]> git.proxmox.com Git - rustc.git/blob - src/librustc/middle/resolve_lifetime.rs
Imported Upstream version 1.11.0+dfsg1
[rustc.git] / src / librustc / middle / resolve_lifetime.rs
1 // Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Name resolution for lifetimes.
12 //!
13 //! Name resolution for lifetimes follows MUCH simpler rules than the
14 //! full resolve. For example, lifetime names are never exported or
15 //! used between functions, and they operate in a purely top-down
16 //! way. Therefore we break lifetime name resolution into a separate pass.
17
18 pub use self::DefRegion::*;
19 use self::ScopeChain::*;
20
21 use dep_graph::DepNode;
22 use hir::map::Map;
23 use session::Session;
24 use hir::def::{Def, DefMap};
25 use hir::def_id::DefId;
26 use middle::region;
27 use ty::subst;
28 use ty;
29 use std::fmt;
30 use std::mem::replace;
31 use syntax::ast;
32 use syntax::parse::token::keywords;
33 use syntax_pos::Span;
34 use util::nodemap::NodeMap;
35
36 use rustc_data_structures::fnv::FnvHashSet;
37 use hir;
38 use hir::print::lifetime_to_string;
39 use hir::intravisit::{self, Visitor, FnKind};
40
41 #[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, Debug)]
42 pub enum DefRegion {
43 DefStaticRegion,
44 DefEarlyBoundRegion(/* space */ subst::ParamSpace,
45 /* index */ u32,
46 /* lifetime decl */ ast::NodeId),
47 DefLateBoundRegion(ty::DebruijnIndex,
48 /* lifetime decl */ ast::NodeId),
49 DefFreeRegion(region::CallSiteScopeData,
50 /* lifetime decl */ ast::NodeId),
51 }
52
53 // Maps the id of each lifetime reference to the lifetime decl
54 // that it corresponds to.
55 pub struct NamedRegionMap {
56 // maps from every use of a named (not anonymous) lifetime to a
57 // `DefRegion` describing how that region is bound
58 pub defs: NodeMap<DefRegion>,
59
60 // the set of lifetime def ids that are late-bound; late-bound ids
61 // are named regions appearing in fn arguments that do not appear
62 // in where-clauses
63 pub late_bound: NodeMap<ty::Issue32330>,
64 }
65
66 struct LifetimeContext<'a, 'tcx: 'a> {
67 sess: &'a Session,
68 hir_map: &'a Map<'tcx>,
69 map: &'a mut NamedRegionMap,
70 scope: Scope<'a>,
71 def_map: &'a DefMap,
72 // Deep breath. Our representation for poly trait refs contains a single
73 // binder and thus we only allow a single level of quantification. However,
74 // the syntax of Rust permits quantification in two places, e.g., `T: for <'a> Foo<'a>`
75 // and `for <'a, 'b> &'b T: Foo<'a>`. In order to get the de Bruijn indices
76 // correct when representing these constraints, we should only introduce one
77 // scope. However, we want to support both locations for the quantifier and
78 // during lifetime resolution we want precise information (so we can't
79 // desugar in an earlier phase).
80
81 // SO, if we encounter a quantifier at the outer scope, we set
82 // trait_ref_hack to true (and introduce a scope), and then if we encounter
83 // a quantifier at the inner scope, we error. If trait_ref_hack is false,
84 // then we introduce the scope at the inner quantifier.
85
86 // I'm sorry.
87 trait_ref_hack: bool,
88
89 // List of labels in the function/method currently under analysis.
90 labels_in_fn: Vec<(ast::Name, Span)>,
91 }
92
93 enum ScopeChain<'a> {
94 /// EarlyScope(i, ['a, 'b, ...], s) extends s with early-bound
95 /// lifetimes, assigning indexes 'a => i, 'b => i+1, ... etc.
96 EarlyScope(subst::ParamSpace, &'a [hir::LifetimeDef], Scope<'a>),
97 /// LateScope(['a, 'b, ...], s) extends s with late-bound
98 /// lifetimes introduced by the declaration binder_id.
99 LateScope(&'a [hir::LifetimeDef], Scope<'a>),
100
101 /// lifetimes introduced by a fn are scoped to the call-site for that fn.
102 FnScope { fn_id: ast::NodeId, body_id: ast::NodeId, s: Scope<'a> },
103 RootScope
104 }
105
106 type Scope<'a> = &'a ScopeChain<'a>;
107
108 static ROOT_SCOPE: ScopeChain<'static> = RootScope;
109
110 pub fn krate(sess: &Session,
111 hir_map: &Map,
112 def_map: &DefMap)
113 -> Result<NamedRegionMap, usize> {
114 let _task = hir_map.dep_graph.in_task(DepNode::ResolveLifetimes);
115 let krate = hir_map.krate();
116 let mut map = NamedRegionMap {
117 defs: NodeMap(),
118 late_bound: NodeMap(),
119 };
120 sess.track_errors(|| {
121 krate.visit_all_items(&mut LifetimeContext {
122 sess: sess,
123 hir_map: hir_map,
124 map: &mut map,
125 scope: &ROOT_SCOPE,
126 def_map: def_map,
127 trait_ref_hack: false,
128 labels_in_fn: vec![],
129 });
130 })?;
131 Ok(map)
132 }
133
134 impl<'a, 'tcx, 'v> Visitor<'v> for LifetimeContext<'a, 'tcx> {
135 fn visit_item(&mut self, item: &hir::Item) {
136 assert!(self.labels_in_fn.is_empty());
137
138 // Items always introduce a new root scope
139 self.with(RootScope, |_, this| {
140 match item.node {
141 hir::ItemFn(..) => {
142 // Fn lifetimes get added in visit_fn below:
143 intravisit::walk_item(this, item);
144 }
145 hir::ItemExternCrate(_) |
146 hir::ItemUse(_) |
147 hir::ItemMod(..) |
148 hir::ItemDefaultImpl(..) |
149 hir::ItemForeignMod(..) |
150 hir::ItemStatic(..) |
151 hir::ItemConst(..) => {
152 // These sorts of items have no lifetime parameters at all.
153 intravisit::walk_item(this, item);
154 }
155 hir::ItemTy(_, ref generics) |
156 hir::ItemEnum(_, ref generics) |
157 hir::ItemStruct(_, ref generics) |
158 hir::ItemTrait(_, ref generics, _, _) |
159 hir::ItemImpl(_, _, ref generics, _, _, _) => {
160 // These kinds of items have only early bound lifetime parameters.
161 let lifetimes = &generics.lifetimes;
162 let early_scope = EarlyScope(subst::TypeSpace, lifetimes, &ROOT_SCOPE);
163 this.with(early_scope, |old_scope, this| {
164 this.check_lifetime_defs(old_scope, lifetimes);
165 intravisit::walk_item(this, item);
166 });
167 }
168 }
169 });
170
171 // Done traversing the item; remove any labels it created
172 self.labels_in_fn.truncate(0);
173 }
174
175 fn visit_foreign_item(&mut self, item: &hir::ForeignItem) {
176 // Items save/restore the set of labels. This way inner items
177 // can freely reuse names, be they loop labels or lifetimes.
178 let saved = replace(&mut self.labels_in_fn, vec![]);
179
180 // Items always introduce a new root scope
181 self.with(RootScope, |_, this| {
182 match item.node {
183 hir::ForeignItemFn(ref decl, ref generics) => {
184 this.visit_early_late(item.id,
185 subst::FnSpace,
186 decl,
187 generics,
188 |this| {
189 intravisit::walk_foreign_item(this, item);
190 })
191 }
192 hir::ForeignItemStatic(..) => {
193 intravisit::walk_foreign_item(this, item);
194 }
195 }
196 });
197
198 // Done traversing the item; restore saved set of labels.
199 replace(&mut self.labels_in_fn, saved);
200 }
201
202 fn visit_fn(&mut self, fk: FnKind<'v>, decl: &'v hir::FnDecl,
203 b: &'v hir::Block, s: Span, fn_id: ast::NodeId) {
204 match fk {
205 FnKind::ItemFn(_, generics, _, _, _, _, _) => {
206 self.visit_early_late(fn_id, subst::FnSpace, decl, generics, |this| {
207 this.add_scope_and_walk_fn(fk, decl, b, s, fn_id)
208 })
209 }
210 FnKind::Method(_, sig, _, _) => {
211 self.visit_early_late(
212 fn_id,
213 subst::FnSpace,
214 decl,
215 &sig.generics,
216 |this| this.add_scope_and_walk_fn(fk, decl, b, s, fn_id));
217 }
218 FnKind::Closure(_) => {
219 // Closures have their own set of labels, save labels just
220 // like for foreign items above.
221 let saved = replace(&mut self.labels_in_fn, vec![]);
222 let result = self.add_scope_and_walk_fn(fk, decl, b, s, fn_id);
223 replace(&mut self.labels_in_fn, saved);
224 result
225 }
226 }
227 }
228
229 fn visit_ty(&mut self, ty: &hir::Ty) {
230 match ty.node {
231 hir::TyBareFn(ref c) => {
232 self.with(LateScope(&c.lifetimes, self.scope), |old_scope, this| {
233 // a bare fn has no bounds, so everything
234 // contained within is scoped within its binder.
235 this.check_lifetime_defs(old_scope, &c.lifetimes);
236 intravisit::walk_ty(this, ty);
237 });
238 }
239 hir::TyPath(None, ref path) => {
240 // if this path references a trait, then this will resolve to
241 // a trait ref, which introduces a binding scope.
242 match self.def_map.get(&ty.id).map(|d| (d.base_def, d.depth)) {
243 Some((Def::Trait(..), 0)) => {
244 self.with(LateScope(&[], self.scope), |_, this| {
245 this.visit_path(path, ty.id);
246 });
247 }
248 _ => {
249 intravisit::walk_ty(self, ty);
250 }
251 }
252 }
253 _ => {
254 intravisit::walk_ty(self, ty)
255 }
256 }
257 }
258
259 fn visit_trait_item(&mut self, trait_item: &hir::TraitItem) {
260 // We reset the labels on every trait item, so that different
261 // methods in an impl can reuse label names.
262 let saved = replace(&mut self.labels_in_fn, vec![]);
263
264 if let hir::MethodTraitItem(ref sig, None) = trait_item.node {
265 self.visit_early_late(
266 trait_item.id, subst::FnSpace,
267 &sig.decl, &sig.generics,
268 |this| intravisit::walk_trait_item(this, trait_item))
269 } else {
270 intravisit::walk_trait_item(self, trait_item);
271 }
272
273 replace(&mut self.labels_in_fn, saved);
274 }
275
276 fn visit_lifetime(&mut self, lifetime_ref: &hir::Lifetime) {
277 if lifetime_ref.name == keywords::StaticLifetime.name() {
278 self.insert_lifetime(lifetime_ref, DefStaticRegion);
279 return;
280 }
281 self.resolve_lifetime_ref(lifetime_ref);
282 }
283
284 fn visit_generics(&mut self, generics: &hir::Generics) {
285 for ty_param in generics.ty_params.iter() {
286 walk_list!(self, visit_ty_param_bound, &ty_param.bounds);
287 if let Some(ref ty) = ty_param.default {
288 self.visit_ty(&ty);
289 }
290 }
291 for predicate in &generics.where_clause.predicates {
292 match predicate {
293 &hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate{ ref bounded_ty,
294 ref bounds,
295 ref bound_lifetimes,
296 .. }) => {
297 if !bound_lifetimes.is_empty() {
298 self.trait_ref_hack = true;
299 let result = self.with(LateScope(bound_lifetimes, self.scope),
300 |old_scope, this| {
301 this.check_lifetime_defs(old_scope, bound_lifetimes);
302 this.visit_ty(&bounded_ty);
303 walk_list!(this, visit_ty_param_bound, bounds);
304 });
305 self.trait_ref_hack = false;
306 result
307 } else {
308 self.visit_ty(&bounded_ty);
309 walk_list!(self, visit_ty_param_bound, bounds);
310 }
311 }
312 &hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate{ref lifetime,
313 ref bounds,
314 .. }) => {
315
316 self.visit_lifetime(lifetime);
317 for bound in bounds {
318 self.visit_lifetime(bound);
319 }
320 }
321 &hir::WherePredicate::EqPredicate(hir::WhereEqPredicate{ id,
322 ref path,
323 ref ty,
324 .. }) => {
325 self.visit_path(path, id);
326 self.visit_ty(&ty);
327 }
328 }
329 }
330 }
331
332 fn visit_poly_trait_ref(&mut self,
333 trait_ref: &hir::PolyTraitRef,
334 _modifier: &hir::TraitBoundModifier) {
335 debug!("visit_poly_trait_ref trait_ref={:?}", trait_ref);
336
337 if !self.trait_ref_hack || !trait_ref.bound_lifetimes.is_empty() {
338 if self.trait_ref_hack {
339 println!("{:?}", trait_ref.span);
340 span_err!(self.sess, trait_ref.span, E0316,
341 "nested quantification of lifetimes");
342 }
343 self.with(LateScope(&trait_ref.bound_lifetimes, self.scope), |old_scope, this| {
344 this.check_lifetime_defs(old_scope, &trait_ref.bound_lifetimes);
345 for lifetime in &trait_ref.bound_lifetimes {
346 this.visit_lifetime_def(lifetime);
347 }
348 intravisit::walk_path(this, &trait_ref.trait_ref.path)
349 })
350 } else {
351 self.visit_trait_ref(&trait_ref.trait_ref)
352 }
353 }
354 }
355
356 #[derive(Copy, Clone, PartialEq)]
357 enum ShadowKind { Label, Lifetime }
358 struct Original { kind: ShadowKind, span: Span }
359 struct Shadower { kind: ShadowKind, span: Span }
360
361 fn original_label(span: Span) -> Original {
362 Original { kind: ShadowKind::Label, span: span }
363 }
364 fn shadower_label(span: Span) -> Shadower {
365 Shadower { kind: ShadowKind::Label, span: span }
366 }
367 fn original_lifetime(l: &hir::Lifetime) -> Original {
368 Original { kind: ShadowKind::Lifetime, span: l.span }
369 }
370 fn shadower_lifetime(l: &hir::Lifetime) -> Shadower {
371 Shadower { kind: ShadowKind::Lifetime, span: l.span }
372 }
373
374 impl ShadowKind {
375 fn desc(&self) -> &'static str {
376 match *self {
377 ShadowKind::Label => "label",
378 ShadowKind::Lifetime => "lifetime",
379 }
380 }
381 }
382
383 fn signal_shadowing_problem(sess: &Session, name: ast::Name, orig: Original, shadower: Shadower) {
384 let mut err = if let (ShadowKind::Lifetime, ShadowKind::Lifetime) = (orig.kind, shadower.kind) {
385 // lifetime/lifetime shadowing is an error
386 struct_span_err!(sess, shadower.span, E0496,
387 "{} name `{}` shadows a \
388 {} name that is already in scope",
389 shadower.kind.desc(), name, orig.kind.desc())
390 } else {
391 // shadowing involving a label is only a warning, due to issues with
392 // labels and lifetimes not being macro-hygienic.
393 sess.struct_span_warn(shadower.span,
394 &format!("{} name `{}` shadows a \
395 {} name that is already in scope",
396 shadower.kind.desc(), name, orig.kind.desc()))
397 };
398 err.span_note(orig.span,
399 &format!("shadowed {} `{}` declared here",
400 orig.kind.desc(), name));
401 err.emit();
402 }
403
404 // Adds all labels in `b` to `ctxt.labels_in_fn`, signalling a warning
405 // if one of the label shadows a lifetime or another label.
406 fn extract_labels(ctxt: &mut LifetimeContext, b: &hir::Block) {
407 struct GatherLabels<'a> {
408 sess: &'a Session,
409 scope: Scope<'a>,
410 labels_in_fn: &'a mut Vec<(ast::Name, Span)>,
411 }
412
413 let mut gather = GatherLabels {
414 sess: ctxt.sess,
415 scope: ctxt.scope,
416 labels_in_fn: &mut ctxt.labels_in_fn,
417 };
418 gather.visit_block(b);
419 return;
420
421 impl<'v, 'a> Visitor<'v> for GatherLabels<'a> {
422 fn visit_expr(&mut self, ex: &'v hir::Expr) {
423 // do not recurse into closures defined in the block
424 // since they are treated as separate fns from the POV of
425 // labels_in_fn
426 if let hir::ExprClosure(..) = ex.node {
427 return
428 }
429 if let Some((label, label_span)) = expression_label(ex) {
430 for &(prior, prior_span) in &self.labels_in_fn[..] {
431 // FIXME (#24278): non-hygienic comparison
432 if label == prior {
433 signal_shadowing_problem(self.sess,
434 label,
435 original_label(prior_span),
436 shadower_label(label_span));
437 }
438 }
439
440 check_if_label_shadows_lifetime(self.sess,
441 self.scope,
442 label,
443 label_span);
444
445 self.labels_in_fn.push((label, label_span));
446 }
447 intravisit::walk_expr(self, ex)
448 }
449
450 fn visit_item(&mut self, _: &hir::Item) {
451 // do not recurse into items defined in the block
452 }
453 }
454
455 fn expression_label(ex: &hir::Expr) -> Option<(ast::Name, Span)> {
456 match ex.node {
457 hir::ExprWhile(_, _, Some(label)) |
458 hir::ExprLoop(_, Some(label)) => Some((label.node, label.span)),
459 _ => None,
460 }
461 }
462
463 fn check_if_label_shadows_lifetime<'a>(sess: &'a Session,
464 mut scope: Scope<'a>,
465 label: ast::Name,
466 label_span: Span) {
467 loop {
468 match *scope {
469 FnScope { s, .. } => { scope = s; }
470 RootScope => { return; }
471
472 EarlyScope(_, lifetimes, s) |
473 LateScope(lifetimes, s) => {
474 for lifetime_def in lifetimes {
475 // FIXME (#24278): non-hygienic comparison
476 if label == lifetime_def.lifetime.name {
477 signal_shadowing_problem(
478 sess,
479 label,
480 original_lifetime(&lifetime_def.lifetime),
481 shadower_label(label_span));
482 return;
483 }
484 }
485 scope = s;
486 }
487 }
488 }
489 }
490 }
491
492 impl<'a, 'tcx> LifetimeContext<'a, 'tcx> {
493 fn add_scope_and_walk_fn<'b>(&mut self,
494 fk: FnKind,
495 fd: &hir::FnDecl,
496 fb: &'b hir::Block,
497 _span: Span,
498 fn_id: ast::NodeId) {
499
500 match fk {
501 FnKind::ItemFn(_, generics, _, _, _, _, _) => {
502 intravisit::walk_fn_decl(self, fd);
503 self.visit_generics(generics);
504 }
505 FnKind::Method(_, sig, _, _) => {
506 intravisit::walk_fn_decl(self, fd);
507 self.visit_generics(&sig.generics);
508 }
509 FnKind::Closure(_) => {
510 intravisit::walk_fn_decl(self, fd);
511 }
512 }
513
514 // After inpsecting the decl, add all labels from the body to
515 // `self.labels_in_fn`.
516 extract_labels(self, fb);
517
518 self.with(FnScope { fn_id: fn_id, body_id: fb.id, s: self.scope },
519 |_old_scope, this| this.visit_block(fb))
520 }
521
522 fn with<F>(&mut self, wrap_scope: ScopeChain, f: F) where
523 F: FnOnce(Scope, &mut LifetimeContext),
524 {
525 let LifetimeContext {sess, hir_map, ref mut map, ..} = *self;
526 let mut this = LifetimeContext {
527 sess: sess,
528 hir_map: hir_map,
529 map: *map,
530 scope: &wrap_scope,
531 def_map: self.def_map,
532 trait_ref_hack: self.trait_ref_hack,
533 labels_in_fn: self.labels_in_fn.clone(),
534 };
535 debug!("entering scope {:?}", this.scope);
536 f(self.scope, &mut this);
537 debug!("exiting scope {:?}", this.scope);
538 }
539
540 /// Visits self by adding a scope and handling recursive walk over the contents with `walk`.
541 ///
542 /// Handles visiting fns and methods. These are a bit complicated because we must distinguish
543 /// early- vs late-bound lifetime parameters. We do this by checking which lifetimes appear
544 /// within type bounds; those are early bound lifetimes, and the rest are late bound.
545 ///
546 /// For example:
547 ///
548 /// fn foo<'a,'b,'c,T:Trait<'b>>(...)
549 ///
550 /// Here `'a` and `'c` are late bound but `'b` is early bound. Note that early- and late-bound
551 /// lifetimes may be interspersed together.
552 ///
553 /// If early bound lifetimes are present, we separate them into their own list (and likewise
554 /// for late bound). They will be numbered sequentially, starting from the lowest index that is
555 /// already in scope (for a fn item, that will be 0, but for a method it might not be). Late
556 /// bound lifetimes are resolved by name and associated with a binder id (`binder_id`), so the
557 /// ordering is not important there.
558 fn visit_early_late<F>(&mut self,
559 fn_id: ast::NodeId,
560 early_space: subst::ParamSpace,
561 decl: &hir::FnDecl,
562 generics: &hir::Generics,
563 walk: F) where
564 F: FnOnce(&mut LifetimeContext),
565 {
566 let fn_def_id = self.hir_map.local_def_id(fn_id);
567 insert_late_bound_lifetimes(self.map,
568 fn_def_id,
569 decl,
570 generics);
571
572 let (late, early): (Vec<_>, _) =
573 generics.lifetimes
574 .iter()
575 .cloned()
576 .partition(|l| self.map.late_bound.contains_key(&l.lifetime.id));
577
578 let this = self;
579 this.with(EarlyScope(early_space, &early, this.scope), move |old_scope, this| {
580 this.with(LateScope(&late, this.scope), move |_, this| {
581 this.check_lifetime_defs(old_scope, &generics.lifetimes);
582 walk(this);
583 });
584 });
585 }
586
587 fn resolve_lifetime_ref(&mut self, lifetime_ref: &hir::Lifetime) {
588 // Walk up the scope chain, tracking the number of fn scopes
589 // that we pass through, until we find a lifetime with the
590 // given name or we run out of scopes. If we encounter a code
591 // block, then the lifetime is not bound but free, so switch
592 // over to `resolve_free_lifetime_ref()` to complete the
593 // search.
594 let mut late_depth = 0;
595 let mut scope = self.scope;
596 loop {
597 match *scope {
598 FnScope {fn_id, body_id, s } => {
599 return self.resolve_free_lifetime_ref(
600 region::CallSiteScopeData { fn_id: fn_id, body_id: body_id },
601 lifetime_ref,
602 s);
603 }
604
605 RootScope => {
606 break;
607 }
608
609 EarlyScope(space, lifetimes, s) => {
610 match search_lifetimes(lifetimes, lifetime_ref) {
611 Some((index, lifetime_def)) => {
612 let decl_id = lifetime_def.id;
613 let def = DefEarlyBoundRegion(space, index, decl_id);
614 self.insert_lifetime(lifetime_ref, def);
615 return;
616 }
617 None => {
618 scope = s;
619 }
620 }
621 }
622
623 LateScope(lifetimes, s) => {
624 match search_lifetimes(lifetimes, lifetime_ref) {
625 Some((_index, lifetime_def)) => {
626 let decl_id = lifetime_def.id;
627 let debruijn = ty::DebruijnIndex::new(late_depth + 1);
628 let def = DefLateBoundRegion(debruijn, decl_id);
629 self.insert_lifetime(lifetime_ref, def);
630 return;
631 }
632
633 None => {
634 late_depth += 1;
635 scope = s;
636 }
637 }
638 }
639 }
640 }
641
642 self.unresolved_lifetime_ref(lifetime_ref);
643 }
644
645 fn resolve_free_lifetime_ref(&mut self,
646 scope_data: region::CallSiteScopeData,
647 lifetime_ref: &hir::Lifetime,
648 scope: Scope) {
649 debug!("resolve_free_lifetime_ref \
650 scope_data: {:?} lifetime_ref: {:?} scope: {:?}",
651 scope_data, lifetime_ref, scope);
652
653 // Walk up the scope chain, tracking the outermost free scope,
654 // until we encounter a scope that contains the named lifetime
655 // or we run out of scopes.
656 let mut scope_data = scope_data;
657 let mut scope = scope;
658 let mut search_result = None;
659 loop {
660 debug!("resolve_free_lifetime_ref \
661 scope_data: {:?} scope: {:?} search_result: {:?}",
662 scope_data, scope, search_result);
663 match *scope {
664 FnScope { fn_id, body_id, s } => {
665 scope_data = region::CallSiteScopeData {
666 fn_id: fn_id, body_id: body_id
667 };
668 scope = s;
669 }
670
671 RootScope => {
672 break;
673 }
674
675 EarlyScope(_, lifetimes, s) |
676 LateScope(lifetimes, s) => {
677 search_result = search_lifetimes(lifetimes, lifetime_ref);
678 if search_result.is_some() {
679 break;
680 }
681 scope = s;
682 }
683 }
684 }
685
686 match search_result {
687 Some((_depth, lifetime)) => {
688 let def = DefFreeRegion(scope_data, lifetime.id);
689 self.insert_lifetime(lifetime_ref, def);
690 }
691
692 None => {
693 self.unresolved_lifetime_ref(lifetime_ref);
694 }
695 }
696
697 }
698
699 fn unresolved_lifetime_ref(&self, lifetime_ref: &hir::Lifetime) {
700 span_err!(self.sess, lifetime_ref.span, E0261,
701 "use of undeclared lifetime name `{}`",
702 lifetime_ref.name);
703 }
704
705 fn check_lifetime_defs(&mut self, old_scope: Scope, lifetimes: &[hir::LifetimeDef]) {
706 for i in 0..lifetimes.len() {
707 let lifetime_i = &lifetimes[i];
708
709 for lifetime in lifetimes {
710 if lifetime.lifetime.name == keywords::StaticLifetime.name() {
711 span_err!(self.sess, lifetime.lifetime.span, E0262,
712 "invalid lifetime parameter name: `{}`", lifetime.lifetime.name);
713 }
714 }
715
716 // It is a hard error to shadow a lifetime within the same scope.
717 for j in i + 1..lifetimes.len() {
718 let lifetime_j = &lifetimes[j];
719
720 if lifetime_i.lifetime.name == lifetime_j.lifetime.name {
721 span_err!(self.sess, lifetime_j.lifetime.span, E0263,
722 "lifetime name `{}` declared twice in \
723 the same scope",
724 lifetime_j.lifetime.name);
725 }
726 }
727
728 // It is a soft error to shadow a lifetime within a parent scope.
729 self.check_lifetime_def_for_shadowing(old_scope, &lifetime_i.lifetime);
730
731 for bound in &lifetime_i.bounds {
732 self.resolve_lifetime_ref(bound);
733 }
734 }
735 }
736
737 fn check_lifetime_def_for_shadowing(&self,
738 mut old_scope: Scope,
739 lifetime: &hir::Lifetime)
740 {
741 for &(label, label_span) in &self.labels_in_fn {
742 // FIXME (#24278): non-hygienic comparison
743 if lifetime.name == label {
744 signal_shadowing_problem(self.sess,
745 lifetime.name,
746 original_label(label_span),
747 shadower_lifetime(&lifetime));
748 return;
749 }
750 }
751
752 loop {
753 match *old_scope {
754 FnScope { s, .. } => {
755 old_scope = s;
756 }
757
758 RootScope => {
759 return;
760 }
761
762 EarlyScope(_, lifetimes, s) |
763 LateScope(lifetimes, s) => {
764 if let Some((_, lifetime_def)) = search_lifetimes(lifetimes, lifetime) {
765 signal_shadowing_problem(
766 self.sess,
767 lifetime.name,
768 original_lifetime(&lifetime_def),
769 shadower_lifetime(&lifetime));
770 return;
771 }
772
773 old_scope = s;
774 }
775 }
776 }
777 }
778
779 fn insert_lifetime(&mut self,
780 lifetime_ref: &hir::Lifetime,
781 def: DefRegion) {
782 if lifetime_ref.id == ast::DUMMY_NODE_ID {
783 span_bug!(lifetime_ref.span,
784 "lifetime reference not renumbered, \
785 probably a bug in syntax::fold");
786 }
787
788 debug!("lifetime_ref={:?} id={:?} resolved to {:?} span={:?}",
789 lifetime_to_string(lifetime_ref),
790 lifetime_ref.id,
791 def,
792 self.sess.codemap().span_to_string(lifetime_ref.span));
793 self.map.defs.insert(lifetime_ref.id, def);
794 }
795 }
796
797 fn search_lifetimes<'a>(lifetimes: &'a [hir::LifetimeDef],
798 lifetime_ref: &hir::Lifetime)
799 -> Option<(u32, &'a hir::Lifetime)> {
800 for (i, lifetime_decl) in lifetimes.iter().enumerate() {
801 if lifetime_decl.lifetime.name == lifetime_ref.name {
802 return Some((i as u32, &lifetime_decl.lifetime));
803 }
804 }
805 return None;
806 }
807
808 ///////////////////////////////////////////////////////////////////////////
809
810 /// Detects late-bound lifetimes and inserts them into
811 /// `map.late_bound`.
812 ///
813 /// A region declared on a fn is **late-bound** if:
814 /// - it is constrained by an argument type;
815 /// - it does not appear in a where-clause.
816 ///
817 /// "Constrained" basically means that it appears in any type but
818 /// not amongst the inputs to a projection. In other words, `<&'a
819 /// T as Trait<''b>>::Foo` does not constrain `'a` or `'b`.
820 fn insert_late_bound_lifetimes(map: &mut NamedRegionMap,
821 fn_def_id: DefId,
822 decl: &hir::FnDecl,
823 generics: &hir::Generics) {
824 debug!("insert_late_bound_lifetimes(decl={:?}, generics={:?})", decl, generics);
825
826 let mut constrained_by_input = ConstrainedCollector { regions: FnvHashSet() };
827 for arg in &decl.inputs {
828 constrained_by_input.visit_ty(&arg.ty);
829 }
830
831 let mut appears_in_output = AllCollector { regions: FnvHashSet() };
832 intravisit::walk_fn_ret_ty(&mut appears_in_output, &decl.output);
833
834 debug!("insert_late_bound_lifetimes: constrained_by_input={:?}",
835 constrained_by_input.regions);
836
837 // Walk the lifetimes that appear in where clauses.
838 //
839 // Subtle point: because we disallow nested bindings, we can just
840 // ignore binders here and scrape up all names we see.
841 let mut appears_in_where_clause = AllCollector { regions: FnvHashSet() };
842 for ty_param in generics.ty_params.iter() {
843 walk_list!(&mut appears_in_where_clause,
844 visit_ty_param_bound,
845 &ty_param.bounds);
846 }
847 walk_list!(&mut appears_in_where_clause,
848 visit_where_predicate,
849 &generics.where_clause.predicates);
850 for lifetime_def in &generics.lifetimes {
851 if !lifetime_def.bounds.is_empty() {
852 // `'a: 'b` means both `'a` and `'b` are referenced
853 appears_in_where_clause.visit_lifetime_def(lifetime_def);
854 }
855 }
856
857 debug!("insert_late_bound_lifetimes: appears_in_where_clause={:?}",
858 appears_in_where_clause.regions);
859
860 // Late bound regions are those that:
861 // - appear in the inputs
862 // - do not appear in the where-clauses
863 for lifetime in &generics.lifetimes {
864 let name = lifetime.lifetime.name;
865
866 // appears in the where clauses? early-bound.
867 if appears_in_where_clause.regions.contains(&name) { continue; }
868
869 // does not appear in the inputs, but appears in the return
870 // type? eventually this will be early-bound, but for now we
871 // just mark it so we can issue warnings.
872 let constrained_by_input = constrained_by_input.regions.contains(&name);
873 let appears_in_output = appears_in_output.regions.contains(&name);
874 let will_change = !constrained_by_input && appears_in_output;
875 let issue_32330 = if will_change {
876 ty::Issue32330::WillChange {
877 fn_def_id: fn_def_id,
878 region_name: name,
879 }
880 } else {
881 ty::Issue32330::WontChange
882 };
883
884 debug!("insert_late_bound_lifetimes: \
885 lifetime {:?} with id {:?} is late-bound ({:?}",
886 lifetime.lifetime.name, lifetime.lifetime.id, issue_32330);
887
888 let prev = map.late_bound.insert(lifetime.lifetime.id, issue_32330);
889 assert!(prev.is_none(), "visited lifetime {:?} twice", lifetime.lifetime.id);
890 }
891
892 return;
893
894 struct ConstrainedCollector {
895 regions: FnvHashSet<ast::Name>,
896 }
897
898 impl<'v> Visitor<'v> for ConstrainedCollector {
899 fn visit_ty(&mut self, ty: &'v hir::Ty) {
900 match ty.node {
901 hir::TyPath(Some(_), _) => {
902 // ignore lifetimes appearing in associated type
903 // projections, as they are not *constrained*
904 // (defined above)
905 }
906
907 hir::TyPath(None, ref path) => {
908 // consider only the lifetimes on the final
909 // segment; I am not sure it's even currently
910 // valid to have them elsewhere, but even if it
911 // is, those would be potentially inputs to
912 // projections
913 if let Some(last_segment) = path.segments.last() {
914 self.visit_path_segment(path.span, last_segment);
915 }
916 }
917
918 _ => {
919 intravisit::walk_ty(self, ty);
920 }
921 }
922 }
923
924 fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) {
925 self.regions.insert(lifetime_ref.name);
926 }
927 }
928
929 struct AllCollector {
930 regions: FnvHashSet<ast::Name>,
931 }
932
933 impl<'v> Visitor<'v> for AllCollector {
934 fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) {
935 self.regions.insert(lifetime_ref.name);
936 }
937 }
938 }
939
940 impl<'a> fmt::Debug for ScopeChain<'a> {
941 fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
942 match *self {
943 EarlyScope(space, defs, _) => write!(fmt, "EarlyScope({:?}, {:?})", space, defs),
944 LateScope(defs, _) => write!(fmt, "LateScope({:?})", defs),
945 FnScope { fn_id, body_id, s: _ } => write!(fmt, "FnScope({:?}, {:?})", fn_id, body_id),
946 RootScope => write!(fmt, "RootScope"),
947 }
948 }
949 }