]> git.proxmox.com Git - rustc.git/blob - src/librustc/infer/higher_ranked/mod.rs
New upstream version 1.12.0+dfsg1
[rustc.git] / src / librustc / infer / higher_ranked / mod.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Helper routines for higher-ranked things. See the `doc` module at
12 //! the end of the file for details.
13
14 use super::{CombinedSnapshot,
15 InferCtxt,
16 LateBoundRegion,
17 HigherRankedType,
18 SubregionOrigin,
19 SkolemizationMap};
20 use super::combine::CombineFields;
21 use super::region_inference::{TaintDirections};
22
23 use ty::{self, TyCtxt, Binder, TypeFoldable};
24 use ty::error::TypeError;
25 use ty::relate::{Relate, RelateResult, TypeRelation};
26 use syntax_pos::Span;
27 use util::nodemap::{FnvHashMap, FnvHashSet};
28
29 pub struct HrMatchResult<U> {
30 pub value: U,
31
32 /// Normally, when we do a higher-ranked match operation, we
33 /// expect all higher-ranked regions to be constrained as part of
34 /// the match operation. However, in the transition period for
35 /// #32330, it can happen that we sometimes have unconstrained
36 /// regions that get instantiated with fresh variables. In that
37 /// case, we collect the set of unconstrained bound regions here
38 /// and replace them with fresh variables.
39 pub unconstrained_regions: Vec<ty::BoundRegion>,
40 }
41
42 impl<'a, 'gcx, 'tcx> CombineFields<'a, 'gcx, 'tcx> {
43 pub fn higher_ranked_sub<T>(&mut self, a: &Binder<T>, b: &Binder<T>, a_is_expected: bool)
44 -> RelateResult<'tcx, Binder<T>>
45 where T: Relate<'tcx>
46 {
47 debug!("higher_ranked_sub(a={:?}, b={:?})",
48 a, b);
49
50 // Rather than checking the subtype relationship between `a` and `b`
51 // as-is, we need to do some extra work here in order to make sure
52 // that function subtyping works correctly with respect to regions
53 //
54 // Note: this is a subtle algorithm. For a full explanation,
55 // please see the large comment at the end of the file in the (inlined) module
56 // `doc`.
57
58 // Start a snapshot so we can examine "all bindings that were
59 // created as part of this type comparison".
60 return self.infcx.commit_if_ok(|snapshot| {
61 let span = self.trace.origin.span();
62
63 // First, we instantiate each bound region in the subtype with a fresh
64 // region variable.
65 let (a_prime, _) =
66 self.infcx.replace_late_bound_regions_with_fresh_var(
67 span,
68 HigherRankedType,
69 a);
70
71 // Second, we instantiate each bound region in the supertype with a
72 // fresh concrete region.
73 let (b_prime, skol_map) =
74 self.infcx.skolemize_late_bound_regions(b, snapshot);
75
76 debug!("a_prime={:?}", a_prime);
77 debug!("b_prime={:?}", b_prime);
78
79 // Compare types now that bound regions have been replaced.
80 let result = self.sub(a_is_expected).relate(&a_prime, &b_prime)?;
81
82 // Presuming type comparison succeeds, we need to check
83 // that the skolemized regions do not "leak".
84 self.infcx.leak_check(!a_is_expected, span, &skol_map, snapshot)?;
85
86 // We are finished with the skolemized regions now so pop
87 // them off.
88 self.infcx.pop_skolemized(skol_map, snapshot);
89
90 debug!("higher_ranked_sub: OK result={:?}", result);
91
92 Ok(ty::Binder(result))
93 });
94 }
95
96 /// The value consists of a pair `(t, u)` where `t` is the
97 /// *matcher* and `u` is a *value*. The idea is to find a
98 /// substitution `S` such that `S(t) == b`, and then return
99 /// `S(u)`. In other words, find values for the late-bound regions
100 /// in `a` that can make `t == b` and then replace the LBR in `u`
101 /// with those values.
102 ///
103 /// This routine is (as of this writing) used in trait matching,
104 /// particularly projection.
105 ///
106 /// NB. It should not happen that there are LBR appearing in `U`
107 /// that do not appear in `T`. If that happens, those regions are
108 /// unconstrained, and this routine replaces them with `'static`.
109 pub fn higher_ranked_match<T, U>(&mut self,
110 span: Span,
111 a_pair: &Binder<(T, U)>,
112 b_match: &T,
113 a_is_expected: bool)
114 -> RelateResult<'tcx, HrMatchResult<U>>
115 where T: Relate<'tcx>,
116 U: TypeFoldable<'tcx>
117 {
118 debug!("higher_ranked_match(a={:?}, b={:?})",
119 a_pair, b_match);
120
121 // Start a snapshot so we can examine "all bindings that were
122 // created as part of this type comparison".
123 return self.infcx.commit_if_ok(|snapshot| {
124 // First, we instantiate each bound region in the matcher
125 // with a skolemized region.
126 let ((a_match, a_value), skol_map) =
127 self.infcx.skolemize_late_bound_regions(a_pair, snapshot);
128
129 debug!("higher_ranked_match: a_match={:?}", a_match);
130 debug!("higher_ranked_match: skol_map={:?}", skol_map);
131
132 // Equate types now that bound regions have been replaced.
133 try!(self.equate(a_is_expected).relate(&a_match, &b_match));
134
135 // Map each skolemized region to a vector of other regions that it
136 // must be equated with. (Note that this vector may include other
137 // skolemized regions from `skol_map`.)
138 let skol_resolution_map: FnvHashMap<_, _> =
139 skol_map
140 .iter()
141 .map(|(&br, &skol)| {
142 let tainted_regions =
143 self.infcx.tainted_regions(snapshot,
144 skol,
145 TaintDirections::incoming()); // [1]
146
147 // [1] this routine executes after the skolemized
148 // regions have been *equated* with something
149 // else, so examining the incoming edges ought to
150 // be enough to collect all constraints
151
152 (skol, (br, tainted_regions))
153 })
154 .collect();
155
156 // For each skolemized region, pick a representative -- which can
157 // be any region from the sets above, except for other members of
158 // `skol_map`. There should always be a representative if things
159 // are properly well-formed.
160 let mut unconstrained_regions = vec![];
161 let skol_representatives: FnvHashMap<_, _> =
162 skol_resolution_map
163 .iter()
164 .map(|(&skol, &(br, ref regions))| {
165 let representative =
166 regions.iter()
167 .filter(|r| !skol_resolution_map.contains_key(r))
168 .cloned()
169 .next()
170 .unwrap_or_else(|| { // [1]
171 unconstrained_regions.push(br);
172 self.infcx.next_region_var(
173 LateBoundRegion(span, br, HigherRankedType))
174 });
175
176 // [1] There should always be a representative,
177 // unless the higher-ranked region did not appear
178 // in the values being matched. We should reject
179 // as ill-formed cases that can lead to this, but
180 // right now we sometimes issue warnings (see
181 // #32330).
182
183 (skol, representative)
184 })
185 .collect();
186
187 // Equate all the members of each skolemization set with the
188 // representative.
189 for (skol, &(_br, ref regions)) in &skol_resolution_map {
190 let representative = &skol_representatives[skol];
191 debug!("higher_ranked_match: \
192 skol={:?} representative={:?} regions={:?}",
193 skol, representative, regions);
194 for region in regions.iter()
195 .filter(|&r| !skol_resolution_map.contains_key(r))
196 .filter(|&r| r != representative)
197 {
198 let origin = SubregionOrigin::Subtype(self.trace.clone());
199 self.infcx.region_vars.make_eqregion(origin,
200 *representative,
201 *region);
202 }
203 }
204
205 // Replace the skolemized regions appearing in value with
206 // their representatives
207 let a_value =
208 fold_regions_in(
209 self.tcx(),
210 &a_value,
211 |r, _| skol_representatives.get(&r).cloned().unwrap_or(r));
212
213 debug!("higher_ranked_match: value={:?}", a_value);
214
215 // We are now done with these skolemized variables.
216 self.infcx.pop_skolemized(skol_map, snapshot);
217
218 Ok(HrMatchResult {
219 value: a_value,
220 unconstrained_regions: unconstrained_regions,
221 })
222 });
223 }
224
225 pub fn higher_ranked_lub<T>(&mut self, a: &Binder<T>, b: &Binder<T>, a_is_expected: bool)
226 -> RelateResult<'tcx, Binder<T>>
227 where T: Relate<'tcx>
228 {
229 // Start a snapshot so we can examine "all bindings that were
230 // created as part of this type comparison".
231 return self.infcx.commit_if_ok(|snapshot| {
232 // Instantiate each bound region with a fresh region variable.
233 let span = self.trace.origin.span();
234 let (a_with_fresh, a_map) =
235 self.infcx.replace_late_bound_regions_with_fresh_var(
236 span, HigherRankedType, a);
237 let (b_with_fresh, _) =
238 self.infcx.replace_late_bound_regions_with_fresh_var(
239 span, HigherRankedType, b);
240
241 // Collect constraints.
242 let result0 =
243 self.lub(a_is_expected).relate(&a_with_fresh, &b_with_fresh)?;
244 let result0 =
245 self.infcx.resolve_type_vars_if_possible(&result0);
246 debug!("lub result0 = {:?}", result0);
247
248 // Generalize the regions appearing in result0 if possible
249 let new_vars = self.infcx.region_vars_confined_to_snapshot(snapshot);
250 let span = self.trace.origin.span();
251 let result1 =
252 fold_regions_in(
253 self.tcx(),
254 &result0,
255 |r, debruijn| generalize_region(self.infcx, span, snapshot, debruijn,
256 &new_vars, &a_map, r));
257
258 debug!("lub({:?},{:?}) = {:?}",
259 a,
260 b,
261 result1);
262
263 Ok(ty::Binder(result1))
264 });
265
266 fn generalize_region<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
267 span: Span,
268 snapshot: &CombinedSnapshot,
269 debruijn: ty::DebruijnIndex,
270 new_vars: &[ty::RegionVid],
271 a_map: &FnvHashMap<ty::BoundRegion, ty::Region>,
272 r0: ty::Region)
273 -> ty::Region {
274 // Regions that pre-dated the LUB computation stay as they are.
275 if !is_var_in_set(new_vars, r0) {
276 assert!(!r0.is_bound());
277 debug!("generalize_region(r0={:?}): not new variable", r0);
278 return r0;
279 }
280
281 let tainted = infcx.tainted_regions(snapshot, r0, TaintDirections::both());
282
283 // Variables created during LUB computation which are
284 // *related* to regions that pre-date the LUB computation
285 // stay as they are.
286 if !tainted.iter().all(|r| is_var_in_set(new_vars, *r)) {
287 debug!("generalize_region(r0={:?}): \
288 non-new-variables found in {:?}",
289 r0, tainted);
290 assert!(!r0.is_bound());
291 return r0;
292 }
293
294 // Otherwise, the variable must be associated with at
295 // least one of the variables representing bound regions
296 // in both A and B. Replace the variable with the "first"
297 // bound region from A that we find it to be associated
298 // with.
299 for (a_br, a_r) in a_map {
300 if tainted.iter().any(|x| x == a_r) {
301 debug!("generalize_region(r0={:?}): \
302 replacing with {:?}, tainted={:?}",
303 r0, *a_br, tainted);
304 return ty::ReLateBound(debruijn, *a_br);
305 }
306 }
307
308 span_bug!(
309 span,
310 "region {:?} is not associated with any bound region from A!",
311 r0)
312 }
313 }
314
315 pub fn higher_ranked_glb<T>(&mut self, a: &Binder<T>, b: &Binder<T>, a_is_expected: bool)
316 -> RelateResult<'tcx, Binder<T>>
317 where T: Relate<'tcx>
318 {
319 debug!("higher_ranked_glb({:?}, {:?})",
320 a, b);
321
322 // Make a snapshot so we can examine "all bindings that were
323 // created as part of this type comparison".
324 return self.infcx.commit_if_ok(|snapshot| {
325 // Instantiate each bound region with a fresh region variable.
326 let (a_with_fresh, a_map) =
327 self.infcx.replace_late_bound_regions_with_fresh_var(
328 self.trace.origin.span(), HigherRankedType, a);
329 let (b_with_fresh, b_map) =
330 self.infcx.replace_late_bound_regions_with_fresh_var(
331 self.trace.origin.span(), HigherRankedType, b);
332 let a_vars = var_ids(self, &a_map);
333 let b_vars = var_ids(self, &b_map);
334
335 // Collect constraints.
336 let result0 =
337 self.glb(a_is_expected).relate(&a_with_fresh, &b_with_fresh)?;
338 let result0 =
339 self.infcx.resolve_type_vars_if_possible(&result0);
340 debug!("glb result0 = {:?}", result0);
341
342 // Generalize the regions appearing in result0 if possible
343 let new_vars = self.infcx.region_vars_confined_to_snapshot(snapshot);
344 let span = self.trace.origin.span();
345 let result1 =
346 fold_regions_in(
347 self.tcx(),
348 &result0,
349 |r, debruijn| generalize_region(self.infcx, span, snapshot, debruijn,
350 &new_vars,
351 &a_map, &a_vars, &b_vars,
352 r));
353
354 debug!("glb({:?},{:?}) = {:?}",
355 a,
356 b,
357 result1);
358
359 Ok(ty::Binder(result1))
360 });
361
362 fn generalize_region<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
363 span: Span,
364 snapshot: &CombinedSnapshot,
365 debruijn: ty::DebruijnIndex,
366 new_vars: &[ty::RegionVid],
367 a_map: &FnvHashMap<ty::BoundRegion, ty::Region>,
368 a_vars: &[ty::RegionVid],
369 b_vars: &[ty::RegionVid],
370 r0: ty::Region) -> ty::Region {
371 if !is_var_in_set(new_vars, r0) {
372 assert!(!r0.is_bound());
373 return r0;
374 }
375
376 let tainted = infcx.tainted_regions(snapshot, r0, TaintDirections::both());
377
378 let mut a_r = None;
379 let mut b_r = None;
380 let mut only_new_vars = true;
381 for r in &tainted {
382 if is_var_in_set(a_vars, *r) {
383 if a_r.is_some() {
384 return fresh_bound_variable(infcx, debruijn);
385 } else {
386 a_r = Some(*r);
387 }
388 } else if is_var_in_set(b_vars, *r) {
389 if b_r.is_some() {
390 return fresh_bound_variable(infcx, debruijn);
391 } else {
392 b_r = Some(*r);
393 }
394 } else if !is_var_in_set(new_vars, *r) {
395 only_new_vars = false;
396 }
397 }
398
399 // NB---I do not believe this algorithm computes
400 // (necessarily) the GLB. As written it can
401 // spuriously fail. In particular, if there is a case
402 // like: |fn(&a)| and fn(fn(&b)), where a and b are
403 // free, it will return fn(&c) where c = GLB(a,b). If
404 // however this GLB is not defined, then the result is
405 // an error, even though something like
406 // "fn<X>(fn(&X))" where X is bound would be a
407 // subtype of both of those.
408 //
409 // The problem is that if we were to return a bound
410 // variable, we'd be computing a lower-bound, but not
411 // necessarily the *greatest* lower-bound.
412 //
413 // Unfortunately, this problem is non-trivial to solve,
414 // because we do not know at the time of computing the GLB
415 // whether a GLB(a,b) exists or not, because we haven't
416 // run region inference (or indeed, even fully computed
417 // the region hierarchy!). The current algorithm seems to
418 // works ok in practice.
419
420 if a_r.is_some() && b_r.is_some() && only_new_vars {
421 // Related to exactly one bound variable from each fn:
422 return rev_lookup(span, a_map, a_r.unwrap());
423 } else if a_r.is_none() && b_r.is_none() {
424 // Not related to bound variables from either fn:
425 assert!(!r0.is_bound());
426 return r0;
427 } else {
428 // Other:
429 return fresh_bound_variable(infcx, debruijn);
430 }
431 }
432
433 fn rev_lookup(span: Span,
434 a_map: &FnvHashMap<ty::BoundRegion, ty::Region>,
435 r: ty::Region) -> ty::Region
436 {
437 for (a_br, a_r) in a_map {
438 if *a_r == r {
439 return ty::ReLateBound(ty::DebruijnIndex::new(1), *a_br);
440 }
441 }
442 span_bug!(
443 span,
444 "could not find original bound region for {:?}",
445 r);
446 }
447
448 fn fresh_bound_variable(infcx: &InferCtxt, debruijn: ty::DebruijnIndex) -> ty::Region {
449 infcx.region_vars.new_bound(debruijn)
450 }
451 }
452 }
453
454 fn var_ids<'a, 'gcx, 'tcx>(fields: &CombineFields<'a, 'gcx, 'tcx>,
455 map: &FnvHashMap<ty::BoundRegion, ty::Region>)
456 -> Vec<ty::RegionVid> {
457 map.iter()
458 .map(|(_, r)| match *r {
459 ty::ReVar(r) => { r }
460 r => {
461 span_bug!(
462 fields.trace.origin.span(),
463 "found non-region-vid: {:?}",
464 r);
465 }
466 })
467 .collect()
468 }
469
470 fn is_var_in_set(new_vars: &[ty::RegionVid], r: ty::Region) -> bool {
471 match r {
472 ty::ReVar(ref v) => new_vars.iter().any(|x| x == v),
473 _ => false
474 }
475 }
476
477 fn fold_regions_in<'a, 'gcx, 'tcx, T, F>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
478 unbound_value: &T,
479 mut fldr: F)
480 -> T
481 where T: TypeFoldable<'tcx>,
482 F: FnMut(ty::Region, ty::DebruijnIndex) -> ty::Region,
483 {
484 tcx.fold_regions(unbound_value, &mut false, |region, current_depth| {
485 // we should only be encountering "escaping" late-bound regions here,
486 // because the ones at the current level should have been replaced
487 // with fresh variables
488 assert!(match region {
489 ty::ReLateBound(..) => false,
490 _ => true
491 });
492
493 fldr(region, ty::DebruijnIndex::new(current_depth))
494 })
495 }
496
497 impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
498 fn tainted_regions(&self,
499 snapshot: &CombinedSnapshot,
500 r: ty::Region,
501 directions: TaintDirections)
502 -> FnvHashSet<ty::Region> {
503 self.region_vars.tainted(&snapshot.region_vars_snapshot, r, directions)
504 }
505
506 fn region_vars_confined_to_snapshot(&self,
507 snapshot: &CombinedSnapshot)
508 -> Vec<ty::RegionVid>
509 {
510 /*!
511 * Returns the set of region variables that do not affect any
512 * types/regions which existed before `snapshot` was
513 * started. This is used in the sub/lub/glb computations. The
514 * idea here is that when we are computing lub/glb of two
515 * regions, we sometimes create intermediate region variables.
516 * Those region variables may touch some of the skolemized or
517 * other "forbidden" regions we created to replace bound
518 * regions, but they don't really represent an "external"
519 * constraint.
520 *
521 * However, sometimes fresh variables are created for other
522 * purposes too, and those *may* represent an external
523 * constraint. In particular, when a type variable is
524 * instantiated, we create region variables for all the
525 * regions that appear within, and if that type variable
526 * pre-existed the snapshot, then those region variables
527 * represent external constraints.
528 *
529 * An example appears in the unit test
530 * `sub_free_bound_false_infer`. In this test, we want to
531 * know whether
532 *
533 * ```rust
534 * fn(_#0t) <: for<'a> fn(&'a int)
535 * ```
536 *
537 * Note that the subtype has a type variable. Because the type
538 * variable can't be instantiated with a region that is bound
539 * in the fn signature, this comparison ought to fail. But if
540 * we're not careful, it will succeed.
541 *
542 * The reason is that when we walk through the subtyping
543 * algorith, we begin by replacing `'a` with a skolemized
544 * variable `'1`. We then have `fn(_#0t) <: fn(&'1 int)`. This
545 * can be made true by unifying `_#0t` with `&'1 int`. In the
546 * process, we create a fresh variable for the skolemized
547 * region, `'$2`, and hence we have that `_#0t == &'$2
548 * int`. However, because `'$2` was created during the sub
549 * computation, if we're not careful we will erroneously
550 * assume it is one of the transient region variables
551 * representing a lub/glb internally. Not good.
552 *
553 * To prevent this, we check for type variables which were
554 * unified during the snapshot, and say that any region
555 * variable created during the snapshot but which finds its
556 * way into a type variable is considered to "escape" the
557 * snapshot.
558 */
559
560 let mut region_vars =
561 self.region_vars.vars_created_since_snapshot(&snapshot.region_vars_snapshot);
562
563 let escaping_types =
564 self.type_variables.borrow_mut().types_escaping_snapshot(&snapshot.type_snapshot);
565
566 let mut escaping_region_vars = FnvHashSet();
567 for ty in &escaping_types {
568 self.tcx.collect_regions(ty, &mut escaping_region_vars);
569 }
570
571 region_vars.retain(|&region_vid| {
572 let r = ty::ReVar(region_vid);
573 !escaping_region_vars.contains(&r)
574 });
575
576 debug!("region_vars_confined_to_snapshot: region_vars={:?} escaping_types={:?}",
577 region_vars,
578 escaping_types);
579
580 region_vars
581 }
582
583 /// Replace all regions bound by `binder` with skolemized regions and
584 /// return a map indicating which bound-region was replaced with what
585 /// skolemized region. This is the first step of checking subtyping
586 /// when higher-ranked things are involved.
587 ///
588 /// **Important:** you must call this function from within a snapshot.
589 /// Moreover, before committing the snapshot, you must eventually call
590 /// either `plug_leaks` or `pop_skolemized` to remove the skolemized
591 /// regions. If you rollback the snapshot (or are using a probe), then
592 /// the pop occurs as part of the rollback, so an explicit call is not
593 /// needed (but is also permitted).
594 ///
595 /// See `README.md` for more details.
596 pub fn skolemize_late_bound_regions<T>(&self,
597 binder: &ty::Binder<T>,
598 snapshot: &CombinedSnapshot)
599 -> (T, SkolemizationMap)
600 where T : TypeFoldable<'tcx>
601 {
602 let (result, map) = self.tcx.replace_late_bound_regions(binder, |br| {
603 self.region_vars.push_skolemized(br, &snapshot.region_vars_snapshot)
604 });
605
606 debug!("skolemize_bound_regions(binder={:?}, result={:?}, map={:?})",
607 binder,
608 result,
609 map);
610
611 (result, map)
612 }
613
614 /// Searches the region constriants created since `snapshot` was started
615 /// and checks to determine whether any of the skolemized regions created
616 /// in `skol_map` would "escape" -- meaning that they are related to
617 /// other regions in some way. If so, the higher-ranked subtyping doesn't
618 /// hold. See `README.md` for more details.
619 pub fn leak_check(&self,
620 overly_polymorphic: bool,
621 span: Span,
622 skol_map: &SkolemizationMap,
623 snapshot: &CombinedSnapshot)
624 -> RelateResult<'tcx, ()>
625 {
626 debug!("leak_check: skol_map={:?}",
627 skol_map);
628
629 // ## Issue #32330 warnings
630 //
631 // When Issue #32330 is fixed, a certain number of late-bound
632 // regions (LBR) will become early-bound. We wish to issue
633 // warnings when the result of `leak_check` relies on such LBR, as
634 // that means that compilation will likely start to fail.
635 //
636 // Recall that when we do a "HR subtype" check, we replace all
637 // late-bound regions (LBR) in the subtype with fresh variables,
638 // and skolemize the late-bound regions in the supertype. If those
639 // skolemized regions from the supertype wind up being
640 // super-regions (directly or indirectly) of either
641 //
642 // - another skolemized region; or,
643 // - some region that pre-exists the HR subtype check
644 // - e.g., a region variable that is not one of those created
645 // to represent bound regions in the subtype
646 //
647 // then leak-check (and hence the subtype check) fails.
648 //
649 // What will change when we fix #32330 is that some of the LBR in the
650 // subtype may become early-bound. In that case, they would no longer be in
651 // the "permitted set" of variables that can be related to a skolemized
652 // type.
653 //
654 // So the foundation for this warning is to collect variables that we found
655 // to be related to a skolemized type. For each of them, we have a
656 // `BoundRegion` which carries a `Issue32330` flag. We check whether any of
657 // those flags indicate that this variable was created from a lifetime
658 // that will change from late- to early-bound. If so, we issue a warning
659 // indicating that the results of compilation may change.
660 //
661 // This is imperfect, since there are other kinds of code that will not
662 // compile once #32330 is fixed. However, it fixes the errors observed in
663 // practice on crater runs.
664 let mut warnings = vec![];
665
666 let new_vars = self.region_vars_confined_to_snapshot(snapshot);
667 for (&skol_br, &skol) in skol_map {
668 // The inputs to a skolemized variable can only
669 // be itself or other new variables.
670 let incoming_taints = self.tainted_regions(snapshot,
671 skol,
672 TaintDirections::both());
673 for &tainted_region in &incoming_taints {
674 // Each skolemized should only be relatable to itself
675 // or new variables:
676 match tainted_region {
677 ty::ReVar(vid) => {
678 if new_vars.contains(&vid) {
679 warnings.extend(
680 match self.region_vars.var_origin(vid) {
681 LateBoundRegion(_,
682 ty::BrNamed(_, _, wc),
683 _) => Some(wc),
684 _ => None,
685 });
686 continue;
687 }
688 }
689 _ => {
690 if tainted_region == skol { continue; }
691 }
692 };
693
694 debug!("{:?} (which replaced {:?}) is tainted by {:?}",
695 skol,
696 skol_br,
697 tainted_region);
698
699 if overly_polymorphic {
700 debug!("Overly polymorphic!");
701 return Err(TypeError::RegionsOverlyPolymorphic(skol_br,
702 tainted_region));
703 } else {
704 debug!("Not as polymorphic!");
705 return Err(TypeError::RegionsInsufficientlyPolymorphic(skol_br,
706 tainted_region));
707 }
708 }
709 }
710
711 self.issue_32330_warnings(span, &warnings);
712
713 Ok(())
714 }
715
716 /// This code converts from skolemized regions back to late-bound
717 /// regions. It works by replacing each region in the taint set of a
718 /// skolemized region with a bound-region. The bound region will be bound
719 /// by the outer-most binder in `value`; the caller must ensure that there is
720 /// such a binder and it is the right place.
721 ///
722 /// This routine is only intended to be used when the leak-check has
723 /// passed; currently, it's used in the trait matching code to create
724 /// a set of nested obligations frmo an impl that matches against
725 /// something higher-ranked. More details can be found in
726 /// `librustc/middle/traits/README.md`.
727 ///
728 /// As a brief example, consider the obligation `for<'a> Fn(&'a int)
729 /// -> &'a int`, and the impl:
730 ///
731 /// impl<A,R> Fn<A,R> for SomethingOrOther
732 /// where A : Clone
733 /// { ... }
734 ///
735 /// Here we will have replaced `'a` with a skolemized region
736 /// `'0`. This means that our substitution will be `{A=>&'0
737 /// int, R=>&'0 int}`.
738 ///
739 /// When we apply the substitution to the bounds, we will wind up with
740 /// `&'0 int : Clone` as a predicate. As a last step, we then go and
741 /// replace `'0` with a late-bound region `'a`. The depth is matched
742 /// to the depth of the predicate, in this case 1, so that the final
743 /// predicate is `for<'a> &'a int : Clone`.
744 pub fn plug_leaks<T>(&self,
745 skol_map: SkolemizationMap,
746 snapshot: &CombinedSnapshot,
747 value: &T) -> T
748 where T : TypeFoldable<'tcx>
749 {
750 debug!("plug_leaks(skol_map={:?}, value={:?})",
751 skol_map,
752 value);
753
754 // Compute a mapping from the "taint set" of each skolemized
755 // region back to the `ty::BoundRegion` that it originally
756 // represented. Because `leak_check` passed, we know that
757 // these taint sets are mutually disjoint.
758 let inv_skol_map: FnvHashMap<ty::Region, ty::BoundRegion> =
759 skol_map
760 .iter()
761 .flat_map(|(&skol_br, &skol)| {
762 self.tainted_regions(snapshot, skol, TaintDirections::both())
763 .into_iter()
764 .map(move |tainted_region| (tainted_region, skol_br))
765 })
766 .collect();
767
768 debug!("plug_leaks: inv_skol_map={:?}",
769 inv_skol_map);
770
771 // Remove any instantiated type variables from `value`; those can hide
772 // references to regions from the `fold_regions` code below.
773 let value = self.resolve_type_vars_if_possible(value);
774
775 // Map any skolemization byproducts back to a late-bound
776 // region. Put that late-bound region at whatever the outermost
777 // binder is that we encountered in `value`. The caller is
778 // responsible for ensuring that (a) `value` contains at least one
779 // binder and (b) that binder is the one we want to use.
780 let result = self.tcx.fold_regions(&value, &mut false, |r, current_depth| {
781 match inv_skol_map.get(&r) {
782 None => r,
783 Some(br) => {
784 // It is the responsibility of the caller to ensure
785 // that each skolemized region appears within a
786 // binder. In practice, this routine is only used by
787 // trait checking, and all of the skolemized regions
788 // appear inside predicates, which always have
789 // binders, so this assert is satisfied.
790 assert!(current_depth > 1);
791
792 // since leak-check passed, this skolemized region
793 // should only have incoming edges from variables
794 // (which ought not to escape the snapshot, but we
795 // don't check that) or itself
796 assert!(
797 match r {
798 ty::ReVar(_) => true,
799 ty::ReSkolemized(_, ref br1) => br == br1,
800 _ => false,
801 },
802 "leak-check would have us replace {:?} with {:?}",
803 r, br);
804
805 ty::ReLateBound(ty::DebruijnIndex::new(current_depth - 1), br.clone())
806 }
807 }
808 });
809
810 debug!("plug_leaks: result={:?}",
811 result);
812
813 self.pop_skolemized(skol_map, snapshot);
814
815 debug!("plug_leaks: result={:?}", result);
816
817 result
818 }
819
820 /// Pops the skolemized regions found in `skol_map` from the region
821 /// inference context. Whenever you create skolemized regions via
822 /// `skolemize_late_bound_regions`, they must be popped before you
823 /// commit the enclosing snapshot (if you do not commit, e.g. within a
824 /// probe or as a result of an error, then this is not necessary, as
825 /// popping happens as part of the rollback).
826 ///
827 /// Note: popping also occurs implicitly as part of `leak_check`.
828 pub fn pop_skolemized(&self,
829 skol_map: SkolemizationMap,
830 snapshot: &CombinedSnapshot)
831 {
832 debug!("pop_skolemized({:?})", skol_map);
833 let skol_regions: FnvHashSet<_> = skol_map.values().cloned().collect();
834 self.region_vars.pop_skolemized(&skol_regions, &snapshot.region_vars_snapshot);
835 }
836 }