]> git.proxmox.com Git - rustc.git/blob - src/librustc/middle/liveness.rs
New upstream version 1.19.0+dfsg1
[rustc.git] / src / librustc / middle / liveness.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! A classic liveness analysis based on dataflow over the AST. Computes,
12 //! for each local variable in a function, whether that variable is live
13 //! at a given point. Program execution points are identified by their
14 //! id.
15 //!
16 //! # Basic idea
17 //!
18 //! The basic model is that each local variable is assigned an index. We
19 //! represent sets of local variables using a vector indexed by this
20 //! index. The value in the vector is either 0, indicating the variable
21 //! is dead, or the id of an expression that uses the variable.
22 //!
23 //! We conceptually walk over the AST in reverse execution order. If we
24 //! find a use of a variable, we add it to the set of live variables. If
25 //! we find an assignment to a variable, we remove it from the set of live
26 //! variables. When we have to merge two flows, we take the union of
27 //! those two flows---if the variable is live on both paths, we simply
28 //! pick one id. In the event of loops, we continue doing this until a
29 //! fixed point is reached.
30 //!
31 //! ## Checking initialization
32 //!
33 //! At the function entry point, all variables must be dead. If this is
34 //! not the case, we can report an error using the id found in the set of
35 //! live variables, which identifies a use of the variable which is not
36 //! dominated by an assignment.
37 //!
38 //! ## Checking moves
39 //!
40 //! After each explicit move, the variable must be dead.
41 //!
42 //! ## Computing last uses
43 //!
44 //! Any use of the variable where the variable is dead afterwards is a
45 //! last use.
46 //!
47 //! # Implementation details
48 //!
49 //! The actual implementation contains two (nested) walks over the AST.
50 //! The outer walk has the job of building up the ir_maps instance for the
51 //! enclosing function. On the way down the tree, it identifies those AST
52 //! nodes and variable IDs that will be needed for the liveness analysis
53 //! and assigns them contiguous IDs. The liveness id for an AST node is
54 //! called a `live_node` (it's a newtype'd usize) and the id for a variable
55 //! is called a `variable` (another newtype'd usize).
56 //!
57 //! On the way back up the tree, as we are about to exit from a function
58 //! declaration we allocate a `liveness` instance. Now that we know
59 //! precisely how many nodes and variables we need, we can allocate all
60 //! the various arrays that we will need to precisely the right size. We then
61 //! perform the actual propagation on the `liveness` instance.
62 //!
63 //! This propagation is encoded in the various `propagate_through_*()`
64 //! methods. It effectively does a reverse walk of the AST; whenever we
65 //! reach a loop node, we iterate until a fixed point is reached.
66 //!
67 //! ## The `Users` struct
68 //!
69 //! At each live node `N`, we track three pieces of information for each
70 //! variable `V` (these are encapsulated in the `Users` struct):
71 //!
72 //! - `reader`: the `LiveNode` ID of some node which will read the value
73 //! that `V` holds on entry to `N`. Formally: a node `M` such
74 //! that there exists a path `P` from `N` to `M` where `P` does not
75 //! write `V`. If the `reader` is `invalid_node()`, then the current
76 //! value will never be read (the variable is dead, essentially).
77 //!
78 //! - `writer`: the `LiveNode` ID of some node which will write the
79 //! variable `V` and which is reachable from `N`. Formally: a node `M`
80 //! such that there exists a path `P` from `N` to `M` and `M` writes
81 //! `V`. If the `writer` is `invalid_node()`, then there is no writer
82 //! of `V` that follows `N`.
83 //!
84 //! - `used`: a boolean value indicating whether `V` is *used*. We
85 //! distinguish a *read* from a *use* in that a *use* is some read that
86 //! is not just used to generate a new value. For example, `x += 1` is
87 //! a read but not a use. This is used to generate better warnings.
88 //!
89 //! ## Special Variables
90 //!
91 //! We generate various special variables for various, well, special purposes.
92 //! These are described in the `specials` struct:
93 //!
94 //! - `exit_ln`: a live node that is generated to represent every 'exit' from
95 //! the function, whether it be by explicit return, panic, or other means.
96 //!
97 //! - `fallthrough_ln`: a live node that represents a fallthrough
98 //!
99 //! - `clean_exit_var`: a synthetic variable that is only 'read' from the
100 //! fallthrough node. It is only live if the function could converge
101 //! via means other than an explicit `return` expression. That is, it is
102 //! only dead if the end of the function's block can never be reached.
103 //! It is the responsibility of typeck to ensure that there are no
104 //! `return` expressions in a function declared as diverging.
105 use self::LoopKind::*;
106 use self::LiveNodeKind::*;
107 use self::VarKind::*;
108
109 use hir::def::*;
110 use ty::{self, TyCtxt};
111 use lint;
112 use util::nodemap::NodeMap;
113
114 use std::{fmt, usize};
115 use std::io::prelude::*;
116 use std::io;
117 use std::rc::Rc;
118 use syntax::ast::{self, NodeId};
119 use syntax::symbol::keywords;
120 use syntax_pos::Span;
121
122 use hir::Expr;
123 use hir;
124 use hir::intravisit::{self, Visitor, FnKind, NestedVisitorMap};
125
126 /// For use with `propagate_through_loop`.
127 enum LoopKind<'a> {
128 /// An endless `loop` loop.
129 LoopLoop,
130 /// A `while` loop, with the given expression as condition.
131 WhileLoop(&'a Expr),
132 }
133
134 #[derive(Copy, Clone, PartialEq)]
135 struct Variable(usize);
136
137 #[derive(Copy, PartialEq)]
138 struct LiveNode(usize);
139
140 impl Variable {
141 fn get(&self) -> usize { let Variable(v) = *self; v }
142 }
143
144 impl LiveNode {
145 fn get(&self) -> usize { let LiveNode(v) = *self; v }
146 }
147
148 impl Clone for LiveNode {
149 fn clone(&self) -> LiveNode {
150 LiveNode(self.get())
151 }
152 }
153
154 #[derive(Copy, Clone, PartialEq, Debug)]
155 enum LiveNodeKind {
156 FreeVarNode(Span),
157 ExprNode(Span),
158 VarDefNode(Span),
159 ExitNode
160 }
161
162 fn live_node_kind_to_string(lnk: LiveNodeKind, tcx: TyCtxt) -> String {
163 let cm = tcx.sess.codemap();
164 match lnk {
165 FreeVarNode(s) => {
166 format!("Free var node [{}]", cm.span_to_string(s))
167 }
168 ExprNode(s) => {
169 format!("Expr node [{}]", cm.span_to_string(s))
170 }
171 VarDefNode(s) => {
172 format!("Var def node [{}]", cm.span_to_string(s))
173 }
174 ExitNode => "Exit node".to_string(),
175 }
176 }
177
178 impl<'a, 'tcx> Visitor<'tcx> for IrMaps<'a, 'tcx> {
179 fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
180 NestedVisitorMap::OnlyBodies(&self.tcx.hir)
181 }
182
183 fn visit_fn(&mut self, fk: FnKind<'tcx>, fd: &'tcx hir::FnDecl,
184 b: hir::BodyId, s: Span, id: NodeId) {
185 visit_fn(self, fk, fd, b, s, id);
186 }
187 fn visit_local(&mut self, l: &'tcx hir::Local) { visit_local(self, l); }
188 fn visit_expr(&mut self, ex: &'tcx Expr) { visit_expr(self, ex); }
189 fn visit_arm(&mut self, a: &'tcx hir::Arm) { visit_arm(self, a); }
190 }
191
192 pub fn check_crate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) {
193 tcx.hir.krate().visit_all_item_likes(&mut IrMaps::new(tcx).as_deep_visitor());
194 tcx.sess.abort_if_errors();
195 }
196
197 impl fmt::Debug for LiveNode {
198 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
199 write!(f, "ln({})", self.get())
200 }
201 }
202
203 impl fmt::Debug for Variable {
204 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
205 write!(f, "v({})", self.get())
206 }
207 }
208
209 // ______________________________________________________________________
210 // Creating ir_maps
211 //
212 // This is the first pass and the one that drives the main
213 // computation. It walks up and down the IR once. On the way down,
214 // we count for each function the number of variables as well as
215 // liveness nodes. A liveness node is basically an expression or
216 // capture clause that does something of interest: either it has
217 // interesting control flow or it uses/defines a local variable.
218 //
219 // On the way back up, at each function node we create liveness sets
220 // (we now know precisely how big to make our various vectors and so
221 // forth) and then do the data-flow propagation to compute the set
222 // of live variables at each program point.
223 //
224 // Finally, we run back over the IR one last time and, using the
225 // computed liveness, check various safety conditions. For example,
226 // there must be no live nodes at the definition site for a variable
227 // unless it has an initializer. Similarly, each non-mutable local
228 // variable must not be assigned if there is some successor
229 // assignment. And so forth.
230
231 impl LiveNode {
232 fn is_valid(&self) -> bool {
233 self.get() != usize::MAX
234 }
235 }
236
237 fn invalid_node() -> LiveNode { LiveNode(usize::MAX) }
238
239 struct CaptureInfo {
240 ln: LiveNode,
241 var_nid: NodeId
242 }
243
244 #[derive(Copy, Clone, Debug)]
245 struct LocalInfo {
246 id: NodeId,
247 name: ast::Name
248 }
249
250 #[derive(Copy, Clone, Debug)]
251 enum VarKind {
252 Arg(NodeId, ast::Name),
253 Local(LocalInfo),
254 CleanExit
255 }
256
257 struct IrMaps<'a, 'tcx: 'a> {
258 tcx: TyCtxt<'a, 'tcx, 'tcx>,
259
260 num_live_nodes: usize,
261 num_vars: usize,
262 live_node_map: NodeMap<LiveNode>,
263 variable_map: NodeMap<Variable>,
264 capture_info_map: NodeMap<Rc<Vec<CaptureInfo>>>,
265 var_kinds: Vec<VarKind>,
266 lnks: Vec<LiveNodeKind>,
267 }
268
269 impl<'a, 'tcx> IrMaps<'a, 'tcx> {
270 fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> IrMaps<'a, 'tcx> {
271 IrMaps {
272 tcx: tcx,
273 num_live_nodes: 0,
274 num_vars: 0,
275 live_node_map: NodeMap(),
276 variable_map: NodeMap(),
277 capture_info_map: NodeMap(),
278 var_kinds: Vec::new(),
279 lnks: Vec::new(),
280 }
281 }
282
283 fn add_live_node(&mut self, lnk: LiveNodeKind) -> LiveNode {
284 let ln = LiveNode(self.num_live_nodes);
285 self.lnks.push(lnk);
286 self.num_live_nodes += 1;
287
288 debug!("{:?} is of kind {}", ln,
289 live_node_kind_to_string(lnk, self.tcx));
290
291 ln
292 }
293
294 fn add_live_node_for_node(&mut self, node_id: NodeId, lnk: LiveNodeKind) {
295 let ln = self.add_live_node(lnk);
296 self.live_node_map.insert(node_id, ln);
297
298 debug!("{:?} is node {}", ln, node_id);
299 }
300
301 fn add_variable(&mut self, vk: VarKind) -> Variable {
302 let v = Variable(self.num_vars);
303 self.var_kinds.push(vk);
304 self.num_vars += 1;
305
306 match vk {
307 Local(LocalInfo { id: node_id, .. }) | Arg(node_id, _) => {
308 self.variable_map.insert(node_id, v);
309 },
310 CleanExit => {}
311 }
312
313 debug!("{:?} is {:?}", v, vk);
314
315 v
316 }
317
318 fn variable(&self, node_id: NodeId, span: Span) -> Variable {
319 match self.variable_map.get(&node_id) {
320 Some(&var) => var,
321 None => {
322 span_bug!(span, "no variable registered for id {}", node_id);
323 }
324 }
325 }
326
327 fn variable_name(&self, var: Variable) -> String {
328 match self.var_kinds[var.get()] {
329 Local(LocalInfo { name, .. }) | Arg(_, name) => {
330 name.to_string()
331 },
332 CleanExit => "<clean-exit>".to_string()
333 }
334 }
335
336 fn set_captures(&mut self, node_id: NodeId, cs: Vec<CaptureInfo>) {
337 self.capture_info_map.insert(node_id, Rc::new(cs));
338 }
339
340 fn lnk(&self, ln: LiveNode) -> LiveNodeKind {
341 self.lnks[ln.get()]
342 }
343 }
344
345 fn visit_fn<'a, 'tcx: 'a>(ir: &mut IrMaps<'a, 'tcx>,
346 fk: FnKind<'tcx>,
347 decl: &'tcx hir::FnDecl,
348 body_id: hir::BodyId,
349 sp: Span,
350 id: ast::NodeId) {
351 debug!("visit_fn");
352
353 // swap in a new set of IR maps for this function body:
354 let mut fn_maps = IrMaps::new(ir.tcx);
355
356 debug!("creating fn_maps: {:?}", &fn_maps as *const IrMaps);
357
358 let body = ir.tcx.hir.body(body_id);
359
360 for arg in &body.arguments {
361 arg.pat.each_binding(|_bm, arg_id, _x, path1| {
362 debug!("adding argument {}", arg_id);
363 let name = path1.node;
364 fn_maps.add_variable(Arg(arg_id, name));
365 })
366 };
367
368 // gather up the various local variables, significant expressions,
369 // and so forth:
370 intravisit::walk_fn(&mut fn_maps, fk, decl, body_id, sp, id);
371
372 // compute liveness
373 let mut lsets = Liveness::new(&mut fn_maps, body_id);
374 let entry_ln = lsets.compute(&body.value);
375
376 // check for various error conditions
377 lsets.visit_body(body);
378 lsets.warn_about_unused_args(body, entry_ln);
379 }
380
381 fn visit_local<'a, 'tcx>(ir: &mut IrMaps<'a, 'tcx>, local: &'tcx hir::Local) {
382 local.pat.each_binding(|_, p_id, sp, path1| {
383 debug!("adding local variable {}", p_id);
384 let name = path1.node;
385 ir.add_live_node_for_node(p_id, VarDefNode(sp));
386 ir.add_variable(Local(LocalInfo {
387 id: p_id,
388 name: name
389 }));
390 });
391 intravisit::walk_local(ir, local);
392 }
393
394 fn visit_arm<'a, 'tcx>(ir: &mut IrMaps<'a, 'tcx>, arm: &'tcx hir::Arm) {
395 for pat in &arm.pats {
396 pat.each_binding(|bm, p_id, sp, path1| {
397 debug!("adding local variable {} from match with bm {:?}",
398 p_id, bm);
399 let name = path1.node;
400 ir.add_live_node_for_node(p_id, VarDefNode(sp));
401 ir.add_variable(Local(LocalInfo {
402 id: p_id,
403 name: name
404 }));
405 })
406 }
407 intravisit::walk_arm(ir, arm);
408 }
409
410 fn visit_expr<'a, 'tcx>(ir: &mut IrMaps<'a, 'tcx>, expr: &'tcx Expr) {
411 match expr.node {
412 // live nodes required for uses or definitions of variables:
413 hir::ExprPath(hir::QPath::Resolved(_, ref path)) => {
414 debug!("expr {}: path that leads to {:?}", expr.id, path.def);
415 if let Def::Local(..) = path.def {
416 ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
417 }
418 intravisit::walk_expr(ir, expr);
419 }
420 hir::ExprClosure(..) => {
421 // Interesting control flow (for loops can contain labeled
422 // breaks or continues)
423 ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
424
425 // Make a live_node for each captured variable, with the span
426 // being the location that the variable is used. This results
427 // in better error messages than just pointing at the closure
428 // construction site.
429 let mut call_caps = Vec::new();
430 ir.tcx.with_freevars(expr.id, |freevars| {
431 for fv in freevars {
432 if let Def::Local(def_id) = fv.def {
433 let rv = ir.tcx.hir.as_local_node_id(def_id).unwrap();
434 let fv_ln = ir.add_live_node(FreeVarNode(fv.span));
435 call_caps.push(CaptureInfo {ln: fv_ln,
436 var_nid: rv});
437 }
438 }
439 });
440 ir.set_captures(expr.id, call_caps);
441
442 intravisit::walk_expr(ir, expr);
443 }
444
445 // live nodes required for interesting control flow:
446 hir::ExprIf(..) | hir::ExprMatch(..) | hir::ExprWhile(..) | hir::ExprLoop(..) => {
447 ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
448 intravisit::walk_expr(ir, expr);
449 }
450 hir::ExprBinary(op, ..) if op.node.is_lazy() => {
451 ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
452 intravisit::walk_expr(ir, expr);
453 }
454
455 // otherwise, live nodes are not required:
456 hir::ExprIndex(..) | hir::ExprField(..) | hir::ExprTupField(..) |
457 hir::ExprArray(..) | hir::ExprCall(..) | hir::ExprMethodCall(..) |
458 hir::ExprTup(..) | hir::ExprBinary(..) | hir::ExprAddrOf(..) |
459 hir::ExprCast(..) | hir::ExprUnary(..) | hir::ExprBreak(..) |
460 hir::ExprAgain(_) | hir::ExprLit(_) | hir::ExprRet(..) |
461 hir::ExprBlock(..) | hir::ExprAssign(..) | hir::ExprAssignOp(..) |
462 hir::ExprStruct(..) | hir::ExprRepeat(..) |
463 hir::ExprInlineAsm(..) | hir::ExprBox(..) |
464 hir::ExprType(..) | hir::ExprPath(hir::QPath::TypeRelative(..)) => {
465 intravisit::walk_expr(ir, expr);
466 }
467 }
468 }
469
470 // ______________________________________________________________________
471 // Computing liveness sets
472 //
473 // Actually we compute just a bit more than just liveness, but we use
474 // the same basic propagation framework in all cases.
475
476 #[derive(Clone, Copy)]
477 struct Users {
478 reader: LiveNode,
479 writer: LiveNode,
480 used: bool
481 }
482
483 fn invalid_users() -> Users {
484 Users {
485 reader: invalid_node(),
486 writer: invalid_node(),
487 used: false
488 }
489 }
490
491 #[derive(Copy, Clone)]
492 struct Specials {
493 exit_ln: LiveNode,
494 fallthrough_ln: LiveNode,
495 clean_exit_var: Variable
496 }
497
498 const ACC_READ: u32 = 1;
499 const ACC_WRITE: u32 = 2;
500 const ACC_USE: u32 = 4;
501
502 struct Liveness<'a, 'tcx: 'a> {
503 ir: &'a mut IrMaps<'a, 'tcx>,
504 tables: &'a ty::TypeckTables<'tcx>,
505 s: Specials,
506 successors: Vec<LiveNode>,
507 users: Vec<Users>,
508
509 // mappings from loop node ID to LiveNode
510 // ("break" label should map to loop node ID,
511 // it probably doesn't now)
512 break_ln: NodeMap<LiveNode>,
513 cont_ln: NodeMap<LiveNode>,
514
515 // mappings from node ID to LiveNode for "breakable" blocks-- currently only `catch {...}`
516 breakable_block_ln: NodeMap<LiveNode>,
517 }
518
519 impl<'a, 'tcx> Liveness<'a, 'tcx> {
520 fn new(ir: &'a mut IrMaps<'a, 'tcx>, body: hir::BodyId) -> Liveness<'a, 'tcx> {
521 // Special nodes and variables:
522 // - exit_ln represents the end of the fn, either by return or panic
523 // - implicit_ret_var is a pseudo-variable that represents
524 // an implicit return
525 let specials = Specials {
526 exit_ln: ir.add_live_node(ExitNode),
527 fallthrough_ln: ir.add_live_node(ExitNode),
528 clean_exit_var: ir.add_variable(CleanExit)
529 };
530
531 let tables = ir.tcx.body_tables(body);
532
533 let num_live_nodes = ir.num_live_nodes;
534 let num_vars = ir.num_vars;
535
536 Liveness {
537 ir: ir,
538 tables: tables,
539 s: specials,
540 successors: vec![invalid_node(); num_live_nodes],
541 users: vec![invalid_users(); num_live_nodes * num_vars],
542 break_ln: NodeMap(),
543 cont_ln: NodeMap(),
544 breakable_block_ln: NodeMap(),
545 }
546 }
547
548 fn live_node(&self, node_id: NodeId, span: Span) -> LiveNode {
549 match self.ir.live_node_map.get(&node_id) {
550 Some(&ln) => ln,
551 None => {
552 // This must be a mismatch between the ir_map construction
553 // above and the propagation code below; the two sets of
554 // code have to agree about which AST nodes are worth
555 // creating liveness nodes for.
556 span_bug!(
557 span,
558 "no live node registered for node {}",
559 node_id);
560 }
561 }
562 }
563
564 fn variable(&self, node_id: NodeId, span: Span) -> Variable {
565 self.ir.variable(node_id, span)
566 }
567
568 fn pat_bindings<F>(&mut self, pat: &hir::Pat, mut f: F) where
569 F: FnMut(&mut Liveness<'a, 'tcx>, LiveNode, Variable, Span, NodeId),
570 {
571 pat.each_binding(|_bm, p_id, sp, _n| {
572 let ln = self.live_node(p_id, sp);
573 let var = self.variable(p_id, sp);
574 f(self, ln, var, sp, p_id);
575 })
576 }
577
578 fn arm_pats_bindings<F>(&mut self, pat: Option<&hir::Pat>, f: F) where
579 F: FnMut(&mut Liveness<'a, 'tcx>, LiveNode, Variable, Span, NodeId),
580 {
581 if let Some(pat) = pat {
582 self.pat_bindings(pat, f);
583 }
584 }
585
586 fn define_bindings_in_pat(&mut self, pat: &hir::Pat, succ: LiveNode)
587 -> LiveNode {
588 self.define_bindings_in_arm_pats(Some(pat), succ)
589 }
590
591 fn define_bindings_in_arm_pats(&mut self, pat: Option<&hir::Pat>, succ: LiveNode)
592 -> LiveNode {
593 let mut succ = succ;
594 self.arm_pats_bindings(pat, |this, ln, var, _sp, _id| {
595 this.init_from_succ(ln, succ);
596 this.define(ln, var);
597 succ = ln;
598 });
599 succ
600 }
601
602 fn idx(&self, ln: LiveNode, var: Variable) -> usize {
603 ln.get() * self.ir.num_vars + var.get()
604 }
605
606 fn live_on_entry(&self, ln: LiveNode, var: Variable)
607 -> Option<LiveNodeKind> {
608 assert!(ln.is_valid());
609 let reader = self.users[self.idx(ln, var)].reader;
610 if reader.is_valid() {Some(self.ir.lnk(reader))} else {None}
611 }
612
613 /*
614 Is this variable live on entry to any of its successor nodes?
615 */
616 fn live_on_exit(&self, ln: LiveNode, var: Variable)
617 -> Option<LiveNodeKind> {
618 let successor = self.successors[ln.get()];
619 self.live_on_entry(successor, var)
620 }
621
622 fn used_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
623 assert!(ln.is_valid());
624 self.users[self.idx(ln, var)].used
625 }
626
627 fn assigned_on_entry(&self, ln: LiveNode, var: Variable)
628 -> Option<LiveNodeKind> {
629 assert!(ln.is_valid());
630 let writer = self.users[self.idx(ln, var)].writer;
631 if writer.is_valid() {Some(self.ir.lnk(writer))} else {None}
632 }
633
634 fn assigned_on_exit(&self, ln: LiveNode, var: Variable)
635 -> Option<LiveNodeKind> {
636 let successor = self.successors[ln.get()];
637 self.assigned_on_entry(successor, var)
638 }
639
640 fn indices2<F>(&mut self, ln: LiveNode, succ_ln: LiveNode, mut op: F) where
641 F: FnMut(&mut Liveness<'a, 'tcx>, usize, usize),
642 {
643 let node_base_idx = self.idx(ln, Variable(0));
644 let succ_base_idx = self.idx(succ_ln, Variable(0));
645 for var_idx in 0..self.ir.num_vars {
646 op(self, node_base_idx + var_idx, succ_base_idx + var_idx);
647 }
648 }
649
650 fn write_vars<F>(&self,
651 wr: &mut Write,
652 ln: LiveNode,
653 mut test: F)
654 -> io::Result<()> where
655 F: FnMut(usize) -> LiveNode,
656 {
657 let node_base_idx = self.idx(ln, Variable(0));
658 for var_idx in 0..self.ir.num_vars {
659 let idx = node_base_idx + var_idx;
660 if test(idx).is_valid() {
661 write!(wr, " {:?}", Variable(var_idx))?;
662 }
663 }
664 Ok(())
665 }
666
667
668 #[allow(unused_must_use)]
669 fn ln_str(&self, ln: LiveNode) -> String {
670 let mut wr = Vec::new();
671 {
672 let wr = &mut wr as &mut Write;
673 write!(wr, "[ln({:?}) of kind {:?} reads", ln.get(), self.ir.lnk(ln));
674 self.write_vars(wr, ln, |idx| self.users[idx].reader);
675 write!(wr, " writes");
676 self.write_vars(wr, ln, |idx| self.users[idx].writer);
677 write!(wr, " precedes {:?}]", self.successors[ln.get()]);
678 }
679 String::from_utf8(wr).unwrap()
680 }
681
682 fn init_empty(&mut self, ln: LiveNode, succ_ln: LiveNode) {
683 self.successors[ln.get()] = succ_ln;
684
685 // It is not necessary to initialize the
686 // values to empty because this is the value
687 // they have when they are created, and the sets
688 // only grow during iterations.
689 //
690 // self.indices(ln) { |idx|
691 // self.users[idx] = invalid_users();
692 // }
693 }
694
695 fn init_from_succ(&mut self, ln: LiveNode, succ_ln: LiveNode) {
696 // more efficient version of init_empty() / merge_from_succ()
697 self.successors[ln.get()] = succ_ln;
698
699 self.indices2(ln, succ_ln, |this, idx, succ_idx| {
700 this.users[idx] = this.users[succ_idx]
701 });
702 debug!("init_from_succ(ln={}, succ={})",
703 self.ln_str(ln), self.ln_str(succ_ln));
704 }
705
706 fn merge_from_succ(&mut self,
707 ln: LiveNode,
708 succ_ln: LiveNode,
709 first_merge: bool)
710 -> bool {
711 if ln == succ_ln { return false; }
712
713 let mut changed = false;
714 self.indices2(ln, succ_ln, |this, idx, succ_idx| {
715 changed |= copy_if_invalid(this.users[succ_idx].reader,
716 &mut this.users[idx].reader);
717 changed |= copy_if_invalid(this.users[succ_idx].writer,
718 &mut this.users[idx].writer);
719 if this.users[succ_idx].used && !this.users[idx].used {
720 this.users[idx].used = true;
721 changed = true;
722 }
723 });
724
725 debug!("merge_from_succ(ln={:?}, succ={}, first_merge={}, changed={})",
726 ln, self.ln_str(succ_ln), first_merge, changed);
727 return changed;
728
729 fn copy_if_invalid(src: LiveNode, dst: &mut LiveNode) -> bool {
730 if src.is_valid() && !dst.is_valid() {
731 *dst = src;
732 true
733 } else {
734 false
735 }
736 }
737 }
738
739 // Indicates that a local variable was *defined*; we know that no
740 // uses of the variable can precede the definition (resolve checks
741 // this) so we just clear out all the data.
742 fn define(&mut self, writer: LiveNode, var: Variable) {
743 let idx = self.idx(writer, var);
744 self.users[idx].reader = invalid_node();
745 self.users[idx].writer = invalid_node();
746
747 debug!("{:?} defines {:?} (idx={}): {}", writer, var,
748 idx, self.ln_str(writer));
749 }
750
751 // Either read, write, or both depending on the acc bitset
752 fn acc(&mut self, ln: LiveNode, var: Variable, acc: u32) {
753 debug!("{:?} accesses[{:x}] {:?}: {}",
754 ln, acc, var, self.ln_str(ln));
755
756 let idx = self.idx(ln, var);
757 let user = &mut self.users[idx];
758
759 if (acc & ACC_WRITE) != 0 {
760 user.reader = invalid_node();
761 user.writer = ln;
762 }
763
764 // Important: if we both read/write, must do read second
765 // or else the write will override.
766 if (acc & ACC_READ) != 0 {
767 user.reader = ln;
768 }
769
770 if (acc & ACC_USE) != 0 {
771 user.used = true;
772 }
773 }
774
775 // _______________________________________________________________________
776
777 fn compute(&mut self, body: &hir::Expr) -> LiveNode {
778 // if there is a `break` or `again` at the top level, then it's
779 // effectively a return---this only occurs in `for` loops,
780 // where the body is really a closure.
781
782 debug!("compute: using id for body, {}", self.ir.tcx.hir.node_to_pretty_string(body.id));
783
784 let exit_ln = self.s.exit_ln;
785
786 self.break_ln.insert(body.id, exit_ln);
787 self.cont_ln.insert(body.id, exit_ln);
788
789 // the fallthrough exit is only for those cases where we do not
790 // explicitly return:
791 let s = self.s;
792 self.init_from_succ(s.fallthrough_ln, s.exit_ln);
793 self.acc(s.fallthrough_ln, s.clean_exit_var, ACC_READ);
794
795 let entry_ln = self.propagate_through_expr(body, s.fallthrough_ln);
796
797 // hack to skip the loop unless debug! is enabled:
798 debug!("^^ liveness computation results for body {} (entry={:?})",
799 {
800 for ln_idx in 0..self.ir.num_live_nodes {
801 debug!("{:?}", self.ln_str(LiveNode(ln_idx)));
802 }
803 body.id
804 },
805 entry_ln);
806
807 entry_ln
808 }
809
810 fn propagate_through_block(&mut self, blk: &hir::Block, succ: LiveNode)
811 -> LiveNode {
812 if blk.targeted_by_break {
813 self.breakable_block_ln.insert(blk.id, succ);
814 }
815 let succ = self.propagate_through_opt_expr(blk.expr.as_ref().map(|e| &**e), succ);
816 blk.stmts.iter().rev().fold(succ, |succ, stmt| {
817 self.propagate_through_stmt(stmt, succ)
818 })
819 }
820
821 fn propagate_through_stmt(&mut self, stmt: &hir::Stmt, succ: LiveNode)
822 -> LiveNode {
823 match stmt.node {
824 hir::StmtDecl(ref decl, _) => {
825 self.propagate_through_decl(&decl, succ)
826 }
827
828 hir::StmtExpr(ref expr, _) | hir::StmtSemi(ref expr, _) => {
829 self.propagate_through_expr(&expr, succ)
830 }
831 }
832 }
833
834 fn propagate_through_decl(&mut self, decl: &hir::Decl, succ: LiveNode)
835 -> LiveNode {
836 match decl.node {
837 hir::DeclLocal(ref local) => {
838 self.propagate_through_local(&local, succ)
839 }
840 hir::DeclItem(_) => succ,
841 }
842 }
843
844 fn propagate_through_local(&mut self, local: &hir::Local, succ: LiveNode)
845 -> LiveNode {
846 // Note: we mark the variable as defined regardless of whether
847 // there is an initializer. Initially I had thought to only mark
848 // the live variable as defined if it was initialized, and then we
849 // could check for uninit variables just by scanning what is live
850 // at the start of the function. But that doesn't work so well for
851 // immutable variables defined in a loop:
852 // loop { let x; x = 5; }
853 // because the "assignment" loops back around and generates an error.
854 //
855 // So now we just check that variables defined w/o an
856 // initializer are not live at the point of their
857 // initialization, which is mildly more complex than checking
858 // once at the func header but otherwise equivalent.
859
860 let succ = self.propagate_through_opt_expr(local.init.as_ref().map(|e| &**e), succ);
861 self.define_bindings_in_pat(&local.pat, succ)
862 }
863
864 fn propagate_through_exprs(&mut self, exprs: &[Expr], succ: LiveNode)
865 -> LiveNode {
866 exprs.iter().rev().fold(succ, |succ, expr| {
867 self.propagate_through_expr(&expr, succ)
868 })
869 }
870
871 fn propagate_through_opt_expr(&mut self,
872 opt_expr: Option<&Expr>,
873 succ: LiveNode)
874 -> LiveNode {
875 opt_expr.map_or(succ, |expr| self.propagate_through_expr(expr, succ))
876 }
877
878 fn propagate_through_expr(&mut self, expr: &Expr, succ: LiveNode)
879 -> LiveNode {
880 debug!("propagate_through_expr: {}", self.ir.tcx.hir.node_to_pretty_string(expr.id));
881
882 match expr.node {
883 // Interesting cases with control flow or which gen/kill
884
885 hir::ExprPath(hir::QPath::Resolved(_, ref path)) => {
886 self.access_path(expr.id, path, succ, ACC_READ | ACC_USE)
887 }
888
889 hir::ExprField(ref e, _) => {
890 self.propagate_through_expr(&e, succ)
891 }
892
893 hir::ExprTupField(ref e, _) => {
894 self.propagate_through_expr(&e, succ)
895 }
896
897 hir::ExprClosure(.., blk_id, _) => {
898 debug!("{} is an ExprClosure", self.ir.tcx.hir.node_to_pretty_string(expr.id));
899
900 /*
901 The next-node for a break is the successor of the entire
902 loop. The next-node for a continue is the top of this loop.
903 */
904 let node = self.live_node(expr.id, expr.span);
905
906 let break_ln = succ;
907 let cont_ln = node;
908 self.break_ln.insert(blk_id.node_id, break_ln);
909 self.cont_ln.insert(blk_id.node_id, cont_ln);
910
911 // the construction of a closure itself is not important,
912 // but we have to consider the closed over variables.
913 let caps = match self.ir.capture_info_map.get(&expr.id) {
914 Some(caps) => caps.clone(),
915 None => {
916 span_bug!(expr.span, "no registered caps");
917 }
918 };
919 caps.iter().rev().fold(succ, |succ, cap| {
920 self.init_from_succ(cap.ln, succ);
921 let var = self.variable(cap.var_nid, expr.span);
922 self.acc(cap.ln, var, ACC_READ | ACC_USE);
923 cap.ln
924 })
925 }
926
927 hir::ExprIf(ref cond, ref then, ref els) => {
928 //
929 // (cond)
930 // |
931 // v
932 // (expr)
933 // / \
934 // | |
935 // v v
936 // (then)(els)
937 // | |
938 // v v
939 // ( succ )
940 //
941 let else_ln = self.propagate_through_opt_expr(els.as_ref().map(|e| &**e), succ);
942 let then_ln = self.propagate_through_expr(&then, succ);
943 let ln = self.live_node(expr.id, expr.span);
944 self.init_from_succ(ln, else_ln);
945 self.merge_from_succ(ln, then_ln, false);
946 self.propagate_through_expr(&cond, ln)
947 }
948
949 hir::ExprWhile(ref cond, ref blk, _) => {
950 self.propagate_through_loop(expr, WhileLoop(&cond), &blk, succ)
951 }
952
953 // Note that labels have been resolved, so we don't need to look
954 // at the label ident
955 hir::ExprLoop(ref blk, _, _) => {
956 self.propagate_through_loop(expr, LoopLoop, &blk, succ)
957 }
958
959 hir::ExprMatch(ref e, ref arms, _) => {
960 //
961 // (e)
962 // |
963 // v
964 // (expr)
965 // / | \
966 // | | |
967 // v v v
968 // (..arms..)
969 // | | |
970 // v v v
971 // ( succ )
972 //
973 //
974 let ln = self.live_node(expr.id, expr.span);
975 self.init_empty(ln, succ);
976 let mut first_merge = true;
977 for arm in arms {
978 let body_succ =
979 self.propagate_through_expr(&arm.body, succ);
980 let guard_succ =
981 self.propagate_through_opt_expr(arm.guard.as_ref().map(|e| &**e), body_succ);
982 // only consider the first pattern; any later patterns must have
983 // the same bindings, and we also consider the first pattern to be
984 // the "authoritative" set of ids
985 let arm_succ =
986 self.define_bindings_in_arm_pats(arm.pats.first().map(|p| &**p),
987 guard_succ);
988 self.merge_from_succ(ln, arm_succ, first_merge);
989 first_merge = false;
990 };
991 self.propagate_through_expr(&e, ln)
992 }
993
994 hir::ExprRet(ref o_e) => {
995 // ignore succ and subst exit_ln:
996 let exit_ln = self.s.exit_ln;
997 self.propagate_through_opt_expr(o_e.as_ref().map(|e| &**e), exit_ln)
998 }
999
1000 hir::ExprBreak(label, ref opt_expr) => {
1001 // Find which label this break jumps to
1002 let target = match label.target_id {
1003 hir::ScopeTarget::Block(node_id) =>
1004 self.breakable_block_ln.get(&node_id),
1005 hir::ScopeTarget::Loop(hir::LoopIdResult::Ok(node_id)) =>
1006 self.break_ln.get(&node_id),
1007 hir::ScopeTarget::Loop(hir::LoopIdResult::Err(err)) =>
1008 span_bug!(expr.span, "loop scope error: {}", err),
1009 }.map(|x| *x);
1010
1011 // Now that we know the label we're going to,
1012 // look it up in the break loop nodes table
1013
1014 match target {
1015 Some(b) => self.propagate_through_opt_expr(opt_expr.as_ref().map(|e| &**e), b),
1016 None => span_bug!(expr.span, "break to unknown label")
1017 }
1018 }
1019
1020 hir::ExprAgain(label) => {
1021 // Find which label this expr continues to
1022 let sc = match label.target_id {
1023 hir::ScopeTarget::Block(_) => bug!("can't `continue` to a non-loop block"),
1024 hir::ScopeTarget::Loop(hir::LoopIdResult::Ok(node_id)) => node_id,
1025 hir::ScopeTarget::Loop(hir::LoopIdResult::Err(err)) =>
1026 span_bug!(expr.span, "loop scope error: {}", err),
1027 };
1028
1029 // Now that we know the label we're going to,
1030 // look it up in the continue loop nodes table
1031
1032 match self.cont_ln.get(&sc) {
1033 Some(&b) => b,
1034 None => span_bug!(expr.span, "continue to unknown label")
1035 }
1036 }
1037
1038 hir::ExprAssign(ref l, ref r) => {
1039 // see comment on lvalues in
1040 // propagate_through_lvalue_components()
1041 let succ = self.write_lvalue(&l, succ, ACC_WRITE);
1042 let succ = self.propagate_through_lvalue_components(&l, succ);
1043 self.propagate_through_expr(&r, succ)
1044 }
1045
1046 hir::ExprAssignOp(_, ref l, ref r) => {
1047 // an overloaded assign op is like a method call
1048 if self.tables.is_method_call(expr) {
1049 let succ = self.propagate_through_expr(&l, succ);
1050 self.propagate_through_expr(&r, succ)
1051 } else {
1052 // see comment on lvalues in
1053 // propagate_through_lvalue_components()
1054 let succ = self.write_lvalue(&l, succ, ACC_WRITE|ACC_READ);
1055 let succ = self.propagate_through_expr(&r, succ);
1056 self.propagate_through_lvalue_components(&l, succ)
1057 }
1058 }
1059
1060 // Uninteresting cases: just propagate in rev exec order
1061
1062 hir::ExprArray(ref exprs) => {
1063 self.propagate_through_exprs(exprs, succ)
1064 }
1065
1066 hir::ExprStruct(_, ref fields, ref with_expr) => {
1067 let succ = self.propagate_through_opt_expr(with_expr.as_ref().map(|e| &**e), succ);
1068 fields.iter().rev().fold(succ, |succ, field| {
1069 self.propagate_through_expr(&field.expr, succ)
1070 })
1071 }
1072
1073 hir::ExprCall(ref f, ref args) => {
1074 // FIXME(canndrew): This is_never should really be an is_uninhabited
1075 let succ = if self.tables.expr_ty(expr).is_never() {
1076 self.s.exit_ln
1077 } else {
1078 succ
1079 };
1080 let succ = self.propagate_through_exprs(args, succ);
1081 self.propagate_through_expr(&f, succ)
1082 }
1083
1084 hir::ExprMethodCall(.., ref args) => {
1085 // FIXME(canndrew): This is_never should really be an is_uninhabited
1086 let succ = if self.tables.expr_ty(expr).is_never() {
1087 self.s.exit_ln
1088 } else {
1089 succ
1090 };
1091 self.propagate_through_exprs(args, succ)
1092 }
1093
1094 hir::ExprTup(ref exprs) => {
1095 self.propagate_through_exprs(exprs, succ)
1096 }
1097
1098 hir::ExprBinary(op, ref l, ref r) if op.node.is_lazy() => {
1099 let r_succ = self.propagate_through_expr(&r, succ);
1100
1101 let ln = self.live_node(expr.id, expr.span);
1102 self.init_from_succ(ln, succ);
1103 self.merge_from_succ(ln, r_succ, false);
1104
1105 self.propagate_through_expr(&l, ln)
1106 }
1107
1108 hir::ExprIndex(ref l, ref r) |
1109 hir::ExprBinary(_, ref l, ref r) => {
1110 let r_succ = self.propagate_through_expr(&r, succ);
1111 self.propagate_through_expr(&l, r_succ)
1112 }
1113
1114 hir::ExprBox(ref e) |
1115 hir::ExprAddrOf(_, ref e) |
1116 hir::ExprCast(ref e, _) |
1117 hir::ExprType(ref e, _) |
1118 hir::ExprUnary(_, ref e) |
1119 hir::ExprRepeat(ref e, _) => {
1120 self.propagate_through_expr(&e, succ)
1121 }
1122
1123 hir::ExprInlineAsm(ref ia, ref outputs, ref inputs) => {
1124 let succ = ia.outputs.iter().zip(outputs).rev().fold(succ, |succ, (o, output)| {
1125 // see comment on lvalues
1126 // in propagate_through_lvalue_components()
1127 if o.is_indirect {
1128 self.propagate_through_expr(output, succ)
1129 } else {
1130 let acc = if o.is_rw { ACC_WRITE|ACC_READ } else { ACC_WRITE };
1131 let succ = self.write_lvalue(output, succ, acc);
1132 self.propagate_through_lvalue_components(output, succ)
1133 }
1134 });
1135
1136 // Inputs are executed first. Propagate last because of rev order
1137 self.propagate_through_exprs(inputs, succ)
1138 }
1139
1140 hir::ExprLit(..) | hir::ExprPath(hir::QPath::TypeRelative(..)) => {
1141 succ
1142 }
1143
1144 hir::ExprBlock(ref blk) => {
1145 self.propagate_through_block(&blk, succ)
1146 }
1147 }
1148 }
1149
1150 fn propagate_through_lvalue_components(&mut self,
1151 expr: &Expr,
1152 succ: LiveNode)
1153 -> LiveNode {
1154 // # Lvalues
1155 //
1156 // In general, the full flow graph structure for an
1157 // assignment/move/etc can be handled in one of two ways,
1158 // depending on whether what is being assigned is a "tracked
1159 // value" or not. A tracked value is basically a local
1160 // variable or argument.
1161 //
1162 // The two kinds of graphs are:
1163 //
1164 // Tracked lvalue Untracked lvalue
1165 // ----------------------++-----------------------
1166 // ||
1167 // | || |
1168 // v || v
1169 // (rvalue) || (rvalue)
1170 // | || |
1171 // v || v
1172 // (write of lvalue) || (lvalue components)
1173 // | || |
1174 // v || v
1175 // (succ) || (succ)
1176 // ||
1177 // ----------------------++-----------------------
1178 //
1179 // I will cover the two cases in turn:
1180 //
1181 // # Tracked lvalues
1182 //
1183 // A tracked lvalue is a local variable/argument `x`. In
1184 // these cases, the link_node where the write occurs is linked
1185 // to node id of `x`. The `write_lvalue()` routine generates
1186 // the contents of this node. There are no subcomponents to
1187 // consider.
1188 //
1189 // # Non-tracked lvalues
1190 //
1191 // These are lvalues like `x[5]` or `x.f`. In that case, we
1192 // basically ignore the value which is written to but generate
1193 // reads for the components---`x` in these two examples. The
1194 // components reads are generated by
1195 // `propagate_through_lvalue_components()` (this fn).
1196 //
1197 // # Illegal lvalues
1198 //
1199 // It is still possible to observe assignments to non-lvalues;
1200 // these errors are detected in the later pass borrowck. We
1201 // just ignore such cases and treat them as reads.
1202
1203 match expr.node {
1204 hir::ExprPath(_) => succ,
1205 hir::ExprField(ref e, _) => self.propagate_through_expr(&e, succ),
1206 hir::ExprTupField(ref e, _) => self.propagate_through_expr(&e, succ),
1207 _ => self.propagate_through_expr(expr, succ)
1208 }
1209 }
1210
1211 // see comment on propagate_through_lvalue()
1212 fn write_lvalue(&mut self, expr: &Expr, succ: LiveNode, acc: u32)
1213 -> LiveNode {
1214 match expr.node {
1215 hir::ExprPath(hir::QPath::Resolved(_, ref path)) => {
1216 self.access_path(expr.id, path, succ, acc)
1217 }
1218
1219 // We do not track other lvalues, so just propagate through
1220 // to their subcomponents. Also, it may happen that
1221 // non-lvalues occur here, because those are detected in the
1222 // later pass borrowck.
1223 _ => succ
1224 }
1225 }
1226
1227 fn access_path(&mut self, id: NodeId, path: &hir::Path, succ: LiveNode, acc: u32)
1228 -> LiveNode {
1229 match path.def {
1230 Def::Local(def_id) => {
1231 let nid = self.ir.tcx.hir.as_local_node_id(def_id).unwrap();
1232 let ln = self.live_node(id, path.span);
1233 if acc != 0 {
1234 self.init_from_succ(ln, succ);
1235 let var = self.variable(nid, path.span);
1236 self.acc(ln, var, acc);
1237 }
1238 ln
1239 }
1240 _ => succ
1241 }
1242 }
1243
1244 fn propagate_through_loop(&mut self,
1245 expr: &Expr,
1246 kind: LoopKind,
1247 body: &hir::Block,
1248 succ: LiveNode)
1249 -> LiveNode {
1250
1251 /*
1252
1253 We model control flow like this:
1254
1255 (cond) <--+
1256 | |
1257 v |
1258 +-- (expr) |
1259 | | |
1260 | v |
1261 | (body) ---+
1262 |
1263 |
1264 v
1265 (succ)
1266
1267 */
1268
1269
1270 // first iteration:
1271 let mut first_merge = true;
1272 let ln = self.live_node(expr.id, expr.span);
1273 self.init_empty(ln, succ);
1274 match kind {
1275 LoopLoop => {}
1276 _ => {
1277 // If this is not a `loop` loop, then it's possible we bypass
1278 // the body altogether. Otherwise, the only way is via a `break`
1279 // in the loop body.
1280 self.merge_from_succ(ln, succ, first_merge);
1281 first_merge = false;
1282 }
1283 }
1284 debug!("propagate_through_loop: using id for loop body {} {}",
1285 expr.id, self.ir.tcx.hir.node_to_pretty_string(body.id));
1286
1287 let break_ln = succ;
1288 let cont_ln = ln;
1289 self.break_ln.insert(expr.id, break_ln);
1290 self.cont_ln.insert(expr.id, cont_ln);
1291
1292 let cond_ln = match kind {
1293 LoopLoop => ln,
1294 WhileLoop(ref cond) => self.propagate_through_expr(&cond, ln),
1295 };
1296 let body_ln = self.propagate_through_block(body, cond_ln);
1297
1298 // repeat until fixed point is reached:
1299 while self.merge_from_succ(ln, body_ln, first_merge) {
1300 first_merge = false;
1301
1302 let new_cond_ln = match kind {
1303 LoopLoop => ln,
1304 WhileLoop(ref cond) => {
1305 self.propagate_through_expr(&cond, ln)
1306 }
1307 };
1308 assert!(cond_ln == new_cond_ln);
1309 assert!(body_ln == self.propagate_through_block(body, cond_ln));
1310 }
1311
1312 cond_ln
1313 }
1314 }
1315
1316 // _______________________________________________________________________
1317 // Checking for error conditions
1318
1319 impl<'a, 'tcx> Visitor<'tcx> for Liveness<'a, 'tcx> {
1320 fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
1321 NestedVisitorMap::None
1322 }
1323
1324 fn visit_local(&mut self, l: &'tcx hir::Local) {
1325 check_local(self, l);
1326 }
1327 fn visit_expr(&mut self, ex: &'tcx Expr) {
1328 check_expr(self, ex);
1329 }
1330 fn visit_arm(&mut self, a: &'tcx hir::Arm) {
1331 check_arm(self, a);
1332 }
1333 }
1334
1335 fn check_local<'a, 'tcx>(this: &mut Liveness<'a, 'tcx>, local: &'tcx hir::Local) {
1336 match local.init {
1337 Some(_) => {
1338 this.warn_about_unused_or_dead_vars_in_pat(&local.pat);
1339 },
1340 None => {
1341 this.pat_bindings(&local.pat, |this, ln, var, sp, id| {
1342 this.warn_about_unused(sp, id, ln, var);
1343 })
1344 }
1345 }
1346
1347 intravisit::walk_local(this, local);
1348 }
1349
1350 fn check_arm<'a, 'tcx>(this: &mut Liveness<'a, 'tcx>, arm: &'tcx hir::Arm) {
1351 // only consider the first pattern; any later patterns must have
1352 // the same bindings, and we also consider the first pattern to be
1353 // the "authoritative" set of ids
1354 this.arm_pats_bindings(arm.pats.first().map(|p| &**p), |this, ln, var, sp, id| {
1355 this.warn_about_unused(sp, id, ln, var);
1356 });
1357 intravisit::walk_arm(this, arm);
1358 }
1359
1360 fn check_expr<'a, 'tcx>(this: &mut Liveness<'a, 'tcx>, expr: &'tcx Expr) {
1361 match expr.node {
1362 hir::ExprAssign(ref l, _) => {
1363 this.check_lvalue(&l);
1364
1365 intravisit::walk_expr(this, expr);
1366 }
1367
1368 hir::ExprAssignOp(_, ref l, _) => {
1369 if !this.tables.is_method_call(expr) {
1370 this.check_lvalue(&l);
1371 }
1372
1373 intravisit::walk_expr(this, expr);
1374 }
1375
1376 hir::ExprInlineAsm(ref ia, ref outputs, ref inputs) => {
1377 for input in inputs {
1378 this.visit_expr(input);
1379 }
1380
1381 // Output operands must be lvalues
1382 for (o, output) in ia.outputs.iter().zip(outputs) {
1383 if !o.is_indirect {
1384 this.check_lvalue(output);
1385 }
1386 this.visit_expr(output);
1387 }
1388
1389 intravisit::walk_expr(this, expr);
1390 }
1391
1392 // no correctness conditions related to liveness
1393 hir::ExprCall(..) | hir::ExprMethodCall(..) | hir::ExprIf(..) |
1394 hir::ExprMatch(..) | hir::ExprWhile(..) | hir::ExprLoop(..) |
1395 hir::ExprIndex(..) | hir::ExprField(..) | hir::ExprTupField(..) |
1396 hir::ExprArray(..) | hir::ExprTup(..) | hir::ExprBinary(..) |
1397 hir::ExprCast(..) | hir::ExprUnary(..) | hir::ExprRet(..) |
1398 hir::ExprBreak(..) | hir::ExprAgain(..) | hir::ExprLit(_) |
1399 hir::ExprBlock(..) | hir::ExprAddrOf(..) |
1400 hir::ExprStruct(..) | hir::ExprRepeat(..) |
1401 hir::ExprClosure(..) | hir::ExprPath(_) |
1402 hir::ExprBox(..) | hir::ExprType(..) => {
1403 intravisit::walk_expr(this, expr);
1404 }
1405 }
1406 }
1407
1408 impl<'a, 'tcx> Liveness<'a, 'tcx> {
1409 fn check_lvalue(&mut self, expr: &'tcx Expr) {
1410 match expr.node {
1411 hir::ExprPath(hir::QPath::Resolved(_, ref path)) => {
1412 if let Def::Local(def_id) = path.def {
1413 // Assignment to an immutable variable or argument: only legal
1414 // if there is no later assignment. If this local is actually
1415 // mutable, then check for a reassignment to flag the mutability
1416 // as being used.
1417 let nid = self.ir.tcx.hir.as_local_node_id(def_id).unwrap();
1418 let ln = self.live_node(expr.id, expr.span);
1419 let var = self.variable(nid, expr.span);
1420 self.warn_about_dead_assign(expr.span, expr.id, ln, var);
1421 }
1422 }
1423 _ => {
1424 // For other kinds of lvalues, no checks are required,
1425 // and any embedded expressions are actually rvalues
1426 intravisit::walk_expr(self, expr);
1427 }
1428 }
1429 }
1430
1431 fn should_warn(&self, var: Variable) -> Option<String> {
1432 let name = self.ir.variable_name(var);
1433 if name.is_empty() || name.as_bytes()[0] == ('_' as u8) {
1434 None
1435 } else {
1436 Some(name)
1437 }
1438 }
1439
1440 fn warn_about_unused_args(&self, body: &hir::Body, entry_ln: LiveNode) {
1441 for arg in &body.arguments {
1442 arg.pat.each_binding(|_bm, p_id, sp, path1| {
1443 let var = self.variable(p_id, sp);
1444 // Ignore unused self.
1445 let name = path1.node;
1446 if name != keywords::SelfValue.name() {
1447 if !self.warn_about_unused(sp, p_id, entry_ln, var) {
1448 if self.live_on_entry(entry_ln, var).is_none() {
1449 self.report_dead_assign(p_id, sp, var, true);
1450 }
1451 }
1452 }
1453 })
1454 }
1455 }
1456
1457 fn warn_about_unused_or_dead_vars_in_pat(&mut self, pat: &hir::Pat) {
1458 self.pat_bindings(pat, |this, ln, var, sp, id| {
1459 if !this.warn_about_unused(sp, id, ln, var) {
1460 this.warn_about_dead_assign(sp, id, ln, var);
1461 }
1462 })
1463 }
1464
1465 fn warn_about_unused(&self,
1466 sp: Span,
1467 id: NodeId,
1468 ln: LiveNode,
1469 var: Variable)
1470 -> bool {
1471 if !self.used_on_entry(ln, var) {
1472 let r = self.should_warn(var);
1473 if let Some(name) = r {
1474
1475 // annoying: for parameters in funcs like `fn(x: i32)
1476 // {ret}`, there is only one node, so asking about
1477 // assigned_on_exit() is not meaningful.
1478 let is_assigned = if ln == self.s.exit_ln {
1479 false
1480 } else {
1481 self.assigned_on_exit(ln, var).is_some()
1482 };
1483
1484 if is_assigned {
1485 self.ir.tcx.sess.add_lint(lint::builtin::UNUSED_VARIABLES, id, sp,
1486 format!("variable `{}` is assigned to, but never used",
1487 name));
1488 } else if name != "self" {
1489 self.ir.tcx.sess.add_lint(lint::builtin::UNUSED_VARIABLES, id, sp,
1490 format!("unused variable: `{}`", name));
1491 }
1492 }
1493 true
1494 } else {
1495 false
1496 }
1497 }
1498
1499 fn warn_about_dead_assign(&self,
1500 sp: Span,
1501 id: NodeId,
1502 ln: LiveNode,
1503 var: Variable) {
1504 if self.live_on_exit(ln, var).is_none() {
1505 self.report_dead_assign(id, sp, var, false);
1506 }
1507 }
1508
1509 fn report_dead_assign(&self, id: NodeId, sp: Span, var: Variable, is_argument: bool) {
1510 if let Some(name) = self.should_warn(var) {
1511 if is_argument {
1512 self.ir.tcx.sess.add_lint(lint::builtin::UNUSED_ASSIGNMENTS, id, sp,
1513 format!("value passed to `{}` is never read", name));
1514 } else {
1515 self.ir.tcx.sess.add_lint(lint::builtin::UNUSED_ASSIGNMENTS, id, sp,
1516 format!("value assigned to `{}` is never read", name));
1517 }
1518 }
1519 }
1520 }