]> git.proxmox.com Git - rustc.git/blob - src/librustc/middle/check_match.rs
Imported Upstream version 1.6.0+dfsg1
[rustc.git] / src / librustc / middle / check_match.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 pub use self::Constructor::*;
12 use self::Usefulness::*;
13 use self::WitnessPreference::*;
14
15 use middle::const_eval::{compare_const_vals, ConstVal};
16 use middle::const_eval::{eval_const_expr, eval_const_expr_partial};
17 use middle::const_eval::{const_expr_to_pat, lookup_const_by_id};
18 use middle::const_eval::EvalHint::ExprTypeChecked;
19 use middle::def::*;
20 use middle::def_id::{DefId};
21 use middle::expr_use_visitor::{ConsumeMode, Delegate, ExprUseVisitor, Init};
22 use middle::expr_use_visitor::{JustWrite, LoanCause, MutateMode};
23 use middle::expr_use_visitor::WriteAndRead;
24 use middle::expr_use_visitor as euv;
25 use middle::infer;
26 use middle::mem_categorization::{cmt};
27 use middle::pat_util::*;
28 use middle::ty::*;
29 use middle::ty;
30 use std::cmp::Ordering;
31 use std::fmt;
32 use std::iter::{FromIterator, IntoIterator, repeat};
33
34 use rustc_front::hir;
35 use rustc_front::hir::Pat;
36 use rustc_front::intravisit::{self, Visitor, FnKind};
37 use rustc_front::util as front_util;
38 use rustc_back::slice;
39
40 use syntax::ast::{self, DUMMY_NODE_ID, NodeId};
41 use syntax::ast_util;
42 use syntax::codemap::{Span, Spanned, DUMMY_SP};
43 use rustc_front::fold::{Folder, noop_fold_pat};
44 use rustc_front::print::pprust::pat_to_string;
45 use syntax::ptr::P;
46 use util::nodemap::FnvHashMap;
47
48 pub const DUMMY_WILD_PAT: &'static Pat = &Pat {
49 id: DUMMY_NODE_ID,
50 node: hir::PatWild,
51 span: DUMMY_SP
52 };
53
54 struct Matrix<'a>(Vec<Vec<&'a Pat>>);
55
56 /// Pretty-printer for matrices of patterns, example:
57 /// ++++++++++++++++++++++++++
58 /// + _ + [] +
59 /// ++++++++++++++++++++++++++
60 /// + true + [First] +
61 /// ++++++++++++++++++++++++++
62 /// + true + [Second(true)] +
63 /// ++++++++++++++++++++++++++
64 /// + false + [_] +
65 /// ++++++++++++++++++++++++++
66 /// + _ + [_, _, ..tail] +
67 /// ++++++++++++++++++++++++++
68 impl<'a> fmt::Debug for Matrix<'a> {
69 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
70 try!(write!(f, "\n"));
71
72 let &Matrix(ref m) = self;
73 let pretty_printed_matrix: Vec<Vec<String>> = m.iter().map(|row| {
74 row.iter()
75 .map(|&pat| pat_to_string(&*pat))
76 .collect::<Vec<String>>()
77 }).collect();
78
79 let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0);
80 assert!(m.iter().all(|row| row.len() == column_count));
81 let column_widths: Vec<usize> = (0..column_count).map(|col| {
82 pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0)
83 }).collect();
84
85 let total_width = column_widths.iter().cloned().sum::<usize>() + column_count * 3 + 1;
86 let br = repeat('+').take(total_width).collect::<String>();
87 try!(write!(f, "{}\n", br));
88 for row in pretty_printed_matrix {
89 try!(write!(f, "+"));
90 for (column, pat_str) in row.into_iter().enumerate() {
91 try!(write!(f, " "));
92 try!(write!(f, "{:1$}", pat_str, column_widths[column]));
93 try!(write!(f, " +"));
94 }
95 try!(write!(f, "\n"));
96 try!(write!(f, "{}\n", br));
97 }
98 Ok(())
99 }
100 }
101
102 impl<'a> FromIterator<Vec<&'a Pat>> for Matrix<'a> {
103 fn from_iter<T: IntoIterator<Item=Vec<&'a Pat>>>(iter: T) -> Matrix<'a> {
104 Matrix(iter.into_iter().collect())
105 }
106 }
107
108 //NOTE: appears to be the only place other then InferCtxt to contain a ParamEnv
109 pub struct MatchCheckCtxt<'a, 'tcx: 'a> {
110 pub tcx: &'a ty::ctxt<'tcx>,
111 pub param_env: ParameterEnvironment<'a, 'tcx>,
112 }
113
114 #[derive(Clone, PartialEq)]
115 pub enum Constructor {
116 /// The constructor of all patterns that don't vary by constructor,
117 /// e.g. struct patterns and fixed-length arrays.
118 Single,
119 /// Enum variants.
120 Variant(DefId),
121 /// Literal values.
122 ConstantValue(ConstVal),
123 /// Ranges of literal values (2..5).
124 ConstantRange(ConstVal, ConstVal),
125 /// Array patterns of length n.
126 Slice(usize),
127 /// Array patterns with a subslice.
128 SliceWithSubslice(usize, usize)
129 }
130
131 #[derive(Clone, PartialEq)]
132 enum Usefulness {
133 Useful,
134 UsefulWithWitness(Vec<P<Pat>>),
135 NotUseful
136 }
137
138 #[derive(Copy, Clone)]
139 enum WitnessPreference {
140 ConstructWitness,
141 LeaveOutWitness
142 }
143
144 impl<'a, 'tcx, 'v> Visitor<'v> for MatchCheckCtxt<'a, 'tcx> {
145 fn visit_expr(&mut self, ex: &hir::Expr) {
146 check_expr(self, ex);
147 }
148 fn visit_local(&mut self, l: &hir::Local) {
149 check_local(self, l);
150 }
151 fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v hir::FnDecl,
152 b: &'v hir::Block, s: Span, n: NodeId) {
153 check_fn(self, fk, fd, b, s, n);
154 }
155 }
156
157 pub fn check_crate(tcx: &ty::ctxt) {
158 tcx.map.krate().visit_all_items(&mut MatchCheckCtxt {
159 tcx: tcx,
160 param_env: tcx.empty_parameter_environment(),
161 });
162 tcx.sess.abort_if_errors();
163 }
164
165 fn check_expr(cx: &mut MatchCheckCtxt, ex: &hir::Expr) {
166 intravisit::walk_expr(cx, ex);
167 match ex.node {
168 hir::ExprMatch(ref scrut, ref arms, source) => {
169 for arm in arms {
170 // First, check legality of move bindings.
171 check_legality_of_move_bindings(cx,
172 arm.guard.is_some(),
173 &arm.pats);
174
175 // Second, if there is a guard on each arm, make sure it isn't
176 // assigning or borrowing anything mutably.
177 match arm.guard {
178 Some(ref guard) => check_for_mutation_in_guard(cx, &**guard),
179 None => {}
180 }
181 }
182
183 let mut static_inliner = StaticInliner::new(cx.tcx, None);
184 let inlined_arms = arms.iter().map(|arm| {
185 (arm.pats.iter().map(|pat| {
186 static_inliner.fold_pat((*pat).clone())
187 }).collect(), arm.guard.as_ref().map(|e| &**e))
188 }).collect::<Vec<(Vec<P<Pat>>, Option<&hir::Expr>)>>();
189
190 // Bail out early if inlining failed.
191 if static_inliner.failed {
192 return;
193 }
194
195 for pat in inlined_arms
196 .iter()
197 .flat_map(|&(ref pats, _)| pats) {
198 // Third, check legality of move bindings.
199 check_legality_of_bindings_in_at_patterns(cx, &**pat);
200
201 // Fourth, check if there are any references to NaN that we should warn about.
202 check_for_static_nan(cx, &**pat);
203
204 // Fifth, check if for any of the patterns that match an enumerated type
205 // are bindings with the same name as one of the variants of said type.
206 check_for_bindings_named_the_same_as_variants(cx, &**pat);
207 }
208
209 // Fourth, check for unreachable arms.
210 check_arms(cx, &inlined_arms[..], source);
211
212 // Finally, check if the whole match expression is exhaustive.
213 // Check for empty enum, because is_useful only works on inhabited types.
214 let pat_ty = cx.tcx.node_id_to_type(scrut.id);
215 if inlined_arms.is_empty() {
216 if !pat_ty.is_empty(cx.tcx) {
217 // We know the type is inhabited, so this must be wrong
218 span_err!(cx.tcx.sess, ex.span, E0002,
219 "non-exhaustive patterns: type {} is non-empty",
220 pat_ty);
221 span_help!(cx.tcx.sess, ex.span,
222 "Please ensure that all possible cases are being handled; \
223 possibly adding wildcards or more match arms.");
224 }
225 // If the type *is* empty, it's vacuously exhaustive
226 return;
227 }
228
229 let matrix: Matrix = inlined_arms
230 .iter()
231 .filter(|&&(_, guard)| guard.is_none())
232 .flat_map(|arm| &arm.0)
233 .map(|pat| vec![&**pat])
234 .collect();
235 check_exhaustive(cx, ex.span, &matrix, source);
236 },
237 _ => ()
238 }
239 }
240
241 fn check_for_bindings_named_the_same_as_variants(cx: &MatchCheckCtxt, pat: &Pat) {
242 front_util::walk_pat(pat, |p| {
243 match p.node {
244 hir::PatIdent(hir::BindByValue(hir::MutImmutable), ident, None) => {
245 let pat_ty = cx.tcx.pat_ty(p);
246 if let ty::TyEnum(edef, _) = pat_ty.sty {
247 let def = cx.tcx.def_map.borrow().get(&p.id).map(|d| d.full_def());
248 if let Some(DefLocal(..)) = def {
249 if edef.variants.iter().any(|variant|
250 variant.name == ident.node.unhygienic_name
251 && variant.kind() == VariantKind::Unit
252 ) {
253 span_warn!(cx.tcx.sess, p.span, E0170,
254 "pattern binding `{}` is named the same as one \
255 of the variants of the type `{}`",
256 ident.node, pat_ty);
257 fileline_help!(cx.tcx.sess, p.span,
258 "if you meant to match on a variant, \
259 consider making the path in the pattern qualified: `{}::{}`",
260 pat_ty, ident.node);
261 }
262 }
263 }
264 }
265 _ => ()
266 }
267 true
268 });
269 }
270
271 // Check that we do not match against a static NaN (#6804)
272 fn check_for_static_nan(cx: &MatchCheckCtxt, pat: &Pat) {
273 front_util::walk_pat(pat, |p| {
274 if let hir::PatLit(ref expr) = p.node {
275 match eval_const_expr_partial(cx.tcx, &**expr, ExprTypeChecked, None) {
276 Ok(ConstVal::Float(f)) if f.is_nan() => {
277 span_warn!(cx.tcx.sess, p.span, E0003,
278 "unmatchable NaN in pattern, \
279 use the is_nan method in a guard instead");
280 }
281 Ok(_) => {}
282
283 Err(err) => {
284 span_err!(cx.tcx.sess, err.span, E0471,
285 "constant evaluation error: {}",
286 err.description());
287 if !p.span.contains(err.span) {
288 cx.tcx.sess.span_note(p.span,
289 "in pattern here")
290 }
291 }
292 }
293 }
294 true
295 });
296 }
297
298 // Check for unreachable patterns
299 fn check_arms(cx: &MatchCheckCtxt,
300 arms: &[(Vec<P<Pat>>, Option<&hir::Expr>)],
301 source: hir::MatchSource) {
302 let mut seen = Matrix(vec![]);
303 let mut printed_if_let_err = false;
304 for &(ref pats, guard) in arms {
305 for pat in pats {
306 let v = vec![&**pat];
307
308 match is_useful(cx, &seen, &v[..], LeaveOutWitness) {
309 NotUseful => {
310 match source {
311 hir::MatchSource::IfLetDesugar { .. } => {
312 if printed_if_let_err {
313 // we already printed an irrefutable if-let pattern error.
314 // We don't want two, that's just confusing.
315 } else {
316 // find the first arm pattern so we can use its span
317 let &(ref first_arm_pats, _) = &arms[0];
318 let first_pat = &first_arm_pats[0];
319 let span = first_pat.span;
320 span_err!(cx.tcx.sess, span, E0162, "irrefutable if-let pattern");
321 printed_if_let_err = true;
322 }
323 },
324
325 hir::MatchSource::WhileLetDesugar => {
326 // find the first arm pattern so we can use its span
327 let &(ref first_arm_pats, _) = &arms[0];
328 let first_pat = &first_arm_pats[0];
329 let span = first_pat.span;
330 span_err!(cx.tcx.sess, span, E0165, "irrefutable while-let pattern");
331 },
332
333 hir::MatchSource::ForLoopDesugar => {
334 // this is a bug, because on `match iter.next()` we cover
335 // `Some(<head>)` and `None`. It's impossible to have an unreachable
336 // pattern
337 // (see libsyntax/ext/expand.rs for the full expansion of a for loop)
338 cx.tcx.sess.span_bug(pat.span, "unreachable for-loop pattern")
339 },
340
341 hir::MatchSource::Normal => {
342 span_err!(cx.tcx.sess, pat.span, E0001, "unreachable pattern")
343 },
344 }
345 }
346 Useful => (),
347 UsefulWithWitness(_) => unreachable!()
348 }
349 if guard.is_none() {
350 let Matrix(mut rows) = seen;
351 rows.push(v);
352 seen = Matrix(rows);
353 }
354 }
355 }
356 }
357
358 fn raw_pat<'a>(p: &'a Pat) -> &'a Pat {
359 match p.node {
360 hir::PatIdent(_, _, Some(ref s)) => raw_pat(&**s),
361 _ => p
362 }
363 }
364
365 fn check_exhaustive(cx: &MatchCheckCtxt, sp: Span, matrix: &Matrix, source: hir::MatchSource) {
366 match is_useful(cx, matrix, &[DUMMY_WILD_PAT], ConstructWitness) {
367 UsefulWithWitness(pats) => {
368 let witness = match &pats[..] {
369 [ref witness] => &**witness,
370 [] => DUMMY_WILD_PAT,
371 _ => unreachable!()
372 };
373 match source {
374 hir::MatchSource::ForLoopDesugar => {
375 // `witness` has the form `Some(<head>)`, peel off the `Some`
376 let witness = match witness.node {
377 hir::PatEnum(_, Some(ref pats)) => match &pats[..] {
378 [ref pat] => &**pat,
379 _ => unreachable!(),
380 },
381 _ => unreachable!(),
382 };
383
384 span_err!(cx.tcx.sess, sp, E0297,
385 "refutable pattern in `for` loop binding: \
386 `{}` not covered",
387 pat_to_string(witness));
388 },
389 _ => {
390 span_err!(cx.tcx.sess, sp, E0004,
391 "non-exhaustive patterns: `{}` not covered",
392 pat_to_string(witness)
393 );
394 },
395 }
396 }
397 NotUseful => {
398 // This is good, wildcard pattern isn't reachable
399 },
400 _ => unreachable!()
401 }
402 }
403
404 fn const_val_to_expr(value: &ConstVal) -> P<hir::Expr> {
405 let node = match value {
406 &ConstVal::Bool(b) => ast::LitBool(b),
407 _ => unreachable!()
408 };
409 P(hir::Expr {
410 id: 0,
411 node: hir::ExprLit(P(Spanned { node: node, span: DUMMY_SP })),
412 span: DUMMY_SP,
413 attrs: None,
414 })
415 }
416
417 pub struct StaticInliner<'a, 'tcx: 'a> {
418 pub tcx: &'a ty::ctxt<'tcx>,
419 pub failed: bool,
420 pub renaming_map: Option<&'a mut FnvHashMap<(NodeId, Span), NodeId>>,
421 }
422
423 impl<'a, 'tcx> StaticInliner<'a, 'tcx> {
424 pub fn new<'b>(tcx: &'b ty::ctxt<'tcx>,
425 renaming_map: Option<&'b mut FnvHashMap<(NodeId, Span), NodeId>>)
426 -> StaticInliner<'b, 'tcx> {
427 StaticInliner {
428 tcx: tcx,
429 failed: false,
430 renaming_map: renaming_map
431 }
432 }
433 }
434
435 struct RenamingRecorder<'map> {
436 substituted_node_id: NodeId,
437 origin_span: Span,
438 renaming_map: &'map mut FnvHashMap<(NodeId, Span), NodeId>
439 }
440
441 impl<'map> ast_util::IdVisitingOperation for RenamingRecorder<'map> {
442 fn visit_id(&mut self, node_id: NodeId) {
443 let key = (node_id, self.origin_span);
444 self.renaming_map.insert(key, self.substituted_node_id);
445 }
446 }
447
448 impl<'a, 'tcx> Folder for StaticInliner<'a, 'tcx> {
449 fn fold_pat(&mut self, pat: P<Pat>) -> P<Pat> {
450 return match pat.node {
451 hir::PatIdent(..) | hir::PatEnum(..) | hir::PatQPath(..) => {
452 let def = self.tcx.def_map.borrow().get(&pat.id).map(|d| d.full_def());
453 match def {
454 Some(DefAssociatedConst(did)) |
455 Some(DefConst(did)) => match lookup_const_by_id(self.tcx, did, Some(pat.id)) {
456 Some(const_expr) => {
457 const_expr_to_pat(self.tcx, const_expr, pat.span).map(|new_pat| {
458
459 if let Some(ref mut renaming_map) = self.renaming_map {
460 // Record any renamings we do here
461 record_renamings(const_expr, &pat, renaming_map);
462 }
463
464 new_pat
465 })
466 }
467 None => {
468 self.failed = true;
469 span_err!(self.tcx.sess, pat.span, E0158,
470 "statics cannot be referenced in patterns");
471 pat
472 }
473 },
474 _ => noop_fold_pat(pat, self)
475 }
476 }
477 _ => noop_fold_pat(pat, self)
478 };
479
480 fn record_renamings(const_expr: &hir::Expr,
481 substituted_pat: &hir::Pat,
482 renaming_map: &mut FnvHashMap<(NodeId, Span), NodeId>) {
483 let mut renaming_recorder = RenamingRecorder {
484 substituted_node_id: substituted_pat.id,
485 origin_span: substituted_pat.span,
486 renaming_map: renaming_map,
487 };
488
489 let mut id_visitor = front_util::IdVisitor::new(&mut renaming_recorder);
490
491 id_visitor.visit_expr(const_expr);
492 }
493 }
494 }
495
496 /// Constructs a partial witness for a pattern given a list of
497 /// patterns expanded by the specialization step.
498 ///
499 /// When a pattern P is discovered to be useful, this function is used bottom-up
500 /// to reconstruct a complete witness, e.g. a pattern P' that covers a subset
501 /// of values, V, where each value in that set is not covered by any previously
502 /// used patterns and is covered by the pattern P'. Examples:
503 ///
504 /// left_ty: tuple of 3 elements
505 /// pats: [10, 20, _] => (10, 20, _)
506 ///
507 /// left_ty: struct X { a: (bool, &'static str), b: usize}
508 /// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
509 fn construct_witness<'a,'tcx>(cx: &MatchCheckCtxt<'a,'tcx>, ctor: &Constructor,
510 pats: Vec<&Pat>, left_ty: Ty<'tcx>) -> P<Pat> {
511 let pats_len = pats.len();
512 let mut pats = pats.into_iter().map(|p| P((*p).clone()));
513 let pat = match left_ty.sty {
514 ty::TyTuple(_) => hir::PatTup(pats.collect()),
515
516 ty::TyEnum(adt, _) | ty::TyStruct(adt, _) => {
517 let v = adt.variant_of_ctor(ctor);
518 if let VariantKind::Struct = v.kind() {
519 let field_pats: Vec<_> = v.fields.iter()
520 .zip(pats)
521 .filter(|&(_, ref pat)| pat.node != hir::PatWild)
522 .map(|(field, pat)| Spanned {
523 span: DUMMY_SP,
524 node: hir::FieldPat {
525 name: field.name,
526 pat: pat,
527 is_shorthand: false,
528 }
529 }).collect();
530 let has_more_fields = field_pats.len() < pats_len;
531 hir::PatStruct(def_to_path(cx.tcx, v.did), field_pats, has_more_fields)
532 } else {
533 hir::PatEnum(def_to_path(cx.tcx, v.did), Some(pats.collect()))
534 }
535 }
536
537 ty::TyRef(_, ty::TypeAndMut { ty, mutbl }) => {
538 match ty.sty {
539 ty::TyArray(_, n) => match ctor {
540 &Single => {
541 assert_eq!(pats_len, n);
542 hir::PatVec(pats.collect(), None, vec!())
543 },
544 _ => unreachable!()
545 },
546 ty::TySlice(_) => match ctor {
547 &Slice(n) => {
548 assert_eq!(pats_len, n);
549 hir::PatVec(pats.collect(), None, vec!())
550 },
551 _ => unreachable!()
552 },
553 ty::TyStr => hir::PatWild,
554
555 _ => {
556 assert_eq!(pats_len, 1);
557 hir::PatRegion(pats.nth(0).unwrap(), mutbl)
558 }
559 }
560 }
561
562 ty::TyArray(_, len) => {
563 assert_eq!(pats_len, len);
564 hir::PatVec(pats.collect(), None, vec![])
565 }
566
567 _ => {
568 match *ctor {
569 ConstantValue(ref v) => hir::PatLit(const_val_to_expr(v)),
570 _ => hir::PatWild,
571 }
572 }
573 };
574
575 P(hir::Pat {
576 id: 0,
577 node: pat,
578 span: DUMMY_SP
579 })
580 }
581
582 impl<'tcx, 'container> ty::AdtDefData<'tcx, 'container> {
583 fn variant_of_ctor(&self,
584 ctor: &Constructor)
585 -> &VariantDefData<'tcx, 'container> {
586 match ctor {
587 &Variant(vid) => self.variant_with_id(vid),
588 _ => self.struct_variant()
589 }
590 }
591 }
592
593 fn missing_constructor(cx: &MatchCheckCtxt, &Matrix(ref rows): &Matrix,
594 left_ty: Ty, max_slice_length: usize) -> Option<Constructor> {
595 let used_constructors: Vec<Constructor> = rows.iter()
596 .flat_map(|row| pat_constructors(cx, row[0], left_ty, max_slice_length))
597 .collect();
598 all_constructors(cx, left_ty, max_slice_length)
599 .into_iter()
600 .find(|c| !used_constructors.contains(c))
601 }
602
603 /// This determines the set of all possible constructors of a pattern matching
604 /// values of type `left_ty`. For vectors, this would normally be an infinite set
605 /// but is instead bounded by the maximum fixed length of slice patterns in
606 /// the column of patterns being analyzed.
607 fn all_constructors(_cx: &MatchCheckCtxt, left_ty: Ty,
608 max_slice_length: usize) -> Vec<Constructor> {
609 match left_ty.sty {
610 ty::TyBool =>
611 [true, false].iter().map(|b| ConstantValue(ConstVal::Bool(*b))).collect(),
612
613 ty::TyRef(_, ty::TypeAndMut { ty, .. }) => match ty.sty {
614 ty::TySlice(_) =>
615 (0..max_slice_length+1).map(|length| Slice(length)).collect(),
616 _ => vec![Single]
617 },
618
619 ty::TyEnum(def, _) => def.variants.iter().map(|v| Variant(v.did)).collect(),
620 _ => vec![Single]
621 }
622 }
623
624 // Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html
625 //
626 // Whether a vector `v` of patterns is 'useful' in relation to a set of such
627 // vectors `m` is defined as there being a set of inputs that will match `v`
628 // but not any of the sets in `m`.
629 //
630 // This is used both for reachability checking (if a pattern isn't useful in
631 // relation to preceding patterns, it is not reachable) and exhaustiveness
632 // checking (if a wildcard pattern is useful in relation to a matrix, the
633 // matrix isn't exhaustive).
634
635 // Note: is_useful doesn't work on empty types, as the paper notes.
636 // So it assumes that v is non-empty.
637 fn is_useful(cx: &MatchCheckCtxt,
638 matrix: &Matrix,
639 v: &[&Pat],
640 witness: WitnessPreference)
641 -> Usefulness {
642 let &Matrix(ref rows) = matrix;
643 debug!("{:?}", matrix);
644 if rows.is_empty() {
645 return match witness {
646 ConstructWitness => UsefulWithWitness(vec!()),
647 LeaveOutWitness => Useful
648 };
649 }
650 if rows[0].is_empty() {
651 return NotUseful;
652 }
653 assert!(rows.iter().all(|r| r.len() == v.len()));
654 let real_pat = match rows.iter().find(|r| (*r)[0].id != DUMMY_NODE_ID) {
655 Some(r) => raw_pat(r[0]),
656 None if v.is_empty() => return NotUseful,
657 None => v[0]
658 };
659 let left_ty = if real_pat.id == DUMMY_NODE_ID {
660 cx.tcx.mk_nil()
661 } else {
662 let left_ty = cx.tcx.pat_ty(&*real_pat);
663
664 match real_pat.node {
665 hir::PatIdent(hir::BindByRef(..), _, _) => {
666 left_ty.builtin_deref(false, NoPreference).unwrap().ty
667 }
668 _ => left_ty,
669 }
670 };
671
672 let max_slice_length = rows.iter().filter_map(|row| match row[0].node {
673 hir::PatVec(ref before, _, ref after) => Some(before.len() + after.len()),
674 _ => None
675 }).max().map_or(0, |v| v + 1);
676
677 let constructors = pat_constructors(cx, v[0], left_ty, max_slice_length);
678 if constructors.is_empty() {
679 match missing_constructor(cx, matrix, left_ty, max_slice_length) {
680 None => {
681 all_constructors(cx, left_ty, max_slice_length).into_iter().map(|c| {
682 match is_useful_specialized(cx, matrix, v, c.clone(), left_ty, witness) {
683 UsefulWithWitness(pats) => UsefulWithWitness({
684 let arity = constructor_arity(cx, &c, left_ty);
685 let mut result = {
686 let pat_slice = &pats[..];
687 let subpats: Vec<_> = (0..arity).map(|i| {
688 pat_slice.get(i).map_or(DUMMY_WILD_PAT, |p| &**p)
689 }).collect();
690 vec![construct_witness(cx, &c, subpats, left_ty)]
691 };
692 result.extend(pats.into_iter().skip(arity));
693 result
694 }),
695 result => result
696 }
697 }).find(|result| result != &NotUseful).unwrap_or(NotUseful)
698 },
699
700 Some(constructor) => {
701 let matrix = rows.iter().filter_map(|r| {
702 if pat_is_binding_or_wild(&cx.tcx.def_map.borrow(), raw_pat(r[0])) {
703 Some(r[1..].to_vec())
704 } else {
705 None
706 }
707 }).collect();
708 match is_useful(cx, &matrix, &v[1..], witness) {
709 UsefulWithWitness(pats) => {
710 let arity = constructor_arity(cx, &constructor, left_ty);
711 let wild_pats = vec![DUMMY_WILD_PAT; arity];
712 let enum_pat = construct_witness(cx, &constructor, wild_pats, left_ty);
713 let mut new_pats = vec![enum_pat];
714 new_pats.extend(pats);
715 UsefulWithWitness(new_pats)
716 },
717 result => result
718 }
719 }
720 }
721 } else {
722 constructors.into_iter().map(|c|
723 is_useful_specialized(cx, matrix, v, c.clone(), left_ty, witness)
724 ).find(|result| result != &NotUseful).unwrap_or(NotUseful)
725 }
726 }
727
728 fn is_useful_specialized(cx: &MatchCheckCtxt, &Matrix(ref m): &Matrix,
729 v: &[&Pat], ctor: Constructor, lty: Ty,
730 witness: WitnessPreference) -> Usefulness {
731 let arity = constructor_arity(cx, &ctor, lty);
732 let matrix = Matrix(m.iter().filter_map(|r| {
733 specialize(cx, &r[..], &ctor, 0, arity)
734 }).collect());
735 match specialize(cx, v, &ctor, 0, arity) {
736 Some(v) => is_useful(cx, &matrix, &v[..], witness),
737 None => NotUseful
738 }
739 }
740
741 /// Determines the constructors that the given pattern can be specialized to.
742 ///
743 /// In most cases, there's only one constructor that a specific pattern
744 /// represents, such as a specific enum variant or a specific literal value.
745 /// Slice patterns, however, can match slices of different lengths. For instance,
746 /// `[a, b, ..tail]` can match a slice of length 2, 3, 4 and so on.
747 ///
748 /// On the other hand, a wild pattern and an identifier pattern cannot be
749 /// specialized in any way.
750 fn pat_constructors(cx: &MatchCheckCtxt, p: &Pat,
751 left_ty: Ty, max_slice_length: usize) -> Vec<Constructor> {
752 let pat = raw_pat(p);
753 match pat.node {
754 hir::PatIdent(..) =>
755 match cx.tcx.def_map.borrow().get(&pat.id).map(|d| d.full_def()) {
756 Some(DefConst(..)) | Some(DefAssociatedConst(..)) =>
757 cx.tcx.sess.span_bug(pat.span, "const pattern should've \
758 been rewritten"),
759 Some(DefStruct(_)) => vec!(Single),
760 Some(DefVariant(_, id, _)) => vec!(Variant(id)),
761 _ => vec!()
762 },
763 hir::PatEnum(..) =>
764 match cx.tcx.def_map.borrow().get(&pat.id).map(|d| d.full_def()) {
765 Some(DefConst(..)) | Some(DefAssociatedConst(..)) =>
766 cx.tcx.sess.span_bug(pat.span, "const pattern should've \
767 been rewritten"),
768 Some(DefVariant(_, id, _)) => vec!(Variant(id)),
769 _ => vec!(Single)
770 },
771 hir::PatQPath(..) =>
772 cx.tcx.sess.span_bug(pat.span, "const pattern should've \
773 been rewritten"),
774 hir::PatStruct(..) =>
775 match cx.tcx.def_map.borrow().get(&pat.id).map(|d| d.full_def()) {
776 Some(DefConst(..)) | Some(DefAssociatedConst(..)) =>
777 cx.tcx.sess.span_bug(pat.span, "const pattern should've \
778 been rewritten"),
779 Some(DefVariant(_, id, _)) => vec!(Variant(id)),
780 _ => vec!(Single)
781 },
782 hir::PatLit(ref expr) =>
783 vec!(ConstantValue(eval_const_expr(cx.tcx, &**expr))),
784 hir::PatRange(ref lo, ref hi) =>
785 vec!(ConstantRange(eval_const_expr(cx.tcx, &**lo), eval_const_expr(cx.tcx, &**hi))),
786 hir::PatVec(ref before, ref slice, ref after) =>
787 match left_ty.sty {
788 ty::TyArray(_, _) => vec!(Single),
789 _ => if slice.is_some() {
790 (before.len() + after.len()..max_slice_length+1)
791 .map(|length| Slice(length))
792 .collect()
793 } else {
794 vec!(Slice(before.len() + after.len()))
795 }
796 },
797 hir::PatBox(_) | hir::PatTup(_) | hir::PatRegion(..) =>
798 vec!(Single),
799 hir::PatWild =>
800 vec!(),
801 }
802 }
803
804 /// This computes the arity of a constructor. The arity of a constructor
805 /// is how many subpattern patterns of that constructor should be expanded to.
806 ///
807 /// For instance, a tuple pattern (_, 42, Some([])) has the arity of 3.
808 /// A struct pattern's arity is the number of fields it contains, etc.
809 pub fn constructor_arity(_cx: &MatchCheckCtxt, ctor: &Constructor, ty: Ty) -> usize {
810 match ty.sty {
811 ty::TyTuple(ref fs) => fs.len(),
812 ty::TyBox(_) => 1,
813 ty::TyRef(_, ty::TypeAndMut { ty, .. }) => match ty.sty {
814 ty::TySlice(_) => match *ctor {
815 Slice(length) => length,
816 ConstantValue(_) => 0,
817 _ => unreachable!()
818 },
819 ty::TyStr => 0,
820 _ => 1
821 },
822 ty::TyEnum(adt, _) | ty::TyStruct(adt, _) => {
823 adt.variant_of_ctor(ctor).fields.len()
824 }
825 ty::TyArray(_, n) => n,
826 _ => 0
827 }
828 }
829
830 fn range_covered_by_constructor(ctor: &Constructor,
831 from: &ConstVal, to: &ConstVal) -> Option<bool> {
832 let (c_from, c_to) = match *ctor {
833 ConstantValue(ref value) => (value, value),
834 ConstantRange(ref from, ref to) => (from, to),
835 Single => return Some(true),
836 _ => unreachable!()
837 };
838 let cmp_from = compare_const_vals(c_from, from);
839 let cmp_to = compare_const_vals(c_to, to);
840 match (cmp_from, cmp_to) {
841 (Some(cmp_from), Some(cmp_to)) => {
842 Some(cmp_from != Ordering::Less && cmp_to != Ordering::Greater)
843 }
844 _ => None
845 }
846 }
847
848 /// This is the main specialization step. It expands the first pattern in the given row
849 /// into `arity` patterns based on the constructor. For most patterns, the step is trivial,
850 /// for instance tuple patterns are flattened and box patterns expand into their inner pattern.
851 ///
852 /// OTOH, slice patterns with a subslice pattern (..tail) can be expanded into multiple
853 /// different patterns.
854 /// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
855 /// fields filled with wild patterns.
856 pub fn specialize<'a>(cx: &MatchCheckCtxt, r: &[&'a Pat],
857 constructor: &Constructor, col: usize, arity: usize) -> Option<Vec<&'a Pat>> {
858 let &Pat {
859 id: pat_id, ref node, span: pat_span
860 } = raw_pat(r[col]);
861 let head: Option<Vec<&Pat>> = match *node {
862 hir::PatWild =>
863 Some(vec![DUMMY_WILD_PAT; arity]),
864
865 hir::PatIdent(_, _, _) => {
866 let opt_def = cx.tcx.def_map.borrow().get(&pat_id).map(|d| d.full_def());
867 match opt_def {
868 Some(DefConst(..)) | Some(DefAssociatedConst(..)) =>
869 cx.tcx.sess.span_bug(pat_span, "const pattern should've \
870 been rewritten"),
871 Some(DefVariant(_, id, _)) => if *constructor == Variant(id) {
872 Some(vec!())
873 } else {
874 None
875 },
876 _ => Some(vec![DUMMY_WILD_PAT; arity])
877 }
878 }
879
880 hir::PatEnum(_, ref args) => {
881 let def = cx.tcx.def_map.borrow().get(&pat_id).unwrap().full_def();
882 match def {
883 DefConst(..) | DefAssociatedConst(..) =>
884 cx.tcx.sess.span_bug(pat_span, "const pattern should've \
885 been rewritten"),
886 DefVariant(_, id, _) if *constructor != Variant(id) => None,
887 DefVariant(..) | DefStruct(..) => {
888 Some(match args {
889 &Some(ref args) => args.iter().map(|p| &**p).collect(),
890 &None => vec![DUMMY_WILD_PAT; arity],
891 })
892 }
893 _ => None
894 }
895 }
896
897 hir::PatQPath(_, _) => {
898 cx.tcx.sess.span_bug(pat_span, "const pattern should've \
899 been rewritten")
900 }
901
902 hir::PatStruct(_, ref pattern_fields, _) => {
903 let def = cx.tcx.def_map.borrow().get(&pat_id).unwrap().full_def();
904 let adt = cx.tcx.node_id_to_type(pat_id).ty_adt_def().unwrap();
905 let variant = adt.variant_of_ctor(constructor);
906 let def_variant = adt.variant_of_def(def);
907 if variant.did == def_variant.did {
908 Some(variant.fields.iter().map(|sf| {
909 match pattern_fields.iter().find(|f| f.node.name == sf.name) {
910 Some(ref f) => &*f.node.pat,
911 _ => DUMMY_WILD_PAT
912 }
913 }).collect())
914 } else {
915 None
916 }
917 }
918
919 hir::PatTup(ref args) =>
920 Some(args.iter().map(|p| &**p).collect()),
921
922 hir::PatBox(ref inner) | hir::PatRegion(ref inner, _) =>
923 Some(vec![&**inner]),
924
925 hir::PatLit(ref expr) => {
926 let expr_value = eval_const_expr(cx.tcx, &**expr);
927 match range_covered_by_constructor(constructor, &expr_value, &expr_value) {
928 Some(true) => Some(vec![]),
929 Some(false) => None,
930 None => {
931 span_err!(cx.tcx.sess, pat_span, E0298, "mismatched types between arms");
932 None
933 }
934 }
935 }
936
937 hir::PatRange(ref from, ref to) => {
938 let from_value = eval_const_expr(cx.tcx, &**from);
939 let to_value = eval_const_expr(cx.tcx, &**to);
940 match range_covered_by_constructor(constructor, &from_value, &to_value) {
941 Some(true) => Some(vec![]),
942 Some(false) => None,
943 None => {
944 span_err!(cx.tcx.sess, pat_span, E0299, "mismatched types between arms");
945 None
946 }
947 }
948 }
949
950 hir::PatVec(ref before, ref slice, ref after) => {
951 match *constructor {
952 // Fixed-length vectors.
953 Single => {
954 let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
955 pats.extend(repeat(DUMMY_WILD_PAT).take(arity - before.len() - after.len()));
956 pats.extend(after.iter().map(|p| &**p));
957 Some(pats)
958 },
959 Slice(length) if before.len() + after.len() <= length && slice.is_some() => {
960 let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
961 pats.extend(repeat(DUMMY_WILD_PAT).take(arity - before.len() - after.len()));
962 pats.extend(after.iter().map(|p| &**p));
963 Some(pats)
964 },
965 Slice(length) if before.len() + after.len() == length => {
966 let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
967 pats.extend(after.iter().map(|p| &**p));
968 Some(pats)
969 },
970 SliceWithSubslice(prefix, suffix)
971 if before.len() == prefix
972 && after.len() == suffix
973 && slice.is_some() => {
974 let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
975 pats.extend(after.iter().map(|p| &**p));
976 Some(pats)
977 }
978 _ => None
979 }
980 }
981 };
982 head.map(|mut head| {
983 head.extend_from_slice(&r[..col]);
984 head.extend_from_slice(&r[col + 1..]);
985 head
986 })
987 }
988
989 fn check_local(cx: &mut MatchCheckCtxt, loc: &hir::Local) {
990 intravisit::walk_local(cx, loc);
991
992 let pat = StaticInliner::new(cx.tcx, None).fold_pat(loc.pat.clone());
993 check_irrefutable(cx, &pat, false);
994
995 // Check legality of move bindings and `@` patterns.
996 check_legality_of_move_bindings(cx, false, slice::ref_slice(&loc.pat));
997 check_legality_of_bindings_in_at_patterns(cx, &*loc.pat);
998 }
999
1000 fn check_fn(cx: &mut MatchCheckCtxt,
1001 kind: FnKind,
1002 decl: &hir::FnDecl,
1003 body: &hir::Block,
1004 sp: Span,
1005 fn_id: NodeId) {
1006 match kind {
1007 FnKind::Closure => {}
1008 _ => cx.param_env = ParameterEnvironment::for_item(cx.tcx, fn_id),
1009 }
1010
1011 intravisit::walk_fn(cx, kind, decl, body, sp);
1012
1013 for input in &decl.inputs {
1014 check_irrefutable(cx, &input.pat, true);
1015 check_legality_of_move_bindings(cx, false, slice::ref_slice(&input.pat));
1016 check_legality_of_bindings_in_at_patterns(cx, &*input.pat);
1017 }
1018 }
1019
1020 fn check_irrefutable(cx: &MatchCheckCtxt, pat: &Pat, is_fn_arg: bool) {
1021 let origin = if is_fn_arg {
1022 "function argument"
1023 } else {
1024 "local binding"
1025 };
1026
1027 is_refutable(cx, pat, |uncovered_pat| {
1028 span_err!(cx.tcx.sess, pat.span, E0005,
1029 "refutable pattern in {}: `{}` not covered",
1030 origin,
1031 pat_to_string(uncovered_pat),
1032 );
1033 });
1034 }
1035
1036 fn is_refutable<A, F>(cx: &MatchCheckCtxt, pat: &Pat, refutable: F) -> Option<A> where
1037 F: FnOnce(&Pat) -> A,
1038 {
1039 let pats = Matrix(vec!(vec!(pat)));
1040 match is_useful(cx, &pats, &[DUMMY_WILD_PAT], ConstructWitness) {
1041 UsefulWithWitness(pats) => {
1042 assert_eq!(pats.len(), 1);
1043 Some(refutable(&*pats[0]))
1044 },
1045 NotUseful => None,
1046 Useful => unreachable!()
1047 }
1048 }
1049
1050 // Legality of move bindings checking
1051 fn check_legality_of_move_bindings(cx: &MatchCheckCtxt,
1052 has_guard: bool,
1053 pats: &[P<Pat>]) {
1054 let tcx = cx.tcx;
1055 let def_map = &tcx.def_map;
1056 let mut by_ref_span = None;
1057 for pat in pats {
1058 pat_bindings(def_map, &**pat, |bm, _, span, _path| {
1059 match bm {
1060 hir::BindByRef(_) => {
1061 by_ref_span = Some(span);
1062 }
1063 hir::BindByValue(_) => {
1064 }
1065 }
1066 })
1067 }
1068
1069 let check_move = |p: &Pat, sub: Option<&Pat>| {
1070 // check legality of moving out of the enum
1071
1072 // x @ Foo(..) is legal, but x @ Foo(y) isn't.
1073 if sub.map_or(false, |p| pat_contains_bindings(&def_map.borrow(), &*p)) {
1074 span_err!(cx.tcx.sess, p.span, E0007, "cannot bind by-move with sub-bindings");
1075 } else if has_guard {
1076 span_err!(cx.tcx.sess, p.span, E0008, "cannot bind by-move into a pattern guard");
1077 } else if by_ref_span.is_some() {
1078 span_err!(cx.tcx.sess, p.span, E0009,
1079 "cannot bind by-move and by-ref in the same pattern");
1080 span_note!(cx.tcx.sess, by_ref_span.unwrap(), "by-ref binding occurs here");
1081 }
1082 };
1083
1084 for pat in pats {
1085 front_util::walk_pat(&**pat, |p| {
1086 if pat_is_binding(&def_map.borrow(), &*p) {
1087 match p.node {
1088 hir::PatIdent(hir::BindByValue(_), _, ref sub) => {
1089 let pat_ty = tcx.node_id_to_type(p.id);
1090 //FIXME: (@jroesch) this code should be floated up as well
1091 let infcx = infer::new_infer_ctxt(cx.tcx,
1092 &cx.tcx.tables,
1093 Some(cx.param_env.clone()),
1094 false);
1095 if infcx.type_moves_by_default(pat_ty, pat.span) {
1096 check_move(p, sub.as_ref().map(|p| &**p));
1097 }
1098 }
1099 hir::PatIdent(hir::BindByRef(_), _, _) => {
1100 }
1101 _ => {
1102 cx.tcx.sess.span_bug(
1103 p.span,
1104 &format!("binding pattern {} is not an \
1105 identifier: {:?}",
1106 p.id,
1107 p.node));
1108 }
1109 }
1110 }
1111 true
1112 });
1113 }
1114 }
1115
1116 /// Ensures that a pattern guard doesn't borrow by mutable reference or
1117 /// assign.
1118 fn check_for_mutation_in_guard<'a, 'tcx>(cx: &'a MatchCheckCtxt<'a, 'tcx>,
1119 guard: &hir::Expr) {
1120 let mut checker = MutationChecker {
1121 cx: cx,
1122 };
1123
1124 let infcx = infer::new_infer_ctxt(cx.tcx,
1125 &cx.tcx.tables,
1126 Some(checker.cx.param_env.clone()),
1127 false);
1128
1129 let mut visitor = ExprUseVisitor::new(&mut checker, &infcx);
1130 visitor.walk_expr(guard);
1131 }
1132
1133 struct MutationChecker<'a, 'tcx: 'a> {
1134 cx: &'a MatchCheckCtxt<'a, 'tcx>,
1135 }
1136
1137 impl<'a, 'tcx> Delegate<'tcx> for MutationChecker<'a, 'tcx> {
1138 fn matched_pat(&mut self, _: &Pat, _: cmt, _: euv::MatchMode) {}
1139 fn consume(&mut self, _: NodeId, _: Span, _: cmt, _: ConsumeMode) {}
1140 fn consume_pat(&mut self, _: &Pat, _: cmt, _: ConsumeMode) {}
1141 fn borrow(&mut self,
1142 _: NodeId,
1143 span: Span,
1144 _: cmt,
1145 _: Region,
1146 kind: BorrowKind,
1147 _: LoanCause) {
1148 match kind {
1149 MutBorrow => {
1150 span_err!(self.cx.tcx.sess, span, E0301,
1151 "cannot mutably borrow in a pattern guard")
1152 }
1153 ImmBorrow | UniqueImmBorrow => {}
1154 }
1155 }
1156 fn decl_without_init(&mut self, _: NodeId, _: Span) {}
1157 fn mutate(&mut self, _: NodeId, span: Span, _: cmt, mode: MutateMode) {
1158 match mode {
1159 JustWrite | WriteAndRead => {
1160 span_err!(self.cx.tcx.sess, span, E0302, "cannot assign in a pattern guard")
1161 }
1162 Init => {}
1163 }
1164 }
1165 }
1166
1167 /// Forbids bindings in `@` patterns. This is necessary for memory safety,
1168 /// because of the way rvalues are handled in the borrow check. (See issue
1169 /// #14587.)
1170 fn check_legality_of_bindings_in_at_patterns(cx: &MatchCheckCtxt, pat: &Pat) {
1171 AtBindingPatternVisitor { cx: cx, bindings_allowed: true }.visit_pat(pat);
1172 }
1173
1174 struct AtBindingPatternVisitor<'a, 'b:'a, 'tcx:'b> {
1175 cx: &'a MatchCheckCtxt<'b, 'tcx>,
1176 bindings_allowed: bool
1177 }
1178
1179 impl<'a, 'b, 'tcx, 'v> Visitor<'v> for AtBindingPatternVisitor<'a, 'b, 'tcx> {
1180 fn visit_pat(&mut self, pat: &Pat) {
1181 if !self.bindings_allowed && pat_is_binding(&self.cx.tcx.def_map.borrow(), pat) {
1182 span_err!(self.cx.tcx.sess, pat.span, E0303,
1183 "pattern bindings are not allowed \
1184 after an `@`");
1185 }
1186
1187 match pat.node {
1188 hir::PatIdent(_, _, Some(_)) => {
1189 let bindings_were_allowed = self.bindings_allowed;
1190 self.bindings_allowed = false;
1191 intravisit::walk_pat(self, pat);
1192 self.bindings_allowed = bindings_were_allowed;
1193 }
1194 _ => intravisit::walk_pat(self, pat),
1195 }
1196 }
1197 }