]> git.proxmox.com Git - rustc.git/blob - src/librustc/middle/ty/fold.rs
Imported Upstream version 1.8.0+dfsg1
[rustc.git] / src / librustc / middle / ty / fold.rs
1 // Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Generalized type folding mechanism. The setup is a bit convoluted
12 //! but allows for convenient usage. Let T be an instance of some
13 //! "foldable type" (one which implements `TypeFoldable`) and F be an
14 //! instance of a "folder" (a type which implements `TypeFolder`). Then
15 //! the setup is intended to be:
16 //!
17 //! T.fold_with(F) --calls--> F.fold_T(T) --calls--> T.super_fold_with(F)
18 //!
19 //! This way, when you define a new folder F, you can override
20 //! `fold_T()` to customize the behavior, and invoke `T.super_fold_with()`
21 //! to get the original behavior. Meanwhile, to actually fold
22 //! something, you can just write `T.fold_with(F)`, which is
23 //! convenient. (Note that `fold_with` will also transparently handle
24 //! things like a `Vec<T>` where T is foldable and so on.)
25 //!
26 //! In this ideal setup, the only function that actually *does*
27 //! anything is `T.super_fold_with()`, which traverses the type `T`.
28 //! Moreover, `T.super_fold_with()` should only ever call `T.fold_with()`.
29 //!
30 //! In some cases, we follow a degenerate pattern where we do not have
31 //! a `fold_T` method. Instead, `T.fold_with` traverses the structure directly.
32 //! This is suboptimal because the behavior cannot be overridden, but it's
33 //! much less work to implement. If you ever *do* need an override that
34 //! doesn't exist, it's not hard to convert the degenerate pattern into the
35 //! proper thing.
36 //!
37 //! A `TypeFoldable` T can also be visited by a `TypeVisitor` V using similar setup:
38 //! T.visit_with(V) --calls--> V.visit_T(T) --calls--> T.super_visit_with(V).
39 //! These methods return true to indicate that the visitor has found what it is looking for
40 //! and does not need to visit anything else.
41
42 use middle::region;
43 use middle::subst;
44 use middle::ty::adjustment;
45 use middle::ty::{self, Binder, Ty, TypeFlags};
46
47 use std::fmt;
48 use util::nodemap::{FnvHashMap, FnvHashSet};
49
50 /// The TypeFoldable trait is implemented for every type that can be folded.
51 /// Basically, every type that has a corresponding method in TypeFolder.
52 pub trait TypeFoldable<'tcx>: fmt::Debug + Clone {
53 fn super_fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Self;
54 fn fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Self {
55 self.super_fold_with(folder)
56 }
57
58 fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool;
59 fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
60 self.super_visit_with(visitor)
61 }
62
63 fn has_regions_escaping_depth(&self, depth: u32) -> bool {
64 self.visit_with(&mut HasEscapingRegionsVisitor { depth: depth })
65 }
66 fn has_escaping_regions(&self) -> bool {
67 self.has_regions_escaping_depth(0)
68 }
69
70 fn has_type_flags(&self, flags: TypeFlags) -> bool {
71 self.visit_with(&mut HasTypeFlagsVisitor { flags: flags })
72 }
73 fn has_projection_types(&self) -> bool {
74 self.has_type_flags(TypeFlags::HAS_PROJECTION)
75 }
76 fn references_error(&self) -> bool {
77 self.has_type_flags(TypeFlags::HAS_TY_ERR)
78 }
79 fn has_param_types(&self) -> bool {
80 self.has_type_flags(TypeFlags::HAS_PARAMS)
81 }
82 fn has_self_ty(&self) -> bool {
83 self.has_type_flags(TypeFlags::HAS_SELF)
84 }
85 fn has_infer_types(&self) -> bool {
86 self.has_type_flags(TypeFlags::HAS_TY_INFER)
87 }
88 fn needs_infer(&self) -> bool {
89 self.has_type_flags(TypeFlags::HAS_TY_INFER | TypeFlags::HAS_RE_INFER)
90 }
91 fn needs_subst(&self) -> bool {
92 self.has_type_flags(TypeFlags::NEEDS_SUBST)
93 }
94 fn has_closure_types(&self) -> bool {
95 self.has_type_flags(TypeFlags::HAS_TY_CLOSURE)
96 }
97 fn has_erasable_regions(&self) -> bool {
98 self.has_type_flags(TypeFlags::HAS_RE_EARLY_BOUND |
99 TypeFlags::HAS_RE_INFER |
100 TypeFlags::HAS_FREE_REGIONS)
101 }
102 /// Indicates whether this value references only 'global'
103 /// types/lifetimes that are the same regardless of what fn we are
104 /// in. This is used for caching. Errs on the side of returning
105 /// false.
106 fn is_global(&self) -> bool {
107 !self.has_type_flags(TypeFlags::HAS_LOCAL_NAMES)
108 }
109 }
110
111 /// The TypeFolder trait defines the actual *folding*. There is a
112 /// method defined for every foldable type. Each of these has a
113 /// default implementation that does an "identity" fold. Within each
114 /// identity fold, it should invoke `foo.fold_with(self)` to fold each
115 /// sub-item.
116 pub trait TypeFolder<'tcx> : Sized {
117 fn tcx<'a>(&'a self) -> &'a ty::ctxt<'tcx>;
118
119 /// Invoked by the `super_*` routines when we enter a region
120 /// binding level (for example, when entering a function
121 /// signature). This is used by clients that want to track the
122 /// Debruijn index nesting level.
123 fn enter_region_binder(&mut self) { }
124
125 /// Invoked by the `super_*` routines when we exit a region
126 /// binding level. This is used by clients that want to
127 /// track the Debruijn index nesting level.
128 fn exit_region_binder(&mut self) { }
129
130 fn fold_binder<T>(&mut self, t: &Binder<T>) -> Binder<T>
131 where T : TypeFoldable<'tcx>
132 {
133 // FIXME(#20526) this should replace `enter_region_binder`/`exit_region_binder`.
134 t.super_fold_with(self)
135 }
136
137 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
138 t.super_fold_with(self)
139 }
140
141 fn fold_mt(&mut self, t: &ty::TypeAndMut<'tcx>) -> ty::TypeAndMut<'tcx> {
142 t.super_fold_with(self)
143 }
144
145 fn fold_trait_ref(&mut self, t: &ty::TraitRef<'tcx>) -> ty::TraitRef<'tcx> {
146 t.super_fold_with(self)
147 }
148
149 fn fold_substs(&mut self,
150 substs: &subst::Substs<'tcx>)
151 -> subst::Substs<'tcx> {
152 substs.super_fold_with(self)
153 }
154
155 fn fold_fn_sig(&mut self,
156 sig: &ty::FnSig<'tcx>)
157 -> ty::FnSig<'tcx> {
158 sig.super_fold_with(self)
159 }
160
161 fn fold_output(&mut self,
162 output: &ty::FnOutput<'tcx>)
163 -> ty::FnOutput<'tcx> {
164 output.super_fold_with(self)
165 }
166
167 fn fold_bare_fn_ty(&mut self,
168 fty: &ty::BareFnTy<'tcx>)
169 -> ty::BareFnTy<'tcx>
170 {
171 fty.super_fold_with(self)
172 }
173
174 fn fold_closure_ty(&mut self,
175 fty: &ty::ClosureTy<'tcx>)
176 -> ty::ClosureTy<'tcx> {
177 fty.super_fold_with(self)
178 }
179
180 fn fold_region(&mut self, r: ty::Region) -> ty::Region {
181 r.super_fold_with(self)
182 }
183
184 fn fold_existential_bounds(&mut self, s: &ty::ExistentialBounds<'tcx>)
185 -> ty::ExistentialBounds<'tcx> {
186 s.super_fold_with(self)
187 }
188
189 fn fold_autoref(&mut self, ar: &adjustment::AutoRef<'tcx>)
190 -> adjustment::AutoRef<'tcx> {
191 ar.super_fold_with(self)
192 }
193 }
194
195 pub trait TypeVisitor<'tcx> : Sized {
196 fn enter_region_binder(&mut self) { }
197 fn exit_region_binder(&mut self) { }
198
199 fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
200 t.super_visit_with(self)
201 }
202
203 fn visit_region(&mut self, r: ty::Region) -> bool {
204 r.super_visit_with(self)
205 }
206 }
207
208 ///////////////////////////////////////////////////////////////////////////
209 // Some sample folders
210
211 pub struct BottomUpFolder<'a, 'tcx: 'a, F> where F: FnMut(Ty<'tcx>) -> Ty<'tcx> {
212 pub tcx: &'a ty::ctxt<'tcx>,
213 pub fldop: F,
214 }
215
216 impl<'a, 'tcx, F> TypeFolder<'tcx> for BottomUpFolder<'a, 'tcx, F> where
217 F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
218 {
219 fn tcx(&self) -> &ty::ctxt<'tcx> { self.tcx }
220
221 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
222 let t1 = ty.super_fold_with(self);
223 (self.fldop)(t1)
224 }
225 }
226
227 ///////////////////////////////////////////////////////////////////////////
228 // Region folder
229
230 impl<'tcx> ty::ctxt<'tcx> {
231 /// Collects the free and escaping regions in `value` into `region_set`. Returns
232 /// whether any late-bound regions were skipped
233 pub fn collect_regions<T>(&self,
234 value: &T,
235 region_set: &mut FnvHashSet<ty::Region>)
236 -> bool
237 where T : TypeFoldable<'tcx>
238 {
239 let mut have_bound_regions = false;
240 self.fold_regions(value, &mut have_bound_regions,
241 |r, d| { region_set.insert(r.from_depth(d)); r });
242 have_bound_regions
243 }
244
245 /// Folds the escaping and free regions in `value` using `f`, and
246 /// sets `skipped_regions` to true if any late-bound region was found
247 /// and skipped.
248 pub fn fold_regions<T,F>(&self,
249 value: &T,
250 skipped_regions: &mut bool,
251 mut f: F)
252 -> T
253 where F : FnMut(ty::Region, u32) -> ty::Region,
254 T : TypeFoldable<'tcx>,
255 {
256 value.fold_with(&mut RegionFolder::new(self, skipped_regions, &mut f))
257 }
258 }
259
260 /// Folds over the substructure of a type, visiting its component
261 /// types and all regions that occur *free* within it.
262 ///
263 /// That is, `Ty` can contain function or method types that bind
264 /// regions at the call site (`ReLateBound`), and occurrences of
265 /// regions (aka "lifetimes") that are bound within a type are not
266 /// visited by this folder; only regions that occur free will be
267 /// visited by `fld_r`.
268
269 pub struct RegionFolder<'a, 'tcx: 'a> {
270 tcx: &'a ty::ctxt<'tcx>,
271 skipped_regions: &'a mut bool,
272 current_depth: u32,
273 fld_r: &'a mut (FnMut(ty::Region, u32) -> ty::Region + 'a),
274 }
275
276 impl<'a, 'tcx> RegionFolder<'a, 'tcx> {
277 pub fn new<F>(tcx: &'a ty::ctxt<'tcx>,
278 skipped_regions: &'a mut bool,
279 fld_r: &'a mut F) -> RegionFolder<'a, 'tcx>
280 where F : FnMut(ty::Region, u32) -> ty::Region
281 {
282 RegionFolder {
283 tcx: tcx,
284 skipped_regions: skipped_regions,
285 current_depth: 1,
286 fld_r: fld_r,
287 }
288 }
289 }
290
291 impl<'a, 'tcx> TypeFolder<'tcx> for RegionFolder<'a, 'tcx>
292 {
293 fn tcx(&self) -> &ty::ctxt<'tcx> { self.tcx }
294
295 fn enter_region_binder(&mut self) {
296 self.current_depth += 1;
297 }
298
299 fn exit_region_binder(&mut self) {
300 self.current_depth -= 1;
301 }
302
303 fn fold_region(&mut self, r: ty::Region) -> ty::Region {
304 match r {
305 ty::ReLateBound(debruijn, _) if debruijn.depth < self.current_depth => {
306 debug!("RegionFolder.fold_region({:?}) skipped bound region (current depth={})",
307 r, self.current_depth);
308 *self.skipped_regions = true;
309 r
310 }
311 _ => {
312 debug!("RegionFolder.fold_region({:?}) folding free region (current_depth={})",
313 r, self.current_depth);
314 (self.fld_r)(r, self.current_depth)
315 }
316 }
317 }
318 }
319
320 ///////////////////////////////////////////////////////////////////////////
321 // Late-bound region replacer
322
323 // Replaces the escaping regions in a type.
324
325 struct RegionReplacer<'a, 'tcx: 'a> {
326 tcx: &'a ty::ctxt<'tcx>,
327 current_depth: u32,
328 fld_r: &'a mut (FnMut(ty::BoundRegion) -> ty::Region + 'a),
329 map: FnvHashMap<ty::BoundRegion, ty::Region>
330 }
331
332 impl<'tcx> ty::ctxt<'tcx> {
333 pub fn replace_late_bound_regions<T,F>(&self,
334 value: &Binder<T>,
335 mut f: F)
336 -> (T, FnvHashMap<ty::BoundRegion, ty::Region>)
337 where F : FnMut(ty::BoundRegion) -> ty::Region,
338 T : TypeFoldable<'tcx>,
339 {
340 debug!("replace_late_bound_regions({:?})", value);
341 let mut replacer = RegionReplacer::new(self, &mut f);
342 let result = value.skip_binder().fold_with(&mut replacer);
343 (result, replacer.map)
344 }
345
346
347 /// Replace any late-bound regions bound in `value` with free variants attached to scope-id
348 /// `scope_id`.
349 pub fn liberate_late_bound_regions<T>(&self,
350 all_outlive_scope: region::CodeExtent,
351 value: &Binder<T>)
352 -> T
353 where T : TypeFoldable<'tcx>
354 {
355 self.replace_late_bound_regions(value, |br| {
356 ty::ReFree(ty::FreeRegion{scope: all_outlive_scope, bound_region: br})
357 }).0
358 }
359
360 /// Flattens two binding levels into one. So `for<'a> for<'b> Foo`
361 /// becomes `for<'a,'b> Foo`.
362 pub fn flatten_late_bound_regions<T>(&self, bound2_value: &Binder<Binder<T>>)
363 -> Binder<T>
364 where T: TypeFoldable<'tcx>
365 {
366 let bound0_value = bound2_value.skip_binder().skip_binder();
367 let value = self.fold_regions(bound0_value, &mut false,
368 |region, current_depth| {
369 match region {
370 ty::ReLateBound(debruijn, br) if debruijn.depth >= current_depth => {
371 // should be true if no escaping regions from bound2_value
372 assert!(debruijn.depth - current_depth <= 1);
373 ty::ReLateBound(ty::DebruijnIndex::new(current_depth), br)
374 }
375 _ => {
376 region
377 }
378 }
379 });
380 Binder(value)
381 }
382
383 pub fn no_late_bound_regions<T>(&self, value: &Binder<T>) -> Option<T>
384 where T : TypeFoldable<'tcx>
385 {
386 if value.0.has_escaping_regions() {
387 None
388 } else {
389 Some(value.0.clone())
390 }
391 }
392
393 /// Replace any late-bound regions bound in `value` with `'static`. Useful in trans but also
394 /// method lookup and a few other places where precise region relationships are not required.
395 pub fn erase_late_bound_regions<T>(&self, value: &Binder<T>) -> T
396 where T : TypeFoldable<'tcx>
397 {
398 self.replace_late_bound_regions(value, |_| ty::ReStatic).0
399 }
400
401 /// Rewrite any late-bound regions so that they are anonymous. Region numbers are
402 /// assigned starting at 1 and increasing monotonically in the order traversed
403 /// by the fold operation.
404 ///
405 /// The chief purpose of this function is to canonicalize regions so that two
406 /// `FnSig`s or `TraitRef`s which are equivalent up to region naming will become
407 /// structurally identical. For example, `for<'a, 'b> fn(&'a isize, &'b isize)` and
408 /// `for<'a, 'b> fn(&'b isize, &'a isize)` will become identical after anonymization.
409 pub fn anonymize_late_bound_regions<T>(&self, sig: &Binder<T>) -> Binder<T>
410 where T : TypeFoldable<'tcx>,
411 {
412 let mut counter = 0;
413 Binder(self.replace_late_bound_regions(sig, |_| {
414 counter += 1;
415 ty::ReLateBound(ty::DebruijnIndex::new(1), ty::BrAnon(counter))
416 }).0)
417 }
418 }
419
420 impl<'a, 'tcx> RegionReplacer<'a, 'tcx> {
421 fn new<F>(tcx: &'a ty::ctxt<'tcx>, fld_r: &'a mut F) -> RegionReplacer<'a, 'tcx>
422 where F : FnMut(ty::BoundRegion) -> ty::Region
423 {
424 RegionReplacer {
425 tcx: tcx,
426 current_depth: 1,
427 fld_r: fld_r,
428 map: FnvHashMap()
429 }
430 }
431 }
432
433 impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx>
434 {
435 fn tcx(&self) -> &ty::ctxt<'tcx> { self.tcx }
436
437 fn enter_region_binder(&mut self) {
438 self.current_depth += 1;
439 }
440
441 fn exit_region_binder(&mut self) {
442 self.current_depth -= 1;
443 }
444
445 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
446 if !t.has_regions_escaping_depth(self.current_depth-1) {
447 return t;
448 }
449
450 t.super_fold_with(self)
451 }
452
453 fn fold_region(&mut self, r: ty::Region) -> ty::Region {
454 match r {
455 ty::ReLateBound(debruijn, br) if debruijn.depth == self.current_depth => {
456 debug!("RegionReplacer.fold_region({:?}) folding region (current_depth={})",
457 r, self.current_depth);
458 let fld_r = &mut self.fld_r;
459 let region = *self.map.entry(br).or_insert_with(|| fld_r(br));
460 if let ty::ReLateBound(debruijn1, br) = region {
461 // If the callback returns a late-bound region,
462 // that region should always use depth 1. Then we
463 // adjust it to the correct depth.
464 assert_eq!(debruijn1.depth, 1);
465 ty::ReLateBound(debruijn, br)
466 } else {
467 region
468 }
469 }
470 r => r
471 }
472 }
473 }
474
475 ///////////////////////////////////////////////////////////////////////////
476 // Region eraser
477
478 impl<'tcx> ty::ctxt<'tcx> {
479 /// Returns an equivalent value with all free regions removed (note
480 /// that late-bound regions remain, because they are important for
481 /// subtyping, but they are anonymized and normalized as well)..
482 pub fn erase_regions<T>(&self, value: &T) -> T
483 where T : TypeFoldable<'tcx>
484 {
485 let value1 = value.fold_with(&mut RegionEraser(self));
486 debug!("erase_regions({:?}) = {:?}",
487 value, value1);
488 return value1;
489
490 struct RegionEraser<'a, 'tcx: 'a>(&'a ty::ctxt<'tcx>);
491
492 impl<'a, 'tcx> TypeFolder<'tcx> for RegionEraser<'a, 'tcx> {
493 fn tcx(&self) -> &ty::ctxt<'tcx> { self.0 }
494
495 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
496 match self.tcx().normalized_cache.borrow().get(&ty).cloned() {
497 None => {}
498 Some(u) => return u
499 }
500
501 let t_norm = ty.super_fold_with(self);
502 self.tcx().normalized_cache.borrow_mut().insert(ty, t_norm);
503 return t_norm;
504 }
505
506 fn fold_binder<T>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T>
507 where T : TypeFoldable<'tcx>
508 {
509 let u = self.tcx().anonymize_late_bound_regions(t);
510 u.super_fold_with(self)
511 }
512
513 fn fold_region(&mut self, r: ty::Region) -> ty::Region {
514 // because late-bound regions affect subtyping, we can't
515 // erase the bound/free distinction, but we can replace
516 // all free regions with 'static.
517 //
518 // Note that we *CAN* replace early-bound regions -- the
519 // type system never "sees" those, they get substituted
520 // away. In trans, they will always be erased to 'static
521 // whenever a substitution occurs.
522 match r {
523 ty::ReLateBound(..) => r,
524 _ => ty::ReStatic
525 }
526 }
527
528 fn fold_substs(&mut self,
529 substs: &subst::Substs<'tcx>)
530 -> subst::Substs<'tcx> {
531 subst::Substs { regions: subst::ErasedRegions,
532 types: substs.types.fold_with(self) }
533 }
534 }
535 }
536 }
537
538 ///////////////////////////////////////////////////////////////////////////
539 // Region shifter
540 //
541 // Shifts the De Bruijn indices on all escaping bound regions by a
542 // fixed amount. Useful in substitution or when otherwise introducing
543 // a binding level that is not intended to capture the existing bound
544 // regions. See comment on `shift_regions_through_binders` method in
545 // `subst.rs` for more details.
546
547 pub fn shift_region(region: ty::Region, amount: u32) -> ty::Region {
548 match region {
549 ty::ReLateBound(debruijn, br) => {
550 ty::ReLateBound(debruijn.shifted(amount), br)
551 }
552 _ => {
553 region
554 }
555 }
556 }
557
558 pub fn shift_regions<'tcx, T:TypeFoldable<'tcx>>(tcx: &ty::ctxt<'tcx>,
559 amount: u32, value: &T) -> T {
560 debug!("shift_regions(value={:?}, amount={})",
561 value, amount);
562
563 value.fold_with(&mut RegionFolder::new(tcx, &mut false, &mut |region, _current_depth| {
564 shift_region(region, amount)
565 }))
566 }
567
568 /// An "escaping region" is a bound region whose binder is not part of `t`.
569 ///
570 /// So, for example, consider a type like the following, which has two binders:
571 ///
572 /// for<'a> fn(x: for<'b> fn(&'a isize, &'b isize))
573 /// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ outer scope
574 /// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ inner scope
575 ///
576 /// This type has *bound regions* (`'a`, `'b`), but it does not have escaping regions, because the
577 /// binders of both `'a` and `'b` are part of the type itself. However, if we consider the *inner
578 /// fn type*, that type has an escaping region: `'a`.
579 ///
580 /// Note that what I'm calling an "escaping region" is often just called a "free region". However,
581 /// we already use the term "free region". It refers to the regions that we use to represent bound
582 /// regions on a fn definition while we are typechecking its body.
583 ///
584 /// To clarify, conceptually there is no particular difference between an "escaping" region and a
585 /// "free" region. However, there is a big difference in practice. Basically, when "entering" a
586 /// binding level, one is generally required to do some sort of processing to a bound region, such
587 /// as replacing it with a fresh/skolemized region, or making an entry in the environment to
588 /// represent the scope to which it is attached, etc. An escaping region represents a bound region
589 /// for which this processing has not yet been done.
590 struct HasEscapingRegionsVisitor {
591 depth: u32,
592 }
593
594 impl<'tcx> TypeVisitor<'tcx> for HasEscapingRegionsVisitor {
595 fn enter_region_binder(&mut self) {
596 self.depth += 1;
597 }
598
599 fn exit_region_binder(&mut self) {
600 self.depth -= 1;
601 }
602
603 fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
604 t.region_depth > self.depth
605 }
606
607 fn visit_region(&mut self, r: ty::Region) -> bool {
608 r.escapes_depth(self.depth)
609 }
610 }
611
612 struct HasTypeFlagsVisitor {
613 flags: ty::TypeFlags,
614 }
615
616 impl<'tcx> TypeVisitor<'tcx> for HasTypeFlagsVisitor {
617 fn visit_ty(&mut self, t: Ty) -> bool {
618 t.flags.get().intersects(self.flags)
619 }
620
621 fn visit_region(&mut self, r: ty::Region) -> bool {
622 if self.flags.intersects(ty::TypeFlags::HAS_LOCAL_NAMES) {
623 // does this represent a region that cannot be named
624 // in a global way? used in fulfillment caching.
625 match r {
626 ty::ReStatic | ty::ReEmpty => {}
627 _ => return true,
628 }
629 }
630 if self.flags.intersects(ty::TypeFlags::HAS_RE_INFER) {
631 match r {
632 ty::ReVar(_) | ty::ReSkolemized(..) => { return true }
633 _ => {}
634 }
635 }
636 false
637 }
638 }