]> git.proxmox.com Git - rustc.git/blob - src/librustc/middle/check_match.rs
Imported Upstream version 1.8.0+dfsg1
[rustc.git] / src / librustc / middle / check_match.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 pub use self::Constructor::*;
12 use self::Usefulness::*;
13 use self::WitnessPreference::*;
14
15 use dep_graph::DepNode;
16 use middle::const_eval::{compare_const_vals, ConstVal};
17 use middle::const_eval::{eval_const_expr, eval_const_expr_partial};
18 use middle::const_eval::{const_expr_to_pat, lookup_const_by_id};
19 use middle::const_eval::EvalHint::ExprTypeChecked;
20 use middle::def::*;
21 use middle::def_id::{DefId};
22 use middle::expr_use_visitor::{ConsumeMode, Delegate, ExprUseVisitor};
23 use middle::expr_use_visitor::{LoanCause, MutateMode};
24 use middle::expr_use_visitor as euv;
25 use middle::infer;
26 use middle::mem_categorization::{cmt};
27 use middle::pat_util::*;
28 use middle::ty::*;
29 use middle::ty;
30 use std::cmp::Ordering;
31 use std::fmt;
32 use std::iter::{FromIterator, IntoIterator, repeat};
33
34 use rustc_front::hir;
35 use rustc_front::hir::{Pat, PatKind};
36 use rustc_front::intravisit::{self, Visitor, FnKind};
37 use rustc_front::util as front_util;
38 use rustc_back::slice;
39
40 use syntax::ast::{self, DUMMY_NODE_ID, NodeId};
41 use syntax::ast_util;
42 use syntax::codemap::{Span, Spanned, DUMMY_SP};
43 use rustc_front::fold::{Folder, noop_fold_pat};
44 use rustc_front::print::pprust::pat_to_string;
45 use syntax::ptr::P;
46 use util::nodemap::FnvHashMap;
47
48 pub const DUMMY_WILD_PAT: &'static Pat = &Pat {
49 id: DUMMY_NODE_ID,
50 node: PatKind::Wild,
51 span: DUMMY_SP
52 };
53
54 struct Matrix<'a>(Vec<Vec<&'a Pat>>);
55
56 /// Pretty-printer for matrices of patterns, example:
57 /// ++++++++++++++++++++++++++
58 /// + _ + [] +
59 /// ++++++++++++++++++++++++++
60 /// + true + [First] +
61 /// ++++++++++++++++++++++++++
62 /// + true + [Second(true)] +
63 /// ++++++++++++++++++++++++++
64 /// + false + [_] +
65 /// ++++++++++++++++++++++++++
66 /// + _ + [_, _, ..tail] +
67 /// ++++++++++++++++++++++++++
68 impl<'a> fmt::Debug for Matrix<'a> {
69 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
70 try!(write!(f, "\n"));
71
72 let &Matrix(ref m) = self;
73 let pretty_printed_matrix: Vec<Vec<String>> = m.iter().map(|row| {
74 row.iter()
75 .map(|&pat| pat_to_string(&pat))
76 .collect::<Vec<String>>()
77 }).collect();
78
79 let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0);
80 assert!(m.iter().all(|row| row.len() == column_count));
81 let column_widths: Vec<usize> = (0..column_count).map(|col| {
82 pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0)
83 }).collect();
84
85 let total_width = column_widths.iter().cloned().sum::<usize>() + column_count * 3 + 1;
86 let br = repeat('+').take(total_width).collect::<String>();
87 try!(write!(f, "{}\n", br));
88 for row in pretty_printed_matrix {
89 try!(write!(f, "+"));
90 for (column, pat_str) in row.into_iter().enumerate() {
91 try!(write!(f, " "));
92 try!(write!(f, "{:1$}", pat_str, column_widths[column]));
93 try!(write!(f, " +"));
94 }
95 try!(write!(f, "\n"));
96 try!(write!(f, "{}\n", br));
97 }
98 Ok(())
99 }
100 }
101
102 impl<'a> FromIterator<Vec<&'a Pat>> for Matrix<'a> {
103 fn from_iter<T: IntoIterator<Item=Vec<&'a Pat>>>(iter: T) -> Matrix<'a> {
104 Matrix(iter.into_iter().collect())
105 }
106 }
107
108 //NOTE: appears to be the only place other then InferCtxt to contain a ParamEnv
109 pub struct MatchCheckCtxt<'a, 'tcx: 'a> {
110 pub tcx: &'a ty::ctxt<'tcx>,
111 pub param_env: ParameterEnvironment<'a, 'tcx>,
112 }
113
114 #[derive(Clone, PartialEq)]
115 pub enum Constructor {
116 /// The constructor of all patterns that don't vary by constructor,
117 /// e.g. struct patterns and fixed-length arrays.
118 Single,
119 /// Enum variants.
120 Variant(DefId),
121 /// Literal values.
122 ConstantValue(ConstVal),
123 /// Ranges of literal values (2..5).
124 ConstantRange(ConstVal, ConstVal),
125 /// Array patterns of length n.
126 Slice(usize),
127 /// Array patterns with a subslice.
128 SliceWithSubslice(usize, usize)
129 }
130
131 #[derive(Clone, PartialEq)]
132 enum Usefulness {
133 Useful,
134 UsefulWithWitness(Vec<P<Pat>>),
135 NotUseful
136 }
137
138 #[derive(Copy, Clone)]
139 enum WitnessPreference {
140 ConstructWitness,
141 LeaveOutWitness
142 }
143
144 impl<'a, 'tcx, 'v> Visitor<'v> for MatchCheckCtxt<'a, 'tcx> {
145 fn visit_expr(&mut self, ex: &hir::Expr) {
146 check_expr(self, ex);
147 }
148 fn visit_local(&mut self, l: &hir::Local) {
149 check_local(self, l);
150 }
151 fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v hir::FnDecl,
152 b: &'v hir::Block, s: Span, n: NodeId) {
153 check_fn(self, fk, fd, b, s, n);
154 }
155 }
156
157 pub fn check_crate(tcx: &ty::ctxt) {
158 tcx.visit_all_items_in_krate(DepNode::MatchCheck, &mut MatchCheckCtxt {
159 tcx: tcx,
160 param_env: tcx.empty_parameter_environment(),
161 });
162 tcx.sess.abort_if_errors();
163 }
164
165 fn check_expr(cx: &mut MatchCheckCtxt, ex: &hir::Expr) {
166 intravisit::walk_expr(cx, ex);
167 match ex.node {
168 hir::ExprMatch(ref scrut, ref arms, source) => {
169 for arm in arms {
170 // First, check legality of move bindings.
171 check_legality_of_move_bindings(cx,
172 arm.guard.is_some(),
173 &arm.pats);
174
175 // Second, if there is a guard on each arm, make sure it isn't
176 // assigning or borrowing anything mutably.
177 match arm.guard {
178 Some(ref guard) => check_for_mutation_in_guard(cx, &guard),
179 None => {}
180 }
181 }
182
183 let mut static_inliner = StaticInliner::new(cx.tcx, None);
184 let inlined_arms = arms.iter().map(|arm| {
185 (arm.pats.iter().map(|pat| {
186 static_inliner.fold_pat((*pat).clone())
187 }).collect(), arm.guard.as_ref().map(|e| &**e))
188 }).collect::<Vec<(Vec<P<Pat>>, Option<&hir::Expr>)>>();
189
190 // Bail out early if inlining failed.
191 if static_inliner.failed {
192 return;
193 }
194
195 for pat in inlined_arms
196 .iter()
197 .flat_map(|&(ref pats, _)| pats) {
198 // Third, check legality of move bindings.
199 check_legality_of_bindings_in_at_patterns(cx, &pat);
200
201 // Fourth, check if there are any references to NaN that we should warn about.
202 check_for_static_nan(cx, &pat);
203
204 // Fifth, check if for any of the patterns that match an enumerated type
205 // are bindings with the same name as one of the variants of said type.
206 check_for_bindings_named_the_same_as_variants(cx, &pat);
207 }
208
209 // Fourth, check for unreachable arms.
210 check_arms(cx, &inlined_arms[..], source);
211
212 // Finally, check if the whole match expression is exhaustive.
213 // Check for empty enum, because is_useful only works on inhabited types.
214 let pat_ty = cx.tcx.node_id_to_type(scrut.id);
215 if inlined_arms.is_empty() {
216 if !pat_ty.is_empty(cx.tcx) {
217 // We know the type is inhabited, so this must be wrong
218 let mut err = struct_span_err!(cx.tcx.sess, ex.span, E0002,
219 "non-exhaustive patterns: type {} is non-empty",
220 pat_ty);
221 span_help!(&mut err, ex.span,
222 "Please ensure that all possible cases are being handled; \
223 possibly adding wildcards or more match arms.");
224 err.emit();
225 }
226 // If the type *is* empty, it's vacuously exhaustive
227 return;
228 }
229
230 let matrix: Matrix = inlined_arms
231 .iter()
232 .filter(|&&(_, guard)| guard.is_none())
233 .flat_map(|arm| &arm.0)
234 .map(|pat| vec![&**pat])
235 .collect();
236 check_exhaustive(cx, ex.span, &matrix, source);
237 },
238 _ => ()
239 }
240 }
241
242 fn check_for_bindings_named_the_same_as_variants(cx: &MatchCheckCtxt, pat: &Pat) {
243 front_util::walk_pat(pat, |p| {
244 match p.node {
245 PatKind::Ident(hir::BindByValue(hir::MutImmutable), ident, None) => {
246 let pat_ty = cx.tcx.pat_ty(p);
247 if let ty::TyEnum(edef, _) = pat_ty.sty {
248 let def = cx.tcx.def_map.borrow().get(&p.id).map(|d| d.full_def());
249 if let Some(Def::Local(..)) = def {
250 if edef.variants.iter().any(|variant|
251 variant.name == ident.node.unhygienic_name
252 && variant.kind() == VariantKind::Unit
253 ) {
254 let ty_path = cx.tcx.item_path_str(edef.did);
255 let mut err = struct_span_warn!(cx.tcx.sess, p.span, E0170,
256 "pattern binding `{}` is named the same as one \
257 of the variants of the type `{}`",
258 ident.node, ty_path);
259 fileline_help!(err, p.span,
260 "if you meant to match on a variant, \
261 consider making the path in the pattern qualified: `{}::{}`",
262 ty_path, ident.node);
263 err.emit();
264 }
265 }
266 }
267 }
268 _ => ()
269 }
270 true
271 });
272 }
273
274 // Check that we do not match against a static NaN (#6804)
275 fn check_for_static_nan(cx: &MatchCheckCtxt, pat: &Pat) {
276 front_util::walk_pat(pat, |p| {
277 if let PatKind::Lit(ref expr) = p.node {
278 match eval_const_expr_partial(cx.tcx, &expr, ExprTypeChecked, None) {
279 Ok(ConstVal::Float(f)) if f.is_nan() => {
280 span_warn!(cx.tcx.sess, p.span, E0003,
281 "unmatchable NaN in pattern, \
282 use the is_nan method in a guard instead");
283 }
284 Ok(_) => {}
285
286 Err(err) => {
287 let mut diag = struct_span_err!(cx.tcx.sess, err.span, E0471,
288 "constant evaluation error: {}",
289 err.description());
290 if !p.span.contains(err.span) {
291 diag.span_note(p.span, "in pattern here");
292 }
293 diag.emit();
294 }
295 }
296 }
297 true
298 });
299 }
300
301 // Check for unreachable patterns
302 fn check_arms(cx: &MatchCheckCtxt,
303 arms: &[(Vec<P<Pat>>, Option<&hir::Expr>)],
304 source: hir::MatchSource) {
305 let mut seen = Matrix(vec![]);
306 let mut printed_if_let_err = false;
307 for &(ref pats, guard) in arms {
308 for pat in pats {
309 let v = vec![&**pat];
310
311 match is_useful(cx, &seen, &v[..], LeaveOutWitness) {
312 NotUseful => {
313 match source {
314 hir::MatchSource::IfLetDesugar { .. } => {
315 if printed_if_let_err {
316 // we already printed an irrefutable if-let pattern error.
317 // We don't want two, that's just confusing.
318 } else {
319 // find the first arm pattern so we can use its span
320 let &(ref first_arm_pats, _) = &arms[0];
321 let first_pat = &first_arm_pats[0];
322 let span = first_pat.span;
323 span_err!(cx.tcx.sess, span, E0162, "irrefutable if-let pattern");
324 printed_if_let_err = true;
325 }
326 },
327
328 hir::MatchSource::WhileLetDesugar => {
329 // find the first arm pattern so we can use its span
330 let &(ref first_arm_pats, _) = &arms[0];
331 let first_pat = &first_arm_pats[0];
332 let span = first_pat.span;
333 span_err!(cx.tcx.sess, span, E0165, "irrefutable while-let pattern");
334 },
335
336 hir::MatchSource::ForLoopDesugar => {
337 // this is a bug, because on `match iter.next()` we cover
338 // `Some(<head>)` and `None`. It's impossible to have an unreachable
339 // pattern
340 // (see libsyntax/ext/expand.rs for the full expansion of a for loop)
341 cx.tcx.sess.span_bug(pat.span, "unreachable for-loop pattern")
342 },
343
344 hir::MatchSource::Normal => {
345 span_err!(cx.tcx.sess, pat.span, E0001, "unreachable pattern")
346 },
347 }
348 }
349 Useful => (),
350 UsefulWithWitness(_) => unreachable!()
351 }
352 if guard.is_none() {
353 let Matrix(mut rows) = seen;
354 rows.push(v);
355 seen = Matrix(rows);
356 }
357 }
358 }
359 }
360
361 fn raw_pat<'a>(p: &'a Pat) -> &'a Pat {
362 match p.node {
363 PatKind::Ident(_, _, Some(ref s)) => raw_pat(&s),
364 _ => p
365 }
366 }
367
368 fn check_exhaustive(cx: &MatchCheckCtxt, sp: Span, matrix: &Matrix, source: hir::MatchSource) {
369 match is_useful(cx, matrix, &[DUMMY_WILD_PAT], ConstructWitness) {
370 UsefulWithWitness(pats) => {
371 let witnesses = if pats.is_empty() {
372 vec![DUMMY_WILD_PAT]
373 } else {
374 pats.iter().map(|w| &**w ).collect()
375 };
376 match source {
377 hir::MatchSource::ForLoopDesugar => {
378 // `witnesses[0]` has the form `Some(<head>)`, peel off the `Some`
379 let witness = match witnesses[0].node {
380 PatKind::TupleStruct(_, Some(ref pats)) => match &pats[..] {
381 [ref pat] => &**pat,
382 _ => unreachable!(),
383 },
384 _ => unreachable!(),
385 };
386 span_err!(cx.tcx.sess, sp, E0297,
387 "refutable pattern in `for` loop binding: \
388 `{}` not covered",
389 pat_to_string(witness));
390 },
391 _ => {
392 let pattern_strings: Vec<_> = witnesses.iter().map(|w| {
393 pat_to_string(w)
394 }).collect();
395 const LIMIT: usize = 3;
396 let joined_patterns = match pattern_strings.len() {
397 0 => unreachable!(),
398 1 => format!("`{}`", pattern_strings[0]),
399 2...LIMIT => {
400 let (tail, head) = pattern_strings.split_last().unwrap();
401 format!("`{}`", head.join("`, `") + "` and `" + tail)
402 },
403 _ => {
404 let (head, tail) = pattern_strings.split_at(LIMIT);
405 format!("`{}` and {} more", head.join("`, `"), tail.len())
406 }
407 };
408 span_err!(cx.tcx.sess, sp, E0004,
409 "non-exhaustive patterns: {} not covered",
410 joined_patterns
411 );
412 },
413 }
414 }
415 NotUseful => {
416 // This is good, wildcard pattern isn't reachable
417 },
418 _ => unreachable!()
419 }
420 }
421
422 fn const_val_to_expr(value: &ConstVal) -> P<hir::Expr> {
423 let node = match value {
424 &ConstVal::Bool(b) => ast::LitKind::Bool(b),
425 _ => unreachable!()
426 };
427 P(hir::Expr {
428 id: 0,
429 node: hir::ExprLit(P(Spanned { node: node, span: DUMMY_SP })),
430 span: DUMMY_SP,
431 attrs: None,
432 })
433 }
434
435 pub struct StaticInliner<'a, 'tcx: 'a> {
436 pub tcx: &'a ty::ctxt<'tcx>,
437 pub failed: bool,
438 pub renaming_map: Option<&'a mut FnvHashMap<(NodeId, Span), NodeId>>,
439 }
440
441 impl<'a, 'tcx> StaticInliner<'a, 'tcx> {
442 pub fn new<'b>(tcx: &'b ty::ctxt<'tcx>,
443 renaming_map: Option<&'b mut FnvHashMap<(NodeId, Span), NodeId>>)
444 -> StaticInliner<'b, 'tcx> {
445 StaticInliner {
446 tcx: tcx,
447 failed: false,
448 renaming_map: renaming_map
449 }
450 }
451 }
452
453 struct RenamingRecorder<'map> {
454 substituted_node_id: NodeId,
455 origin_span: Span,
456 renaming_map: &'map mut FnvHashMap<(NodeId, Span), NodeId>
457 }
458
459 impl<'map> ast_util::IdVisitingOperation for RenamingRecorder<'map> {
460 fn visit_id(&mut self, node_id: NodeId) {
461 let key = (node_id, self.origin_span);
462 self.renaming_map.insert(key, self.substituted_node_id);
463 }
464 }
465
466 impl<'a, 'tcx> Folder for StaticInliner<'a, 'tcx> {
467 fn fold_pat(&mut self, pat: P<Pat>) -> P<Pat> {
468 return match pat.node {
469 PatKind::Ident(..) | PatKind::Path(..) | PatKind::QPath(..) => {
470 let def = self.tcx.def_map.borrow().get(&pat.id).map(|d| d.full_def());
471 match def {
472 Some(Def::AssociatedConst(did)) |
473 Some(Def::Const(did)) => match lookup_const_by_id(self.tcx, did,
474 Some(pat.id), None) {
475 Some(const_expr) => {
476 const_expr_to_pat(self.tcx, const_expr, pat.span).map(|new_pat| {
477
478 if let Some(ref mut renaming_map) = self.renaming_map {
479 // Record any renamings we do here
480 record_renamings(const_expr, &pat, renaming_map);
481 }
482
483 new_pat
484 })
485 }
486 None => {
487 self.failed = true;
488 span_err!(self.tcx.sess, pat.span, E0158,
489 "statics cannot be referenced in patterns");
490 pat
491 }
492 },
493 _ => noop_fold_pat(pat, self)
494 }
495 }
496 _ => noop_fold_pat(pat, self)
497 };
498
499 fn record_renamings(const_expr: &hir::Expr,
500 substituted_pat: &hir::Pat,
501 renaming_map: &mut FnvHashMap<(NodeId, Span), NodeId>) {
502 let mut renaming_recorder = RenamingRecorder {
503 substituted_node_id: substituted_pat.id,
504 origin_span: substituted_pat.span,
505 renaming_map: renaming_map,
506 };
507
508 let mut id_visitor = front_util::IdVisitor::new(&mut renaming_recorder);
509
510 id_visitor.visit_expr(const_expr);
511 }
512 }
513 }
514
515 /// Constructs a partial witness for a pattern given a list of
516 /// patterns expanded by the specialization step.
517 ///
518 /// When a pattern P is discovered to be useful, this function is used bottom-up
519 /// to reconstruct a complete witness, e.g. a pattern P' that covers a subset
520 /// of values, V, where each value in that set is not covered by any previously
521 /// used patterns and is covered by the pattern P'. Examples:
522 ///
523 /// left_ty: tuple of 3 elements
524 /// pats: [10, 20, _] => (10, 20, _)
525 ///
526 /// left_ty: struct X { a: (bool, &'static str), b: usize}
527 /// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
528 fn construct_witness<'a,'tcx>(cx: &MatchCheckCtxt<'a,'tcx>, ctor: &Constructor,
529 pats: Vec<&Pat>, left_ty: Ty<'tcx>) -> P<Pat> {
530 let pats_len = pats.len();
531 let mut pats = pats.into_iter().map(|p| P((*p).clone()));
532 let pat = match left_ty.sty {
533 ty::TyTuple(_) => PatKind::Tup(pats.collect()),
534
535 ty::TyEnum(adt, _) | ty::TyStruct(adt, _) => {
536 let v = adt.variant_of_ctor(ctor);
537 match v.kind() {
538 VariantKind::Struct => {
539 let field_pats: hir::HirVec<_> = v.fields.iter()
540 .zip(pats)
541 .filter(|&(_, ref pat)| pat.node != PatKind::Wild)
542 .map(|(field, pat)| Spanned {
543 span: DUMMY_SP,
544 node: hir::FieldPat {
545 name: field.name,
546 pat: pat,
547 is_shorthand: false,
548 }
549 }).collect();
550 let has_more_fields = field_pats.len() < pats_len;
551 PatKind::Struct(def_to_path(cx.tcx, v.did), field_pats, has_more_fields)
552 }
553 VariantKind::Tuple => {
554 PatKind::TupleStruct(def_to_path(cx.tcx, v.did), Some(pats.collect()))
555 }
556 VariantKind::Unit => {
557 PatKind::Path(def_to_path(cx.tcx, v.did))
558 }
559 }
560 }
561
562 ty::TyRef(_, ty::TypeAndMut { ty, mutbl }) => {
563 match ty.sty {
564 ty::TyArray(_, n) => match ctor {
565 &Single => {
566 assert_eq!(pats_len, n);
567 PatKind::Vec(pats.collect(), None, hir::HirVec::new())
568 },
569 _ => unreachable!()
570 },
571 ty::TySlice(_) => match ctor {
572 &Slice(n) => {
573 assert_eq!(pats_len, n);
574 PatKind::Vec(pats.collect(), None, hir::HirVec::new())
575 },
576 _ => unreachable!()
577 },
578 ty::TyStr => PatKind::Wild,
579
580 _ => {
581 assert_eq!(pats_len, 1);
582 PatKind::Ref(pats.nth(0).unwrap(), mutbl)
583 }
584 }
585 }
586
587 ty::TyArray(_, len) => {
588 assert_eq!(pats_len, len);
589 PatKind::Vec(pats.collect(), None, hir::HirVec::new())
590 }
591
592 _ => {
593 match *ctor {
594 ConstantValue(ref v) => PatKind::Lit(const_val_to_expr(v)),
595 _ => PatKind::Wild,
596 }
597 }
598 };
599
600 P(hir::Pat {
601 id: 0,
602 node: pat,
603 span: DUMMY_SP
604 })
605 }
606
607 impl<'tcx, 'container> ty::AdtDefData<'tcx, 'container> {
608 fn variant_of_ctor(&self,
609 ctor: &Constructor)
610 -> &VariantDefData<'tcx, 'container> {
611 match ctor {
612 &Variant(vid) => self.variant_with_id(vid),
613 _ => self.struct_variant()
614 }
615 }
616 }
617
618 fn missing_constructors(cx: &MatchCheckCtxt, &Matrix(ref rows): &Matrix,
619 left_ty: Ty, max_slice_length: usize) -> Vec<Constructor> {
620 let used_constructors: Vec<Constructor> = rows.iter()
621 .flat_map(|row| pat_constructors(cx, row[0], left_ty, max_slice_length))
622 .collect();
623 all_constructors(cx, left_ty, max_slice_length)
624 .into_iter()
625 .filter(|c| !used_constructors.contains(c))
626 .collect()
627 }
628
629 /// This determines the set of all possible constructors of a pattern matching
630 /// values of type `left_ty`. For vectors, this would normally be an infinite set
631 /// but is instead bounded by the maximum fixed length of slice patterns in
632 /// the column of patterns being analyzed.
633 fn all_constructors(_cx: &MatchCheckCtxt, left_ty: Ty,
634 max_slice_length: usize) -> Vec<Constructor> {
635 match left_ty.sty {
636 ty::TyBool =>
637 [true, false].iter().map(|b| ConstantValue(ConstVal::Bool(*b))).collect(),
638
639 ty::TyRef(_, ty::TypeAndMut { ty, .. }) => match ty.sty {
640 ty::TySlice(_) =>
641 (0..max_slice_length+1).map(|length| Slice(length)).collect(),
642 _ => vec![Single]
643 },
644
645 ty::TyEnum(def, _) => def.variants.iter().map(|v| Variant(v.did)).collect(),
646 _ => vec![Single]
647 }
648 }
649
650 // Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html
651 //
652 // Whether a vector `v` of patterns is 'useful' in relation to a set of such
653 // vectors `m` is defined as there being a set of inputs that will match `v`
654 // but not any of the sets in `m`.
655 //
656 // This is used both for reachability checking (if a pattern isn't useful in
657 // relation to preceding patterns, it is not reachable) and exhaustiveness
658 // checking (if a wildcard pattern is useful in relation to a matrix, the
659 // matrix isn't exhaustive).
660
661 // Note: is_useful doesn't work on empty types, as the paper notes.
662 // So it assumes that v is non-empty.
663 fn is_useful(cx: &MatchCheckCtxt,
664 matrix: &Matrix,
665 v: &[&Pat],
666 witness: WitnessPreference)
667 -> Usefulness {
668 let &Matrix(ref rows) = matrix;
669 debug!("{:?}", matrix);
670 if rows.is_empty() {
671 return match witness {
672 ConstructWitness => UsefulWithWitness(vec!()),
673 LeaveOutWitness => Useful
674 };
675 }
676 if rows[0].is_empty() {
677 return NotUseful;
678 }
679 assert!(rows.iter().all(|r| r.len() == v.len()));
680 let real_pat = match rows.iter().find(|r| (*r)[0].id != DUMMY_NODE_ID) {
681 Some(r) => raw_pat(r[0]),
682 None if v.is_empty() => return NotUseful,
683 None => v[0]
684 };
685 let left_ty = if real_pat.id == DUMMY_NODE_ID {
686 cx.tcx.mk_nil()
687 } else {
688 let left_ty = cx.tcx.pat_ty(&real_pat);
689
690 match real_pat.node {
691 PatKind::Ident(hir::BindByRef(..), _, _) => {
692 left_ty.builtin_deref(false, NoPreference).unwrap().ty
693 }
694 _ => left_ty,
695 }
696 };
697
698 let max_slice_length = rows.iter().filter_map(|row| match row[0].node {
699 PatKind::Vec(ref before, _, ref after) => Some(before.len() + after.len()),
700 _ => None
701 }).max().map_or(0, |v| v + 1);
702
703 let constructors = pat_constructors(cx, v[0], left_ty, max_slice_length);
704 if constructors.is_empty() {
705 let constructors = missing_constructors(cx, matrix, left_ty, max_slice_length);
706 if constructors.is_empty() {
707 all_constructors(cx, left_ty, max_slice_length).into_iter().map(|c| {
708 match is_useful_specialized(cx, matrix, v, c.clone(), left_ty, witness) {
709 UsefulWithWitness(pats) => UsefulWithWitness({
710 let arity = constructor_arity(cx, &c, left_ty);
711 let mut result = {
712 let pat_slice = &pats[..];
713 let subpats: Vec<_> = (0..arity).map(|i| {
714 pat_slice.get(i).map_or(DUMMY_WILD_PAT, |p| &**p)
715 }).collect();
716 vec![construct_witness(cx, &c, subpats, left_ty)]
717 };
718 result.extend(pats.into_iter().skip(arity));
719 result
720 }),
721 result => result
722 }
723 }).find(|result| result != &NotUseful).unwrap_or(NotUseful)
724 } else {
725 let matrix = rows.iter().filter_map(|r| {
726 if pat_is_binding_or_wild(&cx.tcx.def_map.borrow(), raw_pat(r[0])) {
727 Some(r[1..].to_vec())
728 } else {
729 None
730 }
731 }).collect();
732 match is_useful(cx, &matrix, &v[1..], witness) {
733 UsefulWithWitness(pats) => {
734 let mut new_pats: Vec<_> = constructors.into_iter().map(|constructor| {
735 let arity = constructor_arity(cx, &constructor, left_ty);
736 let wild_pats = vec![DUMMY_WILD_PAT; arity];
737 construct_witness(cx, &constructor, wild_pats, left_ty)
738 }).collect();
739 new_pats.extend(pats);
740 UsefulWithWitness(new_pats)
741 },
742 result => result
743 }
744 }
745 } else {
746 constructors.into_iter().map(|c|
747 is_useful_specialized(cx, matrix, v, c.clone(), left_ty, witness)
748 ).find(|result| result != &NotUseful).unwrap_or(NotUseful)
749 }
750 }
751
752 fn is_useful_specialized(cx: &MatchCheckCtxt, &Matrix(ref m): &Matrix,
753 v: &[&Pat], ctor: Constructor, lty: Ty,
754 witness: WitnessPreference) -> Usefulness {
755 let arity = constructor_arity(cx, &ctor, lty);
756 let matrix = Matrix(m.iter().filter_map(|r| {
757 specialize(cx, &r[..], &ctor, 0, arity)
758 }).collect());
759 match specialize(cx, v, &ctor, 0, arity) {
760 Some(v) => is_useful(cx, &matrix, &v[..], witness),
761 None => NotUseful
762 }
763 }
764
765 /// Determines the constructors that the given pattern can be specialized to.
766 ///
767 /// In most cases, there's only one constructor that a specific pattern
768 /// represents, such as a specific enum variant or a specific literal value.
769 /// Slice patterns, however, can match slices of different lengths. For instance,
770 /// `[a, b, ..tail]` can match a slice of length 2, 3, 4 and so on.
771 ///
772 /// On the other hand, a wild pattern and an identifier pattern cannot be
773 /// specialized in any way.
774 fn pat_constructors(cx: &MatchCheckCtxt, p: &Pat,
775 left_ty: Ty, max_slice_length: usize) -> Vec<Constructor> {
776 let pat = raw_pat(p);
777 match pat.node {
778 PatKind::Struct(..) | PatKind::TupleStruct(..) | PatKind::Path(..) | PatKind::Ident(..) =>
779 match cx.tcx.def_map.borrow().get(&pat.id).unwrap().full_def() {
780 Def::Const(..) | Def::AssociatedConst(..) =>
781 cx.tcx.sess.span_bug(pat.span, "const pattern should've \
782 been rewritten"),
783 Def::Struct(..) | Def::TyAlias(..) => vec![Single],
784 Def::Variant(_, id) => vec![Variant(id)],
785 Def::Local(..) => vec![],
786 def => cx.tcx.sess.span_bug(pat.span, &format!("pat_constructors: unexpected \
787 definition {:?}", def)),
788 },
789 PatKind::QPath(..) =>
790 cx.tcx.sess.span_bug(pat.span, "const pattern should've \
791 been rewritten"),
792 PatKind::Lit(ref expr) =>
793 vec!(ConstantValue(eval_const_expr(cx.tcx, &expr))),
794 PatKind::Range(ref lo, ref hi) =>
795 vec!(ConstantRange(eval_const_expr(cx.tcx, &lo), eval_const_expr(cx.tcx, &hi))),
796 PatKind::Vec(ref before, ref slice, ref after) =>
797 match left_ty.sty {
798 ty::TyArray(_, _) => vec!(Single),
799 _ => if slice.is_some() {
800 (before.len() + after.len()..max_slice_length+1)
801 .map(|length| Slice(length))
802 .collect()
803 } else {
804 vec!(Slice(before.len() + after.len()))
805 }
806 },
807 PatKind::Box(_) | PatKind::Tup(_) | PatKind::Ref(..) =>
808 vec!(Single),
809 PatKind::Wild =>
810 vec!(),
811 }
812 }
813
814 /// This computes the arity of a constructor. The arity of a constructor
815 /// is how many subpattern patterns of that constructor should be expanded to.
816 ///
817 /// For instance, a tuple pattern (_, 42, Some([])) has the arity of 3.
818 /// A struct pattern's arity is the number of fields it contains, etc.
819 pub fn constructor_arity(_cx: &MatchCheckCtxt, ctor: &Constructor, ty: Ty) -> usize {
820 match ty.sty {
821 ty::TyTuple(ref fs) => fs.len(),
822 ty::TyBox(_) => 1,
823 ty::TyRef(_, ty::TypeAndMut { ty, .. }) => match ty.sty {
824 ty::TySlice(_) => match *ctor {
825 Slice(length) => length,
826 ConstantValue(_) => 0,
827 _ => unreachable!()
828 },
829 ty::TyStr => 0,
830 _ => 1
831 },
832 ty::TyEnum(adt, _) | ty::TyStruct(adt, _) => {
833 adt.variant_of_ctor(ctor).fields.len()
834 }
835 ty::TyArray(_, n) => n,
836 _ => 0
837 }
838 }
839
840 fn range_covered_by_constructor(ctor: &Constructor,
841 from: &ConstVal, to: &ConstVal) -> Option<bool> {
842 let (c_from, c_to) = match *ctor {
843 ConstantValue(ref value) => (value, value),
844 ConstantRange(ref from, ref to) => (from, to),
845 Single => return Some(true),
846 _ => unreachable!()
847 };
848 let cmp_from = compare_const_vals(c_from, from);
849 let cmp_to = compare_const_vals(c_to, to);
850 match (cmp_from, cmp_to) {
851 (Some(cmp_from), Some(cmp_to)) => {
852 Some(cmp_from != Ordering::Less && cmp_to != Ordering::Greater)
853 }
854 _ => None
855 }
856 }
857
858 /// This is the main specialization step. It expands the first pattern in the given row
859 /// into `arity` patterns based on the constructor. For most patterns, the step is trivial,
860 /// for instance tuple patterns are flattened and box patterns expand into their inner pattern.
861 ///
862 /// OTOH, slice patterns with a subslice pattern (..tail) can be expanded into multiple
863 /// different patterns.
864 /// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
865 /// fields filled with wild patterns.
866 pub fn specialize<'a>(cx: &MatchCheckCtxt, r: &[&'a Pat],
867 constructor: &Constructor, col: usize, arity: usize) -> Option<Vec<&'a Pat>> {
868 let &Pat {
869 id: pat_id, ref node, span: pat_span
870 } = raw_pat(r[col]);
871 let head: Option<Vec<&Pat>> = match *node {
872 PatKind::Wild =>
873 Some(vec![DUMMY_WILD_PAT; arity]),
874
875 PatKind::Path(..) | PatKind::Ident(..) => {
876 let def = cx.tcx.def_map.borrow().get(&pat_id).unwrap().full_def();
877 match def {
878 Def::Const(..) | Def::AssociatedConst(..) =>
879 cx.tcx.sess.span_bug(pat_span, "const pattern should've \
880 been rewritten"),
881 Def::Variant(_, id) if *constructor != Variant(id) => None,
882 Def::Variant(..) | Def::Struct(..) => Some(Vec::new()),
883 Def::Local(..) => Some(vec![DUMMY_WILD_PAT; arity]),
884 _ => cx.tcx.sess.span_bug(pat_span, &format!("specialize: unexpected \
885 definition {:?}", def)),
886 }
887 }
888
889 PatKind::TupleStruct(_, ref args) => {
890 let def = cx.tcx.def_map.borrow().get(&pat_id).unwrap().full_def();
891 match def {
892 Def::Const(..) | Def::AssociatedConst(..) =>
893 cx.tcx.sess.span_bug(pat_span, "const pattern should've \
894 been rewritten"),
895 Def::Variant(_, id) if *constructor != Variant(id) => None,
896 Def::Variant(..) | Def::Struct(..) => {
897 Some(match args {
898 &Some(ref args) => args.iter().map(|p| &**p).collect(),
899 &None => vec![DUMMY_WILD_PAT; arity],
900 })
901 }
902 _ => None
903 }
904 }
905
906 PatKind::QPath(_, _) => {
907 cx.tcx.sess.span_bug(pat_span, "const pattern should've \
908 been rewritten")
909 }
910
911 PatKind::Struct(_, ref pattern_fields, _) => {
912 let def = cx.tcx.def_map.borrow().get(&pat_id).unwrap().full_def();
913 let adt = cx.tcx.node_id_to_type(pat_id).ty_adt_def().unwrap();
914 let variant = adt.variant_of_ctor(constructor);
915 let def_variant = adt.variant_of_def(def);
916 if variant.did == def_variant.did {
917 Some(variant.fields.iter().map(|sf| {
918 match pattern_fields.iter().find(|f| f.node.name == sf.name) {
919 Some(ref f) => &*f.node.pat,
920 _ => DUMMY_WILD_PAT
921 }
922 }).collect())
923 } else {
924 None
925 }
926 }
927
928 PatKind::Tup(ref args) =>
929 Some(args.iter().map(|p| &**p).collect()),
930
931 PatKind::Box(ref inner) | PatKind::Ref(ref inner, _) =>
932 Some(vec![&**inner]),
933
934 PatKind::Lit(ref expr) => {
935 let expr_value = eval_const_expr(cx.tcx, &expr);
936 match range_covered_by_constructor(constructor, &expr_value, &expr_value) {
937 Some(true) => Some(vec![]),
938 Some(false) => None,
939 None => {
940 span_err!(cx.tcx.sess, pat_span, E0298, "mismatched types between arms");
941 None
942 }
943 }
944 }
945
946 PatKind::Range(ref from, ref to) => {
947 let from_value = eval_const_expr(cx.tcx, &from);
948 let to_value = eval_const_expr(cx.tcx, &to);
949 match range_covered_by_constructor(constructor, &from_value, &to_value) {
950 Some(true) => Some(vec![]),
951 Some(false) => None,
952 None => {
953 span_err!(cx.tcx.sess, pat_span, E0299, "mismatched types between arms");
954 None
955 }
956 }
957 }
958
959 PatKind::Vec(ref before, ref slice, ref after) => {
960 match *constructor {
961 // Fixed-length vectors.
962 Single => {
963 let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
964 pats.extend(repeat(DUMMY_WILD_PAT).take(arity - before.len() - after.len()));
965 pats.extend(after.iter().map(|p| &**p));
966 Some(pats)
967 },
968 Slice(length) if before.len() + after.len() <= length && slice.is_some() => {
969 let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
970 pats.extend(repeat(DUMMY_WILD_PAT).take(arity - before.len() - after.len()));
971 pats.extend(after.iter().map(|p| &**p));
972 Some(pats)
973 },
974 Slice(length) if before.len() + after.len() == length => {
975 let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
976 pats.extend(after.iter().map(|p| &**p));
977 Some(pats)
978 },
979 SliceWithSubslice(prefix, suffix)
980 if before.len() == prefix
981 && after.len() == suffix
982 && slice.is_some() => {
983 let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
984 pats.extend(after.iter().map(|p| &**p));
985 Some(pats)
986 }
987 _ => None
988 }
989 }
990 };
991 head.map(|mut head| {
992 head.extend_from_slice(&r[..col]);
993 head.extend_from_slice(&r[col + 1..]);
994 head
995 })
996 }
997
998 fn check_local(cx: &mut MatchCheckCtxt, loc: &hir::Local) {
999 intravisit::walk_local(cx, loc);
1000
1001 let pat = StaticInliner::new(cx.tcx, None).fold_pat(loc.pat.clone());
1002 check_irrefutable(cx, &pat, false);
1003
1004 // Check legality of move bindings and `@` patterns.
1005 check_legality_of_move_bindings(cx, false, slice::ref_slice(&loc.pat));
1006 check_legality_of_bindings_in_at_patterns(cx, &loc.pat);
1007 }
1008
1009 fn check_fn(cx: &mut MatchCheckCtxt,
1010 kind: FnKind,
1011 decl: &hir::FnDecl,
1012 body: &hir::Block,
1013 sp: Span,
1014 fn_id: NodeId) {
1015 match kind {
1016 FnKind::Closure => {}
1017 _ => cx.param_env = ParameterEnvironment::for_item(cx.tcx, fn_id),
1018 }
1019
1020 intravisit::walk_fn(cx, kind, decl, body, sp);
1021
1022 for input in &decl.inputs {
1023 check_irrefutable(cx, &input.pat, true);
1024 check_legality_of_move_bindings(cx, false, slice::ref_slice(&input.pat));
1025 check_legality_of_bindings_in_at_patterns(cx, &input.pat);
1026 }
1027 }
1028
1029 fn check_irrefutable(cx: &MatchCheckCtxt, pat: &Pat, is_fn_arg: bool) {
1030 let origin = if is_fn_arg {
1031 "function argument"
1032 } else {
1033 "local binding"
1034 };
1035
1036 is_refutable(cx, pat, |uncovered_pat| {
1037 span_err!(cx.tcx.sess, pat.span, E0005,
1038 "refutable pattern in {}: `{}` not covered",
1039 origin,
1040 pat_to_string(uncovered_pat),
1041 );
1042 });
1043 }
1044
1045 fn is_refutable<A, F>(cx: &MatchCheckCtxt, pat: &Pat, refutable: F) -> Option<A> where
1046 F: FnOnce(&Pat) -> A,
1047 {
1048 let pats = Matrix(vec!(vec!(pat)));
1049 match is_useful(cx, &pats, &[DUMMY_WILD_PAT], ConstructWitness) {
1050 UsefulWithWitness(pats) => Some(refutable(&pats[0])),
1051 NotUseful => None,
1052 Useful => unreachable!()
1053 }
1054 }
1055
1056 // Legality of move bindings checking
1057 fn check_legality_of_move_bindings(cx: &MatchCheckCtxt,
1058 has_guard: bool,
1059 pats: &[P<Pat>]) {
1060 let tcx = cx.tcx;
1061 let def_map = &tcx.def_map;
1062 let mut by_ref_span = None;
1063 for pat in pats {
1064 pat_bindings(def_map, &pat, |bm, _, span, _path| {
1065 match bm {
1066 hir::BindByRef(_) => {
1067 by_ref_span = Some(span);
1068 }
1069 hir::BindByValue(_) => {
1070 }
1071 }
1072 })
1073 }
1074
1075 let check_move = |p: &Pat, sub: Option<&Pat>| {
1076 // check legality of moving out of the enum
1077
1078 // x @ Foo(..) is legal, but x @ Foo(y) isn't.
1079 if sub.map_or(false, |p| pat_contains_bindings(&def_map.borrow(), &p)) {
1080 span_err!(cx.tcx.sess, p.span, E0007, "cannot bind by-move with sub-bindings");
1081 } else if has_guard {
1082 span_err!(cx.tcx.sess, p.span, E0008, "cannot bind by-move into a pattern guard");
1083 } else if by_ref_span.is_some() {
1084 let mut err = struct_span_err!(cx.tcx.sess, p.span, E0009,
1085 "cannot bind by-move and by-ref in the same pattern");
1086 span_note!(&mut err, by_ref_span.unwrap(), "by-ref binding occurs here");
1087 err.emit();
1088 }
1089 };
1090
1091 for pat in pats {
1092 front_util::walk_pat(&pat, |p| {
1093 if pat_is_binding(&def_map.borrow(), &p) {
1094 match p.node {
1095 PatKind::Ident(hir::BindByValue(_), _, ref sub) => {
1096 let pat_ty = tcx.node_id_to_type(p.id);
1097 //FIXME: (@jroesch) this code should be floated up as well
1098 let infcx = infer::new_infer_ctxt(cx.tcx,
1099 &cx.tcx.tables,
1100 Some(cx.param_env.clone()));
1101 if infcx.type_moves_by_default(pat_ty, pat.span) {
1102 check_move(p, sub.as_ref().map(|p| &**p));
1103 }
1104 }
1105 PatKind::Ident(hir::BindByRef(_), _, _) => {
1106 }
1107 _ => {
1108 cx.tcx.sess.span_bug(
1109 p.span,
1110 &format!("binding pattern {} is not an \
1111 identifier: {:?}",
1112 p.id,
1113 p.node));
1114 }
1115 }
1116 }
1117 true
1118 });
1119 }
1120 }
1121
1122 /// Ensures that a pattern guard doesn't borrow by mutable reference or
1123 /// assign.
1124 fn check_for_mutation_in_guard<'a, 'tcx>(cx: &'a MatchCheckCtxt<'a, 'tcx>,
1125 guard: &hir::Expr) {
1126 let mut checker = MutationChecker {
1127 cx: cx,
1128 };
1129
1130 let infcx = infer::new_infer_ctxt(cx.tcx,
1131 &cx.tcx.tables,
1132 Some(checker.cx.param_env.clone()));
1133
1134 let mut visitor = ExprUseVisitor::new(&mut checker, &infcx);
1135 visitor.walk_expr(guard);
1136 }
1137
1138 struct MutationChecker<'a, 'tcx: 'a> {
1139 cx: &'a MatchCheckCtxt<'a, 'tcx>,
1140 }
1141
1142 impl<'a, 'tcx> Delegate<'tcx> for MutationChecker<'a, 'tcx> {
1143 fn matched_pat(&mut self, _: &Pat, _: cmt, _: euv::MatchMode) {}
1144 fn consume(&mut self, _: NodeId, _: Span, _: cmt, _: ConsumeMode) {}
1145 fn consume_pat(&mut self, _: &Pat, _: cmt, _: ConsumeMode) {}
1146 fn borrow(&mut self,
1147 _: NodeId,
1148 span: Span,
1149 _: cmt,
1150 _: Region,
1151 kind: BorrowKind,
1152 _: LoanCause) {
1153 match kind {
1154 MutBorrow => {
1155 span_err!(self.cx.tcx.sess, span, E0301,
1156 "cannot mutably borrow in a pattern guard")
1157 }
1158 ImmBorrow | UniqueImmBorrow => {}
1159 }
1160 }
1161 fn decl_without_init(&mut self, _: NodeId, _: Span) {}
1162 fn mutate(&mut self, _: NodeId, span: Span, _: cmt, mode: MutateMode) {
1163 match mode {
1164 MutateMode::JustWrite | MutateMode::WriteAndRead => {
1165 span_err!(self.cx.tcx.sess, span, E0302, "cannot assign in a pattern guard")
1166 }
1167 MutateMode::Init => {}
1168 }
1169 }
1170 }
1171
1172 /// Forbids bindings in `@` patterns. This is necessary for memory safety,
1173 /// because of the way rvalues are handled in the borrow check. (See issue
1174 /// #14587.)
1175 fn check_legality_of_bindings_in_at_patterns(cx: &MatchCheckCtxt, pat: &Pat) {
1176 AtBindingPatternVisitor { cx: cx, bindings_allowed: true }.visit_pat(pat);
1177 }
1178
1179 struct AtBindingPatternVisitor<'a, 'b:'a, 'tcx:'b> {
1180 cx: &'a MatchCheckCtxt<'b, 'tcx>,
1181 bindings_allowed: bool
1182 }
1183
1184 impl<'a, 'b, 'tcx, 'v> Visitor<'v> for AtBindingPatternVisitor<'a, 'b, 'tcx> {
1185 fn visit_pat(&mut self, pat: &Pat) {
1186 if !self.bindings_allowed && pat_is_binding(&self.cx.tcx.def_map.borrow(), pat) {
1187 span_err!(self.cx.tcx.sess, pat.span, E0303,
1188 "pattern bindings are not allowed \
1189 after an `@`");
1190 }
1191
1192 match pat.node {
1193 PatKind::Ident(_, _, Some(_)) => {
1194 let bindings_were_allowed = self.bindings_allowed;
1195 self.bindings_allowed = false;
1196 intravisit::walk_pat(self, pat);
1197 self.bindings_allowed = bindings_were_allowed;
1198 }
1199 _ => intravisit::walk_pat(self, pat),
1200 }
1201 }
1202 }