]> git.proxmox.com Git - rustc.git/blob - src/librustc/middle/ty/relate.rs
Imported Upstream version 1.8.0+dfsg1
[rustc.git] / src / librustc / middle / ty / relate.rs
1 // Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Generalized type relating mechanism. A type relation R relates a
12 //! pair of values (A, B). A and B are usually types or regions but
13 //! can be other things. Examples of type relations are subtyping,
14 //! type equality, etc.
15
16 use middle::def_id::DefId;
17 use middle::subst::{ErasedRegions, NonerasedRegions, ParamSpace, Substs};
18 use middle::ty::{self, Ty, TypeFoldable};
19 use middle::ty::error::{ExpectedFound, TypeError};
20 use std::rc::Rc;
21 use syntax::abi;
22 use rustc_front::hir as ast;
23
24 pub type RelateResult<'tcx, T> = Result<T, TypeError<'tcx>>;
25
26 #[derive(Clone, Debug)]
27 pub enum Cause {
28 ExistentialRegionBound, // relating an existential region bound
29 }
30
31 pub trait TypeRelation<'a,'tcx> : Sized {
32 fn tcx(&self) -> &'a ty::ctxt<'tcx>;
33
34 /// Returns a static string we can use for printouts.
35 fn tag(&self) -> &'static str;
36
37 /// Returns true if the value `a` is the "expected" type in the
38 /// relation. Just affects error messages.
39 fn a_is_expected(&self) -> bool;
40
41 fn with_cause<F,R>(&mut self, _cause: Cause, f: F) -> R
42 where F: FnOnce(&mut Self) -> R
43 {
44 f(self)
45 }
46
47 /// Generic relation routine suitable for most anything.
48 fn relate<T:Relate<'a,'tcx>>(&mut self, a: &T, b: &T) -> RelateResult<'tcx, T> {
49 Relate::relate(self, a, b)
50 }
51
52 /// Relete elements of two slices pairwise.
53 fn relate_zip<T:Relate<'a,'tcx>>(&mut self, a: &[T], b: &[T]) -> RelateResult<'tcx, Vec<T>> {
54 assert_eq!(a.len(), b.len());
55 a.iter().zip(b).map(|(a, b)| self.relate(a, b)).collect()
56 }
57
58 /// Switch variance for the purpose of relating `a` and `b`.
59 fn relate_with_variance<T:Relate<'a,'tcx>>(&mut self,
60 variance: ty::Variance,
61 a: &T,
62 b: &T)
63 -> RelateResult<'tcx, T>;
64
65 // Overrideable relations. You shouldn't typically call these
66 // directly, instead call `relate()`, which in turn calls
67 // these. This is both more uniform but also allows us to add
68 // additional hooks for other types in the future if needed
69 // without making older code, which called `relate`, obsolete.
70
71 fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>)
72 -> RelateResult<'tcx, Ty<'tcx>>;
73
74 fn regions(&mut self, a: ty::Region, b: ty::Region)
75 -> RelateResult<'tcx, ty::Region>;
76
77 fn binders<T>(&mut self, a: &ty::Binder<T>, b: &ty::Binder<T>)
78 -> RelateResult<'tcx, ty::Binder<T>>
79 where T: Relate<'a,'tcx>;
80 }
81
82 pub trait Relate<'a,'tcx>: TypeFoldable<'tcx> {
83 fn relate<R:TypeRelation<'a,'tcx>>(relation: &mut R,
84 a: &Self,
85 b: &Self)
86 -> RelateResult<'tcx, Self>;
87 }
88
89 ///////////////////////////////////////////////////////////////////////////
90 // Relate impls
91
92 impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::TypeAndMut<'tcx> {
93 fn relate<R>(relation: &mut R,
94 a: &ty::TypeAndMut<'tcx>,
95 b: &ty::TypeAndMut<'tcx>)
96 -> RelateResult<'tcx, ty::TypeAndMut<'tcx>>
97 where R: TypeRelation<'a,'tcx>
98 {
99 debug!("{}.mts({:?}, {:?})",
100 relation.tag(),
101 a,
102 b);
103 if a.mutbl != b.mutbl {
104 Err(TypeError::Mutability)
105 } else {
106 let mutbl = a.mutbl;
107 let variance = match mutbl {
108 ast::Mutability::MutImmutable => ty::Covariant,
109 ast::Mutability::MutMutable => ty::Invariant,
110 };
111 let ty = try!(relation.relate_with_variance(variance, &a.ty, &b.ty));
112 Ok(ty::TypeAndMut {ty: ty, mutbl: mutbl})
113 }
114 }
115 }
116
117 // substitutions are not themselves relatable without more context,
118 // but they is an important subroutine for things that ARE relatable,
119 // like traits etc.
120 fn relate_item_substs<'a,'tcx:'a,R>(relation: &mut R,
121 item_def_id: DefId,
122 a_subst: &Substs<'tcx>,
123 b_subst: &Substs<'tcx>)
124 -> RelateResult<'tcx, Substs<'tcx>>
125 where R: TypeRelation<'a,'tcx>
126 {
127 debug!("substs: item_def_id={:?} a_subst={:?} b_subst={:?}",
128 item_def_id,
129 a_subst,
130 b_subst);
131
132 let variances;
133 let opt_variances = if relation.tcx().variance_computed.get() {
134 variances = relation.tcx().item_variances(item_def_id);
135 Some(&*variances)
136 } else {
137 None
138 };
139 relate_substs(relation, opt_variances, a_subst, b_subst)
140 }
141
142 fn relate_substs<'a,'tcx:'a,R>(relation: &mut R,
143 variances: Option<&ty::ItemVariances>,
144 a_subst: &Substs<'tcx>,
145 b_subst: &Substs<'tcx>)
146 -> RelateResult<'tcx, Substs<'tcx>>
147 where R: TypeRelation<'a,'tcx>
148 {
149 let mut substs = Substs::empty();
150
151 for &space in &ParamSpace::all() {
152 let a_tps = a_subst.types.get_slice(space);
153 let b_tps = b_subst.types.get_slice(space);
154 let t_variances = variances.map(|v| v.types.get_slice(space));
155 let tps = try!(relate_type_params(relation, t_variances, a_tps, b_tps));
156 substs.types.replace(space, tps);
157 }
158
159 match (&a_subst.regions, &b_subst.regions) {
160 (&ErasedRegions, _) | (_, &ErasedRegions) => {
161 substs.regions = ErasedRegions;
162 }
163
164 (&NonerasedRegions(ref a), &NonerasedRegions(ref b)) => {
165 for &space in &ParamSpace::all() {
166 let a_regions = a.get_slice(space);
167 let b_regions = b.get_slice(space);
168 let r_variances = variances.map(|v| v.regions.get_slice(space));
169 let regions = try!(relate_region_params(relation,
170 r_variances,
171 a_regions,
172 b_regions));
173 substs.mut_regions().replace(space, regions);
174 }
175 }
176 }
177
178 Ok(substs)
179 }
180
181 fn relate_type_params<'a,'tcx:'a,R>(relation: &mut R,
182 variances: Option<&[ty::Variance]>,
183 a_tys: &[Ty<'tcx>],
184 b_tys: &[Ty<'tcx>])
185 -> RelateResult<'tcx, Vec<Ty<'tcx>>>
186 where R: TypeRelation<'a,'tcx>
187 {
188 if a_tys.len() != b_tys.len() {
189 return Err(TypeError::TyParamSize(expected_found(relation,
190 &a_tys.len(),
191 &b_tys.len())));
192 }
193
194 (0 .. a_tys.len())
195 .map(|i| {
196 let a_ty = a_tys[i];
197 let b_ty = b_tys[i];
198 let v = variances.map_or(ty::Invariant, |v| v[i]);
199 relation.relate_with_variance(v, &a_ty, &b_ty)
200 })
201 .collect()
202 }
203
204 fn relate_region_params<'a,'tcx:'a,R>(relation: &mut R,
205 variances: Option<&[ty::Variance]>,
206 a_rs: &[ty::Region],
207 b_rs: &[ty::Region])
208 -> RelateResult<'tcx, Vec<ty::Region>>
209 where R: TypeRelation<'a,'tcx>
210 {
211 let num_region_params = a_rs.len();
212
213 debug!("relate_region_params(a_rs={:?}, \
214 b_rs={:?}, variances={:?})",
215 a_rs,
216 b_rs,
217 variances);
218
219 assert_eq!(num_region_params,
220 variances.map_or(num_region_params,
221 |v| v.len()));
222
223 assert_eq!(num_region_params, b_rs.len());
224
225 (0..a_rs.len())
226 .map(|i| {
227 let a_r = a_rs[i];
228 let b_r = b_rs[i];
229 let variance = variances.map_or(ty::Invariant, |v| v[i]);
230 relation.relate_with_variance(variance, &a_r, &b_r)
231 })
232 .collect()
233 }
234
235 impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::BareFnTy<'tcx> {
236 fn relate<R>(relation: &mut R,
237 a: &ty::BareFnTy<'tcx>,
238 b: &ty::BareFnTy<'tcx>)
239 -> RelateResult<'tcx, ty::BareFnTy<'tcx>>
240 where R: TypeRelation<'a,'tcx>
241 {
242 let unsafety = try!(relation.relate(&a.unsafety, &b.unsafety));
243 let abi = try!(relation.relate(&a.abi, &b.abi));
244 let sig = try!(relation.relate(&a.sig, &b.sig));
245 Ok(ty::BareFnTy {unsafety: unsafety,
246 abi: abi,
247 sig: sig})
248 }
249 }
250
251 impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::FnSig<'tcx> {
252 fn relate<R>(relation: &mut R,
253 a: &ty::FnSig<'tcx>,
254 b: &ty::FnSig<'tcx>)
255 -> RelateResult<'tcx, ty::FnSig<'tcx>>
256 where R: TypeRelation<'a,'tcx>
257 {
258 if a.variadic != b.variadic {
259 return Err(TypeError::VariadicMismatch(
260 expected_found(relation, &a.variadic, &b.variadic)));
261 }
262
263 let inputs = try!(relate_arg_vecs(relation,
264 &a.inputs,
265 &b.inputs));
266
267 let output = try!(match (a.output, b.output) {
268 (ty::FnConverging(a_ty), ty::FnConverging(b_ty)) =>
269 Ok(ty::FnConverging(try!(relation.relate(&a_ty, &b_ty)))),
270 (ty::FnDiverging, ty::FnDiverging) =>
271 Ok(ty::FnDiverging),
272 (a, b) =>
273 Err(TypeError::ConvergenceMismatch(
274 expected_found(relation, &(a != ty::FnDiverging), &(b != ty::FnDiverging)))),
275 });
276
277 return Ok(ty::FnSig {inputs: inputs,
278 output: output,
279 variadic: a.variadic});
280 }
281 }
282
283 fn relate_arg_vecs<'a,'tcx:'a,R>(relation: &mut R,
284 a_args: &[Ty<'tcx>],
285 b_args: &[Ty<'tcx>])
286 -> RelateResult<'tcx, Vec<Ty<'tcx>>>
287 where R: TypeRelation<'a,'tcx>
288 {
289 if a_args.len() != b_args.len() {
290 return Err(TypeError::ArgCount);
291 }
292
293 a_args.iter().zip(b_args)
294 .map(|(a, b)| relation.relate_with_variance(ty::Contravariant, a, b))
295 .collect()
296 }
297
298 impl<'a,'tcx:'a> Relate<'a,'tcx> for ast::Unsafety {
299 fn relate<R>(relation: &mut R,
300 a: &ast::Unsafety,
301 b: &ast::Unsafety)
302 -> RelateResult<'tcx, ast::Unsafety>
303 where R: TypeRelation<'a,'tcx>
304 {
305 if a != b {
306 Err(TypeError::UnsafetyMismatch(expected_found(relation, a, b)))
307 } else {
308 Ok(*a)
309 }
310 }
311 }
312
313 impl<'a,'tcx:'a> Relate<'a,'tcx> for abi::Abi {
314 fn relate<R>(relation: &mut R,
315 a: &abi::Abi,
316 b: &abi::Abi)
317 -> RelateResult<'tcx, abi::Abi>
318 where R: TypeRelation<'a,'tcx>
319 {
320 if a == b {
321 Ok(*a)
322 } else {
323 Err(TypeError::AbiMismatch(expected_found(relation, a, b)))
324 }
325 }
326 }
327
328 impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::ProjectionTy<'tcx> {
329 fn relate<R>(relation: &mut R,
330 a: &ty::ProjectionTy<'tcx>,
331 b: &ty::ProjectionTy<'tcx>)
332 -> RelateResult<'tcx, ty::ProjectionTy<'tcx>>
333 where R: TypeRelation<'a,'tcx>
334 {
335 if a.item_name != b.item_name {
336 Err(TypeError::ProjectionNameMismatched(
337 expected_found(relation, &a.item_name, &b.item_name)))
338 } else {
339 let trait_ref = try!(relation.relate(&a.trait_ref, &b.trait_ref));
340 Ok(ty::ProjectionTy { trait_ref: trait_ref, item_name: a.item_name })
341 }
342 }
343 }
344
345 impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::ProjectionPredicate<'tcx> {
346 fn relate<R>(relation: &mut R,
347 a: &ty::ProjectionPredicate<'tcx>,
348 b: &ty::ProjectionPredicate<'tcx>)
349 -> RelateResult<'tcx, ty::ProjectionPredicate<'tcx>>
350 where R: TypeRelation<'a,'tcx>
351 {
352 let projection_ty = try!(relation.relate(&a.projection_ty, &b.projection_ty));
353 let ty = try!(relation.relate(&a.ty, &b.ty));
354 Ok(ty::ProjectionPredicate { projection_ty: projection_ty, ty: ty })
355 }
356 }
357
358 impl<'a,'tcx:'a> Relate<'a,'tcx> for Vec<ty::PolyProjectionPredicate<'tcx>> {
359 fn relate<R>(relation: &mut R,
360 a: &Vec<ty::PolyProjectionPredicate<'tcx>>,
361 b: &Vec<ty::PolyProjectionPredicate<'tcx>>)
362 -> RelateResult<'tcx, Vec<ty::PolyProjectionPredicate<'tcx>>>
363 where R: TypeRelation<'a,'tcx>
364 {
365 // To be compatible, `a` and `b` must be for precisely the
366 // same set of traits and item names. We always require that
367 // projection bounds lists are sorted by trait-def-id and item-name,
368 // so we can just iterate through the lists pairwise, so long as they are the
369 // same length.
370 if a.len() != b.len() {
371 Err(TypeError::ProjectionBoundsLength(expected_found(relation, &a.len(), &b.len())))
372 } else {
373 a.iter().zip(b)
374 .map(|(a, b)| relation.relate(a, b))
375 .collect()
376 }
377 }
378 }
379
380 impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::ExistentialBounds<'tcx> {
381 fn relate<R>(relation: &mut R,
382 a: &ty::ExistentialBounds<'tcx>,
383 b: &ty::ExistentialBounds<'tcx>)
384 -> RelateResult<'tcx, ty::ExistentialBounds<'tcx>>
385 where R: TypeRelation<'a,'tcx>
386 {
387 let r =
388 try!(relation.with_cause(
389 Cause::ExistentialRegionBound,
390 |relation| relation.relate_with_variance(ty::Contravariant,
391 &a.region_bound,
392 &b.region_bound)));
393 let nb = try!(relation.relate(&a.builtin_bounds, &b.builtin_bounds));
394 let pb = try!(relation.relate(&a.projection_bounds, &b.projection_bounds));
395 Ok(ty::ExistentialBounds { region_bound: r,
396 builtin_bounds: nb,
397 projection_bounds: pb })
398 }
399 }
400
401 impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::BuiltinBounds {
402 fn relate<R>(relation: &mut R,
403 a: &ty::BuiltinBounds,
404 b: &ty::BuiltinBounds)
405 -> RelateResult<'tcx, ty::BuiltinBounds>
406 where R: TypeRelation<'a,'tcx>
407 {
408 // Two sets of builtin bounds are only relatable if they are
409 // precisely the same (but see the coercion code).
410 if a != b {
411 Err(TypeError::BuiltinBoundsMismatch(expected_found(relation, a, b)))
412 } else {
413 Ok(*a)
414 }
415 }
416 }
417
418 impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::TraitRef<'tcx> {
419 fn relate<R>(relation: &mut R,
420 a: &ty::TraitRef<'tcx>,
421 b: &ty::TraitRef<'tcx>)
422 -> RelateResult<'tcx, ty::TraitRef<'tcx>>
423 where R: TypeRelation<'a,'tcx>
424 {
425 // Different traits cannot be related
426 if a.def_id != b.def_id {
427 Err(TypeError::Traits(expected_found(relation, &a.def_id, &b.def_id)))
428 } else {
429 let substs = try!(relate_item_substs(relation, a.def_id, a.substs, b.substs));
430 Ok(ty::TraitRef { def_id: a.def_id, substs: relation.tcx().mk_substs(substs) })
431 }
432 }
433 }
434
435 impl<'a,'tcx:'a> Relate<'a,'tcx> for Ty<'tcx> {
436 fn relate<R>(relation: &mut R,
437 a: &Ty<'tcx>,
438 b: &Ty<'tcx>)
439 -> RelateResult<'tcx, Ty<'tcx>>
440 where R: TypeRelation<'a,'tcx>
441 {
442 relation.tys(a, b)
443 }
444 }
445
446 /// The main "type relation" routine. Note that this does not handle
447 /// inference artifacts, so you should filter those out before calling
448 /// it.
449 pub fn super_relate_tys<'a,'tcx:'a,R>(relation: &mut R,
450 a: Ty<'tcx>,
451 b: Ty<'tcx>)
452 -> RelateResult<'tcx, Ty<'tcx>>
453 where R: TypeRelation<'a,'tcx>
454 {
455 let tcx = relation.tcx();
456 let a_sty = &a.sty;
457 let b_sty = &b.sty;
458 debug!("super_tys: a_sty={:?} b_sty={:?}", a_sty, b_sty);
459 match (a_sty, b_sty) {
460 (&ty::TyInfer(_), _) |
461 (_, &ty::TyInfer(_)) =>
462 {
463 // The caller should handle these cases!
464 tcx.sess.bug("var types encountered in super_relate_tys")
465 }
466
467 (&ty::TyError, _) | (_, &ty::TyError) =>
468 {
469 Ok(tcx.types.err)
470 }
471
472 (&ty::TyChar, _) |
473 (&ty::TyBool, _) |
474 (&ty::TyInt(_), _) |
475 (&ty::TyUint(_), _) |
476 (&ty::TyFloat(_), _) |
477 (&ty::TyStr, _)
478 if a == b =>
479 {
480 Ok(a)
481 }
482
483 (&ty::TyParam(ref a_p), &ty::TyParam(ref b_p))
484 if a_p.idx == b_p.idx && a_p.space == b_p.space =>
485 {
486 Ok(a)
487 }
488
489 (&ty::TyEnum(a_def, a_substs), &ty::TyEnum(b_def, b_substs))
490 if a_def == b_def =>
491 {
492 let substs = try!(relate_item_substs(relation, a_def.did, a_substs, b_substs));
493 Ok(tcx.mk_enum(a_def, tcx.mk_substs(substs)))
494 }
495
496 (&ty::TyTrait(ref a_), &ty::TyTrait(ref b_)) =>
497 {
498 let principal = try!(relation.relate(&a_.principal, &b_.principal));
499 let bounds = try!(relation.relate(&a_.bounds, &b_.bounds));
500 Ok(tcx.mk_trait(principal, bounds))
501 }
502
503 (&ty::TyStruct(a_def, a_substs), &ty::TyStruct(b_def, b_substs))
504 if a_def == b_def =>
505 {
506 let substs = try!(relate_item_substs(relation, a_def.did, a_substs, b_substs));
507 Ok(tcx.mk_struct(a_def, tcx.mk_substs(substs)))
508 }
509
510 (&ty::TyClosure(a_id, ref a_substs),
511 &ty::TyClosure(b_id, ref b_substs))
512 if a_id == b_id =>
513 {
514 // All TyClosure types with the same id represent
515 // the (anonymous) type of the same closure expression. So
516 // all of their regions should be equated.
517 let substs = try!(relation.relate(a_substs, b_substs));
518 Ok(tcx.mk_closure_from_closure_substs(a_id, substs))
519 }
520
521 (&ty::TyBox(a_inner), &ty::TyBox(b_inner)) =>
522 {
523 let typ = try!(relation.relate(&a_inner, &b_inner));
524 Ok(tcx.mk_box(typ))
525 }
526
527 (&ty::TyRawPtr(ref a_mt), &ty::TyRawPtr(ref b_mt)) =>
528 {
529 let mt = try!(relation.relate(a_mt, b_mt));
530 Ok(tcx.mk_ptr(mt))
531 }
532
533 (&ty::TyRef(a_r, ref a_mt), &ty::TyRef(b_r, ref b_mt)) =>
534 {
535 let r = try!(relation.relate_with_variance(ty::Contravariant, a_r, b_r));
536 let mt = try!(relation.relate(a_mt, b_mt));
537 Ok(tcx.mk_ref(tcx.mk_region(r), mt))
538 }
539
540 (&ty::TyArray(a_t, sz_a), &ty::TyArray(b_t, sz_b)) =>
541 {
542 let t = try!(relation.relate(&a_t, &b_t));
543 if sz_a == sz_b {
544 Ok(tcx.mk_array(t, sz_a))
545 } else {
546 Err(TypeError::FixedArraySize(expected_found(relation, &sz_a, &sz_b)))
547 }
548 }
549
550 (&ty::TySlice(a_t), &ty::TySlice(b_t)) =>
551 {
552 let t = try!(relation.relate(&a_t, &b_t));
553 Ok(tcx.mk_slice(t))
554 }
555
556 (&ty::TyTuple(ref as_), &ty::TyTuple(ref bs)) =>
557 {
558 if as_.len() == bs.len() {
559 let ts = try!(as_.iter().zip(bs)
560 .map(|(a, b)| relation.relate(a, b))
561 .collect::<Result<_, _>>());
562 Ok(tcx.mk_tup(ts))
563 } else if !(as_.is_empty() || bs.is_empty()) {
564 Err(TypeError::TupleSize(
565 expected_found(relation, &as_.len(), &bs.len())))
566 } else {
567 Err(TypeError::Sorts(expected_found(relation, &a, &b)))
568 }
569 }
570
571 (&ty::TyBareFn(a_opt_def_id, a_fty), &ty::TyBareFn(b_opt_def_id, b_fty))
572 if a_opt_def_id == b_opt_def_id =>
573 {
574 let fty = try!(relation.relate(a_fty, b_fty));
575 Ok(tcx.mk_fn(a_opt_def_id, tcx.mk_bare_fn(fty)))
576 }
577
578 (&ty::TyProjection(ref a_data), &ty::TyProjection(ref b_data)) =>
579 {
580 let projection_ty = try!(relation.relate(a_data, b_data));
581 Ok(tcx.mk_projection(projection_ty.trait_ref, projection_ty.item_name))
582 }
583
584 _ =>
585 {
586 Err(TypeError::Sorts(expected_found(relation, &a, &b)))
587 }
588 }
589 }
590
591 impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::ClosureSubsts<'tcx> {
592 fn relate<R>(relation: &mut R,
593 a: &ty::ClosureSubsts<'tcx>,
594 b: &ty::ClosureSubsts<'tcx>)
595 -> RelateResult<'tcx, ty::ClosureSubsts<'tcx>>
596 where R: TypeRelation<'a,'tcx>
597 {
598 let func_substs = try!(relate_substs(relation, None, a.func_substs, b.func_substs));
599 let upvar_tys = try!(relation.relate_zip(&a.upvar_tys, &b.upvar_tys));
600 Ok(ty::ClosureSubsts { func_substs: relation.tcx().mk_substs(func_substs),
601 upvar_tys: upvar_tys })
602 }
603 }
604
605 impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::Region {
606 fn relate<R>(relation: &mut R,
607 a: &ty::Region,
608 b: &ty::Region)
609 -> RelateResult<'tcx, ty::Region>
610 where R: TypeRelation<'a,'tcx>
611 {
612 relation.regions(*a, *b)
613 }
614 }
615
616 impl<'a,'tcx:'a,T> Relate<'a,'tcx> for ty::Binder<T>
617 where T: Relate<'a,'tcx>
618 {
619 fn relate<R>(relation: &mut R,
620 a: &ty::Binder<T>,
621 b: &ty::Binder<T>)
622 -> RelateResult<'tcx, ty::Binder<T>>
623 where R: TypeRelation<'a,'tcx>
624 {
625 relation.binders(a, b)
626 }
627 }
628
629 impl<'a,'tcx:'a,T> Relate<'a,'tcx> for Rc<T>
630 where T: Relate<'a,'tcx>
631 {
632 fn relate<R>(relation: &mut R,
633 a: &Rc<T>,
634 b: &Rc<T>)
635 -> RelateResult<'tcx, Rc<T>>
636 where R: TypeRelation<'a,'tcx>
637 {
638 let a: &T = a;
639 let b: &T = b;
640 Ok(Rc::new(try!(relation.relate(a, b))))
641 }
642 }
643
644 impl<'a,'tcx:'a,T> Relate<'a,'tcx> for Box<T>
645 where T: Relate<'a,'tcx>
646 {
647 fn relate<R>(relation: &mut R,
648 a: &Box<T>,
649 b: &Box<T>)
650 -> RelateResult<'tcx, Box<T>>
651 where R: TypeRelation<'a,'tcx>
652 {
653 let a: &T = a;
654 let b: &T = b;
655 Ok(Box::new(try!(relation.relate(a, b))))
656 }
657 }
658
659 ///////////////////////////////////////////////////////////////////////////
660 // Error handling
661
662 pub fn expected_found<'a,'tcx:'a,R,T>(relation: &mut R,
663 a: &T,
664 b: &T)
665 -> ExpectedFound<T>
666 where R: TypeRelation<'a,'tcx>, T: Clone
667 {
668 expected_found_bool(relation.a_is_expected(), a, b)
669 }
670
671 pub fn expected_found_bool<T>(a_is_expected: bool,
672 a: &T,
673 b: &T)
674 -> ExpectedFound<T>
675 where T: Clone
676 {
677 let a = a.clone();
678 let b = b.clone();
679 if a_is_expected {
680 ExpectedFound {expected: a, found: b}
681 } else {
682 ExpectedFound {expected: b, found: a}
683 }
684 }