let found_label = exp_found.map_or("type".into(), |ef| ef.found.prefix_string());
1371 match (&terr, expected == found) {
1372 (TypeError::Sorts(values), extra) => {
1373 let sort_string = |ty: Ty<'tcx>| match (extra, &ty.kind) {
1374 (true, ty::Opaque(def_id, _)) => format!(
1375 " (opaque type at {})",
1376 self.tcx.sess.source_map()
1377 .mk_substr_filename(self.tcx.def_span(*def_id)),
1378 ),
1379 (true, _) => format!(" ({})", ty.sort_string(self.tcx)),
1380 (false, _) => "".to_string(),
1381 };
1382 if !(values.expected.is_simple_text() && values.found.is_simple_text()) || (
1383 exp_found.map_or(false, |ef| {
1384 // This happens when the type error is a subset of the expectation,
1385 // like when you have two references but one is `usize` and the other
1386 // is `f32`. In those cases we still want to show the `note`. If the
1387 // value from `ef` is `Infer(_)`, then we ignore it.
1388 if !ef.expected.is_ty_infer() {
1389 ef.expected != values.expected
1390 } else if !ef.found.is_ty_infer() {
1391 ef.found != values.found
1392 } else {
1393 false
1394 }
1395 })
1396 ) {
1397 diag.note_expected_found_extra(
1398 &expected_label,
1399 expected,
1400 &found_label,
1401 found,
1402 &sort_string(values.expected),
1403 &sort_string(values.found),
1404 );
1405 }
1406 }
1407 (TypeError::ObjectUnsafeCoercion(_), _) => {
1408 diag.note_unsuccessfull_coercion(found, expected);
1409 }
1410 (_, _) => {
1411 debug!(
1412 "note_type_err: exp_found={:?}, expected={:?} found={:?}",
1413 exp_found, expected, found
1414 );
1415 if !is_simple_error || terr.must_include_note() {
1416 diag.note_expected_found(&expected_label, expected, &found_label, found);
1417 }
1418 }
1419 }
1420 }
1421 if let Some(exp_found) = exp_found {
1422 self.suggest_as_ref_where_appropriate(span, &exp_found, diag);
1423 }
1424
1425 // In some (most?) cases cause.body_id points to actual body, but in some cases
1426 // it's a actual definition. According to the comments (e.g. in
1427 // librustc_typeck/check/compare_method.rs:compare_predicate_entailment) the latter
1428 // is relied upon by some other code. This might (or might not) need cleanup.
1429 let body_owner_def_id = self.tcx.hir().opt_local_def_id(cause.body_id)
1430 .unwrap_or_else(|| {
1431 self.tcx.hir().body_owner_def_id(hir::BodyId { hir_id: cause.body_id })
1432 });
1433 self.check_and_note_conflicting_crates(diag, terr);
1434 self.tcx.note_and_explain_type_err(diag, terr, span, body_owner_def_id);
1435
1436 // It reads better to have the error origin as the final
1437 // thing.
1438 self.note_error_origin(diag, &cause, exp_found);
1439 }
1440
1441 /// When encountering a case where `.as_ref()` on a `Result` or `Option` would be appropriate,
1442 /// suggests it.
1443 fn suggest_as_ref_where_appropriate(
1444 &self,
1445 span: Span,
1446 exp_found: &ty::error::ExpectedFound<Ty<'tcx>>,
1447 diag: &mut DiagnosticBuilder<'tcx>,
1448 ) {
1449 match (&exp_found.expected.kind, &exp_found.found.kind) {
1450 (ty::Adt(exp_def, exp_substs), ty::Ref(_, found_ty, _)) => {
1451 if let ty::Adt(found_def, found_substs) = found_ty.kind {
1452 let path_str = format!("{:?}", exp_def);
1453 if exp_def == &found_def {
1454 let opt_msg = "you can convert from `&Option<T>` to `Option<&T>` using \
1455 `.as_ref()`";
1456 let result_msg = "you can convert from `&Result<T, E>` to \
1457 `Result<&T, &E>` using `.as_ref()`";
1458 let have_as_ref = &[
1459 ("std::option::Option", opt_msg),
1460 ("core::option::Option", opt_msg),
1461 ("std::result::Result", result_msg),
1462 ("core::result::Result", result_msg),
1463 ];
1464 if let Some(msg) = have_as_ref.iter()
1465 .filter_map(|(path, msg)| if &path_str == path {
1466 Some(msg)
1467 } else {
1468 None
1469 }).next()
1470 {
1471 let mut show_suggestion = true;
1472 for (exp_ty, found_ty) in exp_substs.types().zip(found_substs.types()) {
1473 match exp_ty.kind {
1474 ty::Ref(_, exp_ty, _) => {
1475 match (&exp_ty.kind, &found_ty.kind) {
1476 (_, ty::Param(_)) |
1477 (_, ty::Infer(_)) |
1478 (ty::Param(_), _) |
1479 (ty::Infer(_), _) => {}
1480 _ if ty::TyS::same_type(exp_ty, found_ty) => {}
1481 _ => show_suggestion = false,
1482 };
1483 }
1484 ty::Param(_) | ty::Infer(_) => {}
1485 _ => show_suggestion = false,
1486 }
1487 }
1488 if let (Ok(snippet), true) = (
1489 self.tcx.sess.source_map().span_to_snippet(span),
1490 show_suggestion,
1491 ) {
1492 diag.span_suggestion(
1493 span,
1494 msg,
1495 format!("{}.as_ref()", snippet),
1496 Applicability::MachineApplicable,
1497 );
1498 }
1499 }
1500 }
1501 }
1502 }
1503 _ => {}
1504 }
1505 }
1506
1507 pub fn report_and_explain_type_error(
1508 &self,
1509 trace: TypeTrace<'tcx>,
1510 terr: &TypeError<'tcx>,
1511 ) -> DiagnosticBuilder<'tcx> {
1512 debug!(
1513 "report_and_explain_type_error(trace={:?}, terr={:?})",
1514 trace, terr
1515 );
1516
1517 let span = trace.cause.span(self.tcx);
1518 let failure_code = trace.cause.as_failure_code(terr);
1519 let mut diag = match failure_code {
1520 FailureCode::Error0038(did) => {
1521 let violations = self.tcx.object_safety_violations(did);
1522 self.tcx.report_object_safety_error(span, did, violations)
1523 }
1524 FailureCode::Error0317(failure_str) => {
1525 struct_span_err!(self.tcx.sess, span, E0317, "{}", failure_str)
1526 }
1527 FailureCode::Error0580(failure_str) => {
1528 struct_span_err!(self.tcx.sess, span, E0580, "{}", failure_str)
1529 }
1530 FailureCode::Error0308(failure_str) => {
1531 struct_span_err!(self.tcx.sess, span, E0308, "{}", failure_str)
1532 }
1533 FailureCode::Error0644(failure_str) => {
1534 struct_span_err!(self.tcx.sess, span, E0644, "{}", failure_str)
1535 }
1536 };
1537 self.note_type_err(&mut diag, &trace.cause, None, Some(trace.values), terr);
1538 diag
1539 }
1540
1541 fn values_str(
1542 &self,
1543 values: &ValuePairs<'tcx>,
1544 ) -> Option<(DiagnosticStyledString, DiagnosticStyledString)> {
1545 match *values {
1546 infer::Types(ref exp_found) => self.expected_found_str_ty(exp_found),
1547 infer::Regions(ref exp_found) => self.expected_found_str(exp_found),
1548 infer::Consts(ref exp_found) => self.expected_found_str(exp_found),
1549 infer::TraitRefs(ref exp_found) => {
1550 let pretty_exp_found = ty::error::ExpectedFound {
1551 expected: exp_found.expected.print_only_trait_path(),
1552 found: exp_found.found.print_only_trait_path()
1553 };
1554 self.expected_found_str(&pretty_exp_found)
1555 },
1556 infer::PolyTraitRefs(ref exp_found) => {
1557 let pretty_exp_found = ty::error::ExpectedFound {
1558 expected: exp_found.expected.print_only_trait_path(),
1559 found: exp_found.found.print_only_trait_path()
1560 };
1561 self.expected_found_str(&pretty_exp_found)
1562 },
1563 }
1564 }
1565
1566 fn expected_found_str_ty(
1567 &self,
1568 exp_found: &ty::error::ExpectedFound<Ty<'tcx>>,
1569 ) -> Option<(DiagnosticStyledString, DiagnosticStyledString)> {
1570 let exp_found = self.resolve_vars_if_possible(exp_found);
1571 if exp_found.references_error() {
1572 return None;
1573 }
1574
1575 Some(self.cmp(exp_found.expected, exp_found.found))
1576 }
1577
1578 /// Returns a string of the form "expected `{}`, found `{}`".
1579 fn expected_found_str<T: fmt::Display + TypeFoldable<'tcx>>(
1580 &self,
1581 exp_found: &ty::error::ExpectedFound<T>,
1582 ) -> Option<(DiagnosticStyledString, DiagnosticStyledString)> {
1583 let exp_found = self.resolve_vars_if_possible(exp_found);
1584 if exp_found.references_error() {
1585 return None;
1586 }
1587
1588 Some((
1589 DiagnosticStyledString::highlighted(exp_found.expected.to_string()),
1590 DiagnosticStyledString::highlighted(exp_found.found.to_string()),
1591 ))
1592 }
1593
1594 pub fn report_generic_bound_failure(
1595 &self,
1596 region_scope_tree: &region::ScopeTree,
1597 span: Span,
1598 origin: Option<SubregionOrigin<'tcx>>,
1599 bound_kind: GenericKind<'tcx>,
1600 sub: Region<'tcx>,
1601 ) {
1602 self.construct_generic_bound_failure(region_scope_tree, span, origin, bound_kind, sub)
1603 .emit()
1604 }
1605
1606 pub fn construct_generic_bound_failure(
1607 &self,
1608 region_scope_tree: &region::ScopeTree,
1609 span: Span,
1610 origin: Option<SubregionOrigin<'tcx>>,
1611 bound_kind: GenericKind<'tcx>,
1612 sub: Region<'tcx>,
1613 ) -> DiagnosticBuilder<'a> {
1614 // Attempt to obtain the span of the parameter so we can
1615 // suggest adding an explicit lifetime bound to it.
1616 let type_param_span = match (self.in_progress_tables, bound_kind) {
1617 (Some(ref table), GenericKind::Param(ref param)) => {
1618 let table = table.borrow();
1619 table.local_id_root.and_then(|did| {
1620 let generics = self.tcx.generics_of(did);
1621 // Account for the case where `did` corresponds to `Self`, which doesn't have
1622 // the expected type argument.
1623 if !(generics.has_self && param.index == 0) {
1624 let type_param = generics.type_param(param, self.tcx);
1625 let hir = &self.tcx.hir();
1626 hir.as_local_hir_id(type_param.def_id).map(|id| {
1627 // Get the `hir::Param` to verify whether it already has any bounds.
1628 // We do this to avoid suggesting code that ends up as `T: 'a'b`,
1629 // instead we suggest `T: 'a + 'b` in that case.
1630 let mut has_bounds = false;
1631 if let Node::GenericParam(param) = hir.get(id) {
1632 has_bounds = !param.bounds.is_empty();
1633 }
1634 let sp = hir.span(id);
1635 // `sp` only covers `T`, change it so that it covers
1636 // `T:` when appropriate
1637 let is_impl_trait = bound_kind.to_string().starts_with("impl ");
1638 let sp = if has_bounds && !is_impl_trait {
1639 sp.to(self.tcx
1640 .sess
1641 .source_map()
1642 .next_point(self.tcx.sess.source_map().next_point(sp)))
1643 } else {
1644 sp
1645 };
1646 (sp, has_bounds, is_impl_trait)
1647 })
1648 } else {
1649 None
1650 }
1651 })
1652 }
1653 _ => None,
1654 };
1655
1656 let labeled_user_string = match bound_kind {
1657 GenericKind::Param(ref p) => format!("the parameter type `{}`", p),
1658 GenericKind::Projection(ref p) => format!("the associated type `{}`", p),
1659 };
1660
1661 if let Some(SubregionOrigin::CompareImplMethodObligation {
1662 span,
1663 item_name,
1664 impl_item_def_id,
1665 trait_item_def_id,
1666 }) = origin
1667 {
1668 return self.report_extra_impl_obligation(
1669 span,
1670 item_name,
1671 impl_item_def_id,
1672 trait_item_def_id,
1673 &format!("`{}: {}`", bound_kind, sub),
1674 );
1675 }
1676
1677 fn binding_suggestion<'tcx, S: fmt::Display>(
1678 err: &mut DiagnosticBuilder<'tcx>,
1679 type_param_span: Option<(Span, bool, bool)>,
1680 bound_kind: GenericKind<'tcx>,
1681 sub: S,
1682 ) {
1683 let consider = format!(
1684 "consider adding an explicit lifetime bound {}",
1685 if type_param_span.map(|(_, _, is_impl_trait)| is_impl_trait).unwrap_or(false) {
1686 format!(" `{}` to `{}`...", sub, bound_kind)
1687 } else {
1688 format!("`{}: {}`...", bound_kind, sub)
1689 },
1690 );
1691 if let Some((sp, has_lifetimes, is_impl_trait)) = type_param_span {
1692 let suggestion = if is_impl_trait {
1693 format!("{} + {}", bound_kind, sub)
1694 } else {
1695 let tail = if has_lifetimes { " + " } else { "" };
1696 format!("{}: {}{}", bound_kind, sub, tail)
1697 };
1698 err.span_suggestion_short(
1699 sp,
1700 &consider,
1701 suggestion,
1702 Applicability::MaybeIncorrect, // Issue #41966
1703 );
1704 } else {
1705 err.help(&consider);
1706 }
1707 }
1708
1709 let mut err = match *sub {
1710 ty::ReEarlyBound(_)
1711 | ty::ReFree(ty::FreeRegion {
1712 bound_region: ty::BrNamed(..),
1713 ..
1714 }) => {
1715 // Does the required lifetime have a nice name we can print?
1716 let mut err = struct_span_err!(
1717 self.tcx.sess,
1718 span,
1719 E0309,
1720 "{} may not live long enough",
1721 labeled_user_string
1722 );
1723 binding_suggestion(&mut err, type_param_span, bound_kind, sub);
1724 err
1725 }
1726
1727 ty::ReStatic => {
1728 // Does the required lifetime have a nice name we can print?
1729 let mut err = struct_span_err!(
1730 self.tcx.sess,
1731 span,
1732 E0310,
1733 "{} may not live long enough",
1734 labeled_user_string
1735 );
1736 binding_suggestion(&mut err, type_param_span, bound_kind, "'static");
1737 err
1738 }
1739
1740 _ => {
1741 // If not, be less specific.
1742 let mut err = struct_span_err!(
1743 self.tcx.sess,
1744 span,
1745 E0311,
1746 "{} may not live long enough",
1747 labeled_user_string
1748 );
1749 err.help(&format!(
1750 "consider adding an explicit lifetime bound for `{}`",
1751 bound_kind
1752 ));
1753 self.tcx.note_and_explain_region(
1754 region_scope_tree,
1755 &mut err,
1756 &format!("{} must be valid for ", labeled_user_string),
1757 sub,
1758 "...",
1759 );
1760 err
1761 }
1762 };
1763
1764 if let Some(origin) = origin {
1765 self.note_region_origin(&mut err, &origin);
1766 }
1767 err
1768 }
1769
1770 fn report_sub_sup_conflict(
1771 &self,
1772 region_scope_tree: &region::ScopeTree,
1773 var_origin: RegionVariableOrigin,
1774 sub_origin: SubregionOrigin<'tcx>,
1775 sub_region: Region<'tcx>,
1776 sup_origin: SubregionOrigin<'tcx>,
1777 sup_region: Region<'tcx>,
1778 ) {
1779 let mut err = self.report_inference_failure(var_origin);
1780
1781 self.tcx.note_and_explain_region(
1782 region_scope_tree,
1783 &mut err,
1784 "first, the lifetime cannot outlive ",
1785 sup_region,
1786 "...",
1787 );
1788
1789 match (&sup_origin, &sub_origin) {
1790 (&infer::Subtype(ref sup_trace), &infer::Subtype(ref sub_trace)) => {
1791 debug!("report_sub_sup_conflict: var_origin={:?}", var_origin);
1792 debug!("report_sub_sup_conflict: sub_region={:?}", sub_region);
1793 debug!("report_sub_sup_conflict: sub_origin={:?}", sub_origin);
1794 debug!("report_sub_sup_conflict: sup_region={:?}", sup_region);
1795 debug!("report_sub_sup_conflict: sup_origin={:?}", sup_origin);
1796 debug!("report_sub_sup_conflict: sup_trace={:?}", sup_trace);
1797 debug!("report_sub_sup_conflict: sub_trace={:?}", sub_trace);
1798 debug!("report_sub_sup_conflict: sup_trace.values={:?}", sup_trace.values);
1799 debug!("report_sub_sup_conflict: sub_trace.values={:?}", sub_trace.values);
1800
1801 if let (Some((sup_expected, sup_found)), Some((sub_expected, sub_found))) = (
1802 self.values_str(&sup_trace.values),
1803 self.values_str(&sub_trace.values),
1804 ) {
1805 if sub_expected == sup_expected && sub_found == sup_found {
1806 self.tcx.note_and_explain_region(
1807 region_scope_tree,
1808 &mut err,
1809 "...but the lifetime must also be valid for ",
1810 sub_region,
1811 "...",
1812 );
1813 err.span_note(sup_trace.cause.span, &format!(
1814 "...so that the {}",
1815 sup_trace.cause.as_requirement_str()
1816 ));
1817
1818 err.note_expected_found(
1819 &"",
1820 sup_expected,
1821 &"",
1822 sup_found
1823 );
1824 err.emit();
1825 return;
1826 }
1827 }
1828 }
1829 _ => {}
1830 }
1831
1832 self.note_region_origin(&mut err, &sup_origin);
1833
1834 self.tcx.note_and_explain_region(
1835 region_scope_tree,
1836 &mut err,
1837 "but, the lifetime must be valid for ",
1838 sub_region,
1839 "...",
1840 );
1841
1842 self.note_region_origin(&mut err, &sub_origin);
1843 err.emit();
1844 }
1845 }
1846
1847 impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
1848 fn report_inference_failure(
1849 &self,
1850 var_origin: RegionVariableOrigin,
1851 ) -> DiagnosticBuilder<'tcx> {
1852 let br_string = |br: ty::BoundRegion| {
1853 let mut s = match br {
1854 ty::BrNamed(_, name) => name.to_string(),
1855 _ => String::new(),
1856 };
1857 if !s.is_empty() {
1858 s.push_str(" ");
1859 }
1860 s
1861 };
1862 let var_description = match var_origin {
1863 infer::MiscVariable(_) => String::new(),
1864 infer::PatternRegion(_) => " for pattern".to_string(),
1865 infer::AddrOfRegion(_) => " for borrow expression".to_string(),
1866 infer::Autoref(_) => " for autoref".to_string(),
1867 infer::Coercion(_) => " for automatic coercion".to_string(),
1868 infer::LateBoundRegion(_, br, infer::FnCall) => {
1869 format!(" for lifetime parameter {}in function call", br_string(br))
1870 }
1871 infer::LateBoundRegion(_, br, infer::HigherRankedType) => {
1872 format!(" for lifetime parameter {}in generic type", br_string(br))
1873 }
1874 infer::LateBoundRegion(_, br, infer::AssocTypeProjection(def_id)) => format!(
1875 " for lifetime parameter {}in trait containing associated type `{}`",
1876 br_string(br),
1877 self.tcx.associated_item(def_id).ident
1878 ),
1879 infer::EarlyBoundRegion(_, name) => format!(" for lifetime parameter `{}`", name),
1880 infer::BoundRegionInCoherence(name) => {
1881 format!(" for lifetime parameter `{}` in coherence check", name)
1882 }
1883 infer::UpvarRegion(ref upvar_id, _) => {
1884 let var_name = self.tcx.hir().name(upvar_id.var_path.hir_id);
1885 format!(" for capture of `{}` by closure", var_name)
1886 }
1887 infer::NLL(..) => bug!("NLL variable found in lexical phase"),
1888 };
1889
1890 struct_span_err!(
1891 self.tcx.sess,
1892 var_origin.span(),
1893 E0495,
1894 "cannot infer an appropriate lifetime{} \
1895 due to conflicting requirements",
1896 var_description
1897 )
1898 }
1899 }
1900
1901 enum FailureCode {
1902 Error0038(DefId),
1903 Error0317(&'static str),
1904 Error0580(&'static str),
1905 Error0308(&'static str),
1906 Error0644(&'static str),
1907 }
1908
1909 impl<'tcx> ObligationCause<'tcx> {
1910 fn as_failure_code(&self, terr: &TypeError<'tcx>) -> FailureCode {
1911 use self::FailureCode::*;
1912 use crate::traits::ObligationCauseCode::*;
1913 match self.code {
1914 CompareImplMethodObligation { .. } => Error0308("method not compatible with trait"),
1915 MatchExpressionArm(box MatchExpressionArmCause { source, .. }) =>
1916 Error0308(match source {
1917 hir::MatchSource::IfLetDesugar { .. } =>
1918 "`if let` arms have incompatible types",
1919 hir::MatchSource::TryDesugar => {
1920 "try expression alternatives have incompatible types"
1921 }
1922 _ => "match arms have incompatible types",
1923 }),
1924 IfExpression { .. } => Error0308("if and else have incompatible types"),
1925 IfExpressionWithNoElse => Error0317("if may be missing an else clause"),
1926 MainFunctionType => Error0580("main function has wrong type"),
1927 StartFunctionType => Error0308("start function has wrong type"),
1928 IntrinsicType => Error0308("intrinsic has wrong type"),
1929 MethodReceiver => Error0308("mismatched `self` parameter type"),
1930
1931 // In the case where we have no more specific thing to
1932 // say, also take a look at the error code, maybe we can
1933 // tailor to that.
1934 _ => match terr {
1935 TypeError::CyclicTy(ty) if ty.is_closure() || ty.is_generator() => {
1936 Error0644("closure/generator type that references itself")
1937 }
1938 TypeError::IntrinsicCast => {
1939 Error0308("cannot coerce intrinsics to function pointers")
1940 }
1941 TypeError::ObjectUnsafeCoercion(did) => Error0038(did.clone()),
1942 _ => Error0308("mismatched types"),
1943 },
1944 }
1945 }
1946
1947 fn as_requirement_str(&self) -> &'static str {
1948 use crate::traits::ObligationCauseCode::*;
1949 match self.code {
1950 CompareImplMethodObligation { .. } => "method type is compatible with trait",
1951 ExprAssignable => "expression is assignable",
1952 MatchExpressionArm(box MatchExpressionArmCause { source, .. }) => match source {
1953 hir::MatchSource::IfLetDesugar { .. } => "`if let` arms have compatible types",
1954 _ => "match arms have compatible types",
1955 },
1956 IfExpression { .. } => "if and else have incompatible types",
1957 IfExpressionWithNoElse => "if missing an else returns ()",
1958 MainFunctionType => "`main` function has the correct type",
1959 StartFunctionType => "`start` function has the correct type",
1960 IntrinsicType => "intrinsic has the correct type",
1961 MethodReceiver => "method receiver has the correct type",
1962 _ => "types are compatible",
1963 }
1964 }
1965 }