]> git.proxmox.com Git - rustc.git/blob - src/librustc/middle/liveness.rs
Imported Upstream version 1.7.0+dfsg1
[rustc.git] / src / librustc / middle / liveness.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! A classic liveness analysis based on dataflow over the AST. Computes,
12 //! for each local variable in a function, whether that variable is live
13 //! at a given point. Program execution points are identified by their
14 //! id.
15 //!
16 //! # Basic idea
17 //!
18 //! The basic model is that each local variable is assigned an index. We
19 //! represent sets of local variables using a vector indexed by this
20 //! index. The value in the vector is either 0, indicating the variable
21 //! is dead, or the id of an expression that uses the variable.
22 //!
23 //! We conceptually walk over the AST in reverse execution order. If we
24 //! find a use of a variable, we add it to the set of live variables. If
25 //! we find an assignment to a variable, we remove it from the set of live
26 //! variables. When we have to merge two flows, we take the union of
27 //! those two flows---if the variable is live on both paths, we simply
28 //! pick one id. In the event of loops, we continue doing this until a
29 //! fixed point is reached.
30 //!
31 //! ## Checking initialization
32 //!
33 //! At the function entry point, all variables must be dead. If this is
34 //! not the case, we can report an error using the id found in the set of
35 //! live variables, which identifies a use of the variable which is not
36 //! dominated by an assignment.
37 //!
38 //! ## Checking moves
39 //!
40 //! After each explicit move, the variable must be dead.
41 //!
42 //! ## Computing last uses
43 //!
44 //! Any use of the variable where the variable is dead afterwards is a
45 //! last use.
46 //!
47 //! # Implementation details
48 //!
49 //! The actual implementation contains two (nested) walks over the AST.
50 //! The outer walk has the job of building up the ir_maps instance for the
51 //! enclosing function. On the way down the tree, it identifies those AST
52 //! nodes and variable IDs that will be needed for the liveness analysis
53 //! and assigns them contiguous IDs. The liveness id for an AST node is
54 //! called a `live_node` (it's a newtype'd usize) and the id for a variable
55 //! is called a `variable` (another newtype'd usize).
56 //!
57 //! On the way back up the tree, as we are about to exit from a function
58 //! declaration we allocate a `liveness` instance. Now that we know
59 //! precisely how many nodes and variables we need, we can allocate all
60 //! the various arrays that we will need to precisely the right size. We then
61 //! perform the actual propagation on the `liveness` instance.
62 //!
63 //! This propagation is encoded in the various `propagate_through_*()`
64 //! methods. It effectively does a reverse walk of the AST; whenever we
65 //! reach a loop node, we iterate until a fixed point is reached.
66 //!
67 //! ## The `Users` struct
68 //!
69 //! At each live node `N`, we track three pieces of information for each
70 //! variable `V` (these are encapsulated in the `Users` struct):
71 //!
72 //! - `reader`: the `LiveNode` ID of some node which will read the value
73 //! that `V` holds on entry to `N`. Formally: a node `M` such
74 //! that there exists a path `P` from `N` to `M` where `P` does not
75 //! write `V`. If the `reader` is `invalid_node()`, then the current
76 //! value will never be read (the variable is dead, essentially).
77 //!
78 //! - `writer`: the `LiveNode` ID of some node which will write the
79 //! variable `V` and which is reachable from `N`. Formally: a node `M`
80 //! such that there exists a path `P` from `N` to `M` and `M` writes
81 //! `V`. If the `writer` is `invalid_node()`, then there is no writer
82 //! of `V` that follows `N`.
83 //!
84 //! - `used`: a boolean value indicating whether `V` is *used*. We
85 //! distinguish a *read* from a *use* in that a *use* is some read that
86 //! is not just used to generate a new value. For example, `x += 1` is
87 //! a read but not a use. This is used to generate better warnings.
88 //!
89 //! ## Special Variables
90 //!
91 //! We generate various special variables for various, well, special purposes.
92 //! These are described in the `specials` struct:
93 //!
94 //! - `exit_ln`: a live node that is generated to represent every 'exit' from
95 //! the function, whether it be by explicit return, panic, or other means.
96 //!
97 //! - `fallthrough_ln`: a live node that represents a fallthrough
98 //!
99 //! - `no_ret_var`: a synthetic variable that is only 'read' from, the
100 //! fallthrough node. This allows us to detect functions where we fail
101 //! to return explicitly.
102 //! - `clean_exit_var`: a synthetic variable that is only 'read' from the
103 //! fallthrough node. It is only live if the function could converge
104 //! via means other than an explicit `return` expression. That is, it is
105 //! only dead if the end of the function's block can never be reached.
106 //! It is the responsibility of typeck to ensure that there are no
107 //! `return` expressions in a function declared as diverging.
108 use self::LoopKind::*;
109 use self::LiveNodeKind::*;
110 use self::VarKind::*;
111
112 use middle::def::*;
113 use middle::pat_util;
114 use middle::ty;
115 use lint;
116 use util::nodemap::NodeMap;
117
118 use std::{fmt, usize};
119 use std::io::prelude::*;
120 use std::io;
121 use std::rc::Rc;
122 use syntax::ast::{self, NodeId};
123 use syntax::codemap::{BytePos, original_sp, Span};
124 use syntax::parse::token::special_idents;
125 use syntax::ptr::P;
126
127 use rustc_front::hir::Expr;
128 use rustc_front::hir;
129 use rustc_front::print::pprust::{expr_to_string, block_to_string};
130 use rustc_front::intravisit::{self, Visitor, FnKind};
131
132 /// For use with `propagate_through_loop`.
133 enum LoopKind<'a> {
134 /// An endless `loop` loop.
135 LoopLoop,
136 /// A `while` loop, with the given expression as condition.
137 WhileLoop(&'a Expr),
138 }
139
140 #[derive(Copy, Clone, PartialEq)]
141 struct Variable(usize);
142
143 #[derive(Copy, PartialEq)]
144 struct LiveNode(usize);
145
146 impl Variable {
147 fn get(&self) -> usize { let Variable(v) = *self; v }
148 }
149
150 impl LiveNode {
151 fn get(&self) -> usize { let LiveNode(v) = *self; v }
152 }
153
154 impl Clone for LiveNode {
155 fn clone(&self) -> LiveNode {
156 LiveNode(self.get())
157 }
158 }
159
160 #[derive(Copy, Clone, PartialEq, Debug)]
161 enum LiveNodeKind {
162 FreeVarNode(Span),
163 ExprNode(Span),
164 VarDefNode(Span),
165 ExitNode
166 }
167
168 fn live_node_kind_to_string(lnk: LiveNodeKind, cx: &ty::ctxt) -> String {
169 let cm = cx.sess.codemap();
170 match lnk {
171 FreeVarNode(s) => {
172 format!("Free var node [{}]", cm.span_to_string(s))
173 }
174 ExprNode(s) => {
175 format!("Expr node [{}]", cm.span_to_string(s))
176 }
177 VarDefNode(s) => {
178 format!("Var def node [{}]", cm.span_to_string(s))
179 }
180 ExitNode => "Exit node".to_string(),
181 }
182 }
183
184 impl<'a, 'tcx, 'v> Visitor<'v> for IrMaps<'a, 'tcx> {
185 fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v hir::FnDecl,
186 b: &'v hir::Block, s: Span, id: NodeId) {
187 visit_fn(self, fk, fd, b, s, id);
188 }
189 fn visit_local(&mut self, l: &hir::Local) { visit_local(self, l); }
190 fn visit_expr(&mut self, ex: &Expr) { visit_expr(self, ex); }
191 fn visit_arm(&mut self, a: &hir::Arm) { visit_arm(self, a); }
192 }
193
194 pub fn check_crate(tcx: &ty::ctxt) {
195 tcx.map.krate().visit_all_items(&mut IrMaps::new(tcx));
196 tcx.sess.abort_if_errors();
197 }
198
199 impl fmt::Debug for LiveNode {
200 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
201 write!(f, "ln({})", self.get())
202 }
203 }
204
205 impl fmt::Debug for Variable {
206 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
207 write!(f, "v({})", self.get())
208 }
209 }
210
211 // ______________________________________________________________________
212 // Creating ir_maps
213 //
214 // This is the first pass and the one that drives the main
215 // computation. It walks up and down the IR once. On the way down,
216 // we count for each function the number of variables as well as
217 // liveness nodes. A liveness node is basically an expression or
218 // capture clause that does something of interest: either it has
219 // interesting control flow or it uses/defines a local variable.
220 //
221 // On the way back up, at each function node we create liveness sets
222 // (we now know precisely how big to make our various vectors and so
223 // forth) and then do the data-flow propagation to compute the set
224 // of live variables at each program point.
225 //
226 // Finally, we run back over the IR one last time and, using the
227 // computed liveness, check various safety conditions. For example,
228 // there must be no live nodes at the definition site for a variable
229 // unless it has an initializer. Similarly, each non-mutable local
230 // variable must not be assigned if there is some successor
231 // assignment. And so forth.
232
233 impl LiveNode {
234 fn is_valid(&self) -> bool {
235 self.get() != usize::MAX
236 }
237 }
238
239 fn invalid_node() -> LiveNode { LiveNode(usize::MAX) }
240
241 struct CaptureInfo {
242 ln: LiveNode,
243 var_nid: NodeId
244 }
245
246 #[derive(Copy, Clone, Debug)]
247 struct LocalInfo {
248 id: NodeId,
249 name: ast::Name
250 }
251
252 #[derive(Copy, Clone, Debug)]
253 enum VarKind {
254 Arg(NodeId, ast::Name),
255 Local(LocalInfo),
256 ImplicitRet,
257 CleanExit
258 }
259
260 struct IrMaps<'a, 'tcx: 'a> {
261 tcx: &'a ty::ctxt<'tcx>,
262
263 num_live_nodes: usize,
264 num_vars: usize,
265 live_node_map: NodeMap<LiveNode>,
266 variable_map: NodeMap<Variable>,
267 capture_info_map: NodeMap<Rc<Vec<CaptureInfo>>>,
268 var_kinds: Vec<VarKind>,
269 lnks: Vec<LiveNodeKind>,
270 }
271
272 impl<'a, 'tcx> IrMaps<'a, 'tcx> {
273 fn new(tcx: &'a ty::ctxt<'tcx>) -> IrMaps<'a, 'tcx> {
274 IrMaps {
275 tcx: tcx,
276 num_live_nodes: 0,
277 num_vars: 0,
278 live_node_map: NodeMap(),
279 variable_map: NodeMap(),
280 capture_info_map: NodeMap(),
281 var_kinds: Vec::new(),
282 lnks: Vec::new(),
283 }
284 }
285
286 fn add_live_node(&mut self, lnk: LiveNodeKind) -> LiveNode {
287 let ln = LiveNode(self.num_live_nodes);
288 self.lnks.push(lnk);
289 self.num_live_nodes += 1;
290
291 debug!("{:?} is of kind {}", ln,
292 live_node_kind_to_string(lnk, self.tcx));
293
294 ln
295 }
296
297 fn add_live_node_for_node(&mut self, node_id: NodeId, lnk: LiveNodeKind) {
298 let ln = self.add_live_node(lnk);
299 self.live_node_map.insert(node_id, ln);
300
301 debug!("{:?} is node {}", ln, node_id);
302 }
303
304 fn add_variable(&mut self, vk: VarKind) -> Variable {
305 let v = Variable(self.num_vars);
306 self.var_kinds.push(vk);
307 self.num_vars += 1;
308
309 match vk {
310 Local(LocalInfo { id: node_id, .. }) | Arg(node_id, _) => {
311 self.variable_map.insert(node_id, v);
312 },
313 ImplicitRet | CleanExit => {}
314 }
315
316 debug!("{:?} is {:?}", v, vk);
317
318 v
319 }
320
321 fn variable(&self, node_id: NodeId, span: Span) -> Variable {
322 match self.variable_map.get(&node_id) {
323 Some(&var) => var,
324 None => {
325 self.tcx
326 .sess
327 .span_bug(span, &format!("no variable registered for id {}",
328 node_id));
329 }
330 }
331 }
332
333 fn variable_name(&self, var: Variable) -> String {
334 match self.var_kinds[var.get()] {
335 Local(LocalInfo { name, .. }) | Arg(_, name) => {
336 name.to_string()
337 },
338 ImplicitRet => "<implicit-ret>".to_string(),
339 CleanExit => "<clean-exit>".to_string()
340 }
341 }
342
343 fn set_captures(&mut self, node_id: NodeId, cs: Vec<CaptureInfo>) {
344 self.capture_info_map.insert(node_id, Rc::new(cs));
345 }
346
347 fn lnk(&self, ln: LiveNode) -> LiveNodeKind {
348 self.lnks[ln.get()]
349 }
350 }
351
352 impl<'a, 'tcx, 'v> Visitor<'v> for Liveness<'a, 'tcx> {
353 fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v hir::FnDecl,
354 b: &'v hir::Block, s: Span, n: NodeId) {
355 check_fn(self, fk, fd, b, s, n);
356 }
357 fn visit_local(&mut self, l: &hir::Local) {
358 check_local(self, l);
359 }
360 fn visit_expr(&mut self, ex: &Expr) {
361 check_expr(self, ex);
362 }
363 fn visit_arm(&mut self, a: &hir::Arm) {
364 check_arm(self, a);
365 }
366 }
367
368 fn visit_fn(ir: &mut IrMaps,
369 fk: FnKind,
370 decl: &hir::FnDecl,
371 body: &hir::Block,
372 sp: Span,
373 id: ast::NodeId) {
374 debug!("visit_fn");
375
376 // swap in a new set of IR maps for this function body:
377 let mut fn_maps = IrMaps::new(ir.tcx);
378
379 debug!("creating fn_maps: {:?}", &fn_maps as *const IrMaps);
380
381 for arg in &decl.inputs {
382 pat_util::pat_bindings(&ir.tcx.def_map,
383 &*arg.pat,
384 |_bm, arg_id, _x, path1| {
385 debug!("adding argument {}", arg_id);
386 let name = path1.node;
387 fn_maps.add_variable(Arg(arg_id, name));
388 })
389 };
390
391 // gather up the various local variables, significant expressions,
392 // and so forth:
393 intravisit::walk_fn(&mut fn_maps, fk, decl, body, sp);
394
395 // Special nodes and variables:
396 // - exit_ln represents the end of the fn, either by return or panic
397 // - implicit_ret_var is a pseudo-variable that represents
398 // an implicit return
399 let specials = Specials {
400 exit_ln: fn_maps.add_live_node(ExitNode),
401 fallthrough_ln: fn_maps.add_live_node(ExitNode),
402 no_ret_var: fn_maps.add_variable(ImplicitRet),
403 clean_exit_var: fn_maps.add_variable(CleanExit)
404 };
405
406 // compute liveness
407 let mut lsets = Liveness::new(&mut fn_maps, specials);
408 let entry_ln = lsets.compute(decl, body);
409
410 // check for various error conditions
411 lsets.visit_block(body);
412 lsets.check_ret(id, sp, fk, entry_ln, body);
413 lsets.warn_about_unused_args(decl, entry_ln);
414 }
415
416 fn visit_local(ir: &mut IrMaps, local: &hir::Local) {
417 pat_util::pat_bindings(&ir.tcx.def_map, &*local.pat, |_, p_id, sp, path1| {
418 debug!("adding local variable {}", p_id);
419 let name = path1.node;
420 ir.add_live_node_for_node(p_id, VarDefNode(sp));
421 ir.add_variable(Local(LocalInfo {
422 id: p_id,
423 name: name
424 }));
425 });
426 intravisit::walk_local(ir, local);
427 }
428
429 fn visit_arm(ir: &mut IrMaps, arm: &hir::Arm) {
430 for pat in &arm.pats {
431 pat_util::pat_bindings(&ir.tcx.def_map, &**pat, |bm, p_id, sp, path1| {
432 debug!("adding local variable {} from match with bm {:?}",
433 p_id, bm);
434 let name = path1.node;
435 ir.add_live_node_for_node(p_id, VarDefNode(sp));
436 ir.add_variable(Local(LocalInfo {
437 id: p_id,
438 name: name
439 }));
440 })
441 }
442 intravisit::walk_arm(ir, arm);
443 }
444
445 fn visit_expr(ir: &mut IrMaps, expr: &Expr) {
446 match expr.node {
447 // live nodes required for uses or definitions of variables:
448 hir::ExprPath(..) => {
449 let def = ir.tcx.def_map.borrow().get(&expr.id).unwrap().full_def();
450 debug!("expr {}: path that leads to {:?}", expr.id, def);
451 if let DefLocal(..) = def {
452 ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
453 }
454 intravisit::walk_expr(ir, expr);
455 }
456 hir::ExprClosure(..) => {
457 // Interesting control flow (for loops can contain labeled
458 // breaks or continues)
459 ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
460
461 // Make a live_node for each captured variable, with the span
462 // being the location that the variable is used. This results
463 // in better error messages than just pointing at the closure
464 // construction site.
465 let mut call_caps = Vec::new();
466 ir.tcx.with_freevars(expr.id, |freevars| {
467 for fv in freevars {
468 if let DefLocal(_, rv) = fv.def {
469 let fv_ln = ir.add_live_node(FreeVarNode(fv.span));
470 call_caps.push(CaptureInfo {ln: fv_ln,
471 var_nid: rv});
472 }
473 }
474 });
475 ir.set_captures(expr.id, call_caps);
476
477 intravisit::walk_expr(ir, expr);
478 }
479
480 // live nodes required for interesting control flow:
481 hir::ExprIf(..) | hir::ExprMatch(..) | hir::ExprWhile(..) | hir::ExprLoop(..) => {
482 ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
483 intravisit::walk_expr(ir, expr);
484 }
485 hir::ExprBinary(op, _, _) if ::rustc_front::util::lazy_binop(op.node) => {
486 ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
487 intravisit::walk_expr(ir, expr);
488 }
489
490 // otherwise, live nodes are not required:
491 hir::ExprIndex(..) | hir::ExprField(..) | hir::ExprTupField(..) |
492 hir::ExprVec(..) | hir::ExprCall(..) | hir::ExprMethodCall(..) |
493 hir::ExprTup(..) | hir::ExprBinary(..) | hir::ExprAddrOf(..) |
494 hir::ExprCast(..) | hir::ExprUnary(..) | hir::ExprBreak(_) |
495 hir::ExprAgain(_) | hir::ExprLit(_) | hir::ExprRet(..) |
496 hir::ExprBlock(..) | hir::ExprAssign(..) | hir::ExprAssignOp(..) |
497 hir::ExprStruct(..) | hir::ExprRepeat(..) |
498 hir::ExprInlineAsm(..) | hir::ExprBox(..) |
499 hir::ExprRange(..) | hir::ExprType(..) => {
500 intravisit::walk_expr(ir, expr);
501 }
502 }
503 }
504
505 // ______________________________________________________________________
506 // Computing liveness sets
507 //
508 // Actually we compute just a bit more than just liveness, but we use
509 // the same basic propagation framework in all cases.
510
511 #[derive(Clone, Copy)]
512 struct Users {
513 reader: LiveNode,
514 writer: LiveNode,
515 used: bool
516 }
517
518 fn invalid_users() -> Users {
519 Users {
520 reader: invalid_node(),
521 writer: invalid_node(),
522 used: false
523 }
524 }
525
526 #[derive(Copy, Clone)]
527 struct Specials {
528 exit_ln: LiveNode,
529 fallthrough_ln: LiveNode,
530 no_ret_var: Variable,
531 clean_exit_var: Variable
532 }
533
534 const ACC_READ: u32 = 1;
535 const ACC_WRITE: u32 = 2;
536 const ACC_USE: u32 = 4;
537
538 struct Liveness<'a, 'tcx: 'a> {
539 ir: &'a mut IrMaps<'a, 'tcx>,
540 s: Specials,
541 successors: Vec<LiveNode>,
542 users: Vec<Users>,
543 // The list of node IDs for the nested loop scopes
544 // we're in.
545 loop_scope: Vec<NodeId>,
546 // mappings from loop node ID to LiveNode
547 // ("break" label should map to loop node ID,
548 // it probably doesn't now)
549 break_ln: NodeMap<LiveNode>,
550 cont_ln: NodeMap<LiveNode>
551 }
552
553 impl<'a, 'tcx> Liveness<'a, 'tcx> {
554 fn new(ir: &'a mut IrMaps<'a, 'tcx>, specials: Specials) -> Liveness<'a, 'tcx> {
555 let num_live_nodes = ir.num_live_nodes;
556 let num_vars = ir.num_vars;
557 Liveness {
558 ir: ir,
559 s: specials,
560 successors: vec![invalid_node(); num_live_nodes],
561 users: vec![invalid_users(); num_live_nodes * num_vars],
562 loop_scope: Vec::new(),
563 break_ln: NodeMap(),
564 cont_ln: NodeMap(),
565 }
566 }
567
568 fn live_node(&self, node_id: NodeId, span: Span) -> LiveNode {
569 match self.ir.live_node_map.get(&node_id) {
570 Some(&ln) => ln,
571 None => {
572 // This must be a mismatch between the ir_map construction
573 // above and the propagation code below; the two sets of
574 // code have to agree about which AST nodes are worth
575 // creating liveness nodes for.
576 self.ir.tcx.sess.span_bug(
577 span,
578 &format!("no live node registered for node {}",
579 node_id));
580 }
581 }
582 }
583
584 fn variable(&self, node_id: NodeId, span: Span) -> Variable {
585 self.ir.variable(node_id, span)
586 }
587
588 fn pat_bindings<F>(&mut self, pat: &hir::Pat, mut f: F) where
589 F: FnMut(&mut Liveness<'a, 'tcx>, LiveNode, Variable, Span, NodeId),
590 {
591 pat_util::pat_bindings(&self.ir.tcx.def_map, pat, |_bm, p_id, sp, _n| {
592 let ln = self.live_node(p_id, sp);
593 let var = self.variable(p_id, sp);
594 f(self, ln, var, sp, p_id);
595 })
596 }
597
598 fn arm_pats_bindings<F>(&mut self, pat: Option<&hir::Pat>, f: F) where
599 F: FnMut(&mut Liveness<'a, 'tcx>, LiveNode, Variable, Span, NodeId),
600 {
601 match pat {
602 Some(pat) => {
603 self.pat_bindings(pat, f);
604 }
605 None => {}
606 }
607 }
608
609 fn define_bindings_in_pat(&mut self, pat: &hir::Pat, succ: LiveNode)
610 -> LiveNode {
611 self.define_bindings_in_arm_pats(Some(pat), succ)
612 }
613
614 fn define_bindings_in_arm_pats(&mut self, pat: Option<&hir::Pat>, succ: LiveNode)
615 -> LiveNode {
616 let mut succ = succ;
617 self.arm_pats_bindings(pat, |this, ln, var, _sp, _id| {
618 this.init_from_succ(ln, succ);
619 this.define(ln, var);
620 succ = ln;
621 });
622 succ
623 }
624
625 fn idx(&self, ln: LiveNode, var: Variable) -> usize {
626 ln.get() * self.ir.num_vars + var.get()
627 }
628
629 fn live_on_entry(&self, ln: LiveNode, var: Variable)
630 -> Option<LiveNodeKind> {
631 assert!(ln.is_valid());
632 let reader = self.users[self.idx(ln, var)].reader;
633 if reader.is_valid() {Some(self.ir.lnk(reader))} else {None}
634 }
635
636 /*
637 Is this variable live on entry to any of its successor nodes?
638 */
639 fn live_on_exit(&self, ln: LiveNode, var: Variable)
640 -> Option<LiveNodeKind> {
641 let successor = self.successors[ln.get()];
642 self.live_on_entry(successor, var)
643 }
644
645 fn used_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
646 assert!(ln.is_valid());
647 self.users[self.idx(ln, var)].used
648 }
649
650 fn assigned_on_entry(&self, ln: LiveNode, var: Variable)
651 -> Option<LiveNodeKind> {
652 assert!(ln.is_valid());
653 let writer = self.users[self.idx(ln, var)].writer;
654 if writer.is_valid() {Some(self.ir.lnk(writer))} else {None}
655 }
656
657 fn assigned_on_exit(&self, ln: LiveNode, var: Variable)
658 -> Option<LiveNodeKind> {
659 let successor = self.successors[ln.get()];
660 self.assigned_on_entry(successor, var)
661 }
662
663 fn indices2<F>(&mut self, ln: LiveNode, succ_ln: LiveNode, mut op: F) where
664 F: FnMut(&mut Liveness<'a, 'tcx>, usize, usize),
665 {
666 let node_base_idx = self.idx(ln, Variable(0));
667 let succ_base_idx = self.idx(succ_ln, Variable(0));
668 for var_idx in 0..self.ir.num_vars {
669 op(self, node_base_idx + var_idx, succ_base_idx + var_idx);
670 }
671 }
672
673 fn write_vars<F>(&self,
674 wr: &mut Write,
675 ln: LiveNode,
676 mut test: F)
677 -> io::Result<()> where
678 F: FnMut(usize) -> LiveNode,
679 {
680 let node_base_idx = self.idx(ln, Variable(0));
681 for var_idx in 0..self.ir.num_vars {
682 let idx = node_base_idx + var_idx;
683 if test(idx).is_valid() {
684 try!(write!(wr, " {:?}", Variable(var_idx)));
685 }
686 }
687 Ok(())
688 }
689
690 fn find_loop_scope(&self,
691 opt_label: Option<ast::Name>,
692 id: NodeId,
693 sp: Span)
694 -> NodeId {
695 match opt_label {
696 Some(_) => {
697 // Refers to a labeled loop. Use the results of resolve
698 // to find with one
699 match self.ir.tcx.def_map.borrow().get(&id).map(|d| d.full_def()) {
700 Some(DefLabel(loop_id)) => loop_id,
701 _ => self.ir.tcx.sess.span_bug(sp, "label on break/loop \
702 doesn't refer to a loop")
703 }
704 }
705 None => {
706 // Vanilla 'break' or 'loop', so use the enclosing
707 // loop scope
708 if self.loop_scope.is_empty() {
709 self.ir.tcx.sess.span_bug(sp, "break outside loop");
710 } else {
711 *self.loop_scope.last().unwrap()
712 }
713 }
714 }
715 }
716
717 #[allow(unused_must_use)]
718 fn ln_str(&self, ln: LiveNode) -> String {
719 let mut wr = Vec::new();
720 {
721 let wr = &mut wr as &mut Write;
722 write!(wr, "[ln({:?}) of kind {:?} reads", ln.get(), self.ir.lnk(ln));
723 self.write_vars(wr, ln, |idx| self.users[idx].reader);
724 write!(wr, " writes");
725 self.write_vars(wr, ln, |idx| self.users[idx].writer);
726 write!(wr, " precedes {:?}]", self.successors[ln.get()]);
727 }
728 String::from_utf8(wr).unwrap()
729 }
730
731 fn init_empty(&mut self, ln: LiveNode, succ_ln: LiveNode) {
732 self.successors[ln.get()] = succ_ln;
733
734 // It is not necessary to initialize the
735 // values to empty because this is the value
736 // they have when they are created, and the sets
737 // only grow during iterations.
738 //
739 // self.indices(ln) { |idx|
740 // self.users[idx] = invalid_users();
741 // }
742 }
743
744 fn init_from_succ(&mut self, ln: LiveNode, succ_ln: LiveNode) {
745 // more efficient version of init_empty() / merge_from_succ()
746 self.successors[ln.get()] = succ_ln;
747
748 self.indices2(ln, succ_ln, |this, idx, succ_idx| {
749 this.users[idx] = this.users[succ_idx]
750 });
751 debug!("init_from_succ(ln={}, succ={})",
752 self.ln_str(ln), self.ln_str(succ_ln));
753 }
754
755 fn merge_from_succ(&mut self,
756 ln: LiveNode,
757 succ_ln: LiveNode,
758 first_merge: bool)
759 -> bool {
760 if ln == succ_ln { return false; }
761
762 let mut changed = false;
763 self.indices2(ln, succ_ln, |this, idx, succ_idx| {
764 changed |= copy_if_invalid(this.users[succ_idx].reader,
765 &mut this.users[idx].reader);
766 changed |= copy_if_invalid(this.users[succ_idx].writer,
767 &mut this.users[idx].writer);
768 if this.users[succ_idx].used && !this.users[idx].used {
769 this.users[idx].used = true;
770 changed = true;
771 }
772 });
773
774 debug!("merge_from_succ(ln={:?}, succ={}, first_merge={}, changed={})",
775 ln, self.ln_str(succ_ln), first_merge, changed);
776 return changed;
777
778 fn copy_if_invalid(src: LiveNode, dst: &mut LiveNode) -> bool {
779 if src.is_valid() && !dst.is_valid() {
780 *dst = src;
781 true
782 } else {
783 false
784 }
785 }
786 }
787
788 // Indicates that a local variable was *defined*; we know that no
789 // uses of the variable can precede the definition (resolve checks
790 // this) so we just clear out all the data.
791 fn define(&mut self, writer: LiveNode, var: Variable) {
792 let idx = self.idx(writer, var);
793 self.users[idx].reader = invalid_node();
794 self.users[idx].writer = invalid_node();
795
796 debug!("{:?} defines {:?} (idx={}): {}", writer, var,
797 idx, self.ln_str(writer));
798 }
799
800 // Either read, write, or both depending on the acc bitset
801 fn acc(&mut self, ln: LiveNode, var: Variable, acc: u32) {
802 debug!("{:?} accesses[{:x}] {:?}: {}",
803 ln, acc, var, self.ln_str(ln));
804
805 let idx = self.idx(ln, var);
806 let user = &mut self.users[idx];
807
808 if (acc & ACC_WRITE) != 0 {
809 user.reader = invalid_node();
810 user.writer = ln;
811 }
812
813 // Important: if we both read/write, must do read second
814 // or else the write will override.
815 if (acc & ACC_READ) != 0 {
816 user.reader = ln;
817 }
818
819 if (acc & ACC_USE) != 0 {
820 user.used = true;
821 }
822 }
823
824 // _______________________________________________________________________
825
826 fn compute(&mut self, decl: &hir::FnDecl, body: &hir::Block) -> LiveNode {
827 // if there is a `break` or `again` at the top level, then it's
828 // effectively a return---this only occurs in `for` loops,
829 // where the body is really a closure.
830
831 debug!("compute: using id for block, {}", block_to_string(body));
832
833 let exit_ln = self.s.exit_ln;
834 let entry_ln: LiveNode =
835 self.with_loop_nodes(body.id, exit_ln, exit_ln,
836 |this| this.propagate_through_fn_block(decl, body));
837
838 // hack to skip the loop unless debug! is enabled:
839 debug!("^^ liveness computation results for body {} (entry={:?})",
840 {
841 for ln_idx in 0..self.ir.num_live_nodes {
842 debug!("{:?}", self.ln_str(LiveNode(ln_idx)));
843 }
844 body.id
845 },
846 entry_ln);
847
848 entry_ln
849 }
850
851 fn propagate_through_fn_block(&mut self, _: &hir::FnDecl, blk: &hir::Block)
852 -> LiveNode {
853 // the fallthrough exit is only for those cases where we do not
854 // explicitly return:
855 let s = self.s;
856 self.init_from_succ(s.fallthrough_ln, s.exit_ln);
857 if blk.expr.is_none() {
858 self.acc(s.fallthrough_ln, s.no_ret_var, ACC_READ)
859 }
860 self.acc(s.fallthrough_ln, s.clean_exit_var, ACC_READ);
861
862 self.propagate_through_block(blk, s.fallthrough_ln)
863 }
864
865 fn propagate_through_block(&mut self, blk: &hir::Block, succ: LiveNode)
866 -> LiveNode {
867 let succ = self.propagate_through_opt_expr(blk.expr.as_ref().map(|e| &**e), succ);
868 blk.stmts.iter().rev().fold(succ, |succ, stmt| {
869 self.propagate_through_stmt(stmt, succ)
870 })
871 }
872
873 fn propagate_through_stmt(&mut self, stmt: &hir::Stmt, succ: LiveNode)
874 -> LiveNode {
875 match stmt.node {
876 hir::StmtDecl(ref decl, _) => {
877 self.propagate_through_decl(&**decl, succ)
878 }
879
880 hir::StmtExpr(ref expr, _) | hir::StmtSemi(ref expr, _) => {
881 self.propagate_through_expr(&**expr, succ)
882 }
883 }
884 }
885
886 fn propagate_through_decl(&mut self, decl: &hir::Decl, succ: LiveNode)
887 -> LiveNode {
888 match decl.node {
889 hir::DeclLocal(ref local) => {
890 self.propagate_through_local(&**local, succ)
891 }
892 hir::DeclItem(_) => succ,
893 }
894 }
895
896 fn propagate_through_local(&mut self, local: &hir::Local, succ: LiveNode)
897 -> LiveNode {
898 // Note: we mark the variable as defined regardless of whether
899 // there is an initializer. Initially I had thought to only mark
900 // the live variable as defined if it was initialized, and then we
901 // could check for uninit variables just by scanning what is live
902 // at the start of the function. But that doesn't work so well for
903 // immutable variables defined in a loop:
904 // loop { let x; x = 5; }
905 // because the "assignment" loops back around and generates an error.
906 //
907 // So now we just check that variables defined w/o an
908 // initializer are not live at the point of their
909 // initialization, which is mildly more complex than checking
910 // once at the func header but otherwise equivalent.
911
912 let succ = self.propagate_through_opt_expr(local.init.as_ref().map(|e| &**e), succ);
913 self.define_bindings_in_pat(&*local.pat, succ)
914 }
915
916 fn propagate_through_exprs(&mut self, exprs: &[P<Expr>], succ: LiveNode)
917 -> LiveNode {
918 exprs.iter().rev().fold(succ, |succ, expr| {
919 self.propagate_through_expr(&**expr, succ)
920 })
921 }
922
923 fn propagate_through_opt_expr(&mut self,
924 opt_expr: Option<&Expr>,
925 succ: LiveNode)
926 -> LiveNode {
927 opt_expr.map_or(succ, |expr| self.propagate_through_expr(expr, succ))
928 }
929
930 fn propagate_through_expr(&mut self, expr: &Expr, succ: LiveNode)
931 -> LiveNode {
932 debug!("propagate_through_expr: {}", expr_to_string(expr));
933
934 match expr.node {
935 // Interesting cases with control flow or which gen/kill
936
937 hir::ExprPath(..) => {
938 self.access_path(expr, succ, ACC_READ | ACC_USE)
939 }
940
941 hir::ExprField(ref e, _) => {
942 self.propagate_through_expr(&**e, succ)
943 }
944
945 hir::ExprTupField(ref e, _) => {
946 self.propagate_through_expr(&**e, succ)
947 }
948
949 hir::ExprClosure(_, _, ref blk) => {
950 debug!("{} is an ExprClosure",
951 expr_to_string(expr));
952
953 /*
954 The next-node for a break is the successor of the entire
955 loop. The next-node for a continue is the top of this loop.
956 */
957 let node = self.live_node(expr.id, expr.span);
958 self.with_loop_nodes(blk.id, succ, node, |this| {
959
960 // the construction of a closure itself is not important,
961 // but we have to consider the closed over variables.
962 let caps = match this.ir.capture_info_map.get(&expr.id) {
963 Some(caps) => caps.clone(),
964 None => {
965 this.ir.tcx.sess.span_bug(expr.span, "no registered caps");
966 }
967 };
968 caps.iter().rev().fold(succ, |succ, cap| {
969 this.init_from_succ(cap.ln, succ);
970 let var = this.variable(cap.var_nid, expr.span);
971 this.acc(cap.ln, var, ACC_READ | ACC_USE);
972 cap.ln
973 })
974 })
975 }
976
977 hir::ExprIf(ref cond, ref then, ref els) => {
978 //
979 // (cond)
980 // |
981 // v
982 // (expr)
983 // / \
984 // | |
985 // v v
986 // (then)(els)
987 // | |
988 // v v
989 // ( succ )
990 //
991 let else_ln = self.propagate_through_opt_expr(els.as_ref().map(|e| &**e), succ);
992 let then_ln = self.propagate_through_block(&**then, succ);
993 let ln = self.live_node(expr.id, expr.span);
994 self.init_from_succ(ln, else_ln);
995 self.merge_from_succ(ln, then_ln, false);
996 self.propagate_through_expr(&**cond, ln)
997 }
998
999 hir::ExprWhile(ref cond, ref blk, _) => {
1000 self.propagate_through_loop(expr, WhileLoop(&**cond), &**blk, succ)
1001 }
1002
1003 // Note that labels have been resolved, so we don't need to look
1004 // at the label ident
1005 hir::ExprLoop(ref blk, _) => {
1006 self.propagate_through_loop(expr, LoopLoop, &**blk, succ)
1007 }
1008
1009 hir::ExprMatch(ref e, ref arms, _) => {
1010 //
1011 // (e)
1012 // |
1013 // v
1014 // (expr)
1015 // / | \
1016 // | | |
1017 // v v v
1018 // (..arms..)
1019 // | | |
1020 // v v v
1021 // ( succ )
1022 //
1023 //
1024 let ln = self.live_node(expr.id, expr.span);
1025 self.init_empty(ln, succ);
1026 let mut first_merge = true;
1027 for arm in arms {
1028 let body_succ =
1029 self.propagate_through_expr(&*arm.body, succ);
1030 let guard_succ =
1031 self.propagate_through_opt_expr(arm.guard.as_ref().map(|e| &**e), body_succ);
1032 // only consider the first pattern; any later patterns must have
1033 // the same bindings, and we also consider the first pattern to be
1034 // the "authoritative" set of ids
1035 let arm_succ =
1036 self.define_bindings_in_arm_pats(arm.pats.first().map(|p| &**p),
1037 guard_succ);
1038 self.merge_from_succ(ln, arm_succ, first_merge);
1039 first_merge = false;
1040 };
1041 self.propagate_through_expr(&**e, ln)
1042 }
1043
1044 hir::ExprRet(ref o_e) => {
1045 // ignore succ and subst exit_ln:
1046 let exit_ln = self.s.exit_ln;
1047 self.propagate_through_opt_expr(o_e.as_ref().map(|e| &**e), exit_ln)
1048 }
1049
1050 hir::ExprBreak(opt_label) => {
1051 // Find which label this break jumps to
1052 let sc = self.find_loop_scope(opt_label.map(|l| l.node.name), expr.id, expr.span);
1053
1054 // Now that we know the label we're going to,
1055 // look it up in the break loop nodes table
1056
1057 match self.break_ln.get(&sc) {
1058 Some(&b) => b,
1059 None => self.ir.tcx.sess.span_bug(expr.span,
1060 "break to unknown label")
1061 }
1062 }
1063
1064 hir::ExprAgain(opt_label) => {
1065 // Find which label this expr continues to
1066 let sc = self.find_loop_scope(opt_label.map(|l| l.node.name), expr.id, expr.span);
1067
1068 // Now that we know the label we're going to,
1069 // look it up in the continue loop nodes table
1070
1071 match self.cont_ln.get(&sc) {
1072 Some(&b) => b,
1073 None => self.ir.tcx.sess.span_bug(expr.span,
1074 "loop to unknown label")
1075 }
1076 }
1077
1078 hir::ExprAssign(ref l, ref r) => {
1079 // see comment on lvalues in
1080 // propagate_through_lvalue_components()
1081 let succ = self.write_lvalue(&**l, succ, ACC_WRITE);
1082 let succ = self.propagate_through_lvalue_components(&**l, succ);
1083 self.propagate_through_expr(&**r, succ)
1084 }
1085
1086 hir::ExprAssignOp(_, ref l, ref r) => {
1087 // see comment on lvalues in
1088 // propagate_through_lvalue_components()
1089 let succ = self.write_lvalue(&**l, succ, ACC_WRITE|ACC_READ);
1090 let succ = self.propagate_through_expr(&**r, succ);
1091 self.propagate_through_lvalue_components(&**l, succ)
1092 }
1093
1094 // Uninteresting cases: just propagate in rev exec order
1095
1096 hir::ExprVec(ref exprs) => {
1097 self.propagate_through_exprs(&exprs[..], succ)
1098 }
1099
1100 hir::ExprRepeat(ref element, ref count) => {
1101 let succ = self.propagate_through_expr(&**count, succ);
1102 self.propagate_through_expr(&**element, succ)
1103 }
1104
1105 hir::ExprStruct(_, ref fields, ref with_expr) => {
1106 let succ = self.propagate_through_opt_expr(with_expr.as_ref().map(|e| &**e), succ);
1107 fields.iter().rev().fold(succ, |succ, field| {
1108 self.propagate_through_expr(&*field.expr, succ)
1109 })
1110 }
1111
1112 hir::ExprCall(ref f, ref args) => {
1113 let diverges = !self.ir.tcx.is_method_call(expr.id) &&
1114 self.ir.tcx.expr_ty_adjusted(&**f).fn_ret().diverges();
1115 let succ = if diverges {
1116 self.s.exit_ln
1117 } else {
1118 succ
1119 };
1120 let succ = self.propagate_through_exprs(&args[..], succ);
1121 self.propagate_through_expr(&**f, succ)
1122 }
1123
1124 hir::ExprMethodCall(_, _, ref args) => {
1125 let method_call = ty::MethodCall::expr(expr.id);
1126 let method_ty = self.ir.tcx.tables.borrow().method_map[&method_call].ty;
1127 let succ = if method_ty.fn_ret().diverges() {
1128 self.s.exit_ln
1129 } else {
1130 succ
1131 };
1132 self.propagate_through_exprs(&args[..], succ)
1133 }
1134
1135 hir::ExprTup(ref exprs) => {
1136 self.propagate_through_exprs(&exprs[..], succ)
1137 }
1138
1139 hir::ExprBinary(op, ref l, ref r) if ::rustc_front::util::lazy_binop(op.node) => {
1140 let r_succ = self.propagate_through_expr(&**r, succ);
1141
1142 let ln = self.live_node(expr.id, expr.span);
1143 self.init_from_succ(ln, succ);
1144 self.merge_from_succ(ln, r_succ, false);
1145
1146 self.propagate_through_expr(&**l, ln)
1147 }
1148
1149 hir::ExprIndex(ref l, ref r) |
1150 hir::ExprBinary(_, ref l, ref r) => {
1151 let r_succ = self.propagate_through_expr(&**r, succ);
1152 self.propagate_through_expr(&**l, r_succ)
1153 }
1154
1155 hir::ExprRange(ref e1, ref e2) => {
1156 let succ = e2.as_ref().map_or(succ, |e| self.propagate_through_expr(&**e, succ));
1157 e1.as_ref().map_or(succ, |e| self.propagate_through_expr(&**e, succ))
1158 }
1159
1160 hir::ExprBox(ref e) |
1161 hir::ExprAddrOf(_, ref e) |
1162 hir::ExprCast(ref e, _) |
1163 hir::ExprType(ref e, _) |
1164 hir::ExprUnary(_, ref e) => {
1165 self.propagate_through_expr(&**e, succ)
1166 }
1167
1168 hir::ExprInlineAsm(ref ia) => {
1169
1170 let succ = ia.outputs.iter().rev().fold(succ,
1171 |succ, out| {
1172 // see comment on lvalues
1173 // in propagate_through_lvalue_components()
1174 if out.is_indirect {
1175 self.propagate_through_expr(&*out.expr, succ)
1176 } else {
1177 let acc = if out.is_rw { ACC_WRITE|ACC_READ } else { ACC_WRITE };
1178 let succ = self.write_lvalue(&*out.expr, succ, acc);
1179 self.propagate_through_lvalue_components(&*out.expr, succ)
1180 }
1181 }
1182 );
1183 // Inputs are executed first. Propagate last because of rev order
1184 ia.inputs.iter().rev().fold(succ, |succ, &(_, ref expr)| {
1185 self.propagate_through_expr(&**expr, succ)
1186 })
1187 }
1188
1189 hir::ExprLit(..) => {
1190 succ
1191 }
1192
1193 hir::ExprBlock(ref blk) => {
1194 self.propagate_through_block(&**blk, succ)
1195 }
1196 }
1197 }
1198
1199 fn propagate_through_lvalue_components(&mut self,
1200 expr: &Expr,
1201 succ: LiveNode)
1202 -> LiveNode {
1203 // # Lvalues
1204 //
1205 // In general, the full flow graph structure for an
1206 // assignment/move/etc can be handled in one of two ways,
1207 // depending on whether what is being assigned is a "tracked
1208 // value" or not. A tracked value is basically a local
1209 // variable or argument.
1210 //
1211 // The two kinds of graphs are:
1212 //
1213 // Tracked lvalue Untracked lvalue
1214 // ----------------------++-----------------------
1215 // ||
1216 // | || |
1217 // v || v
1218 // (rvalue) || (rvalue)
1219 // | || |
1220 // v || v
1221 // (write of lvalue) || (lvalue components)
1222 // | || |
1223 // v || v
1224 // (succ) || (succ)
1225 // ||
1226 // ----------------------++-----------------------
1227 //
1228 // I will cover the two cases in turn:
1229 //
1230 // # Tracked lvalues
1231 //
1232 // A tracked lvalue is a local variable/argument `x`. In
1233 // these cases, the link_node where the write occurs is linked
1234 // to node id of `x`. The `write_lvalue()` routine generates
1235 // the contents of this node. There are no subcomponents to
1236 // consider.
1237 //
1238 // # Non-tracked lvalues
1239 //
1240 // These are lvalues like `x[5]` or `x.f`. In that case, we
1241 // basically ignore the value which is written to but generate
1242 // reads for the components---`x` in these two examples. The
1243 // components reads are generated by
1244 // `propagate_through_lvalue_components()` (this fn).
1245 //
1246 // # Illegal lvalues
1247 //
1248 // It is still possible to observe assignments to non-lvalues;
1249 // these errors are detected in the later pass borrowck. We
1250 // just ignore such cases and treat them as reads.
1251
1252 match expr.node {
1253 hir::ExprPath(..) => succ,
1254 hir::ExprField(ref e, _) => self.propagate_through_expr(&**e, succ),
1255 hir::ExprTupField(ref e, _) => self.propagate_through_expr(&**e, succ),
1256 _ => self.propagate_through_expr(expr, succ)
1257 }
1258 }
1259
1260 // see comment on propagate_through_lvalue()
1261 fn write_lvalue(&mut self, expr: &Expr, succ: LiveNode, acc: u32)
1262 -> LiveNode {
1263 match expr.node {
1264 hir::ExprPath(..) => {
1265 self.access_path(expr, succ, acc)
1266 }
1267
1268 // We do not track other lvalues, so just propagate through
1269 // to their subcomponents. Also, it may happen that
1270 // non-lvalues occur here, because those are detected in the
1271 // later pass borrowck.
1272 _ => succ
1273 }
1274 }
1275
1276 fn access_path(&mut self, expr: &Expr, succ: LiveNode, acc: u32)
1277 -> LiveNode {
1278 match self.ir.tcx.def_map.borrow().get(&expr.id).unwrap().full_def() {
1279 DefLocal(_, nid) => {
1280 let ln = self.live_node(expr.id, expr.span);
1281 if acc != 0 {
1282 self.init_from_succ(ln, succ);
1283 let var = self.variable(nid, expr.span);
1284 self.acc(ln, var, acc);
1285 }
1286 ln
1287 }
1288 _ => succ
1289 }
1290 }
1291
1292 fn propagate_through_loop(&mut self,
1293 expr: &Expr,
1294 kind: LoopKind,
1295 body: &hir::Block,
1296 succ: LiveNode)
1297 -> LiveNode {
1298
1299 /*
1300
1301 We model control flow like this:
1302
1303 (cond) <--+
1304 | |
1305 v |
1306 +-- (expr) |
1307 | | |
1308 | v |
1309 | (body) ---+
1310 |
1311 |
1312 v
1313 (succ)
1314
1315 */
1316
1317
1318 // first iteration:
1319 let mut first_merge = true;
1320 let ln = self.live_node(expr.id, expr.span);
1321 self.init_empty(ln, succ);
1322 match kind {
1323 LoopLoop => {}
1324 _ => {
1325 // If this is not a `loop` loop, then it's possible we bypass
1326 // the body altogether. Otherwise, the only way is via a `break`
1327 // in the loop body.
1328 self.merge_from_succ(ln, succ, first_merge);
1329 first_merge = false;
1330 }
1331 }
1332 debug!("propagate_through_loop: using id for loop body {} {}",
1333 expr.id, block_to_string(body));
1334
1335 let cond_ln = match kind {
1336 LoopLoop => ln,
1337 WhileLoop(ref cond) => self.propagate_through_expr(&**cond, ln),
1338 };
1339 let body_ln = self.with_loop_nodes(expr.id, succ, ln, |this| {
1340 this.propagate_through_block(body, cond_ln)
1341 });
1342
1343 // repeat until fixed point is reached:
1344 while self.merge_from_succ(ln, body_ln, first_merge) {
1345 first_merge = false;
1346
1347 let new_cond_ln = match kind {
1348 LoopLoop => ln,
1349 WhileLoop(ref cond) => {
1350 self.propagate_through_expr(&**cond, ln)
1351 }
1352 };
1353 assert!(cond_ln == new_cond_ln);
1354 assert!(body_ln == self.with_loop_nodes(expr.id, succ, ln,
1355 |this| this.propagate_through_block(body, cond_ln)));
1356 }
1357
1358 cond_ln
1359 }
1360
1361 fn with_loop_nodes<R, F>(&mut self,
1362 loop_node_id: NodeId,
1363 break_ln: LiveNode,
1364 cont_ln: LiveNode,
1365 f: F)
1366 -> R where
1367 F: FnOnce(&mut Liveness<'a, 'tcx>) -> R,
1368 {
1369 debug!("with_loop_nodes: {} {}", loop_node_id, break_ln.get());
1370 self.loop_scope.push(loop_node_id);
1371 self.break_ln.insert(loop_node_id, break_ln);
1372 self.cont_ln.insert(loop_node_id, cont_ln);
1373 let r = f(self);
1374 self.loop_scope.pop();
1375 r
1376 }
1377 }
1378
1379 // _______________________________________________________________________
1380 // Checking for error conditions
1381
1382 fn check_local(this: &mut Liveness, local: &hir::Local) {
1383 match local.init {
1384 Some(_) => {
1385 this.warn_about_unused_or_dead_vars_in_pat(&*local.pat);
1386 },
1387 None => {
1388 this.pat_bindings(&*local.pat, |this, ln, var, sp, id| {
1389 this.warn_about_unused(sp, id, ln, var);
1390 })
1391 }
1392 }
1393
1394 intravisit::walk_local(this, local);
1395 }
1396
1397 fn check_arm(this: &mut Liveness, arm: &hir::Arm) {
1398 // only consider the first pattern; any later patterns must have
1399 // the same bindings, and we also consider the first pattern to be
1400 // the "authoritative" set of ids
1401 this.arm_pats_bindings(arm.pats.first().map(|p| &**p), |this, ln, var, sp, id| {
1402 this.warn_about_unused(sp, id, ln, var);
1403 });
1404 intravisit::walk_arm(this, arm);
1405 }
1406
1407 fn check_expr(this: &mut Liveness, expr: &Expr) {
1408 match expr.node {
1409 hir::ExprAssign(ref l, _) => {
1410 this.check_lvalue(&**l);
1411
1412 intravisit::walk_expr(this, expr);
1413 }
1414
1415 hir::ExprAssignOp(_, ref l, _) => {
1416 this.check_lvalue(&**l);
1417
1418 intravisit::walk_expr(this, expr);
1419 }
1420
1421 hir::ExprInlineAsm(ref ia) => {
1422 for &(_, ref input) in &ia.inputs {
1423 this.visit_expr(&**input);
1424 }
1425
1426 // Output operands must be lvalues
1427 for out in &ia.outputs {
1428 if !out.is_indirect {
1429 this.check_lvalue(&*out.expr);
1430 }
1431 this.visit_expr(&*out.expr);
1432 }
1433
1434 intravisit::walk_expr(this, expr);
1435 }
1436
1437 // no correctness conditions related to liveness
1438 hir::ExprCall(..) | hir::ExprMethodCall(..) | hir::ExprIf(..) |
1439 hir::ExprMatch(..) | hir::ExprWhile(..) | hir::ExprLoop(..) |
1440 hir::ExprIndex(..) | hir::ExprField(..) | hir::ExprTupField(..) |
1441 hir::ExprVec(..) | hir::ExprTup(..) | hir::ExprBinary(..) |
1442 hir::ExprCast(..) | hir::ExprUnary(..) | hir::ExprRet(..) |
1443 hir::ExprBreak(..) | hir::ExprAgain(..) | hir::ExprLit(_) |
1444 hir::ExprBlock(..) | hir::ExprAddrOf(..) |
1445 hir::ExprStruct(..) | hir::ExprRepeat(..) |
1446 hir::ExprClosure(..) | hir::ExprPath(..) | hir::ExprBox(..) |
1447 hir::ExprRange(..) | hir::ExprType(..) => {
1448 intravisit::walk_expr(this, expr);
1449 }
1450 }
1451 }
1452
1453 fn check_fn(_v: &Liveness,
1454 _fk: FnKind,
1455 _decl: &hir::FnDecl,
1456 _body: &hir::Block,
1457 _sp: Span,
1458 _id: NodeId) {
1459 // do not check contents of nested fns
1460 }
1461
1462 impl<'a, 'tcx> Liveness<'a, 'tcx> {
1463 fn fn_ret(&self, id: NodeId) -> ty::PolyFnOutput<'tcx> {
1464 let fn_ty = self.ir.tcx.node_id_to_type(id);
1465 match fn_ty.sty {
1466 ty::TyClosure(closure_def_id, ref substs) =>
1467 self.ir.tcx.closure_type(closure_def_id, substs).sig.output(),
1468 _ => fn_ty.fn_ret()
1469 }
1470 }
1471
1472 fn check_ret(&self,
1473 id: NodeId,
1474 sp: Span,
1475 _fk: FnKind,
1476 entry_ln: LiveNode,
1477 body: &hir::Block)
1478 {
1479 // within the fn body, late-bound regions are liberated
1480 // and must outlive the *call-site* of the function.
1481 let fn_ret =
1482 self.ir.tcx.liberate_late_bound_regions(
1483 self.ir.tcx.region_maps.call_site_extent(id, body.id),
1484 &self.fn_ret(id));
1485
1486 match fn_ret {
1487 ty::FnConverging(t_ret)
1488 if self.live_on_entry(entry_ln, self.s.no_ret_var).is_some() => {
1489
1490 if t_ret.is_nil() {
1491 // for nil return types, it is ok to not return a value expl.
1492 } else {
1493 let ends_with_stmt = match body.expr {
1494 None if !body.stmts.is_empty() =>
1495 match body.stmts.first().unwrap().node {
1496 hir::StmtSemi(ref e, _) => {
1497 self.ir.tcx.expr_ty(&**e) == t_ret
1498 },
1499 _ => false
1500 },
1501 _ => false
1502 };
1503 let mut err = struct_span_err!(self.ir.tcx.sess,
1504 sp,
1505 E0269,
1506 "not all control paths return a value");
1507 if ends_with_stmt {
1508 let last_stmt = body.stmts.first().unwrap();
1509 let original_span = original_sp(self.ir.tcx.sess.codemap(),
1510 last_stmt.span, sp);
1511 let span_semicolon = Span {
1512 lo: original_span.hi - BytePos(1),
1513 hi: original_span.hi,
1514 expn_id: original_span.expn_id
1515 };
1516 err.span_help(span_semicolon, "consider removing this semicolon:");
1517 }
1518 err.emit();
1519 }
1520 }
1521 ty::FnDiverging
1522 if self.live_on_entry(entry_ln, self.s.clean_exit_var).is_some() => {
1523 span_err!(self.ir.tcx.sess, sp, E0270,
1524 "computation may converge in a function marked as diverging");
1525 }
1526
1527 _ => {}
1528 }
1529 }
1530
1531 fn check_lvalue(&mut self, expr: &Expr) {
1532 match expr.node {
1533 hir::ExprPath(..) => {
1534 if let DefLocal(_, nid) = self.ir.tcx.def_map.borrow().get(&expr.id)
1535 .unwrap()
1536 .full_def() {
1537 // Assignment to an immutable variable or argument: only legal
1538 // if there is no later assignment. If this local is actually
1539 // mutable, then check for a reassignment to flag the mutability
1540 // as being used.
1541 let ln = self.live_node(expr.id, expr.span);
1542 let var = self.variable(nid, expr.span);
1543 self.warn_about_dead_assign(expr.span, expr.id, ln, var);
1544 }
1545 }
1546 _ => {
1547 // For other kinds of lvalues, no checks are required,
1548 // and any embedded expressions are actually rvalues
1549 intravisit::walk_expr(self, expr);
1550 }
1551 }
1552 }
1553
1554 fn should_warn(&self, var: Variable) -> Option<String> {
1555 let name = self.ir.variable_name(var);
1556 if name.is_empty() || name.as_bytes()[0] == ('_' as u8) {
1557 None
1558 } else {
1559 Some(name)
1560 }
1561 }
1562
1563 fn warn_about_unused_args(&self, decl: &hir::FnDecl, entry_ln: LiveNode) {
1564 for arg in &decl.inputs {
1565 pat_util::pat_bindings(&self.ir.tcx.def_map,
1566 &*arg.pat,
1567 |_bm, p_id, sp, path1| {
1568 let var = self.variable(p_id, sp);
1569 // Ignore unused self.
1570 let name = path1.node;
1571 if name != special_idents::self_.name {
1572 if !self.warn_about_unused(sp, p_id, entry_ln, var) {
1573 if self.live_on_entry(entry_ln, var).is_none() {
1574 self.report_dead_assign(p_id, sp, var, true);
1575 }
1576 }
1577 }
1578 })
1579 }
1580 }
1581
1582 fn warn_about_unused_or_dead_vars_in_pat(&mut self, pat: &hir::Pat) {
1583 self.pat_bindings(pat, |this, ln, var, sp, id| {
1584 if !this.warn_about_unused(sp, id, ln, var) {
1585 this.warn_about_dead_assign(sp, id, ln, var);
1586 }
1587 })
1588 }
1589
1590 fn warn_about_unused(&self,
1591 sp: Span,
1592 id: NodeId,
1593 ln: LiveNode,
1594 var: Variable)
1595 -> bool {
1596 if !self.used_on_entry(ln, var) {
1597 let r = self.should_warn(var);
1598 if let Some(name) = r {
1599
1600 // annoying: for parameters in funcs like `fn(x: i32)
1601 // {ret}`, there is only one node, so asking about
1602 // assigned_on_exit() is not meaningful.
1603 let is_assigned = if ln == self.s.exit_ln {
1604 false
1605 } else {
1606 self.assigned_on_exit(ln, var).is_some()
1607 };
1608
1609 if is_assigned {
1610 self.ir.tcx.sess.add_lint(lint::builtin::UNUSED_VARIABLES, id, sp,
1611 format!("variable `{}` is assigned to, but never used",
1612 name));
1613 } else if name != "self" {
1614 self.ir.tcx.sess.add_lint(lint::builtin::UNUSED_VARIABLES, id, sp,
1615 format!("unused variable: `{}`", name));
1616 }
1617 }
1618 true
1619 } else {
1620 false
1621 }
1622 }
1623
1624 fn warn_about_dead_assign(&self,
1625 sp: Span,
1626 id: NodeId,
1627 ln: LiveNode,
1628 var: Variable) {
1629 if self.live_on_exit(ln, var).is_none() {
1630 self.report_dead_assign(id, sp, var, false);
1631 }
1632 }
1633
1634 fn report_dead_assign(&self, id: NodeId, sp: Span, var: Variable, is_argument: bool) {
1635 if let Some(name) = self.should_warn(var) {
1636 if is_argument {
1637 self.ir.tcx.sess.add_lint(lint::builtin::UNUSED_ASSIGNMENTS, id, sp,
1638 format!("value passed to `{}` is never read", name));
1639 } else {
1640 self.ir.tcx.sess.add_lint(lint::builtin::UNUSED_ASSIGNMENTS, id, sp,
1641 format!("value assigned to `{}` is never read", name));
1642 }
1643 }
1644 }
1645 }