]> git.proxmox.com Git - rustc.git/blob - src/librustc/middle/liveness.rs
New upstream version 1.25.0+dfsg1
[rustc.git] / src / librustc / middle / liveness.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! A classic liveness analysis based on dataflow over the AST. Computes,
12 //! for each local variable in a function, whether that variable is live
13 //! at a given point. Program execution points are identified by their
14 //! id.
15 //!
16 //! # Basic idea
17 //!
18 //! The basic model is that each local variable is assigned an index. We
19 //! represent sets of local variables using a vector indexed by this
20 //! index. The value in the vector is either 0, indicating the variable
21 //! is dead, or the id of an expression that uses the variable.
22 //!
23 //! We conceptually walk over the AST in reverse execution order. If we
24 //! find a use of a variable, we add it to the set of live variables. If
25 //! we find an assignment to a variable, we remove it from the set of live
26 //! variables. When we have to merge two flows, we take the union of
27 //! those two flows---if the variable is live on both paths, we simply
28 //! pick one id. In the event of loops, we continue doing this until a
29 //! fixed point is reached.
30 //!
31 //! ## Checking initialization
32 //!
33 //! At the function entry point, all variables must be dead. If this is
34 //! not the case, we can report an error using the id found in the set of
35 //! live variables, which identifies a use of the variable which is not
36 //! dominated by an assignment.
37 //!
38 //! ## Checking moves
39 //!
40 //! After each explicit move, the variable must be dead.
41 //!
42 //! ## Computing last uses
43 //!
44 //! Any use of the variable where the variable is dead afterwards is a
45 //! last use.
46 //!
47 //! # Implementation details
48 //!
49 //! The actual implementation contains two (nested) walks over the AST.
50 //! The outer walk has the job of building up the ir_maps instance for the
51 //! enclosing function. On the way down the tree, it identifies those AST
52 //! nodes and variable IDs that will be needed for the liveness analysis
53 //! and assigns them contiguous IDs. The liveness id for an AST node is
54 //! called a `live_node` (it's a newtype'd usize) and the id for a variable
55 //! is called a `variable` (another newtype'd usize).
56 //!
57 //! On the way back up the tree, as we are about to exit from a function
58 //! declaration we allocate a `liveness` instance. Now that we know
59 //! precisely how many nodes and variables we need, we can allocate all
60 //! the various arrays that we will need to precisely the right size. We then
61 //! perform the actual propagation on the `liveness` instance.
62 //!
63 //! This propagation is encoded in the various `propagate_through_*()`
64 //! methods. It effectively does a reverse walk of the AST; whenever we
65 //! reach a loop node, we iterate until a fixed point is reached.
66 //!
67 //! ## The `Users` struct
68 //!
69 //! At each live node `N`, we track three pieces of information for each
70 //! variable `V` (these are encapsulated in the `Users` struct):
71 //!
72 //! - `reader`: the `LiveNode` ID of some node which will read the value
73 //! that `V` holds on entry to `N`. Formally: a node `M` such
74 //! that there exists a path `P` from `N` to `M` where `P` does not
75 //! write `V`. If the `reader` is `invalid_node()`, then the current
76 //! value will never be read (the variable is dead, essentially).
77 //!
78 //! - `writer`: the `LiveNode` ID of some node which will write the
79 //! variable `V` and which is reachable from `N`. Formally: a node `M`
80 //! such that there exists a path `P` from `N` to `M` and `M` writes
81 //! `V`. If the `writer` is `invalid_node()`, then there is no writer
82 //! of `V` that follows `N`.
83 //!
84 //! - `used`: a boolean value indicating whether `V` is *used*. We
85 //! distinguish a *read* from a *use* in that a *use* is some read that
86 //! is not just used to generate a new value. For example, `x += 1` is
87 //! a read but not a use. This is used to generate better warnings.
88 //!
89 //! ## Special Variables
90 //!
91 //! We generate various special variables for various, well, special purposes.
92 //! These are described in the `specials` struct:
93 //!
94 //! - `exit_ln`: a live node that is generated to represent every 'exit' from
95 //! the function, whether it be by explicit return, panic, or other means.
96 //!
97 //! - `fallthrough_ln`: a live node that represents a fallthrough
98 //!
99 //! - `clean_exit_var`: a synthetic variable that is only 'read' from the
100 //! fallthrough node. It is only live if the function could converge
101 //! via means other than an explicit `return` expression. That is, it is
102 //! only dead if the end of the function's block can never be reached.
103 //! It is the responsibility of typeck to ensure that there are no
104 //! `return` expressions in a function declared as diverging.
105 use self::LoopKind::*;
106 use self::LiveNodeKind::*;
107 use self::VarKind::*;
108
109 use hir::def::*;
110 use ty::{self, TyCtxt};
111 use lint;
112 use util::nodemap::{NodeMap, NodeSet};
113
114 use std::{fmt, usize};
115 use std::io::prelude::*;
116 use std::io;
117 use std::rc::Rc;
118 use syntax::ast::{self, NodeId};
119 use syntax::symbol::keywords;
120 use syntax_pos::Span;
121
122 use hir::Expr;
123 use hir;
124 use hir::intravisit::{self, Visitor, FnKind, NestedVisitorMap};
125
126 /// For use with `propagate_through_loop`.
127 enum LoopKind<'a> {
128 /// An endless `loop` loop.
129 LoopLoop,
130 /// A `while` loop, with the given expression as condition.
131 WhileLoop(&'a Expr),
132 }
133
134 #[derive(Copy, Clone, PartialEq)]
135 struct Variable(usize);
136
137 #[derive(Copy, PartialEq)]
138 struct LiveNode(usize);
139
140 impl Variable {
141 fn get(&self) -> usize { let Variable(v) = *self; v }
142 }
143
144 impl LiveNode {
145 fn get(&self) -> usize { let LiveNode(v) = *self; v }
146 }
147
148 impl Clone for LiveNode {
149 fn clone(&self) -> LiveNode {
150 LiveNode(self.get())
151 }
152 }
153
154 #[derive(Copy, Clone, PartialEq, Debug)]
155 enum LiveNodeKind {
156 FreeVarNode(Span),
157 ExprNode(Span),
158 VarDefNode(Span),
159 ExitNode
160 }
161
162 fn live_node_kind_to_string(lnk: LiveNodeKind, tcx: TyCtxt) -> String {
163 let cm = tcx.sess.codemap();
164 match lnk {
165 FreeVarNode(s) => {
166 format!("Free var node [{}]", cm.span_to_string(s))
167 }
168 ExprNode(s) => {
169 format!("Expr node [{}]", cm.span_to_string(s))
170 }
171 VarDefNode(s) => {
172 format!("Var def node [{}]", cm.span_to_string(s))
173 }
174 ExitNode => "Exit node".to_string(),
175 }
176 }
177
178 impl<'a, 'tcx> Visitor<'tcx> for IrMaps<'a, 'tcx> {
179 fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
180 NestedVisitorMap::OnlyBodies(&self.tcx.hir)
181 }
182
183 fn visit_fn(&mut self, fk: FnKind<'tcx>, fd: &'tcx hir::FnDecl,
184 b: hir::BodyId, s: Span, id: NodeId) {
185 visit_fn(self, fk, fd, b, s, id);
186 }
187 fn visit_local(&mut self, l: &'tcx hir::Local) { visit_local(self, l); }
188 fn visit_expr(&mut self, ex: &'tcx Expr) { visit_expr(self, ex); }
189 fn visit_arm(&mut self, a: &'tcx hir::Arm) { visit_arm(self, a); }
190 }
191
192 pub fn check_crate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) {
193 tcx.hir.krate().visit_all_item_likes(&mut IrMaps::new(tcx).as_deep_visitor());
194 tcx.sess.abort_if_errors();
195 }
196
197 impl fmt::Debug for LiveNode {
198 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
199 write!(f, "ln({})", self.get())
200 }
201 }
202
203 impl fmt::Debug for Variable {
204 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
205 write!(f, "v({})", self.get())
206 }
207 }
208
209 // ______________________________________________________________________
210 // Creating ir_maps
211 //
212 // This is the first pass and the one that drives the main
213 // computation. It walks up and down the IR once. On the way down,
214 // we count for each function the number of variables as well as
215 // liveness nodes. A liveness node is basically an expression or
216 // capture clause that does something of interest: either it has
217 // interesting control flow or it uses/defines a local variable.
218 //
219 // On the way back up, at each function node we create liveness sets
220 // (we now know precisely how big to make our various vectors and so
221 // forth) and then do the data-flow propagation to compute the set
222 // of live variables at each program point.
223 //
224 // Finally, we run back over the IR one last time and, using the
225 // computed liveness, check various safety conditions. For example,
226 // there must be no live nodes at the definition site for a variable
227 // unless it has an initializer. Similarly, each non-mutable local
228 // variable must not be assigned if there is some successor
229 // assignment. And so forth.
230
231 impl LiveNode {
232 fn is_valid(&self) -> bool {
233 self.get() != usize::MAX
234 }
235 }
236
237 fn invalid_node() -> LiveNode { LiveNode(usize::MAX) }
238
239 struct CaptureInfo {
240 ln: LiveNode,
241 var_nid: NodeId
242 }
243
244 #[derive(Copy, Clone, Debug)]
245 struct LocalInfo {
246 id: NodeId,
247 name: ast::Name,
248 is_shorthand: bool,
249 }
250
251 #[derive(Copy, Clone, Debug)]
252 enum VarKind {
253 Arg(NodeId, ast::Name),
254 Local(LocalInfo),
255 CleanExit
256 }
257
258 struct IrMaps<'a, 'tcx: 'a> {
259 tcx: TyCtxt<'a, 'tcx, 'tcx>,
260
261 num_live_nodes: usize,
262 num_vars: usize,
263 live_node_map: NodeMap<LiveNode>,
264 variable_map: NodeMap<Variable>,
265 capture_info_map: NodeMap<Rc<Vec<CaptureInfo>>>,
266 var_kinds: Vec<VarKind>,
267 lnks: Vec<LiveNodeKind>,
268 }
269
270 impl<'a, 'tcx> IrMaps<'a, 'tcx> {
271 fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> IrMaps<'a, 'tcx> {
272 IrMaps {
273 tcx,
274 num_live_nodes: 0,
275 num_vars: 0,
276 live_node_map: NodeMap(),
277 variable_map: NodeMap(),
278 capture_info_map: NodeMap(),
279 var_kinds: Vec::new(),
280 lnks: Vec::new(),
281 }
282 }
283
284 fn add_live_node(&mut self, lnk: LiveNodeKind) -> LiveNode {
285 let ln = LiveNode(self.num_live_nodes);
286 self.lnks.push(lnk);
287 self.num_live_nodes += 1;
288
289 debug!("{:?} is of kind {}", ln,
290 live_node_kind_to_string(lnk, self.tcx));
291
292 ln
293 }
294
295 fn add_live_node_for_node(&mut self, node_id: NodeId, lnk: LiveNodeKind) {
296 let ln = self.add_live_node(lnk);
297 self.live_node_map.insert(node_id, ln);
298
299 debug!("{:?} is node {}", ln, node_id);
300 }
301
302 fn add_variable(&mut self, vk: VarKind) -> Variable {
303 let v = Variable(self.num_vars);
304 self.var_kinds.push(vk);
305 self.num_vars += 1;
306
307 match vk {
308 Local(LocalInfo { id: node_id, .. }) | Arg(node_id, _) => {
309 self.variable_map.insert(node_id, v);
310 },
311 CleanExit => {}
312 }
313
314 debug!("{:?} is {:?}", v, vk);
315
316 v
317 }
318
319 fn variable(&self, node_id: NodeId, span: Span) -> Variable {
320 match self.variable_map.get(&node_id) {
321 Some(&var) => var,
322 None => {
323 span_bug!(span, "no variable registered for id {}", node_id);
324 }
325 }
326 }
327
328 fn variable_name(&self, var: Variable) -> String {
329 match self.var_kinds[var.get()] {
330 Local(LocalInfo { name, .. }) | Arg(_, name) => {
331 name.to_string()
332 },
333 CleanExit => "<clean-exit>".to_string()
334 }
335 }
336
337 fn variable_is_shorthand(&self, var: Variable) -> bool {
338 match self.var_kinds[var.get()] {
339 Local(LocalInfo { is_shorthand, .. }) => is_shorthand,
340 Arg(..) | CleanExit => false
341 }
342 }
343
344 fn set_captures(&mut self, node_id: NodeId, cs: Vec<CaptureInfo>) {
345 self.capture_info_map.insert(node_id, Rc::new(cs));
346 }
347
348 fn lnk(&self, ln: LiveNode) -> LiveNodeKind {
349 self.lnks[ln.get()]
350 }
351 }
352
353 fn visit_fn<'a, 'tcx: 'a>(ir: &mut IrMaps<'a, 'tcx>,
354 fk: FnKind<'tcx>,
355 decl: &'tcx hir::FnDecl,
356 body_id: hir::BodyId,
357 sp: Span,
358 id: ast::NodeId) {
359 debug!("visit_fn");
360
361 // swap in a new set of IR maps for this function body:
362 let mut fn_maps = IrMaps::new(ir.tcx);
363
364 debug!("creating fn_maps: {:?}", &fn_maps as *const IrMaps);
365
366 let body = ir.tcx.hir.body(body_id);
367
368 for arg in &body.arguments {
369 arg.pat.each_binding(|_bm, arg_id, _x, path1| {
370 debug!("adding argument {}", arg_id);
371 let name = path1.node;
372 fn_maps.add_variable(Arg(arg_id, name));
373 })
374 };
375
376 // gather up the various local variables, significant expressions,
377 // and so forth:
378 intravisit::walk_fn(&mut fn_maps, fk, decl, body_id, sp, id);
379
380 // compute liveness
381 let mut lsets = Liveness::new(&mut fn_maps, body_id);
382 let entry_ln = lsets.compute(&body.value);
383
384 // check for various error conditions
385 lsets.visit_body(body);
386 lsets.warn_about_unused_args(body, entry_ln);
387 }
388
389 fn visit_local<'a, 'tcx>(ir: &mut IrMaps<'a, 'tcx>, local: &'tcx hir::Local) {
390 local.pat.each_binding(|_, p_id, sp, path1| {
391 debug!("adding local variable {}", p_id);
392 let name = path1.node;
393 ir.add_live_node_for_node(p_id, VarDefNode(sp));
394 ir.add_variable(Local(LocalInfo {
395 id: p_id,
396 name,
397 is_shorthand: false,
398 }));
399 });
400 intravisit::walk_local(ir, local);
401 }
402
403 fn visit_arm<'a, 'tcx>(ir: &mut IrMaps<'a, 'tcx>, arm: &'tcx hir::Arm) {
404 for pat in &arm.pats {
405 // for struct patterns, take note of which fields used shorthand (`x`
406 // rather than `x: x`)
407 //
408 // FIXME: according to the rust-lang-nursery/rustc-guide book and
409 // librustc/README.md, `NodeId`s are to be phased out in favor of
410 // `HirId`s; however, we need to match the signature of `each_binding`,
411 // which uses `NodeIds`.
412 let mut shorthand_field_ids = NodeSet();
413 if let hir::PatKind::Struct(_, ref fields, _) = pat.node {
414 for field in fields {
415 if field.node.is_shorthand {
416 shorthand_field_ids.insert(field.node.pat.id);
417 }
418 }
419 }
420
421 pat.each_binding(|bm, p_id, sp, path1| {
422 debug!("adding local variable {} from match with bm {:?}",
423 p_id, bm);
424 let name = path1.node;
425 ir.add_live_node_for_node(p_id, VarDefNode(sp));
426 ir.add_variable(Local(LocalInfo {
427 id: p_id,
428 name: name,
429 is_shorthand: shorthand_field_ids.contains(&p_id)
430 }));
431 })
432 }
433 intravisit::walk_arm(ir, arm);
434 }
435
436 fn visit_expr<'a, 'tcx>(ir: &mut IrMaps<'a, 'tcx>, expr: &'tcx Expr) {
437 match expr.node {
438 // live nodes required for uses or definitions of variables:
439 hir::ExprPath(hir::QPath::Resolved(_, ref path)) => {
440 debug!("expr {}: path that leads to {:?}", expr.id, path.def);
441 if let Def::Local(..) = path.def {
442 ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
443 }
444 intravisit::walk_expr(ir, expr);
445 }
446 hir::ExprClosure(..) => {
447 // Interesting control flow (for loops can contain labeled
448 // breaks or continues)
449 ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
450
451 // Make a live_node for each captured variable, with the span
452 // being the location that the variable is used. This results
453 // in better error messages than just pointing at the closure
454 // construction site.
455 let mut call_caps = Vec::new();
456 ir.tcx.with_freevars(expr.id, |freevars| {
457 for fv in freevars {
458 if let Def::Local(rv) = fv.def {
459 let fv_ln = ir.add_live_node(FreeVarNode(fv.span));
460 call_caps.push(CaptureInfo {ln: fv_ln,
461 var_nid: rv});
462 }
463 }
464 });
465 ir.set_captures(expr.id, call_caps);
466
467 intravisit::walk_expr(ir, expr);
468 }
469
470 // live nodes required for interesting control flow:
471 hir::ExprIf(..) | hir::ExprMatch(..) | hir::ExprWhile(..) | hir::ExprLoop(..) => {
472 ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
473 intravisit::walk_expr(ir, expr);
474 }
475 hir::ExprBinary(op, ..) if op.node.is_lazy() => {
476 ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
477 intravisit::walk_expr(ir, expr);
478 }
479
480 // otherwise, live nodes are not required:
481 hir::ExprIndex(..) | hir::ExprField(..) | hir::ExprTupField(..) |
482 hir::ExprArray(..) | hir::ExprCall(..) | hir::ExprMethodCall(..) |
483 hir::ExprTup(..) | hir::ExprBinary(..) | hir::ExprAddrOf(..) |
484 hir::ExprCast(..) | hir::ExprUnary(..) | hir::ExprBreak(..) |
485 hir::ExprAgain(_) | hir::ExprLit(_) | hir::ExprRet(..) |
486 hir::ExprBlock(..) | hir::ExprAssign(..) | hir::ExprAssignOp(..) |
487 hir::ExprStruct(..) | hir::ExprRepeat(..) |
488 hir::ExprInlineAsm(..) | hir::ExprBox(..) | hir::ExprYield(..) |
489 hir::ExprType(..) | hir::ExprPath(hir::QPath::TypeRelative(..)) => {
490 intravisit::walk_expr(ir, expr);
491 }
492 }
493 }
494
495 // ______________________________________________________________________
496 // Computing liveness sets
497 //
498 // Actually we compute just a bit more than just liveness, but we use
499 // the same basic propagation framework in all cases.
500
501 #[derive(Clone, Copy)]
502 struct Users {
503 reader: LiveNode,
504 writer: LiveNode,
505 used: bool
506 }
507
508 fn invalid_users() -> Users {
509 Users {
510 reader: invalid_node(),
511 writer: invalid_node(),
512 used: false
513 }
514 }
515
516 #[derive(Copy, Clone)]
517 struct Specials {
518 exit_ln: LiveNode,
519 fallthrough_ln: LiveNode,
520 clean_exit_var: Variable
521 }
522
523 const ACC_READ: u32 = 1;
524 const ACC_WRITE: u32 = 2;
525 const ACC_USE: u32 = 4;
526
527 struct Liveness<'a, 'tcx: 'a> {
528 ir: &'a mut IrMaps<'a, 'tcx>,
529 tables: &'a ty::TypeckTables<'tcx>,
530 s: Specials,
531 successors: Vec<LiveNode>,
532 users: Vec<Users>,
533
534 // mappings from loop node ID to LiveNode
535 // ("break" label should map to loop node ID,
536 // it probably doesn't now)
537 break_ln: NodeMap<LiveNode>,
538 cont_ln: NodeMap<LiveNode>,
539
540 // mappings from node ID to LiveNode for "breakable" blocks-- currently only `catch {...}`
541 breakable_block_ln: NodeMap<LiveNode>,
542 }
543
544 impl<'a, 'tcx> Liveness<'a, 'tcx> {
545 fn new(ir: &'a mut IrMaps<'a, 'tcx>, body: hir::BodyId) -> Liveness<'a, 'tcx> {
546 // Special nodes and variables:
547 // - exit_ln represents the end of the fn, either by return or panic
548 // - implicit_ret_var is a pseudo-variable that represents
549 // an implicit return
550 let specials = Specials {
551 exit_ln: ir.add_live_node(ExitNode),
552 fallthrough_ln: ir.add_live_node(ExitNode),
553 clean_exit_var: ir.add_variable(CleanExit)
554 };
555
556 let tables = ir.tcx.body_tables(body);
557
558 let num_live_nodes = ir.num_live_nodes;
559 let num_vars = ir.num_vars;
560
561 Liveness {
562 ir,
563 tables,
564 s: specials,
565 successors: vec![invalid_node(); num_live_nodes],
566 users: vec![invalid_users(); num_live_nodes * num_vars],
567 break_ln: NodeMap(),
568 cont_ln: NodeMap(),
569 breakable_block_ln: NodeMap(),
570 }
571 }
572
573 fn live_node(&self, node_id: NodeId, span: Span) -> LiveNode {
574 match self.ir.live_node_map.get(&node_id) {
575 Some(&ln) => ln,
576 None => {
577 // This must be a mismatch between the ir_map construction
578 // above and the propagation code below; the two sets of
579 // code have to agree about which AST nodes are worth
580 // creating liveness nodes for.
581 span_bug!(
582 span,
583 "no live node registered for node {}",
584 node_id);
585 }
586 }
587 }
588
589 fn variable(&self, node_id: NodeId, span: Span) -> Variable {
590 self.ir.variable(node_id, span)
591 }
592
593 fn pat_bindings<F>(&mut self, pat: &hir::Pat, mut f: F) where
594 F: FnMut(&mut Liveness<'a, 'tcx>, LiveNode, Variable, Span, NodeId),
595 {
596 pat.each_binding(|_bm, p_id, sp, _n| {
597 let ln = self.live_node(p_id, sp);
598 let var = self.variable(p_id, sp);
599 f(self, ln, var, sp, p_id);
600 })
601 }
602
603 fn arm_pats_bindings<F>(&mut self, pat: Option<&hir::Pat>, f: F) where
604 F: FnMut(&mut Liveness<'a, 'tcx>, LiveNode, Variable, Span, NodeId),
605 {
606 if let Some(pat) = pat {
607 self.pat_bindings(pat, f);
608 }
609 }
610
611 fn define_bindings_in_pat(&mut self, pat: &hir::Pat, succ: LiveNode)
612 -> LiveNode {
613 self.define_bindings_in_arm_pats(Some(pat), succ)
614 }
615
616 fn define_bindings_in_arm_pats(&mut self, pat: Option<&hir::Pat>, succ: LiveNode)
617 -> LiveNode {
618 let mut succ = succ;
619 self.arm_pats_bindings(pat, |this, ln, var, _sp, _id| {
620 this.init_from_succ(ln, succ);
621 this.define(ln, var);
622 succ = ln;
623 });
624 succ
625 }
626
627 fn idx(&self, ln: LiveNode, var: Variable) -> usize {
628 ln.get() * self.ir.num_vars + var.get()
629 }
630
631 fn live_on_entry(&self, ln: LiveNode, var: Variable)
632 -> Option<LiveNodeKind> {
633 assert!(ln.is_valid());
634 let reader = self.users[self.idx(ln, var)].reader;
635 if reader.is_valid() {Some(self.ir.lnk(reader))} else {None}
636 }
637
638 /*
639 Is this variable live on entry to any of its successor nodes?
640 */
641 fn live_on_exit(&self, ln: LiveNode, var: Variable)
642 -> Option<LiveNodeKind> {
643 let successor = self.successors[ln.get()];
644 self.live_on_entry(successor, var)
645 }
646
647 fn used_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
648 assert!(ln.is_valid());
649 self.users[self.idx(ln, var)].used
650 }
651
652 fn assigned_on_entry(&self, ln: LiveNode, var: Variable)
653 -> Option<LiveNodeKind> {
654 assert!(ln.is_valid());
655 let writer = self.users[self.idx(ln, var)].writer;
656 if writer.is_valid() {Some(self.ir.lnk(writer))} else {None}
657 }
658
659 fn assigned_on_exit(&self, ln: LiveNode, var: Variable)
660 -> Option<LiveNodeKind> {
661 let successor = self.successors[ln.get()];
662 self.assigned_on_entry(successor, var)
663 }
664
665 fn indices2<F>(&mut self, ln: LiveNode, succ_ln: LiveNode, mut op: F) where
666 F: FnMut(&mut Liveness<'a, 'tcx>, usize, usize),
667 {
668 let node_base_idx = self.idx(ln, Variable(0));
669 let succ_base_idx = self.idx(succ_ln, Variable(0));
670 for var_idx in 0..self.ir.num_vars {
671 op(self, node_base_idx + var_idx, succ_base_idx + var_idx);
672 }
673 }
674
675 fn write_vars<F>(&self,
676 wr: &mut Write,
677 ln: LiveNode,
678 mut test: F)
679 -> io::Result<()> where
680 F: FnMut(usize) -> LiveNode,
681 {
682 let node_base_idx = self.idx(ln, Variable(0));
683 for var_idx in 0..self.ir.num_vars {
684 let idx = node_base_idx + var_idx;
685 if test(idx).is_valid() {
686 write!(wr, " {:?}", Variable(var_idx))?;
687 }
688 }
689 Ok(())
690 }
691
692
693 #[allow(unused_must_use)]
694 fn ln_str(&self, ln: LiveNode) -> String {
695 let mut wr = Vec::new();
696 {
697 let wr = &mut wr as &mut Write;
698 write!(wr, "[ln({:?}) of kind {:?} reads", ln.get(), self.ir.lnk(ln));
699 self.write_vars(wr, ln, |idx| self.users[idx].reader);
700 write!(wr, " writes");
701 self.write_vars(wr, ln, |idx| self.users[idx].writer);
702 write!(wr, " precedes {:?}]", self.successors[ln.get()]);
703 }
704 String::from_utf8(wr).unwrap()
705 }
706
707 fn init_empty(&mut self, ln: LiveNode, succ_ln: LiveNode) {
708 self.successors[ln.get()] = succ_ln;
709
710 // It is not necessary to initialize the
711 // values to empty because this is the value
712 // they have when they are created, and the sets
713 // only grow during iterations.
714 //
715 // self.indices(ln) { |idx|
716 // self.users[idx] = invalid_users();
717 // }
718 }
719
720 fn init_from_succ(&mut self, ln: LiveNode, succ_ln: LiveNode) {
721 // more efficient version of init_empty() / merge_from_succ()
722 self.successors[ln.get()] = succ_ln;
723
724 self.indices2(ln, succ_ln, |this, idx, succ_idx| {
725 this.users[idx] = this.users[succ_idx]
726 });
727 debug!("init_from_succ(ln={}, succ={})",
728 self.ln_str(ln), self.ln_str(succ_ln));
729 }
730
731 fn merge_from_succ(&mut self,
732 ln: LiveNode,
733 succ_ln: LiveNode,
734 first_merge: bool)
735 -> bool {
736 if ln == succ_ln { return false; }
737
738 let mut changed = false;
739 self.indices2(ln, succ_ln, |this, idx, succ_idx| {
740 changed |= copy_if_invalid(this.users[succ_idx].reader,
741 &mut this.users[idx].reader);
742 changed |= copy_if_invalid(this.users[succ_idx].writer,
743 &mut this.users[idx].writer);
744 if this.users[succ_idx].used && !this.users[idx].used {
745 this.users[idx].used = true;
746 changed = true;
747 }
748 });
749
750 debug!("merge_from_succ(ln={:?}, succ={}, first_merge={}, changed={})",
751 ln, self.ln_str(succ_ln), first_merge, changed);
752 return changed;
753
754 fn copy_if_invalid(src: LiveNode, dst: &mut LiveNode) -> bool {
755 if src.is_valid() && !dst.is_valid() {
756 *dst = src;
757 true
758 } else {
759 false
760 }
761 }
762 }
763
764 // Indicates that a local variable was *defined*; we know that no
765 // uses of the variable can precede the definition (resolve checks
766 // this) so we just clear out all the data.
767 fn define(&mut self, writer: LiveNode, var: Variable) {
768 let idx = self.idx(writer, var);
769 self.users[idx].reader = invalid_node();
770 self.users[idx].writer = invalid_node();
771
772 debug!("{:?} defines {:?} (idx={}): {}", writer, var,
773 idx, self.ln_str(writer));
774 }
775
776 // Either read, write, or both depending on the acc bitset
777 fn acc(&mut self, ln: LiveNode, var: Variable, acc: u32) {
778 debug!("{:?} accesses[{:x}] {:?}: {}",
779 ln, acc, var, self.ln_str(ln));
780
781 let idx = self.idx(ln, var);
782 let user = &mut self.users[idx];
783
784 if (acc & ACC_WRITE) != 0 {
785 user.reader = invalid_node();
786 user.writer = ln;
787 }
788
789 // Important: if we both read/write, must do read second
790 // or else the write will override.
791 if (acc & ACC_READ) != 0 {
792 user.reader = ln;
793 }
794
795 if (acc & ACC_USE) != 0 {
796 user.used = true;
797 }
798 }
799
800 // _______________________________________________________________________
801
802 fn compute(&mut self, body: &hir::Expr) -> LiveNode {
803 // if there is a `break` or `again` at the top level, then it's
804 // effectively a return---this only occurs in `for` loops,
805 // where the body is really a closure.
806
807 debug!("compute: using id for body, {}", self.ir.tcx.hir.node_to_pretty_string(body.id));
808
809 let exit_ln = self.s.exit_ln;
810
811 self.break_ln.insert(body.id, exit_ln);
812 self.cont_ln.insert(body.id, exit_ln);
813
814 // the fallthrough exit is only for those cases where we do not
815 // explicitly return:
816 let s = self.s;
817 self.init_from_succ(s.fallthrough_ln, s.exit_ln);
818 self.acc(s.fallthrough_ln, s.clean_exit_var, ACC_READ);
819
820 let entry_ln = self.propagate_through_expr(body, s.fallthrough_ln);
821
822 // hack to skip the loop unless debug! is enabled:
823 debug!("^^ liveness computation results for body {} (entry={:?})",
824 {
825 for ln_idx in 0..self.ir.num_live_nodes {
826 debug!("{:?}", self.ln_str(LiveNode(ln_idx)));
827 }
828 body.id
829 },
830 entry_ln);
831
832 entry_ln
833 }
834
835 fn propagate_through_block(&mut self, blk: &hir::Block, succ: LiveNode)
836 -> LiveNode {
837 if blk.targeted_by_break {
838 self.breakable_block_ln.insert(blk.id, succ);
839 }
840 let succ = self.propagate_through_opt_expr(blk.expr.as_ref().map(|e| &**e), succ);
841 blk.stmts.iter().rev().fold(succ, |succ, stmt| {
842 self.propagate_through_stmt(stmt, succ)
843 })
844 }
845
846 fn propagate_through_stmt(&mut self, stmt: &hir::Stmt, succ: LiveNode)
847 -> LiveNode {
848 match stmt.node {
849 hir::StmtDecl(ref decl, _) => {
850 self.propagate_through_decl(&decl, succ)
851 }
852
853 hir::StmtExpr(ref expr, _) | hir::StmtSemi(ref expr, _) => {
854 self.propagate_through_expr(&expr, succ)
855 }
856 }
857 }
858
859 fn propagate_through_decl(&mut self, decl: &hir::Decl, succ: LiveNode)
860 -> LiveNode {
861 match decl.node {
862 hir::DeclLocal(ref local) => {
863 self.propagate_through_local(&local, succ)
864 }
865 hir::DeclItem(_) => succ,
866 }
867 }
868
869 fn propagate_through_local(&mut self, local: &hir::Local, succ: LiveNode)
870 -> LiveNode {
871 // Note: we mark the variable as defined regardless of whether
872 // there is an initializer. Initially I had thought to only mark
873 // the live variable as defined if it was initialized, and then we
874 // could check for uninit variables just by scanning what is live
875 // at the start of the function. But that doesn't work so well for
876 // immutable variables defined in a loop:
877 // loop { let x; x = 5; }
878 // because the "assignment" loops back around and generates an error.
879 //
880 // So now we just check that variables defined w/o an
881 // initializer are not live at the point of their
882 // initialization, which is mildly more complex than checking
883 // once at the func header but otherwise equivalent.
884
885 let succ = self.propagate_through_opt_expr(local.init.as_ref().map(|e| &**e), succ);
886 self.define_bindings_in_pat(&local.pat, succ)
887 }
888
889 fn propagate_through_exprs(&mut self, exprs: &[Expr], succ: LiveNode)
890 -> LiveNode {
891 exprs.iter().rev().fold(succ, |succ, expr| {
892 self.propagate_through_expr(&expr, succ)
893 })
894 }
895
896 fn propagate_through_opt_expr(&mut self,
897 opt_expr: Option<&Expr>,
898 succ: LiveNode)
899 -> LiveNode {
900 opt_expr.map_or(succ, |expr| self.propagate_through_expr(expr, succ))
901 }
902
903 fn propagate_through_expr(&mut self, expr: &Expr, succ: LiveNode)
904 -> LiveNode {
905 debug!("propagate_through_expr: {}", self.ir.tcx.hir.node_to_pretty_string(expr.id));
906
907 match expr.node {
908 // Interesting cases with control flow or which gen/kill
909 hir::ExprPath(hir::QPath::Resolved(_, ref path)) => {
910 self.access_path(expr.id, path, succ, ACC_READ | ACC_USE)
911 }
912
913 hir::ExprField(ref e, _) => {
914 self.propagate_through_expr(&e, succ)
915 }
916
917 hir::ExprTupField(ref e, _) => {
918 self.propagate_through_expr(&e, succ)
919 }
920
921 hir::ExprClosure(.., blk_id, _, _) => {
922 debug!("{} is an ExprClosure", self.ir.tcx.hir.node_to_pretty_string(expr.id));
923
924 /*
925 The next-node for a break is the successor of the entire
926 loop. The next-node for a continue is the top of this loop.
927 */
928 let node = self.live_node(expr.id, expr.span);
929
930 let break_ln = succ;
931 let cont_ln = node;
932 self.break_ln.insert(blk_id.node_id, break_ln);
933 self.cont_ln.insert(blk_id.node_id, cont_ln);
934
935 // the construction of a closure itself is not important,
936 // but we have to consider the closed over variables.
937 let caps = match self.ir.capture_info_map.get(&expr.id) {
938 Some(caps) => caps.clone(),
939 None => {
940 span_bug!(expr.span, "no registered caps");
941 }
942 };
943 caps.iter().rev().fold(succ, |succ, cap| {
944 self.init_from_succ(cap.ln, succ);
945 let var = self.variable(cap.var_nid, expr.span);
946 self.acc(cap.ln, var, ACC_READ | ACC_USE);
947 cap.ln
948 })
949 }
950
951 hir::ExprIf(ref cond, ref then, ref els) => {
952 //
953 // (cond)
954 // |
955 // v
956 // (expr)
957 // / \
958 // | |
959 // v v
960 // (then)(els)
961 // | |
962 // v v
963 // ( succ )
964 //
965 let else_ln = self.propagate_through_opt_expr(els.as_ref().map(|e| &**e), succ);
966 let then_ln = self.propagate_through_expr(&then, succ);
967 let ln = self.live_node(expr.id, expr.span);
968 self.init_from_succ(ln, else_ln);
969 self.merge_from_succ(ln, then_ln, false);
970 self.propagate_through_expr(&cond, ln)
971 }
972
973 hir::ExprWhile(ref cond, ref blk, _) => {
974 self.propagate_through_loop(expr, WhileLoop(&cond), &blk, succ)
975 }
976
977 // Note that labels have been resolved, so we don't need to look
978 // at the label ident
979 hir::ExprLoop(ref blk, _, _) => {
980 self.propagate_through_loop(expr, LoopLoop, &blk, succ)
981 }
982
983 hir::ExprMatch(ref e, ref arms, _) => {
984 //
985 // (e)
986 // |
987 // v
988 // (expr)
989 // / | \
990 // | | |
991 // v v v
992 // (..arms..)
993 // | | |
994 // v v v
995 // ( succ )
996 //
997 //
998 let ln = self.live_node(expr.id, expr.span);
999 self.init_empty(ln, succ);
1000 let mut first_merge = true;
1001 for arm in arms {
1002 let body_succ =
1003 self.propagate_through_expr(&arm.body, succ);
1004 let guard_succ =
1005 self.propagate_through_opt_expr(arm.guard.as_ref().map(|e| &**e), body_succ);
1006 // only consider the first pattern; any later patterns must have
1007 // the same bindings, and we also consider the first pattern to be
1008 // the "authoritative" set of ids
1009 let arm_succ =
1010 self.define_bindings_in_arm_pats(arm.pats.first().map(|p| &**p),
1011 guard_succ);
1012 self.merge_from_succ(ln, arm_succ, first_merge);
1013 first_merge = false;
1014 };
1015 self.propagate_through_expr(&e, ln)
1016 }
1017
1018 hir::ExprRet(ref o_e) => {
1019 // ignore succ and subst exit_ln:
1020 let exit_ln = self.s.exit_ln;
1021 self.propagate_through_opt_expr(o_e.as_ref().map(|e| &**e), exit_ln)
1022 }
1023
1024 hir::ExprBreak(label, ref opt_expr) => {
1025 // Find which label this break jumps to
1026 let target = match label.target_id {
1027 hir::ScopeTarget::Block(node_id) =>
1028 self.breakable_block_ln.get(&node_id),
1029 hir::ScopeTarget::Loop(hir::LoopIdResult::Ok(node_id)) =>
1030 self.break_ln.get(&node_id),
1031 hir::ScopeTarget::Loop(hir::LoopIdResult::Err(err)) =>
1032 span_bug!(expr.span, "loop scope error: {}", err),
1033 }.map(|x| *x);
1034
1035 // Now that we know the label we're going to,
1036 // look it up in the break loop nodes table
1037
1038 match target {
1039 Some(b) => self.propagate_through_opt_expr(opt_expr.as_ref().map(|e| &**e), b),
1040 None => span_bug!(expr.span, "break to unknown label")
1041 }
1042 }
1043
1044 hir::ExprAgain(label) => {
1045 // Find which label this expr continues to
1046 let sc = match label.target_id {
1047 hir::ScopeTarget::Block(_) => bug!("can't `continue` to a non-loop block"),
1048 hir::ScopeTarget::Loop(hir::LoopIdResult::Ok(node_id)) => node_id,
1049 hir::ScopeTarget::Loop(hir::LoopIdResult::Err(err)) =>
1050 span_bug!(expr.span, "loop scope error: {}", err),
1051 };
1052
1053 // Now that we know the label we're going to,
1054 // look it up in the continue loop nodes table
1055
1056 match self.cont_ln.get(&sc) {
1057 Some(&b) => b,
1058 None => span_bug!(expr.span, "continue to unknown label")
1059 }
1060 }
1061
1062 hir::ExprAssign(ref l, ref r) => {
1063 // see comment on places in
1064 // propagate_through_place_components()
1065 let succ = self.write_place(&l, succ, ACC_WRITE);
1066 let succ = self.propagate_through_place_components(&l, succ);
1067 self.propagate_through_expr(&r, succ)
1068 }
1069
1070 hir::ExprAssignOp(_, ref l, ref r) => {
1071 // an overloaded assign op is like a method call
1072 if self.tables.is_method_call(expr) {
1073 let succ = self.propagate_through_expr(&l, succ);
1074 self.propagate_through_expr(&r, succ)
1075 } else {
1076 // see comment on places in
1077 // propagate_through_place_components()
1078 let succ = self.write_place(&l, succ, ACC_WRITE|ACC_READ);
1079 let succ = self.propagate_through_expr(&r, succ);
1080 self.propagate_through_place_components(&l, succ)
1081 }
1082 }
1083
1084 // Uninteresting cases: just propagate in rev exec order
1085
1086 hir::ExprArray(ref exprs) => {
1087 self.propagate_through_exprs(exprs, succ)
1088 }
1089
1090 hir::ExprStruct(_, ref fields, ref with_expr) => {
1091 let succ = self.propagate_through_opt_expr(with_expr.as_ref().map(|e| &**e), succ);
1092 fields.iter().rev().fold(succ, |succ, field| {
1093 self.propagate_through_expr(&field.expr, succ)
1094 })
1095 }
1096
1097 hir::ExprCall(ref f, ref args) => {
1098 // FIXME(canndrew): This is_never should really be an is_uninhabited
1099 let succ = if self.tables.expr_ty(expr).is_never() {
1100 self.s.exit_ln
1101 } else {
1102 succ
1103 };
1104 let succ = self.propagate_through_exprs(args, succ);
1105 self.propagate_through_expr(&f, succ)
1106 }
1107
1108 hir::ExprMethodCall(.., ref args) => {
1109 // FIXME(canndrew): This is_never should really be an is_uninhabited
1110 let succ = if self.tables.expr_ty(expr).is_never() {
1111 self.s.exit_ln
1112 } else {
1113 succ
1114 };
1115 self.propagate_through_exprs(args, succ)
1116 }
1117
1118 hir::ExprTup(ref exprs) => {
1119 self.propagate_through_exprs(exprs, succ)
1120 }
1121
1122 hir::ExprBinary(op, ref l, ref r) if op.node.is_lazy() => {
1123 let r_succ = self.propagate_through_expr(&r, succ);
1124
1125 let ln = self.live_node(expr.id, expr.span);
1126 self.init_from_succ(ln, succ);
1127 self.merge_from_succ(ln, r_succ, false);
1128
1129 self.propagate_through_expr(&l, ln)
1130 }
1131
1132 hir::ExprIndex(ref l, ref r) |
1133 hir::ExprBinary(_, ref l, ref r) => {
1134 let r_succ = self.propagate_through_expr(&r, succ);
1135 self.propagate_through_expr(&l, r_succ)
1136 }
1137
1138 hir::ExprBox(ref e) |
1139 hir::ExprAddrOf(_, ref e) |
1140 hir::ExprCast(ref e, _) |
1141 hir::ExprType(ref e, _) |
1142 hir::ExprUnary(_, ref e) |
1143 hir::ExprYield(ref e) |
1144 hir::ExprRepeat(ref e, _) => {
1145 self.propagate_through_expr(&e, succ)
1146 }
1147
1148 hir::ExprInlineAsm(ref ia, ref outputs, ref inputs) => {
1149 let succ = ia.outputs.iter().zip(outputs).rev().fold(succ, |succ, (o, output)| {
1150 // see comment on places
1151 // in propagate_through_place_components()
1152 if o.is_indirect {
1153 self.propagate_through_expr(output, succ)
1154 } else {
1155 let acc = if o.is_rw { ACC_WRITE|ACC_READ } else { ACC_WRITE };
1156 let succ = self.write_place(output, succ, acc);
1157 self.propagate_through_place_components(output, succ)
1158 }
1159 });
1160
1161 // Inputs are executed first. Propagate last because of rev order
1162 self.propagate_through_exprs(inputs, succ)
1163 }
1164
1165 hir::ExprLit(..) | hir::ExprPath(hir::QPath::TypeRelative(..)) => {
1166 succ
1167 }
1168
1169 hir::ExprBlock(ref blk) => {
1170 self.propagate_through_block(&blk, succ)
1171 }
1172 }
1173 }
1174
1175 fn propagate_through_place_components(&mut self,
1176 expr: &Expr,
1177 succ: LiveNode)
1178 -> LiveNode {
1179 // # Places
1180 //
1181 // In general, the full flow graph structure for an
1182 // assignment/move/etc can be handled in one of two ways,
1183 // depending on whether what is being assigned is a "tracked
1184 // value" or not. A tracked value is basically a local
1185 // variable or argument.
1186 //
1187 // The two kinds of graphs are:
1188 //
1189 // Tracked place Untracked place
1190 // ----------------------++-----------------------
1191 // ||
1192 // | || |
1193 // v || v
1194 // (rvalue) || (rvalue)
1195 // | || |
1196 // v || v
1197 // (write of place) || (place components)
1198 // | || |
1199 // v || v
1200 // (succ) || (succ)
1201 // ||
1202 // ----------------------++-----------------------
1203 //
1204 // I will cover the two cases in turn:
1205 //
1206 // # Tracked places
1207 //
1208 // A tracked place is a local variable/argument `x`. In
1209 // these cases, the link_node where the write occurs is linked
1210 // to node id of `x`. The `write_place()` routine generates
1211 // the contents of this node. There are no subcomponents to
1212 // consider.
1213 //
1214 // # Non-tracked places
1215 //
1216 // These are places like `x[5]` or `x.f`. In that case, we
1217 // basically ignore the value which is written to but generate
1218 // reads for the components---`x` in these two examples. The
1219 // components reads are generated by
1220 // `propagate_through_place_components()` (this fn).
1221 //
1222 // # Illegal places
1223 //
1224 // It is still possible to observe assignments to non-places;
1225 // these errors are detected in the later pass borrowck. We
1226 // just ignore such cases and treat them as reads.
1227
1228 match expr.node {
1229 hir::ExprPath(_) => succ,
1230 hir::ExprField(ref e, _) => self.propagate_through_expr(&e, succ),
1231 hir::ExprTupField(ref e, _) => self.propagate_through_expr(&e, succ),
1232 _ => self.propagate_through_expr(expr, succ)
1233 }
1234 }
1235
1236 // see comment on propagate_through_place()
1237 fn write_place(&mut self, expr: &Expr, succ: LiveNode, acc: u32)
1238 -> LiveNode {
1239 match expr.node {
1240 hir::ExprPath(hir::QPath::Resolved(_, ref path)) => {
1241 self.access_path(expr.id, path, succ, acc)
1242 }
1243
1244 // We do not track other places, so just propagate through
1245 // to their subcomponents. Also, it may happen that
1246 // non-places occur here, because those are detected in the
1247 // later pass borrowck.
1248 _ => succ
1249 }
1250 }
1251
1252 fn access_var(&mut self, id: NodeId, nid: NodeId, succ: LiveNode, acc: u32, span: Span)
1253 -> LiveNode {
1254 let ln = self.live_node(id, span);
1255 if acc != 0 {
1256 self.init_from_succ(ln, succ);
1257 let var = self.variable(nid, span);
1258 self.acc(ln, var, acc);
1259 }
1260 ln
1261 }
1262
1263 fn access_path(&mut self, id: NodeId, path: &hir::Path, succ: LiveNode, acc: u32)
1264 -> LiveNode {
1265 match path.def {
1266 Def::Local(nid) => {
1267 self.access_var(id, nid, succ, acc, path.span)
1268 }
1269 _ => succ
1270 }
1271 }
1272
1273 fn propagate_through_loop(&mut self,
1274 expr: &Expr,
1275 kind: LoopKind,
1276 body: &hir::Block,
1277 succ: LiveNode)
1278 -> LiveNode {
1279
1280 /*
1281
1282 We model control flow like this:
1283
1284 (cond) <--+
1285 | |
1286 v |
1287 +-- (expr) |
1288 | | |
1289 | v |
1290 | (body) ---+
1291 |
1292 |
1293 v
1294 (succ)
1295
1296 */
1297
1298
1299 // first iteration:
1300 let mut first_merge = true;
1301 let ln = self.live_node(expr.id, expr.span);
1302 self.init_empty(ln, succ);
1303 match kind {
1304 LoopLoop => {}
1305 _ => {
1306 // If this is not a `loop` loop, then it's possible we bypass
1307 // the body altogether. Otherwise, the only way is via a `break`
1308 // in the loop body.
1309 self.merge_from_succ(ln, succ, first_merge);
1310 first_merge = false;
1311 }
1312 }
1313 debug!("propagate_through_loop: using id for loop body {} {}",
1314 expr.id, self.ir.tcx.hir.node_to_pretty_string(body.id));
1315
1316 let break_ln = succ;
1317 let cont_ln = ln;
1318 self.break_ln.insert(expr.id, break_ln);
1319 self.cont_ln.insert(expr.id, cont_ln);
1320
1321 let cond_ln = match kind {
1322 LoopLoop => ln,
1323 WhileLoop(ref cond) => self.propagate_through_expr(&cond, ln),
1324 };
1325 let body_ln = self.propagate_through_block(body, cond_ln);
1326
1327 // repeat until fixed point is reached:
1328 while self.merge_from_succ(ln, body_ln, first_merge) {
1329 first_merge = false;
1330
1331 let new_cond_ln = match kind {
1332 LoopLoop => ln,
1333 WhileLoop(ref cond) => {
1334 self.propagate_through_expr(&cond, ln)
1335 }
1336 };
1337 assert!(cond_ln == new_cond_ln);
1338 assert!(body_ln == self.propagate_through_block(body, cond_ln));
1339 }
1340
1341 cond_ln
1342 }
1343 }
1344
1345 // _______________________________________________________________________
1346 // Checking for error conditions
1347
1348 impl<'a, 'tcx> Visitor<'tcx> for Liveness<'a, 'tcx> {
1349 fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
1350 NestedVisitorMap::None
1351 }
1352
1353 fn visit_local(&mut self, l: &'tcx hir::Local) {
1354 check_local(self, l);
1355 }
1356 fn visit_expr(&mut self, ex: &'tcx Expr) {
1357 check_expr(self, ex);
1358 }
1359 fn visit_arm(&mut self, a: &'tcx hir::Arm) {
1360 check_arm(self, a);
1361 }
1362 }
1363
1364 fn check_local<'a, 'tcx>(this: &mut Liveness<'a, 'tcx>, local: &'tcx hir::Local) {
1365 match local.init {
1366 Some(_) => {
1367 this.warn_about_unused_or_dead_vars_in_pat(&local.pat);
1368 },
1369 None => {
1370 this.pat_bindings(&local.pat, |this, ln, var, sp, id| {
1371 this.warn_about_unused(sp, id, ln, var);
1372 })
1373 }
1374 }
1375
1376 intravisit::walk_local(this, local);
1377 }
1378
1379 fn check_arm<'a, 'tcx>(this: &mut Liveness<'a, 'tcx>, arm: &'tcx hir::Arm) {
1380 // only consider the first pattern; any later patterns must have
1381 // the same bindings, and we also consider the first pattern to be
1382 // the "authoritative" set of ids
1383 this.arm_pats_bindings(arm.pats.first().map(|p| &**p), |this, ln, var, sp, id| {
1384 this.warn_about_unused(sp, id, ln, var);
1385 });
1386 intravisit::walk_arm(this, arm);
1387 }
1388
1389 fn check_expr<'a, 'tcx>(this: &mut Liveness<'a, 'tcx>, expr: &'tcx Expr) {
1390 match expr.node {
1391 hir::ExprAssign(ref l, _) => {
1392 this.check_place(&l);
1393
1394 intravisit::walk_expr(this, expr);
1395 }
1396
1397 hir::ExprAssignOp(_, ref l, _) => {
1398 if !this.tables.is_method_call(expr) {
1399 this.check_place(&l);
1400 }
1401
1402 intravisit::walk_expr(this, expr);
1403 }
1404
1405 hir::ExprInlineAsm(ref ia, ref outputs, ref inputs) => {
1406 for input in inputs {
1407 this.visit_expr(input);
1408 }
1409
1410 // Output operands must be places
1411 for (o, output) in ia.outputs.iter().zip(outputs) {
1412 if !o.is_indirect {
1413 this.check_place(output);
1414 }
1415 this.visit_expr(output);
1416 }
1417
1418 intravisit::walk_expr(this, expr);
1419 }
1420
1421 // no correctness conditions related to liveness
1422 hir::ExprCall(..) | hir::ExprMethodCall(..) | hir::ExprIf(..) |
1423 hir::ExprMatch(..) | hir::ExprWhile(..) | hir::ExprLoop(..) |
1424 hir::ExprIndex(..) | hir::ExprField(..) | hir::ExprTupField(..) |
1425 hir::ExprArray(..) | hir::ExprTup(..) | hir::ExprBinary(..) |
1426 hir::ExprCast(..) | hir::ExprUnary(..) | hir::ExprRet(..) |
1427 hir::ExprBreak(..) | hir::ExprAgain(..) | hir::ExprLit(_) |
1428 hir::ExprBlock(..) | hir::ExprAddrOf(..) |
1429 hir::ExprStruct(..) | hir::ExprRepeat(..) |
1430 hir::ExprClosure(..) | hir::ExprPath(_) | hir::ExprYield(..) |
1431 hir::ExprBox(..) | hir::ExprType(..) => {
1432 intravisit::walk_expr(this, expr);
1433 }
1434 }
1435 }
1436
1437 impl<'a, 'tcx> Liveness<'a, 'tcx> {
1438 fn check_place(&mut self, expr: &'tcx Expr) {
1439 match expr.node {
1440 hir::ExprPath(hir::QPath::Resolved(_, ref path)) => {
1441 if let Def::Local(nid) = path.def {
1442 // Assignment to an immutable variable or argument: only legal
1443 // if there is no later assignment. If this local is actually
1444 // mutable, then check for a reassignment to flag the mutability
1445 // as being used.
1446 let ln = self.live_node(expr.id, expr.span);
1447 let var = self.variable(nid, expr.span);
1448 self.warn_about_dead_assign(expr.span, expr.id, ln, var);
1449 }
1450 }
1451 _ => {
1452 // For other kinds of places, no checks are required,
1453 // and any embedded expressions are actually rvalues
1454 intravisit::walk_expr(self, expr);
1455 }
1456 }
1457 }
1458
1459 fn should_warn(&self, var: Variable) -> Option<String> {
1460 let name = self.ir.variable_name(var);
1461 if name.is_empty() || name.as_bytes()[0] == ('_' as u8) {
1462 None
1463 } else {
1464 Some(name)
1465 }
1466 }
1467
1468 fn warn_about_unused_args(&self, body: &hir::Body, entry_ln: LiveNode) {
1469 for arg in &body.arguments {
1470 arg.pat.each_binding(|_bm, p_id, sp, path1| {
1471 let var = self.variable(p_id, sp);
1472 // Ignore unused self.
1473 let name = path1.node;
1474 if name != keywords::SelfValue.name() {
1475 if !self.warn_about_unused(sp, p_id, entry_ln, var) {
1476 if self.live_on_entry(entry_ln, var).is_none() {
1477 self.report_dead_assign(p_id, sp, var, true);
1478 }
1479 }
1480 }
1481 })
1482 }
1483 }
1484
1485 fn warn_about_unused_or_dead_vars_in_pat(&mut self, pat: &hir::Pat) {
1486 self.pat_bindings(pat, |this, ln, var, sp, id| {
1487 if !this.warn_about_unused(sp, id, ln, var) {
1488 this.warn_about_dead_assign(sp, id, ln, var);
1489 }
1490 })
1491 }
1492
1493 fn warn_about_unused(&self,
1494 sp: Span,
1495 id: NodeId,
1496 ln: LiveNode,
1497 var: Variable)
1498 -> bool {
1499 if !self.used_on_entry(ln, var) {
1500 let r = self.should_warn(var);
1501 if let Some(name) = r {
1502
1503 // annoying: for parameters in funcs like `fn(x: i32)
1504 // {ret}`, there is only one node, so asking about
1505 // assigned_on_exit() is not meaningful.
1506 let is_assigned = if ln == self.s.exit_ln {
1507 false
1508 } else {
1509 self.assigned_on_exit(ln, var).is_some()
1510 };
1511
1512 let suggest_underscore_msg = format!("consider using `_{}` instead",
1513 name);
1514 if is_assigned {
1515 self.ir.tcx
1516 .lint_node_note(lint::builtin::UNUSED_VARIABLES, id, sp,
1517 &format!("variable `{}` is assigned to, but never used",
1518 name),
1519 &suggest_underscore_msg);
1520 } else if name != "self" {
1521 let msg = format!("unused variable: `{}`", name);
1522 let mut err = self.ir.tcx
1523 .struct_span_lint_node(lint::builtin::UNUSED_VARIABLES, id, sp, &msg);
1524 if self.ir.variable_is_shorthand(var) {
1525 err.span_suggestion(sp, "try ignoring the field",
1526 format!("{}: _", name));
1527 } else {
1528 err.span_suggestion_short(sp, &suggest_underscore_msg,
1529 format!("_{}", name));
1530 }
1531 err.emit()
1532 }
1533 }
1534 true
1535 } else {
1536 false
1537 }
1538 }
1539
1540 fn warn_about_dead_assign(&self,
1541 sp: Span,
1542 id: NodeId,
1543 ln: LiveNode,
1544 var: Variable) {
1545 if self.live_on_exit(ln, var).is_none() {
1546 self.report_dead_assign(id, sp, var, false);
1547 }
1548 }
1549
1550 fn report_dead_assign(&self, id: NodeId, sp: Span, var: Variable, is_argument: bool) {
1551 if let Some(name) = self.should_warn(var) {
1552 if is_argument {
1553 self.ir.tcx.lint_node(lint::builtin::UNUSED_ASSIGNMENTS, id, sp,
1554 &format!("value passed to `{}` is never read", name));
1555 } else {
1556 self.ir.tcx.lint_node(lint::builtin::UNUSED_ASSIGNMENTS, id, sp,
1557 &format!("value assigned to `{}` is never read", name));
1558 }
1559 }
1560 }
1561 }