]> git.proxmox.com Git - rustc.git/blob - src/librustc/metadata/loader.rs
Imported Upstream version 1.1.0+dfsg1
[rustc.git] / src / librustc / metadata / loader.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Finds crate binaries and loads their metadata
12 //!
13 //! Might I be the first to welcome you to a world of platform differences,
14 //! version requirements, dependency graphs, conflicting desires, and fun! This
15 //! is the major guts (along with metadata::creader) of the compiler for loading
16 //! crates and resolving dependencies. Let's take a tour!
17 //!
18 //! # The problem
19 //!
20 //! Each invocation of the compiler is immediately concerned with one primary
21 //! problem, to connect a set of crates to resolved crates on the filesystem.
22 //! Concretely speaking, the compiler follows roughly these steps to get here:
23 //!
24 //! 1. Discover a set of `extern crate` statements.
25 //! 2. Transform these directives into crate names. If the directive does not
26 //! have an explicit name, then the identifier is the name.
27 //! 3. For each of these crate names, find a corresponding crate on the
28 //! filesystem.
29 //!
30 //! Sounds easy, right? Let's walk into some of the nuances.
31 //!
32 //! ## Transitive Dependencies
33 //!
34 //! Let's say we've got three crates: A, B, and C. A depends on B, and B depends
35 //! on C. When we're compiling A, we primarily need to find and locate B, but we
36 //! also end up needing to find and locate C as well.
37 //!
38 //! The reason for this is that any of B's types could be composed of C's types,
39 //! any function in B could return a type from C, etc. To be able to guarantee
40 //! that we can always typecheck/translate any function, we have to have
41 //! complete knowledge of the whole ecosystem, not just our immediate
42 //! dependencies.
43 //!
44 //! So now as part of the "find a corresponding crate on the filesystem" step
45 //! above, this involves also finding all crates for *all upstream
46 //! dependencies*. This includes all dependencies transitively.
47 //!
48 //! ## Rlibs and Dylibs
49 //!
50 //! The compiler has two forms of intermediate dependencies. These are dubbed
51 //! rlibs and dylibs for the static and dynamic variants, respectively. An rlib
52 //! is a rustc-defined file format (currently just an ar archive) while a dylib
53 //! is a platform-defined dynamic library. Each library has a metadata somewhere
54 //! inside of it.
55 //!
56 //! When translating a crate name to a crate on the filesystem, we all of a
57 //! sudden need to take into account both rlibs and dylibs! Linkage later on may
58 //! use either one of these files, as each has their pros/cons. The job of crate
59 //! loading is to discover what's possible by finding all candidates.
60 //!
61 //! Most parts of this loading systems keep the dylib/rlib as just separate
62 //! variables.
63 //!
64 //! ## Where to look?
65 //!
66 //! We can't exactly scan your whole hard drive when looking for dependencies,
67 //! so we need to places to look. Currently the compiler will implicitly add the
68 //! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation,
69 //! and otherwise all -L flags are added to the search paths.
70 //!
71 //! ## What criterion to select on?
72 //!
73 //! This a pretty tricky area of loading crates. Given a file, how do we know
74 //! whether it's the right crate? Currently, the rules look along these lines:
75 //!
76 //! 1. Does the filename match an rlib/dylib pattern? That is to say, does the
77 //! filename have the right prefix/suffix?
78 //! 2. Does the filename have the right prefix for the crate name being queried?
79 //! This is filtering for files like `libfoo*.rlib` and such.
80 //! 3. Is the file an actual rust library? This is done by loading the metadata
81 //! from the library and making sure it's actually there.
82 //! 4. Does the name in the metadata agree with the name of the library?
83 //! 5. Does the target in the metadata agree with the current target?
84 //! 6. Does the SVH match? (more on this later)
85 //!
86 //! If the file answers `yes` to all these questions, then the file is
87 //! considered as being *candidate* for being accepted. It is illegal to have
88 //! more than two candidates as the compiler has no method by which to resolve
89 //! this conflict. Additionally, rlib/dylib candidates are considered
90 //! separately.
91 //!
92 //! After all this has happened, we have 1 or two files as candidates. These
93 //! represent the rlib/dylib file found for a library, and they're returned as
94 //! being found.
95 //!
96 //! ### What about versions?
97 //!
98 //! A lot of effort has been put forth to remove versioning from the compiler.
99 //! There have been forays in the past to have versioning baked in, but it was
100 //! largely always deemed insufficient to the point that it was recognized that
101 //! it's probably something the compiler shouldn't do anyway due to its
102 //! complicated nature and the state of the half-baked solutions.
103 //!
104 //! With a departure from versioning, the primary criterion for loading crates
105 //! is just the name of a crate. If we stopped here, it would imply that you
106 //! could never link two crates of the same name from different sources
107 //! together, which is clearly a bad state to be in.
108 //!
109 //! To resolve this problem, we come to the next section!
110 //!
111 //! # Expert Mode
112 //!
113 //! A number of flags have been added to the compiler to solve the "version
114 //! problem" in the previous section, as well as generally enabling more
115 //! powerful usage of the crate loading system of the compiler. The goal of
116 //! these flags and options are to enable third-party tools to drive the
117 //! compiler with prior knowledge about how the world should look.
118 //!
119 //! ## The `--extern` flag
120 //!
121 //! The compiler accepts a flag of this form a number of times:
122 //!
123 //! ```text
124 //! --extern crate-name=path/to/the/crate.rlib
125 //! ```
126 //!
127 //! This flag is basically the following letter to the compiler:
128 //!
129 //! > Dear rustc,
130 //! >
131 //! > When you are attempting to load the immediate dependency `crate-name`, I
132 //! > would like you to assume that the library is located at
133 //! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not
134 //! > assume that the path I specified has the name `crate-name`.
135 //!
136 //! This flag basically overrides most matching logic except for validating that
137 //! the file is indeed a rust library. The same `crate-name` can be specified
138 //! twice to specify the rlib/dylib pair.
139 //!
140 //! ## Enabling "multiple versions"
141 //!
142 //! This basically boils down to the ability to specify arbitrary packages to
143 //! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it
144 //! would look something like:
145 //!
146 //! ```ignore
147 //! extern crate b1;
148 //! extern crate b2;
149 //!
150 //! fn main() {}
151 //! ```
152 //!
153 //! and the compiler would be invoked as:
154 //!
155 //! ```text
156 //! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib
157 //! ```
158 //!
159 //! In this scenario there are two crates named `b` and the compiler must be
160 //! manually driven to be informed where each crate is.
161 //!
162 //! ## Frobbing symbols
163 //!
164 //! One of the immediate problems with linking the same library together twice
165 //! in the same problem is dealing with duplicate symbols. The primary way to
166 //! deal with this in rustc is to add hashes to the end of each symbol.
167 //!
168 //! In order to force hashes to change between versions of a library, if
169 //! desired, the compiler exposes an option `-C metadata=foo`, which is used to
170 //! initially seed each symbol hash. The string `foo` is prepended to each
171 //! string-to-hash to ensure that symbols change over time.
172 //!
173 //! ## Loading transitive dependencies
174 //!
175 //! Dealing with same-named-but-distinct crates is not just a local problem, but
176 //! one that also needs to be dealt with for transitive dependencies. Note that
177 //! in the letter above `--extern` flags only apply to the *local* set of
178 //! dependencies, not the upstream transitive dependencies. Consider this
179 //! dependency graph:
180 //!
181 //! ```text
182 //! A.1 A.2
183 //! | |
184 //! | |
185 //! B C
186 //! \ /
187 //! \ /
188 //! D
189 //! ```
190 //!
191 //! In this scenario, when we compile `D`, we need to be able to distinctly
192 //! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these
193 //! transitive dependencies.
194 //!
195 //! Note that the key idea here is that `B` and `C` are both *already compiled*.
196 //! That is, they have already resolved their dependencies. Due to unrelated
197 //! technical reasons, when a library is compiled, it is only compatible with
198 //! the *exact same* version of the upstream libraries it was compiled against.
199 //! We use the "Strict Version Hash" to identify the exact copy of an upstream
200 //! library.
201 //!
202 //! With this knowledge, we know that `B` and `C` will depend on `A` with
203 //! different SVH values, so we crawl the normal `-L` paths looking for
204 //! `liba*.rlib` and filter based on the contained SVH.
205 //!
206 //! In the end, this ends up not needing `--extern` to specify upstream
207 //! transitive dependencies.
208 //!
209 //! # Wrapping up
210 //!
211 //! That's the general overview of loading crates in the compiler, but it's by
212 //! no means all of the necessary details. Take a look at the rest of
213 //! metadata::loader or metadata::creader for all the juicy details!
214
215 use back::archive::METADATA_FILENAME;
216 use back::svh::Svh;
217 use session::Session;
218 use session::search_paths::PathKind;
219 use llvm;
220 use llvm::{False, ObjectFile, mk_section_iter};
221 use llvm::archive_ro::ArchiveRO;
222 use metadata::cstore::{MetadataBlob, MetadataVec, MetadataArchive};
223 use metadata::decoder;
224 use metadata::encoder;
225 use metadata::filesearch::{FileSearch, FileMatches, FileDoesntMatch};
226 use syntax::codemap::Span;
227 use syntax::diagnostic::SpanHandler;
228 use util::common;
229 use rustc_back::target::Target;
230
231 use std::cmp;
232 use std::collections::HashMap;
233 use std::fs;
234 use std::io::prelude::*;
235 use std::io;
236 use std::path::{Path, PathBuf};
237 use std::ptr;
238 use std::slice;
239 use std::time::Duration;
240
241 use flate;
242
243 pub struct CrateMismatch {
244 path: PathBuf,
245 got: String,
246 }
247
248 pub struct Context<'a> {
249 pub sess: &'a Session,
250 pub span: Span,
251 pub ident: &'a str,
252 pub crate_name: &'a str,
253 pub hash: Option<&'a Svh>,
254 // points to either self.sess.target.target or self.sess.host, must match triple
255 pub target: &'a Target,
256 pub triple: &'a str,
257 pub filesearch: FileSearch<'a>,
258 pub root: &'a Option<CratePaths>,
259 pub rejected_via_hash: Vec<CrateMismatch>,
260 pub rejected_via_triple: Vec<CrateMismatch>,
261 pub rejected_via_kind: Vec<CrateMismatch>,
262 pub should_match_name: bool,
263 }
264
265 pub struct Library {
266 pub dylib: Option<(PathBuf, PathKind)>,
267 pub rlib: Option<(PathBuf, PathKind)>,
268 pub metadata: MetadataBlob,
269 }
270
271 pub struct ArchiveMetadata {
272 _archive: ArchiveRO,
273 // points into self._archive
274 data: *const [u8],
275 }
276
277 pub struct CratePaths {
278 pub ident: String,
279 pub dylib: Option<PathBuf>,
280 pub rlib: Option<PathBuf>
281 }
282
283 impl CratePaths {
284 fn paths(&self) -> Vec<PathBuf> {
285 match (&self.dylib, &self.rlib) {
286 (&None, &None) => vec!(),
287 (&Some(ref p), &None) |
288 (&None, &Some(ref p)) => vec!(p.clone()),
289 (&Some(ref p1), &Some(ref p2)) => vec!(p1.clone(), p2.clone()),
290 }
291 }
292 }
293
294 impl<'a> Context<'a> {
295 pub fn maybe_load_library_crate(&mut self) -> Option<Library> {
296 self.find_library_crate()
297 }
298
299 pub fn load_library_crate(&mut self) -> Library {
300 match self.find_library_crate() {
301 Some(t) => t,
302 None => {
303 self.report_load_errs();
304 unreachable!()
305 }
306 }
307 }
308
309 pub fn report_load_errs(&mut self) {
310 let message = if !self.rejected_via_hash.is_empty() {
311 format!("found possibly newer version of crate `{}`",
312 self.ident)
313 } else if !self.rejected_via_triple.is_empty() {
314 format!("couldn't find crate `{}` with expected target triple {}",
315 self.ident, self.triple)
316 } else if !self.rejected_via_kind.is_empty() {
317 format!("found staticlib `{}` instead of rlib or dylib", self.ident)
318 } else {
319 format!("can't find crate for `{}`", self.ident)
320 };
321 let message = match self.root {
322 &None => message,
323 &Some(ref r) => format!("{} which `{}` depends on",
324 message, r.ident)
325 };
326 self.sess.span_err(self.span, &message[..]);
327
328 if !self.rejected_via_triple.is_empty() {
329 let mismatches = self.rejected_via_triple.iter();
330 for (i, &CrateMismatch{ ref path, ref got }) in mismatches.enumerate() {
331 self.sess.fileline_note(self.span,
332 &format!("crate `{}`, path #{}, triple {}: {}",
333 self.ident, i+1, got, path.display()));
334 }
335 }
336 if !self.rejected_via_hash.is_empty() {
337 self.sess.span_note(self.span, "perhaps this crate needs \
338 to be recompiled?");
339 let mismatches = self.rejected_via_hash.iter();
340 for (i, &CrateMismatch{ ref path, .. }) in mismatches.enumerate() {
341 self.sess.fileline_note(self.span,
342 &format!("crate `{}` path #{}: {}",
343 self.ident, i+1, path.display()));
344 }
345 match self.root {
346 &None => {}
347 &Some(ref r) => {
348 for (i, path) in r.paths().iter().enumerate() {
349 self.sess.fileline_note(self.span,
350 &format!("crate `{}` path #{}: {}",
351 r.ident, i+1, path.display()));
352 }
353 }
354 }
355 }
356 if !self.rejected_via_kind.is_empty() {
357 self.sess.fileline_help(self.span, "please recompile this crate using \
358 --crate-type lib");
359 let mismatches = self.rejected_via_kind.iter();
360 for (i, &CrateMismatch { ref path, .. }) in mismatches.enumerate() {
361 self.sess.fileline_note(self.span,
362 &format!("crate `{}` path #{}: {}",
363 self.ident, i+1, path.display()));
364 }
365 }
366 self.sess.abort_if_errors();
367 }
368
369 fn find_library_crate(&mut self) -> Option<Library> {
370 // If an SVH is specified, then this is a transitive dependency that
371 // must be loaded via -L plus some filtering.
372 if self.hash.is_none() {
373 self.should_match_name = false;
374 if let Some(s) = self.sess.opts.externs.get(self.crate_name) {
375 return self.find_commandline_library(s);
376 }
377 self.should_match_name = true;
378 }
379
380 let dypair = self.dylibname();
381
382 // want: crate_name.dir_part() + prefix + crate_name.file_part + "-"
383 let dylib_prefix = format!("{}{}", dypair.0, self.crate_name);
384 let rlib_prefix = format!("lib{}", self.crate_name);
385 let staticlib_prefix = format!("lib{}", self.crate_name);
386
387 let mut candidates = HashMap::new();
388 let mut staticlibs = vec!();
389
390 // First, find all possible candidate rlibs and dylibs purely based on
391 // the name of the files themselves. We're trying to match against an
392 // exact crate name and a possibly an exact hash.
393 //
394 // During this step, we can filter all found libraries based on the
395 // name and id found in the crate id (we ignore the path portion for
396 // filename matching), as well as the exact hash (if specified). If we
397 // end up having many candidates, we must look at the metadata to
398 // perform exact matches against hashes/crate ids. Note that opening up
399 // the metadata is where we do an exact match against the full contents
400 // of the crate id (path/name/id).
401 //
402 // The goal of this step is to look at as little metadata as possible.
403 self.filesearch.search(|path, kind| {
404 let file = match path.file_name().and_then(|s| s.to_str()) {
405 None => return FileDoesntMatch,
406 Some(file) => file,
407 };
408 let (hash, rlib) = if file.starts_with(&rlib_prefix[..]) &&
409 file.ends_with(".rlib") {
410 (&file[(rlib_prefix.len()) .. (file.len() - ".rlib".len())],
411 true)
412 } else if file.starts_with(&dylib_prefix) &&
413 file.ends_with(&dypair.1) {
414 (&file[(dylib_prefix.len()) .. (file.len() - dypair.1.len())],
415 false)
416 } else {
417 if file.starts_with(&staticlib_prefix[..]) &&
418 file.ends_with(".a") {
419 staticlibs.push(CrateMismatch {
420 path: path.to_path_buf(),
421 got: "static".to_string()
422 });
423 }
424 return FileDoesntMatch
425 };
426 info!("lib candidate: {}", path.display());
427
428 let hash_str = hash.to_string();
429 let slot = candidates.entry(hash_str)
430 .or_insert_with(|| (HashMap::new(), HashMap::new()));
431 let (ref mut rlibs, ref mut dylibs) = *slot;
432 if rlib {
433 rlibs.insert(fs::canonicalize(path).unwrap(), kind);
434 } else {
435 dylibs.insert(fs::canonicalize(path).unwrap(), kind);
436 }
437
438 FileMatches
439 });
440 self.rejected_via_kind.extend(staticlibs.into_iter());
441
442 // We have now collected all known libraries into a set of candidates
443 // keyed of the filename hash listed. For each filename, we also have a
444 // list of rlibs/dylibs that apply. Here, we map each of these lists
445 // (per hash), to a Library candidate for returning.
446 //
447 // A Library candidate is created if the metadata for the set of
448 // libraries corresponds to the crate id and hash criteria that this
449 // search is being performed for.
450 let mut libraries = Vec::new();
451 for (_hash, (rlibs, dylibs)) in candidates {
452 let mut metadata = None;
453 let rlib = self.extract_one(rlibs, "rlib", &mut metadata);
454 let dylib = self.extract_one(dylibs, "dylib", &mut metadata);
455 match metadata {
456 Some(metadata) => {
457 libraries.push(Library {
458 dylib: dylib,
459 rlib: rlib,
460 metadata: metadata,
461 })
462 }
463 None => {}
464 }
465 }
466
467 // Having now translated all relevant found hashes into libraries, see
468 // what we've got and figure out if we found multiple candidates for
469 // libraries or not.
470 match libraries.len() {
471 0 => None,
472 1 => Some(libraries.into_iter().next().unwrap()),
473 _ => {
474 self.sess.span_err(self.span,
475 &format!("multiple matching crates for `{}`",
476 self.crate_name));
477 self.sess.note("candidates:");
478 for lib in &libraries {
479 match lib.dylib {
480 Some((ref p, _)) => {
481 self.sess.note(&format!("path: {}",
482 p.display()));
483 }
484 None => {}
485 }
486 match lib.rlib {
487 Some((ref p, _)) => {
488 self.sess.note(&format!("path: {}",
489 p.display()));
490 }
491 None => {}
492 }
493 let data = lib.metadata.as_slice();
494 let name = decoder::get_crate_name(data);
495 note_crate_name(self.sess.diagnostic(), &name);
496 }
497 None
498 }
499 }
500 }
501
502 // Attempts to extract *one* library from the set `m`. If the set has no
503 // elements, `None` is returned. If the set has more than one element, then
504 // the errors and notes are emitted about the set of libraries.
505 //
506 // With only one library in the set, this function will extract it, and then
507 // read the metadata from it if `*slot` is `None`. If the metadata couldn't
508 // be read, it is assumed that the file isn't a valid rust library (no
509 // errors are emitted).
510 fn extract_one(&mut self, m: HashMap<PathBuf, PathKind>, flavor: &str,
511 slot: &mut Option<MetadataBlob>) -> Option<(PathBuf, PathKind)> {
512 let mut ret = None::<(PathBuf, PathKind)>;
513 let mut error = 0;
514
515 if slot.is_some() {
516 // FIXME(#10786): for an optimization, we only read one of the
517 // library's metadata sections. In theory we should
518 // read both, but reading dylib metadata is quite
519 // slow.
520 if m.is_empty() {
521 return None
522 } else if m.len() == 1 {
523 return Some(m.into_iter().next().unwrap())
524 }
525 }
526
527 for (lib, kind) in m {
528 info!("{} reading metadata from: {}", flavor, lib.display());
529 let metadata = match get_metadata_section(self.target.options.is_like_osx,
530 &lib) {
531 Ok(blob) => {
532 if self.crate_matches(blob.as_slice(), &lib) {
533 blob
534 } else {
535 info!("metadata mismatch");
536 continue
537 }
538 }
539 Err(_) => {
540 info!("no metadata found");
541 continue
542 }
543 };
544 if ret.is_some() {
545 self.sess.span_err(self.span,
546 &format!("multiple {} candidates for `{}` \
547 found",
548 flavor,
549 self.crate_name));
550 self.sess.span_note(self.span,
551 &format!(r"candidate #1: {}",
552 ret.as_ref().unwrap().0
553 .display()));
554 error = 1;
555 ret = None;
556 }
557 if error > 0 {
558 error += 1;
559 self.sess.span_note(self.span,
560 &format!(r"candidate #{}: {}", error,
561 lib.display()));
562 continue
563 }
564 *slot = Some(metadata);
565 ret = Some((lib, kind));
566 }
567 return if error > 0 {None} else {ret}
568 }
569
570 fn crate_matches(&mut self, crate_data: &[u8], libpath: &Path) -> bool {
571 if self.should_match_name {
572 match decoder::maybe_get_crate_name(crate_data) {
573 Some(ref name) if self.crate_name == *name => {}
574 _ => { info!("Rejecting via crate name"); return false }
575 }
576 }
577 let hash = match decoder::maybe_get_crate_hash(crate_data) {
578 Some(hash) => hash, None => {
579 info!("Rejecting via lack of crate hash");
580 return false;
581 }
582 };
583
584 let triple = match decoder::get_crate_triple(crate_data) {
585 None => { debug!("triple not present"); return false }
586 Some(t) => t,
587 };
588 if triple != self.triple {
589 info!("Rejecting via crate triple: expected {} got {}", self.triple, triple);
590 self.rejected_via_triple.push(CrateMismatch {
591 path: libpath.to_path_buf(),
592 got: triple.to_string()
593 });
594 return false;
595 }
596
597 match self.hash {
598 None => true,
599 Some(myhash) => {
600 if *myhash != hash {
601 info!("Rejecting via hash: expected {} got {}", *myhash, hash);
602 self.rejected_via_hash.push(CrateMismatch {
603 path: libpath.to_path_buf(),
604 got: myhash.as_str().to_string()
605 });
606 false
607 } else {
608 true
609 }
610 }
611 }
612 }
613
614
615 // Returns the corresponding (prefix, suffix) that files need to have for
616 // dynamic libraries
617 fn dylibname(&self) -> (String, String) {
618 let t = &self.target;
619 (t.options.dll_prefix.clone(), t.options.dll_suffix.clone())
620 }
621
622 fn find_commandline_library(&mut self, locs: &[String]) -> Option<Library> {
623 // First, filter out all libraries that look suspicious. We only accept
624 // files which actually exist that have the correct naming scheme for
625 // rlibs/dylibs.
626 let sess = self.sess;
627 let dylibname = self.dylibname();
628 let mut rlibs = HashMap::new();
629 let mut dylibs = HashMap::new();
630 {
631 let locs = locs.iter().map(|l| PathBuf::from(l)).filter(|loc| {
632 if !loc.exists() {
633 sess.err(&format!("extern location for {} does not exist: {}",
634 self.crate_name, loc.display()));
635 return false;
636 }
637 let file = match loc.file_name().and_then(|s| s.to_str()) {
638 Some(file) => file,
639 None => {
640 sess.err(&format!("extern location for {} is not a file: {}",
641 self.crate_name, loc.display()));
642 return false;
643 }
644 };
645 if file.starts_with("lib") && file.ends_with(".rlib") {
646 return true
647 } else {
648 let (ref prefix, ref suffix) = dylibname;
649 if file.starts_with(&prefix[..]) &&
650 file.ends_with(&suffix[..]) {
651 return true
652 }
653 }
654 sess.err(&format!("extern location for {} is of an unknown type: {}",
655 self.crate_name, loc.display()));
656 false
657 });
658
659 // Now that we have an iterator of good candidates, make sure
660 // there's at most one rlib and at most one dylib.
661 for loc in locs {
662 if loc.file_name().unwrap().to_str().unwrap().ends_with(".rlib") {
663 rlibs.insert(fs::canonicalize(&loc).unwrap(),
664 PathKind::ExternFlag);
665 } else {
666 dylibs.insert(fs::canonicalize(&loc).unwrap(),
667 PathKind::ExternFlag);
668 }
669 }
670 };
671
672 // Extract the rlib/dylib pair.
673 let mut metadata = None;
674 let rlib = self.extract_one(rlibs, "rlib", &mut metadata);
675 let dylib = self.extract_one(dylibs, "dylib", &mut metadata);
676
677 if rlib.is_none() && dylib.is_none() { return None }
678 match metadata {
679 Some(metadata) => Some(Library {
680 dylib: dylib,
681 rlib: rlib,
682 metadata: metadata,
683 }),
684 None => None,
685 }
686 }
687 }
688
689 pub fn note_crate_name(diag: &SpanHandler, name: &str) {
690 diag.handler().note(&format!("crate name: {}", name));
691 }
692
693 impl ArchiveMetadata {
694 fn new(ar: ArchiveRO) -> Option<ArchiveMetadata> {
695 let data = {
696 let section = ar.iter().find(|sect| {
697 sect.name() == Some(METADATA_FILENAME)
698 });
699 match section {
700 Some(s) => s.data() as *const [u8],
701 None => {
702 debug!("didn't find '{}' in the archive", METADATA_FILENAME);
703 return None;
704 }
705 }
706 };
707
708 Some(ArchiveMetadata {
709 _archive: ar,
710 data: data,
711 })
712 }
713
714 pub fn as_slice<'a>(&'a self) -> &'a [u8] { unsafe { &*self.data } }
715 }
716
717 // Just a small wrapper to time how long reading metadata takes.
718 fn get_metadata_section(is_osx: bool, filename: &Path) -> Result<MetadataBlob, String> {
719 let mut ret = None;
720 let dur = Duration::span(|| {
721 ret = Some(get_metadata_section_imp(is_osx, filename));
722 });
723 info!("reading {:?} => {}", filename.file_name().unwrap(), dur);
724 return ret.unwrap();;
725 }
726
727 fn get_metadata_section_imp(is_osx: bool, filename: &Path) -> Result<MetadataBlob, String> {
728 if !filename.exists() {
729 return Err(format!("no such file: '{}'", filename.display()));
730 }
731 if filename.file_name().unwrap().to_str().unwrap().ends_with(".rlib") {
732 // Use ArchiveRO for speed here, it's backed by LLVM and uses mmap
733 // internally to read the file. We also avoid even using a memcpy by
734 // just keeping the archive along while the metadata is in use.
735 let archive = match ArchiveRO::open(filename) {
736 Some(ar) => ar,
737 None => {
738 debug!("llvm didn't like `{}`", filename.display());
739 return Err(format!("failed to read rlib metadata: '{}'",
740 filename.display()));
741 }
742 };
743 return match ArchiveMetadata::new(archive).map(|ar| MetadataArchive(ar)) {
744 None => Err(format!("failed to read rlib metadata: '{}'",
745 filename.display())),
746 Some(blob) => Ok(blob)
747 };
748 }
749 unsafe {
750 let buf = common::path2cstr(filename);
751 let mb = llvm::LLVMRustCreateMemoryBufferWithContentsOfFile(buf.as_ptr());
752 if mb as isize == 0 {
753 return Err(format!("error reading library: '{}'",
754 filename.display()))
755 }
756 let of = match ObjectFile::new(mb) {
757 Some(of) => of,
758 _ => {
759 return Err((format!("provided path not an object file: '{}'",
760 filename.display())))
761 }
762 };
763 let si = mk_section_iter(of.llof);
764 while llvm::LLVMIsSectionIteratorAtEnd(of.llof, si.llsi) == False {
765 let mut name_buf = ptr::null();
766 let name_len = llvm::LLVMRustGetSectionName(si.llsi, &mut name_buf);
767 let name = slice::from_raw_parts(name_buf as *const u8,
768 name_len as usize).to_vec();
769 let name = String::from_utf8(name).unwrap();
770 debug!("get_metadata_section: name {}", name);
771 if read_meta_section_name(is_osx) == name {
772 let cbuf = llvm::LLVMGetSectionContents(si.llsi);
773 let csz = llvm::LLVMGetSectionSize(si.llsi) as usize;
774 let cvbuf: *const u8 = cbuf as *const u8;
775 let vlen = encoder::metadata_encoding_version.len();
776 debug!("checking {} bytes of metadata-version stamp",
777 vlen);
778 let minsz = cmp::min(vlen, csz);
779 let buf0 = slice::from_raw_parts(cvbuf, minsz);
780 let version_ok = buf0 == encoder::metadata_encoding_version;
781 if !version_ok {
782 return Err((format!("incompatible metadata version found: '{}'",
783 filename.display())));
784 }
785
786 let cvbuf1 = cvbuf.offset(vlen as isize);
787 debug!("inflating {} bytes of compressed metadata",
788 csz - vlen);
789 let bytes = slice::from_raw_parts(cvbuf1, csz - vlen);
790 match flate::inflate_bytes(bytes) {
791 Ok(inflated) => return Ok(MetadataVec(inflated)),
792 Err(_) => {}
793 }
794 }
795 llvm::LLVMMoveToNextSection(si.llsi);
796 }
797 Err(format!("metadata not found: '{}'", filename.display()))
798 }
799 }
800
801 pub fn meta_section_name(is_osx: bool) -> &'static str {
802 if is_osx {
803 "__DATA,__note.rustc"
804 } else {
805 ".note.rustc"
806 }
807 }
808
809 pub fn read_meta_section_name(is_osx: bool) -> &'static str {
810 if is_osx {
811 "__note.rustc"
812 } else {
813 ".note.rustc"
814 }
815 }
816
817 // A diagnostic function for dumping crate metadata to an output stream
818 pub fn list_file_metadata(is_osx: bool, path: &Path,
819 out: &mut io::Write) -> io::Result<()> {
820 match get_metadata_section(is_osx, path) {
821 Ok(bytes) => decoder::list_crate_metadata(bytes.as_slice(), out),
822 Err(msg) => {
823 write!(out, "{}\n", msg)
824 }
825 }
826 }