]> git.proxmox.com Git - rustc.git/blob - src/librustc/metadata/loader.rs
Imported Upstream version 1.3.0+dfsg1
[rustc.git] / src / librustc / metadata / loader.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Finds crate binaries and loads their metadata
12 //!
13 //! Might I be the first to welcome you to a world of platform differences,
14 //! version requirements, dependency graphs, conflicting desires, and fun! This
15 //! is the major guts (along with metadata::creader) of the compiler for loading
16 //! crates and resolving dependencies. Let's take a tour!
17 //!
18 //! # The problem
19 //!
20 //! Each invocation of the compiler is immediately concerned with one primary
21 //! problem, to connect a set of crates to resolved crates on the filesystem.
22 //! Concretely speaking, the compiler follows roughly these steps to get here:
23 //!
24 //! 1. Discover a set of `extern crate` statements.
25 //! 2. Transform these directives into crate names. If the directive does not
26 //! have an explicit name, then the identifier is the name.
27 //! 3. For each of these crate names, find a corresponding crate on the
28 //! filesystem.
29 //!
30 //! Sounds easy, right? Let's walk into some of the nuances.
31 //!
32 //! ## Transitive Dependencies
33 //!
34 //! Let's say we've got three crates: A, B, and C. A depends on B, and B depends
35 //! on C. When we're compiling A, we primarily need to find and locate B, but we
36 //! also end up needing to find and locate C as well.
37 //!
38 //! The reason for this is that any of B's types could be composed of C's types,
39 //! any function in B could return a type from C, etc. To be able to guarantee
40 //! that we can always typecheck/translate any function, we have to have
41 //! complete knowledge of the whole ecosystem, not just our immediate
42 //! dependencies.
43 //!
44 //! So now as part of the "find a corresponding crate on the filesystem" step
45 //! above, this involves also finding all crates for *all upstream
46 //! dependencies*. This includes all dependencies transitively.
47 //!
48 //! ## Rlibs and Dylibs
49 //!
50 //! The compiler has two forms of intermediate dependencies. These are dubbed
51 //! rlibs and dylibs for the static and dynamic variants, respectively. An rlib
52 //! is a rustc-defined file format (currently just an ar archive) while a dylib
53 //! is a platform-defined dynamic library. Each library has a metadata somewhere
54 //! inside of it.
55 //!
56 //! When translating a crate name to a crate on the filesystem, we all of a
57 //! sudden need to take into account both rlibs and dylibs! Linkage later on may
58 //! use either one of these files, as each has their pros/cons. The job of crate
59 //! loading is to discover what's possible by finding all candidates.
60 //!
61 //! Most parts of this loading systems keep the dylib/rlib as just separate
62 //! variables.
63 //!
64 //! ## Where to look?
65 //!
66 //! We can't exactly scan your whole hard drive when looking for dependencies,
67 //! so we need to places to look. Currently the compiler will implicitly add the
68 //! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation,
69 //! and otherwise all -L flags are added to the search paths.
70 //!
71 //! ## What criterion to select on?
72 //!
73 //! This a pretty tricky area of loading crates. Given a file, how do we know
74 //! whether it's the right crate? Currently, the rules look along these lines:
75 //!
76 //! 1. Does the filename match an rlib/dylib pattern? That is to say, does the
77 //! filename have the right prefix/suffix?
78 //! 2. Does the filename have the right prefix for the crate name being queried?
79 //! This is filtering for files like `libfoo*.rlib` and such.
80 //! 3. Is the file an actual rust library? This is done by loading the metadata
81 //! from the library and making sure it's actually there.
82 //! 4. Does the name in the metadata agree with the name of the library?
83 //! 5. Does the target in the metadata agree with the current target?
84 //! 6. Does the SVH match? (more on this later)
85 //!
86 //! If the file answers `yes` to all these questions, then the file is
87 //! considered as being *candidate* for being accepted. It is illegal to have
88 //! more than two candidates as the compiler has no method by which to resolve
89 //! this conflict. Additionally, rlib/dylib candidates are considered
90 //! separately.
91 //!
92 //! After all this has happened, we have 1 or two files as candidates. These
93 //! represent the rlib/dylib file found for a library, and they're returned as
94 //! being found.
95 //!
96 //! ### What about versions?
97 //!
98 //! A lot of effort has been put forth to remove versioning from the compiler.
99 //! There have been forays in the past to have versioning baked in, but it was
100 //! largely always deemed insufficient to the point that it was recognized that
101 //! it's probably something the compiler shouldn't do anyway due to its
102 //! complicated nature and the state of the half-baked solutions.
103 //!
104 //! With a departure from versioning, the primary criterion for loading crates
105 //! is just the name of a crate. If we stopped here, it would imply that you
106 //! could never link two crates of the same name from different sources
107 //! together, which is clearly a bad state to be in.
108 //!
109 //! To resolve this problem, we come to the next section!
110 //!
111 //! # Expert Mode
112 //!
113 //! A number of flags have been added to the compiler to solve the "version
114 //! problem" in the previous section, as well as generally enabling more
115 //! powerful usage of the crate loading system of the compiler. The goal of
116 //! these flags and options are to enable third-party tools to drive the
117 //! compiler with prior knowledge about how the world should look.
118 //!
119 //! ## The `--extern` flag
120 //!
121 //! The compiler accepts a flag of this form a number of times:
122 //!
123 //! ```text
124 //! --extern crate-name=path/to/the/crate.rlib
125 //! ```
126 //!
127 //! This flag is basically the following letter to the compiler:
128 //!
129 //! > Dear rustc,
130 //! >
131 //! > When you are attempting to load the immediate dependency `crate-name`, I
132 //! > would like you to assume that the library is located at
133 //! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not
134 //! > assume that the path I specified has the name `crate-name`.
135 //!
136 //! This flag basically overrides most matching logic except for validating that
137 //! the file is indeed a rust library. The same `crate-name` can be specified
138 //! twice to specify the rlib/dylib pair.
139 //!
140 //! ## Enabling "multiple versions"
141 //!
142 //! This basically boils down to the ability to specify arbitrary packages to
143 //! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it
144 //! would look something like:
145 //!
146 //! ```ignore
147 //! extern crate b1;
148 //! extern crate b2;
149 //!
150 //! fn main() {}
151 //! ```
152 //!
153 //! and the compiler would be invoked as:
154 //!
155 //! ```text
156 //! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib
157 //! ```
158 //!
159 //! In this scenario there are two crates named `b` and the compiler must be
160 //! manually driven to be informed where each crate is.
161 //!
162 //! ## Frobbing symbols
163 //!
164 //! One of the immediate problems with linking the same library together twice
165 //! in the same problem is dealing with duplicate symbols. The primary way to
166 //! deal with this in rustc is to add hashes to the end of each symbol.
167 //!
168 //! In order to force hashes to change between versions of a library, if
169 //! desired, the compiler exposes an option `-C metadata=foo`, which is used to
170 //! initially seed each symbol hash. The string `foo` is prepended to each
171 //! string-to-hash to ensure that symbols change over time.
172 //!
173 //! ## Loading transitive dependencies
174 //!
175 //! Dealing with same-named-but-distinct crates is not just a local problem, but
176 //! one that also needs to be dealt with for transitive dependencies. Note that
177 //! in the letter above `--extern` flags only apply to the *local* set of
178 //! dependencies, not the upstream transitive dependencies. Consider this
179 //! dependency graph:
180 //!
181 //! ```text
182 //! A.1 A.2
183 //! | |
184 //! | |
185 //! B C
186 //! \ /
187 //! \ /
188 //! D
189 //! ```
190 //!
191 //! In this scenario, when we compile `D`, we need to be able to distinctly
192 //! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these
193 //! transitive dependencies.
194 //!
195 //! Note that the key idea here is that `B` and `C` are both *already compiled*.
196 //! That is, they have already resolved their dependencies. Due to unrelated
197 //! technical reasons, when a library is compiled, it is only compatible with
198 //! the *exact same* version of the upstream libraries it was compiled against.
199 //! We use the "Strict Version Hash" to identify the exact copy of an upstream
200 //! library.
201 //!
202 //! With this knowledge, we know that `B` and `C` will depend on `A` with
203 //! different SVH values, so we crawl the normal `-L` paths looking for
204 //! `liba*.rlib` and filter based on the contained SVH.
205 //!
206 //! In the end, this ends up not needing `--extern` to specify upstream
207 //! transitive dependencies.
208 //!
209 //! # Wrapping up
210 //!
211 //! That's the general overview of loading crates in the compiler, but it's by
212 //! no means all of the necessary details. Take a look at the rest of
213 //! metadata::loader or metadata::creader for all the juicy details!
214
215 use back::svh::Svh;
216 use session::Session;
217 use session::search_paths::PathKind;
218 use llvm;
219 use llvm::{False, ObjectFile, mk_section_iter};
220 use llvm::archive_ro::ArchiveRO;
221 use metadata::cstore::{MetadataBlob, MetadataVec, MetadataArchive};
222 use metadata::decoder;
223 use metadata::encoder;
224 use metadata::filesearch::{FileSearch, FileMatches, FileDoesntMatch};
225 use syntax::codemap::Span;
226 use syntax::diagnostic::SpanHandler;
227 use util::common;
228 use rustc_back::target::Target;
229
230 use std::cmp;
231 use std::collections::HashMap;
232 use std::fs;
233 use std::io::prelude::*;
234 use std::io;
235 use std::path::{Path, PathBuf};
236 use std::ptr;
237 use std::slice;
238 use std::time::Duration;
239
240 use flate;
241
242 pub struct CrateMismatch {
243 path: PathBuf,
244 got: String,
245 }
246
247 pub struct Context<'a> {
248 pub sess: &'a Session,
249 pub span: Span,
250 pub ident: &'a str,
251 pub crate_name: &'a str,
252 pub hash: Option<&'a Svh>,
253 // points to either self.sess.target.target or self.sess.host, must match triple
254 pub target: &'a Target,
255 pub triple: &'a str,
256 pub filesearch: FileSearch<'a>,
257 pub root: &'a Option<CratePaths>,
258 pub rejected_via_hash: Vec<CrateMismatch>,
259 pub rejected_via_triple: Vec<CrateMismatch>,
260 pub rejected_via_kind: Vec<CrateMismatch>,
261 pub should_match_name: bool,
262 }
263
264 pub struct Library {
265 pub dylib: Option<(PathBuf, PathKind)>,
266 pub rlib: Option<(PathBuf, PathKind)>,
267 pub metadata: MetadataBlob,
268 }
269
270 pub struct ArchiveMetadata {
271 _archive: ArchiveRO,
272 // points into self._archive
273 data: *const [u8],
274 }
275
276 pub struct CratePaths {
277 pub ident: String,
278 pub dylib: Option<PathBuf>,
279 pub rlib: Option<PathBuf>
280 }
281
282 pub const METADATA_FILENAME: &'static str = "rust.metadata.bin";
283
284 impl CratePaths {
285 fn paths(&self) -> Vec<PathBuf> {
286 match (&self.dylib, &self.rlib) {
287 (&None, &None) => vec!(),
288 (&Some(ref p), &None) |
289 (&None, &Some(ref p)) => vec!(p.clone()),
290 (&Some(ref p1), &Some(ref p2)) => vec!(p1.clone(), p2.clone()),
291 }
292 }
293 }
294
295 impl<'a> Context<'a> {
296 pub fn maybe_load_library_crate(&mut self) -> Option<Library> {
297 self.find_library_crate()
298 }
299
300 pub fn load_library_crate(&mut self) -> Library {
301 match self.find_library_crate() {
302 Some(t) => t,
303 None => {
304 self.report_load_errs();
305 unreachable!()
306 }
307 }
308 }
309
310 pub fn report_load_errs(&mut self) {
311 let message = if !self.rejected_via_hash.is_empty() {
312 format!("found possibly newer version of crate `{}`",
313 self.ident)
314 } else if !self.rejected_via_triple.is_empty() {
315 format!("couldn't find crate `{}` with expected target triple {}",
316 self.ident, self.triple)
317 } else if !self.rejected_via_kind.is_empty() {
318 format!("found staticlib `{}` instead of rlib or dylib", self.ident)
319 } else {
320 format!("can't find crate for `{}`", self.ident)
321 };
322 let message = match self.root {
323 &None => message,
324 &Some(ref r) => format!("{} which `{}` depends on",
325 message, r.ident)
326 };
327 self.sess.span_err(self.span, &message[..]);
328
329 if !self.rejected_via_triple.is_empty() {
330 let mismatches = self.rejected_via_triple.iter();
331 for (i, &CrateMismatch{ ref path, ref got }) in mismatches.enumerate() {
332 self.sess.fileline_note(self.span,
333 &format!("crate `{}`, path #{}, triple {}: {}",
334 self.ident, i+1, got, path.display()));
335 }
336 }
337 if !self.rejected_via_hash.is_empty() {
338 self.sess.span_note(self.span, "perhaps this crate needs \
339 to be recompiled?");
340 let mismatches = self.rejected_via_hash.iter();
341 for (i, &CrateMismatch{ ref path, .. }) in mismatches.enumerate() {
342 self.sess.fileline_note(self.span,
343 &format!("crate `{}` path #{}: {}",
344 self.ident, i+1, path.display()));
345 }
346 match self.root {
347 &None => {}
348 &Some(ref r) => {
349 for (i, path) in r.paths().iter().enumerate() {
350 self.sess.fileline_note(self.span,
351 &format!("crate `{}` path #{}: {}",
352 r.ident, i+1, path.display()));
353 }
354 }
355 }
356 }
357 if !self.rejected_via_kind.is_empty() {
358 self.sess.fileline_help(self.span, "please recompile this crate using \
359 --crate-type lib");
360 let mismatches = self.rejected_via_kind.iter();
361 for (i, &CrateMismatch { ref path, .. }) in mismatches.enumerate() {
362 self.sess.fileline_note(self.span,
363 &format!("crate `{}` path #{}: {}",
364 self.ident, i+1, path.display()));
365 }
366 }
367 self.sess.abort_if_errors();
368 }
369
370 fn find_library_crate(&mut self) -> Option<Library> {
371 // If an SVH is specified, then this is a transitive dependency that
372 // must be loaded via -L plus some filtering.
373 if self.hash.is_none() {
374 self.should_match_name = false;
375 if let Some(s) = self.sess.opts.externs.get(self.crate_name) {
376 return self.find_commandline_library(s);
377 }
378 self.should_match_name = true;
379 }
380
381 let dypair = self.dylibname();
382
383 // want: crate_name.dir_part() + prefix + crate_name.file_part + "-"
384 let dylib_prefix = format!("{}{}", dypair.0, self.crate_name);
385 let rlib_prefix = format!("lib{}", self.crate_name);
386 let staticlib_prefix = format!("lib{}", self.crate_name);
387
388 let mut candidates = HashMap::new();
389 let mut staticlibs = vec!();
390
391 // First, find all possible candidate rlibs and dylibs purely based on
392 // the name of the files themselves. We're trying to match against an
393 // exact crate name and a possibly an exact hash.
394 //
395 // During this step, we can filter all found libraries based on the
396 // name and id found in the crate id (we ignore the path portion for
397 // filename matching), as well as the exact hash (if specified). If we
398 // end up having many candidates, we must look at the metadata to
399 // perform exact matches against hashes/crate ids. Note that opening up
400 // the metadata is where we do an exact match against the full contents
401 // of the crate id (path/name/id).
402 //
403 // The goal of this step is to look at as little metadata as possible.
404 self.filesearch.search(|path, kind| {
405 let file = match path.file_name().and_then(|s| s.to_str()) {
406 None => return FileDoesntMatch,
407 Some(file) => file,
408 };
409 let (hash, rlib) = if file.starts_with(&rlib_prefix[..]) &&
410 file.ends_with(".rlib") {
411 (&file[(rlib_prefix.len()) .. (file.len() - ".rlib".len())],
412 true)
413 } else if file.starts_with(&dylib_prefix) &&
414 file.ends_with(&dypair.1) {
415 (&file[(dylib_prefix.len()) .. (file.len() - dypair.1.len())],
416 false)
417 } else {
418 if file.starts_with(&staticlib_prefix[..]) &&
419 file.ends_with(".a") {
420 staticlibs.push(CrateMismatch {
421 path: path.to_path_buf(),
422 got: "static".to_string()
423 });
424 }
425 return FileDoesntMatch
426 };
427 info!("lib candidate: {}", path.display());
428
429 let hash_str = hash.to_string();
430 let slot = candidates.entry(hash_str)
431 .or_insert_with(|| (HashMap::new(), HashMap::new()));
432 let (ref mut rlibs, ref mut dylibs) = *slot;
433 fs::canonicalize(path).map(|p| {
434 if rlib {
435 rlibs.insert(p, kind);
436 } else {
437 dylibs.insert(p, kind);
438 }
439 FileMatches
440 }).unwrap_or(FileDoesntMatch)
441 });
442 self.rejected_via_kind.extend(staticlibs);
443
444 // We have now collected all known libraries into a set of candidates
445 // keyed of the filename hash listed. For each filename, we also have a
446 // list of rlibs/dylibs that apply. Here, we map each of these lists
447 // (per hash), to a Library candidate for returning.
448 //
449 // A Library candidate is created if the metadata for the set of
450 // libraries corresponds to the crate id and hash criteria that this
451 // search is being performed for.
452 let mut libraries = Vec::new();
453 for (_hash, (rlibs, dylibs)) in candidates {
454 let mut metadata = None;
455 let rlib = self.extract_one(rlibs, "rlib", &mut metadata);
456 let dylib = self.extract_one(dylibs, "dylib", &mut metadata);
457 match metadata {
458 Some(metadata) => {
459 libraries.push(Library {
460 dylib: dylib,
461 rlib: rlib,
462 metadata: metadata,
463 })
464 }
465 None => {}
466 }
467 }
468
469 // Having now translated all relevant found hashes into libraries, see
470 // what we've got and figure out if we found multiple candidates for
471 // libraries or not.
472 match libraries.len() {
473 0 => None,
474 1 => Some(libraries.into_iter().next().unwrap()),
475 _ => {
476 self.sess.span_err(self.span,
477 &format!("multiple matching crates for `{}`",
478 self.crate_name));
479 self.sess.note("candidates:");
480 for lib in &libraries {
481 match lib.dylib {
482 Some((ref p, _)) => {
483 self.sess.note(&format!("path: {}",
484 p.display()));
485 }
486 None => {}
487 }
488 match lib.rlib {
489 Some((ref p, _)) => {
490 self.sess.note(&format!("path: {}",
491 p.display()));
492 }
493 None => {}
494 }
495 let data = lib.metadata.as_slice();
496 let name = decoder::get_crate_name(data);
497 note_crate_name(self.sess.diagnostic(), &name);
498 }
499 None
500 }
501 }
502 }
503
504 // Attempts to extract *one* library from the set `m`. If the set has no
505 // elements, `None` is returned. If the set has more than one element, then
506 // the errors and notes are emitted about the set of libraries.
507 //
508 // With only one library in the set, this function will extract it, and then
509 // read the metadata from it if `*slot` is `None`. If the metadata couldn't
510 // be read, it is assumed that the file isn't a valid rust library (no
511 // errors are emitted).
512 fn extract_one(&mut self, m: HashMap<PathBuf, PathKind>, flavor: &str,
513 slot: &mut Option<MetadataBlob>) -> Option<(PathBuf, PathKind)> {
514 let mut ret = None::<(PathBuf, PathKind)>;
515 let mut error = 0;
516
517 if slot.is_some() {
518 // FIXME(#10786): for an optimization, we only read one of the
519 // library's metadata sections. In theory we should
520 // read both, but reading dylib metadata is quite
521 // slow.
522 if m.is_empty() {
523 return None
524 } else if m.len() == 1 {
525 return Some(m.into_iter().next().unwrap())
526 }
527 }
528
529 for (lib, kind) in m {
530 info!("{} reading metadata from: {}", flavor, lib.display());
531 let metadata = match get_metadata_section(self.target, &lib) {
532 Ok(blob) => {
533 if self.crate_matches(blob.as_slice(), &lib) {
534 blob
535 } else {
536 info!("metadata mismatch");
537 continue
538 }
539 }
540 Err(_) => {
541 info!("no metadata found");
542 continue
543 }
544 };
545 if ret.is_some() {
546 self.sess.span_err(self.span,
547 &format!("multiple {} candidates for `{}` \
548 found",
549 flavor,
550 self.crate_name));
551 self.sess.span_note(self.span,
552 &format!(r"candidate #1: {}",
553 ret.as_ref().unwrap().0
554 .display()));
555 error = 1;
556 ret = None;
557 }
558 if error > 0 {
559 error += 1;
560 self.sess.span_note(self.span,
561 &format!(r"candidate #{}: {}", error,
562 lib.display()));
563 continue
564 }
565 *slot = Some(metadata);
566 ret = Some((lib, kind));
567 }
568 return if error > 0 {None} else {ret}
569 }
570
571 fn crate_matches(&mut self, crate_data: &[u8], libpath: &Path) -> bool {
572 if self.should_match_name {
573 match decoder::maybe_get_crate_name(crate_data) {
574 Some(ref name) if self.crate_name == *name => {}
575 _ => { info!("Rejecting via crate name"); return false }
576 }
577 }
578 let hash = match decoder::maybe_get_crate_hash(crate_data) {
579 Some(hash) => hash, None => {
580 info!("Rejecting via lack of crate hash");
581 return false;
582 }
583 };
584
585 let triple = match decoder::get_crate_triple(crate_data) {
586 None => { debug!("triple not present"); return false }
587 Some(t) => t,
588 };
589 if triple != self.triple {
590 info!("Rejecting via crate triple: expected {} got {}", self.triple, triple);
591 self.rejected_via_triple.push(CrateMismatch {
592 path: libpath.to_path_buf(),
593 got: triple.to_string()
594 });
595 return false;
596 }
597
598 match self.hash {
599 None => true,
600 Some(myhash) => {
601 if *myhash != hash {
602 info!("Rejecting via hash: expected {} got {}", *myhash, hash);
603 self.rejected_via_hash.push(CrateMismatch {
604 path: libpath.to_path_buf(),
605 got: myhash.as_str().to_string()
606 });
607 false
608 } else {
609 true
610 }
611 }
612 }
613 }
614
615
616 // Returns the corresponding (prefix, suffix) that files need to have for
617 // dynamic libraries
618 fn dylibname(&self) -> (String, String) {
619 let t = &self.target;
620 (t.options.dll_prefix.clone(), t.options.dll_suffix.clone())
621 }
622
623 fn find_commandline_library(&mut self, locs: &[String]) -> Option<Library> {
624 // First, filter out all libraries that look suspicious. We only accept
625 // files which actually exist that have the correct naming scheme for
626 // rlibs/dylibs.
627 let sess = self.sess;
628 let dylibname = self.dylibname();
629 let mut rlibs = HashMap::new();
630 let mut dylibs = HashMap::new();
631 {
632 let locs = locs.iter().map(|l| PathBuf::from(l)).filter(|loc| {
633 if !loc.exists() {
634 sess.err(&format!("extern location for {} does not exist: {}",
635 self.crate_name, loc.display()));
636 return false;
637 }
638 let file = match loc.file_name().and_then(|s| s.to_str()) {
639 Some(file) => file,
640 None => {
641 sess.err(&format!("extern location for {} is not a file: {}",
642 self.crate_name, loc.display()));
643 return false;
644 }
645 };
646 if file.starts_with("lib") && file.ends_with(".rlib") {
647 return true
648 } else {
649 let (ref prefix, ref suffix) = dylibname;
650 if file.starts_with(&prefix[..]) &&
651 file.ends_with(&suffix[..]) {
652 return true
653 }
654 }
655 sess.err(&format!("extern location for {} is of an unknown type: {}",
656 self.crate_name, loc.display()));
657 false
658 });
659
660 // Now that we have an iterator of good candidates, make sure
661 // there's at most one rlib and at most one dylib.
662 for loc in locs {
663 if loc.file_name().unwrap().to_str().unwrap().ends_with(".rlib") {
664 rlibs.insert(fs::canonicalize(&loc).unwrap(),
665 PathKind::ExternFlag);
666 } else {
667 dylibs.insert(fs::canonicalize(&loc).unwrap(),
668 PathKind::ExternFlag);
669 }
670 }
671 };
672
673 // Extract the rlib/dylib pair.
674 let mut metadata = None;
675 let rlib = self.extract_one(rlibs, "rlib", &mut metadata);
676 let dylib = self.extract_one(dylibs, "dylib", &mut metadata);
677
678 if rlib.is_none() && dylib.is_none() { return None }
679 match metadata {
680 Some(metadata) => Some(Library {
681 dylib: dylib,
682 rlib: rlib,
683 metadata: metadata,
684 }),
685 None => None,
686 }
687 }
688 }
689
690 pub fn note_crate_name(diag: &SpanHandler, name: &str) {
691 diag.handler().note(&format!("crate name: {}", name));
692 }
693
694 impl ArchiveMetadata {
695 fn new(ar: ArchiveRO) -> Option<ArchiveMetadata> {
696 let data = {
697 let section = ar.iter().find(|sect| {
698 sect.name() == Some(METADATA_FILENAME)
699 });
700 match section {
701 Some(s) => s.data() as *const [u8],
702 None => {
703 debug!("didn't find '{}' in the archive", METADATA_FILENAME);
704 return None;
705 }
706 }
707 };
708
709 Some(ArchiveMetadata {
710 _archive: ar,
711 data: data,
712 })
713 }
714
715 pub fn as_slice<'a>(&'a self) -> &'a [u8] { unsafe { &*self.data } }
716 }
717
718 // Just a small wrapper to time how long reading metadata takes.
719 fn get_metadata_section(target: &Target, filename: &Path)
720 -> Result<MetadataBlob, String> {
721 let mut ret = None;
722 let dur = Duration::span(|| {
723 ret = Some(get_metadata_section_imp(target, filename));
724 });
725 info!("reading {:?} => {:?}", filename.file_name().unwrap(), dur);
726 return ret.unwrap();;
727 }
728
729 fn get_metadata_section_imp(target: &Target, filename: &Path)
730 -> Result<MetadataBlob, String> {
731 if !filename.exists() {
732 return Err(format!("no such file: '{}'", filename.display()));
733 }
734 if filename.file_name().unwrap().to_str().unwrap().ends_with(".rlib") {
735 // Use ArchiveRO for speed here, it's backed by LLVM and uses mmap
736 // internally to read the file. We also avoid even using a memcpy by
737 // just keeping the archive along while the metadata is in use.
738 let archive = match ArchiveRO::open(filename) {
739 Some(ar) => ar,
740 None => {
741 debug!("llvm didn't like `{}`", filename.display());
742 return Err(format!("failed to read rlib metadata: '{}'",
743 filename.display()));
744 }
745 };
746 return match ArchiveMetadata::new(archive).map(|ar| MetadataArchive(ar)) {
747 None => Err(format!("failed to read rlib metadata: '{}'",
748 filename.display())),
749 Some(blob) => Ok(blob)
750 };
751 }
752 unsafe {
753 let buf = common::path2cstr(filename);
754 let mb = llvm::LLVMRustCreateMemoryBufferWithContentsOfFile(buf.as_ptr());
755 if mb as isize == 0 {
756 return Err(format!("error reading library: '{}'",
757 filename.display()))
758 }
759 let of = match ObjectFile::new(mb) {
760 Some(of) => of,
761 _ => {
762 return Err((format!("provided path not an object file: '{}'",
763 filename.display())))
764 }
765 };
766 let si = mk_section_iter(of.llof);
767 while llvm::LLVMIsSectionIteratorAtEnd(of.llof, si.llsi) == False {
768 let mut name_buf = ptr::null();
769 let name_len = llvm::LLVMRustGetSectionName(si.llsi, &mut name_buf);
770 let name = slice::from_raw_parts(name_buf as *const u8,
771 name_len as usize).to_vec();
772 let name = String::from_utf8(name).unwrap();
773 debug!("get_metadata_section: name {}", name);
774 if read_meta_section_name(target) == name {
775 let cbuf = llvm::LLVMGetSectionContents(si.llsi);
776 let csz = llvm::LLVMGetSectionSize(si.llsi) as usize;
777 let cvbuf: *const u8 = cbuf as *const u8;
778 let vlen = encoder::metadata_encoding_version.len();
779 debug!("checking {} bytes of metadata-version stamp",
780 vlen);
781 let minsz = cmp::min(vlen, csz);
782 let buf0 = slice::from_raw_parts(cvbuf, minsz);
783 let version_ok = buf0 == encoder::metadata_encoding_version;
784 if !version_ok {
785 return Err((format!("incompatible metadata version found: '{}'",
786 filename.display())));
787 }
788
789 let cvbuf1 = cvbuf.offset(vlen as isize);
790 debug!("inflating {} bytes of compressed metadata",
791 csz - vlen);
792 let bytes = slice::from_raw_parts(cvbuf1, csz - vlen);
793 match flate::inflate_bytes(bytes) {
794 Ok(inflated) => return Ok(MetadataVec(inflated)),
795 Err(_) => {}
796 }
797 }
798 llvm::LLVMMoveToNextSection(si.llsi);
799 }
800 Err(format!("metadata not found: '{}'", filename.display()))
801 }
802 }
803
804 pub fn meta_section_name(target: &Target) -> &'static str {
805 if target.options.is_like_osx {
806 "__DATA,__note.rustc"
807 } else if target.options.is_like_msvc {
808 // When using link.exe it was seen that the section name `.note.rustc`
809 // was getting shortened to `.note.ru`, and according to the PE and COFF
810 // specification:
811 //
812 // > Executable images do not use a string table and do not support
813 // > section names longer than 8 characters
814 //
815 // https://msdn.microsoft.com/en-us/library/windows/hardware/gg463119.aspx
816 //
817 // As a result, we choose a slightly shorter name! As to why
818 // `.note.rustc` works on MinGW, that's another good question...
819 ".rustc"
820 } else {
821 ".note.rustc"
822 }
823 }
824
825 pub fn read_meta_section_name(target: &Target) -> &'static str {
826 if target.options.is_like_osx {
827 "__note.rustc"
828 } else if target.options.is_like_msvc {
829 ".rustc"
830 } else {
831 ".note.rustc"
832 }
833 }
834
835 // A diagnostic function for dumping crate metadata to an output stream
836 pub fn list_file_metadata(target: &Target, path: &Path,
837 out: &mut io::Write) -> io::Result<()> {
838 match get_metadata_section(target, path) {
839 Ok(bytes) => decoder::list_crate_metadata(bytes.as_slice(), out),
840 Err(msg) => {
841 write!(out, "{}\n", msg)
842 }
843 }
844 }