]> git.proxmox.com Git - rustc.git/blob - src/librustc/middle/traits/mod.rs
Imported Upstream version 1.3.0+dfsg1
[rustc.git] / src / librustc / middle / traits / mod.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Trait Resolution. See the Book for more.
12
13 pub use self::SelectionError::*;
14 pub use self::FulfillmentErrorCode::*;
15 pub use self::Vtable::*;
16 pub use self::ObligationCauseCode::*;
17
18 use middle::free_region::FreeRegionMap;
19 use middle::subst;
20 use middle::ty::{self, HasTypeFlags, Ty};
21 use middle::ty_fold::TypeFoldable;
22 use middle::infer::{self, fixup_err_to_string, InferCtxt};
23 use std::rc::Rc;
24 use syntax::ast;
25 use syntax::codemap::{Span, DUMMY_SP};
26
27 pub use self::error_reporting::report_fulfillment_errors;
28 pub use self::error_reporting::report_overflow_error;
29 pub use self::error_reporting::report_selection_error;
30 pub use self::error_reporting::suggest_new_overflow_limit;
31 pub use self::coherence::orphan_check;
32 pub use self::coherence::overlapping_impls;
33 pub use self::coherence::OrphanCheckErr;
34 pub use self::fulfill::{FulfillmentContext, FulfilledPredicates, RegionObligation};
35 pub use self::project::MismatchedProjectionTypes;
36 pub use self::project::normalize;
37 pub use self::project::Normalized;
38 pub use self::object_safety::is_object_safe;
39 pub use self::object_safety::object_safety_violations;
40 pub use self::object_safety::ObjectSafetyViolation;
41 pub use self::object_safety::MethodViolationCode;
42 pub use self::object_safety::is_vtable_safe_method;
43 pub use self::select::SelectionContext;
44 pub use self::select::SelectionCache;
45 pub use self::select::{MethodMatchResult, MethodMatched, MethodAmbiguous, MethodDidNotMatch};
46 pub use self::select::{MethodMatchedData}; // intentionally don't export variants
47 pub use self::util::elaborate_predicates;
48 pub use self::util::get_vtable_index_of_object_method;
49 pub use self::util::trait_ref_for_builtin_bound;
50 pub use self::util::predicate_for_trait_def;
51 pub use self::util::supertraits;
52 pub use self::util::Supertraits;
53 pub use self::util::supertrait_def_ids;
54 pub use self::util::SupertraitDefIds;
55 pub use self::util::transitive_bounds;
56 pub use self::util::upcast;
57
58 mod coherence;
59 mod error_reporting;
60 mod fulfill;
61 mod project;
62 mod object_safety;
63 mod select;
64 mod util;
65
66 /// An `Obligation` represents some trait reference (e.g. `int:Eq`) for
67 /// which the vtable must be found. The process of finding a vtable is
68 /// called "resolving" the `Obligation`. This process consists of
69 /// either identifying an `impl` (e.g., `impl Eq for int`) that
70 /// provides the required vtable, or else finding a bound that is in
71 /// scope. The eventual result is usually a `Selection` (defined below).
72 #[derive(Clone, PartialEq, Eq)]
73 pub struct Obligation<'tcx, T> {
74 pub cause: ObligationCause<'tcx>,
75 pub recursion_depth: usize,
76 pub predicate: T,
77 }
78
79 pub type PredicateObligation<'tcx> = Obligation<'tcx, ty::Predicate<'tcx>>;
80 pub type TraitObligation<'tcx> = Obligation<'tcx, ty::PolyTraitPredicate<'tcx>>;
81
82 /// Why did we incur this obligation? Used for error reporting.
83 #[derive(Clone, PartialEq, Eq)]
84 pub struct ObligationCause<'tcx> {
85 pub span: Span,
86
87 // The id of the fn body that triggered this obligation. This is
88 // used for region obligations to determine the precise
89 // environment in which the region obligation should be evaluated
90 // (in particular, closures can add new assumptions). See the
91 // field `region_obligations` of the `FulfillmentContext` for more
92 // information.
93 pub body_id: ast::NodeId,
94
95 pub code: ObligationCauseCode<'tcx>
96 }
97
98 #[derive(Clone, PartialEq, Eq)]
99 pub enum ObligationCauseCode<'tcx> {
100 /// Not well classified or should be obvious from span.
101 MiscObligation,
102
103 /// In an impl of trait X for type Y, type Y must
104 /// also implement all supertraits of X.
105 ItemObligation(ast::DefId),
106
107 /// Obligation incurred due to an object cast.
108 ObjectCastObligation(/* Object type */ Ty<'tcx>),
109
110 /// Various cases where expressions must be sized/copy/etc:
111 AssignmentLhsSized, // L = X implies that L is Sized
112 StructInitializerSized, // S { ... } must be Sized
113 VariableType(ast::NodeId), // Type of each variable must be Sized
114 ReturnType, // Return type must be Sized
115 RepeatVec, // [T,..n] --> T must be Copy
116
117 // Captures of variable the given id by a closure (span is the
118 // span of the closure)
119 ClosureCapture(ast::NodeId, Span, ty::BuiltinBound),
120
121 // Types of fields (other than the last) in a struct must be sized.
122 FieldSized,
123
124 // static items must have `Sync` type
125 SharedStatic,
126
127
128 BuiltinDerivedObligation(DerivedObligationCause<'tcx>),
129
130 ImplDerivedObligation(DerivedObligationCause<'tcx>),
131
132 CompareImplMethodObligation,
133 }
134
135 #[derive(Clone, PartialEq, Eq)]
136 pub struct DerivedObligationCause<'tcx> {
137 /// The trait reference of the parent obligation that led to the
138 /// current obligation. Note that only trait obligations lead to
139 /// derived obligations, so we just store the trait reference here
140 /// directly.
141 parent_trait_ref: ty::PolyTraitRef<'tcx>,
142
143 /// The parent trait had this cause
144 parent_code: Rc<ObligationCauseCode<'tcx>>
145 }
146
147 pub type Obligations<'tcx, O> = Vec<Obligation<'tcx, O>>;
148 pub type PredicateObligations<'tcx> = Vec<PredicateObligation<'tcx>>;
149 pub type TraitObligations<'tcx> = Vec<TraitObligation<'tcx>>;
150
151 pub type Selection<'tcx> = Vtable<'tcx, PredicateObligation<'tcx>>;
152
153 #[derive(Clone,Debug)]
154 pub enum SelectionError<'tcx> {
155 Unimplemented,
156 OutputTypeParameterMismatch(ty::PolyTraitRef<'tcx>,
157 ty::PolyTraitRef<'tcx>,
158 ty::TypeError<'tcx>),
159 TraitNotObjectSafe(ast::DefId),
160 }
161
162 pub struct FulfillmentError<'tcx> {
163 pub obligation: PredicateObligation<'tcx>,
164 pub code: FulfillmentErrorCode<'tcx>
165 }
166
167 #[derive(Clone)]
168 pub enum FulfillmentErrorCode<'tcx> {
169 CodeSelectionError(SelectionError<'tcx>),
170 CodeProjectionError(MismatchedProjectionTypes<'tcx>),
171 CodeAmbiguity,
172 }
173
174 /// When performing resolution, it is typically the case that there
175 /// can be one of three outcomes:
176 ///
177 /// - `Ok(Some(r))`: success occurred with result `r`
178 /// - `Ok(None)`: could not definitely determine anything, usually due
179 /// to inconclusive type inference.
180 /// - `Err(e)`: error `e` occurred
181 pub type SelectionResult<'tcx, T> = Result<Option<T>, SelectionError<'tcx>>;
182
183 /// Given the successful resolution of an obligation, the `Vtable`
184 /// indicates where the vtable comes from. Note that while we call this
185 /// a "vtable", it does not necessarily indicate dynamic dispatch at
186 /// runtime. `Vtable` instances just tell the compiler where to find
187 /// methods, but in generic code those methods are typically statically
188 /// dispatched -- only when an object is constructed is a `Vtable`
189 /// instance reified into an actual vtable.
190 ///
191 /// For example, the vtable may be tied to a specific impl (case A),
192 /// or it may be relative to some bound that is in scope (case B).
193 ///
194 ///
195 /// ```
196 /// impl<T:Clone> Clone<T> for Option<T> { ... } // Impl_1
197 /// impl<T:Clone> Clone<T> for Box<T> { ... } // Impl_2
198 /// impl Clone for int { ... } // Impl_3
199 ///
200 /// fn foo<T:Clone>(concrete: Option<Box<int>>,
201 /// param: T,
202 /// mixed: Option<T>) {
203 ///
204 /// // Case A: Vtable points at a specific impl. Only possible when
205 /// // type is concretely known. If the impl itself has bounded
206 /// // type parameters, Vtable will carry resolutions for those as well:
207 /// concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])])
208 ///
209 /// // Case B: Vtable must be provided by caller. This applies when
210 /// // type is a type parameter.
211 /// param.clone(); // VtableParam
212 ///
213 /// // Case C: A mix of cases A and B.
214 /// mixed.clone(); // Vtable(Impl_1, [VtableParam])
215 /// }
216 /// ```
217 ///
218 /// ### The type parameter `N`
219 ///
220 /// See explanation on `VtableImplData`.
221 #[derive(Clone)]
222 pub enum Vtable<'tcx, N> {
223 /// Vtable identifying a particular impl.
224 VtableImpl(VtableImplData<'tcx, N>),
225
226 /// Vtable for default trait implementations
227 /// This carries the information and nested obligations with regards
228 /// to a default implementation for a trait `Trait`. The nested obligations
229 /// ensure the trait implementation holds for all the constituent types.
230 VtableDefaultImpl(VtableDefaultImplData<N>),
231
232 /// Successful resolution to an obligation provided by the caller
233 /// for some type parameter. The `Vec<N>` represents the
234 /// obligations incurred from normalizing the where-clause (if
235 /// any).
236 VtableParam(Vec<N>),
237
238 /// Virtual calls through an object
239 VtableObject(VtableObjectData<'tcx>),
240
241 /// Successful resolution for a builtin trait.
242 VtableBuiltin(VtableBuiltinData<N>),
243
244 /// Vtable automatically generated for a closure. The def ID is the ID
245 /// of the closure expression. This is a `VtableImpl` in spirit, but the
246 /// impl is generated by the compiler and does not appear in the source.
247 VtableClosure(VtableClosureData<'tcx, N>),
248
249 /// Same as above, but for a fn pointer type with the given signature.
250 VtableFnPointer(ty::Ty<'tcx>),
251 }
252
253 /// Identifies a particular impl in the source, along with a set of
254 /// substitutions from the impl's type/lifetime parameters. The
255 /// `nested` vector corresponds to the nested obligations attached to
256 /// the impl's type parameters.
257 ///
258 /// The type parameter `N` indicates the type used for "nested
259 /// obligations" that are required by the impl. During type check, this
260 /// is `Obligation`, as one might expect. During trans, however, this
261 /// is `()`, because trans only requires a shallow resolution of an
262 /// impl, and nested obligations are satisfied later.
263 #[derive(Clone, PartialEq, Eq)]
264 pub struct VtableImplData<'tcx, N> {
265 pub impl_def_id: ast::DefId,
266 pub substs: subst::Substs<'tcx>,
267 pub nested: Vec<N>
268 }
269
270 #[derive(Clone, PartialEq, Eq)]
271 pub struct VtableClosureData<'tcx, N> {
272 pub closure_def_id: ast::DefId,
273 pub substs: ty::ClosureSubsts<'tcx>,
274 /// Nested obligations. This can be non-empty if the closure
275 /// signature contains associated types.
276 pub nested: Vec<N>
277 }
278
279 #[derive(Clone)]
280 pub struct VtableDefaultImplData<N> {
281 pub trait_def_id: ast::DefId,
282 pub nested: Vec<N>
283 }
284
285 #[derive(Clone)]
286 pub struct VtableBuiltinData<N> {
287 pub nested: Vec<N>
288 }
289
290 /// A vtable for some object-safe trait `Foo` automatically derived
291 /// for the object type `Foo`.
292 #[derive(PartialEq,Eq,Clone)]
293 pub struct VtableObjectData<'tcx> {
294 /// `Foo` upcast to the obligation trait. This will be some supertrait of `Foo`.
295 pub upcast_trait_ref: ty::PolyTraitRef<'tcx>,
296
297 /// The vtable is formed by concatenating together the method lists of
298 /// the base object trait and all supertraits; this is the start of
299 /// `upcast_trait_ref`'s methods in that vtable.
300 pub vtable_base: usize
301 }
302
303 /// Creates predicate obligations from the generic bounds.
304 pub fn predicates_for_generics<'tcx>(cause: ObligationCause<'tcx>,
305 generic_bounds: &ty::InstantiatedPredicates<'tcx>)
306 -> PredicateObligations<'tcx>
307 {
308 util::predicates_for_generics(cause, 0, generic_bounds)
309 }
310
311 /// Determines whether the type `ty` is known to meet `bound` and
312 /// returns true if so. Returns false if `ty` either does not meet
313 /// `bound` or is not known to meet bound (note that this is
314 /// conservative towards *no impl*, which is the opposite of the
315 /// `evaluate` methods).
316 pub fn type_known_to_meet_builtin_bound<'a,'tcx>(infcx: &InferCtxt<'a,'tcx>,
317 ty: Ty<'tcx>,
318 bound: ty::BuiltinBound,
319 span: Span)
320 -> bool
321 {
322 debug!("type_known_to_meet_builtin_bound(ty={:?}, bound={:?})",
323 ty,
324 bound);
325
326 let mut fulfill_cx = FulfillmentContext::new(false);
327
328 // We can use a dummy node-id here because we won't pay any mind
329 // to region obligations that arise (there shouldn't really be any
330 // anyhow).
331 let cause = ObligationCause::misc(span, ast::DUMMY_NODE_ID);
332
333 fulfill_cx.register_builtin_bound(infcx, ty, bound, cause);
334
335 // Note: we only assume something is `Copy` if we can
336 // *definitively* show that it implements `Copy`. Otherwise,
337 // assume it is move; linear is always ok.
338 match fulfill_cx.select_all_or_error(infcx) {
339 Ok(()) => {
340 debug!("type_known_to_meet_builtin_bound: ty={:?} bound={:?} success",
341 ty,
342 bound);
343 true
344 }
345 Err(e) => {
346 debug!("type_known_to_meet_builtin_bound: ty={:?} bound={:?} errors={:?}",
347 ty,
348 bound,
349 e);
350 false
351 }
352 }
353 }
354
355 // FIXME: this is gonna need to be removed ...
356 /// Normalizes the parameter environment, reporting errors if they occur.
357 pub fn normalize_param_env_or_error<'a,'tcx>(unnormalized_env: ty::ParameterEnvironment<'a,'tcx>,
358 cause: ObligationCause<'tcx>)
359 -> ty::ParameterEnvironment<'a,'tcx>
360 {
361 // I'm not wild about reporting errors here; I'd prefer to
362 // have the errors get reported at a defined place (e.g.,
363 // during typeck). Instead I have all parameter
364 // environments, in effect, going through this function
365 // and hence potentially reporting errors. This ensurse of
366 // course that we never forget to normalize (the
367 // alternative seemed like it would involve a lot of
368 // manual invocations of this fn -- and then we'd have to
369 // deal with the errors at each of those sites).
370 //
371 // In any case, in practice, typeck constructs all the
372 // parameter environments once for every fn as it goes,
373 // and errors will get reported then; so after typeck we
374 // can be sure that no errors should occur.
375
376 let tcx = unnormalized_env.tcx;
377 let span = cause.span;
378 let body_id = cause.body_id;
379
380 debug!("normalize_param_env_or_error(unnormalized_env={:?})",
381 unnormalized_env);
382
383 let predicates: Vec<_> =
384 util::elaborate_predicates(tcx, unnormalized_env.caller_bounds.clone())
385 .filter(|p| !p.is_global()) // (*)
386 .collect();
387
388 // (*) Any predicate like `i32: Trait<u32>` or whatever doesn't
389 // need to be in the *environment* to be proven, so screen those
390 // out. This is important for the soundness of inter-fn
391 // caching. Note though that we should probably check that these
392 // predicates hold at the point where the environment is
393 // constructed, but I am not currently doing so out of laziness.
394 // -nmatsakis
395
396 debug!("normalize_param_env_or_error: elaborated-predicates={:?}",
397 predicates);
398
399 let elaborated_env = unnormalized_env.with_caller_bounds(predicates);
400
401 let infcx = infer::new_infer_ctxt(tcx, &tcx.tables, Some(elaborated_env), false);
402 let predicates = match fully_normalize(&infcx, cause,
403 &infcx.parameter_environment.caller_bounds) {
404 Ok(predicates) => predicates,
405 Err(errors) => {
406 report_fulfillment_errors(&infcx, &errors);
407 return infcx.parameter_environment; // an unnormalized env is better than nothing
408 }
409 };
410
411 let free_regions = FreeRegionMap::new();
412 infcx.resolve_regions_and_report_errors(&free_regions, body_id);
413 let predicates = match infcx.fully_resolve(&predicates) {
414 Ok(predicates) => predicates,
415 Err(fixup_err) => {
416 // If we encounter a fixup error, it means that some type
417 // variable wound up unconstrained. I actually don't know
418 // if this can happen, and I certainly don't expect it to
419 // happen often, but if it did happen it probably
420 // represents a legitimate failure due to some kind of
421 // unconstrained variable, and it seems better not to ICE,
422 // all things considered.
423 let err_msg = fixup_err_to_string(fixup_err);
424 tcx.sess.span_err(span, &err_msg);
425 return infcx.parameter_environment; // an unnormalized env is better than nothing
426 }
427 };
428
429 infcx.parameter_environment.with_caller_bounds(predicates)
430 }
431
432 pub fn fully_normalize<'a,'tcx,T>(infcx: &InferCtxt<'a,'tcx>,
433 cause: ObligationCause<'tcx>,
434 value: &T)
435 -> Result<T, Vec<FulfillmentError<'tcx>>>
436 where T : TypeFoldable<'tcx> + HasTypeFlags
437 {
438 debug!("normalize_param_env(value={:?})", value);
439
440 let mut selcx = &mut SelectionContext::new(infcx);
441 // FIXME (@jroesch) ISSUE 26721
442 // I'm not sure if this is a bug or not, needs further investigation.
443 // It appears that by reusing the fulfillment_cx here we incur more
444 // obligations and later trip an asssertion on regionck.rs line 337.
445 //
446 // The two possibilities I see is:
447 // - normalization is not actually fully happening and we
448 // have a bug else where
449 // - we are adding a duplicate bound into the list causing
450 // its size to change.
451 //
452 // I think we should probably land this refactor and then come
453 // back to this is a follow-up patch.
454 let mut fulfill_cx = FulfillmentContext::new(false);
455
456 let Normalized { value: normalized_value, obligations } =
457 project::normalize(selcx, cause, value);
458 debug!("normalize_param_env: normalized_value={:?} obligations={:?}",
459 normalized_value,
460 obligations);
461 for obligation in obligations {
462 fulfill_cx.register_predicate_obligation(selcx.infcx(), obligation);
463 }
464
465 try!(fulfill_cx.select_all_or_error(infcx));
466 let resolved_value = infcx.resolve_type_vars_if_possible(&normalized_value);
467 debug!("normalize_param_env: resolved_value={:?}", resolved_value);
468 Ok(resolved_value)
469 }
470
471 impl<'tcx,O> Obligation<'tcx,O> {
472 pub fn new(cause: ObligationCause<'tcx>,
473 trait_ref: O)
474 -> Obligation<'tcx, O>
475 {
476 Obligation { cause: cause,
477 recursion_depth: 0,
478 predicate: trait_ref }
479 }
480
481 fn with_depth(cause: ObligationCause<'tcx>,
482 recursion_depth: usize,
483 trait_ref: O)
484 -> Obligation<'tcx, O>
485 {
486 Obligation { cause: cause,
487 recursion_depth: recursion_depth,
488 predicate: trait_ref }
489 }
490
491 pub fn misc(span: Span, body_id: ast::NodeId, trait_ref: O) -> Obligation<'tcx, O> {
492 Obligation::new(ObligationCause::misc(span, body_id), trait_ref)
493 }
494
495 pub fn with<P>(&self, value: P) -> Obligation<'tcx,P> {
496 Obligation { cause: self.cause.clone(),
497 recursion_depth: self.recursion_depth,
498 predicate: value }
499 }
500 }
501
502 impl<'tcx> ObligationCause<'tcx> {
503 pub fn new(span: Span,
504 body_id: ast::NodeId,
505 code: ObligationCauseCode<'tcx>)
506 -> ObligationCause<'tcx> {
507 ObligationCause { span: span, body_id: body_id, code: code }
508 }
509
510 pub fn misc(span: Span, body_id: ast::NodeId) -> ObligationCause<'tcx> {
511 ObligationCause { span: span, body_id: body_id, code: MiscObligation }
512 }
513
514 pub fn dummy() -> ObligationCause<'tcx> {
515 ObligationCause { span: DUMMY_SP, body_id: 0, code: MiscObligation }
516 }
517 }
518
519 impl<'tcx, N> Vtable<'tcx, N> {
520 pub fn nested_obligations(self) -> Vec<N> {
521 match self {
522 VtableImpl(i) => i.nested,
523 VtableParam(n) => n,
524 VtableBuiltin(i) => i.nested,
525 VtableDefaultImpl(d) => d.nested,
526 VtableClosure(c) => c.nested,
527 VtableObject(_) | VtableFnPointer(..) => vec![]
528 }
529 }
530
531 pub fn map<M, F>(self, f: F) -> Vtable<'tcx, M> where F: FnMut(N) -> M {
532 match self {
533 VtableImpl(i) => VtableImpl(VtableImplData {
534 impl_def_id: i.impl_def_id,
535 substs: i.substs,
536 nested: i.nested.into_iter().map(f).collect()
537 }),
538 VtableParam(n) => VtableParam(n.into_iter().map(f).collect()),
539 VtableBuiltin(i) => VtableBuiltin(VtableBuiltinData {
540 nested: i.nested.into_iter().map(f).collect()
541 }),
542 VtableObject(o) => VtableObject(o),
543 VtableDefaultImpl(d) => VtableDefaultImpl(VtableDefaultImplData {
544 trait_def_id: d.trait_def_id,
545 nested: d.nested.into_iter().map(f).collect()
546 }),
547 VtableFnPointer(f) => VtableFnPointer(f),
548 VtableClosure(c) => VtableClosure(VtableClosureData {
549 closure_def_id: c.closure_def_id,
550 substs: c.substs,
551 nested: c.nested.into_iter().map(f).collect(),
552 })
553 }
554 }
555 }
556
557 impl<'tcx> FulfillmentError<'tcx> {
558 fn new(obligation: PredicateObligation<'tcx>,
559 code: FulfillmentErrorCode<'tcx>)
560 -> FulfillmentError<'tcx>
561 {
562 FulfillmentError { obligation: obligation, code: code }
563 }
564 }
565
566 impl<'tcx> TraitObligation<'tcx> {
567 fn self_ty(&self) -> ty::Binder<Ty<'tcx>> {
568 ty::Binder(self.predicate.skip_binder().self_ty())
569 }
570 }