]> git.proxmox.com Git - rustc.git/blob - src/librustc/traits/coherence.rs
New upstream version 1.25.0+dfsg1
[rustc.git] / src / librustc / traits / coherence.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! See `README.md` for high-level documentation
12
13 use hir::def_id::{DefId, LOCAL_CRATE};
14 use syntax_pos::DUMMY_SP;
15 use traits::{self, Normalized, SelectionContext, Obligation, ObligationCause, Reveal};
16 use traits::IntercrateMode;
17 use traits::select::IntercrateAmbiguityCause;
18 use ty::{self, Ty, TyCtxt};
19 use ty::fold::TypeFoldable;
20 use ty::subst::Subst;
21
22 use infer::{InferOk};
23
24 /// Whether we do the orphan check relative to this crate or
25 /// to some remote crate.
26 #[derive(Copy, Clone, Debug)]
27 enum InCrate {
28 Local,
29 Remote
30 }
31
32 #[derive(Debug, Copy, Clone)]
33 pub enum Conflict {
34 Upstream,
35 Downstream { used_to_be_broken: bool }
36 }
37
38 pub struct OverlapResult<'tcx> {
39 pub impl_header: ty::ImplHeader<'tcx>,
40 pub intercrate_ambiguity_causes: Vec<IntercrateAmbiguityCause>,
41 }
42
43 /// If there are types that satisfy both impls, invokes `on_overlap`
44 /// with a suitably-freshened `ImplHeader` with those types
45 /// substituted. Otherwise, invokes `no_overlap`.
46 pub fn overlapping_impls<'gcx, F1, F2, R>(
47 tcx: TyCtxt<'_, 'gcx, 'gcx>,
48 impl1_def_id: DefId,
49 impl2_def_id: DefId,
50 intercrate_mode: IntercrateMode,
51 on_overlap: F1,
52 no_overlap: F2,
53 ) -> R
54 where
55 F1: FnOnce(OverlapResult<'_>) -> R,
56 F2: FnOnce() -> R,
57 {
58 debug!("impl_can_satisfy(\
59 impl1_def_id={:?}, \
60 impl2_def_id={:?},
61 intercrate_mode={:?})",
62 impl1_def_id,
63 impl2_def_id,
64 intercrate_mode);
65
66 let overlaps = tcx.infer_ctxt().enter(|infcx| {
67 let selcx = &mut SelectionContext::intercrate(&infcx, intercrate_mode);
68 overlap(selcx, impl1_def_id, impl2_def_id).is_some()
69 });
70
71 if !overlaps {
72 return no_overlap();
73 }
74
75 // In the case where we detect an error, run the check again, but
76 // this time tracking intercrate ambuiguity causes for better
77 // diagnostics. (These take time and can lead to false errors.)
78 tcx.infer_ctxt().enter(|infcx| {
79 let selcx = &mut SelectionContext::intercrate(&infcx, intercrate_mode);
80 selcx.enable_tracking_intercrate_ambiguity_causes();
81 on_overlap(overlap(selcx, impl1_def_id, impl2_def_id).unwrap())
82 })
83 }
84
85 fn with_fresh_ty_vars<'cx, 'gcx, 'tcx>(selcx: &mut SelectionContext<'cx, 'gcx, 'tcx>,
86 param_env: ty::ParamEnv<'tcx>,
87 impl_def_id: DefId)
88 -> ty::ImplHeader<'tcx>
89 {
90 let tcx = selcx.tcx();
91 let impl_substs = selcx.infcx().fresh_substs_for_item(DUMMY_SP, impl_def_id);
92
93 let header = ty::ImplHeader {
94 impl_def_id,
95 self_ty: tcx.type_of(impl_def_id),
96 trait_ref: tcx.impl_trait_ref(impl_def_id),
97 predicates: tcx.predicates_of(impl_def_id).predicates
98 }.subst(tcx, impl_substs);
99
100 let Normalized { value: mut header, obligations } =
101 traits::normalize(selcx, param_env, ObligationCause::dummy(), &header);
102
103 header.predicates.extend(obligations.into_iter().map(|o| o.predicate));
104 header
105 }
106
107 /// Can both impl `a` and impl `b` be satisfied by a common type (including
108 /// `where` clauses)? If so, returns an `ImplHeader` that unifies the two impls.
109 fn overlap<'cx, 'gcx, 'tcx>(selcx: &mut SelectionContext<'cx, 'gcx, 'tcx>,
110 a_def_id: DefId,
111 b_def_id: DefId)
112 -> Option<OverlapResult<'tcx>>
113 {
114 debug!("overlap(a_def_id={:?}, b_def_id={:?})",
115 a_def_id,
116 b_def_id);
117
118 // For the purposes of this check, we don't bring any skolemized
119 // types into scope; instead, we replace the generic types with
120 // fresh type variables, and hence we do our evaluations in an
121 // empty environment.
122 let param_env = ty::ParamEnv::empty(Reveal::UserFacing);
123
124 let a_impl_header = with_fresh_ty_vars(selcx, param_env, a_def_id);
125 let b_impl_header = with_fresh_ty_vars(selcx, param_env, b_def_id);
126
127 debug!("overlap: a_impl_header={:?}", a_impl_header);
128 debug!("overlap: b_impl_header={:?}", b_impl_header);
129
130 // Do `a` and `b` unify? If not, no overlap.
131 let obligations = match selcx.infcx().at(&ObligationCause::dummy(), param_env)
132 .eq_impl_headers(&a_impl_header, &b_impl_header) {
133 Ok(InferOk { obligations, value: () }) => {
134 obligations
135 }
136 Err(_) => return None
137 };
138
139 debug!("overlap: unification check succeeded");
140
141 // Are any of the obligations unsatisfiable? If so, no overlap.
142 let infcx = selcx.infcx();
143 let opt_failing_obligation =
144 a_impl_header.predicates
145 .iter()
146 .chain(&b_impl_header.predicates)
147 .map(|p| infcx.resolve_type_vars_if_possible(p))
148 .map(|p| Obligation { cause: ObligationCause::dummy(),
149 param_env,
150 recursion_depth: 0,
151 predicate: p })
152 .chain(obligations)
153 .find(|o| !selcx.evaluate_obligation(o));
154
155 if let Some(failing_obligation) = opt_failing_obligation {
156 debug!("overlap: obligation unsatisfiable {:?}", failing_obligation);
157 return None
158 }
159
160 let impl_header = selcx.infcx().resolve_type_vars_if_possible(&a_impl_header);
161 let intercrate_ambiguity_causes = selcx.take_intercrate_ambiguity_causes();
162 debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes);
163 Some(OverlapResult { impl_header, intercrate_ambiguity_causes })
164 }
165
166 pub fn trait_ref_is_knowable<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
167 trait_ref: ty::TraitRef<'tcx>)
168 -> Option<Conflict>
169 {
170 debug!("trait_ref_is_knowable(trait_ref={:?})", trait_ref);
171 if orphan_check_trait_ref(tcx, trait_ref, InCrate::Remote).is_ok() {
172 // A downstream or cousin crate is allowed to implement some
173 // substitution of this trait-ref.
174
175 // A trait can be implementable for a trait ref by both the current
176 // crate and crates downstream of it. Older versions of rustc
177 // were not aware of this, causing incoherence (issue #43355).
178 let used_to_be_broken =
179 orphan_check_trait_ref(tcx, trait_ref, InCrate::Local).is_ok();
180 if used_to_be_broken {
181 debug!("trait_ref_is_knowable({:?}) - USED TO BE BROKEN", trait_ref);
182 }
183 return Some(Conflict::Downstream { used_to_be_broken });
184 }
185
186 if trait_ref_is_local_or_fundamental(tcx, trait_ref) {
187 // This is a local or fundamental trait, so future-compatibility
188 // is no concern. We know that downstream/cousin crates are not
189 // allowed to implement a substitution of this trait ref, which
190 // means impls could only come from dependencies of this crate,
191 // which we already know about.
192 return None;
193 }
194
195 // This is a remote non-fundamental trait, so if another crate
196 // can be the "final owner" of a substitution of this trait-ref,
197 // they are allowed to implement it future-compatibly.
198 //
199 // However, if we are a final owner, then nobody else can be,
200 // and if we are an intermediate owner, then we don't care
201 // about future-compatibility, which means that we're OK if
202 // we are an owner.
203 if orphan_check_trait_ref(tcx, trait_ref, InCrate::Local).is_ok() {
204 debug!("trait_ref_is_knowable: orphan check passed");
205 return None;
206 } else {
207 debug!("trait_ref_is_knowable: nonlocal, nonfundamental, unowned");
208 return Some(Conflict::Upstream);
209 }
210 }
211
212 pub fn trait_ref_is_local_or_fundamental<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
213 trait_ref: ty::TraitRef<'tcx>)
214 -> bool {
215 trait_ref.def_id.krate == LOCAL_CRATE || tcx.has_attr(trait_ref.def_id, "fundamental")
216 }
217
218 pub enum OrphanCheckErr<'tcx> {
219 NoLocalInputType,
220 UncoveredTy(Ty<'tcx>),
221 }
222
223 /// Checks the coherence orphan rules. `impl_def_id` should be the
224 /// def-id of a trait impl. To pass, either the trait must be local, or else
225 /// two conditions must be satisfied:
226 ///
227 /// 1. All type parameters in `Self` must be "covered" by some local type constructor.
228 /// 2. Some local type must appear in `Self`.
229 pub fn orphan_check<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
230 impl_def_id: DefId)
231 -> Result<(), OrphanCheckErr<'tcx>>
232 {
233 debug!("orphan_check({:?})", impl_def_id);
234
235 // We only except this routine to be invoked on implementations
236 // of a trait, not inherent implementations.
237 let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
238 debug!("orphan_check: trait_ref={:?}", trait_ref);
239
240 // If the *trait* is local to the crate, ok.
241 if trait_ref.def_id.is_local() {
242 debug!("trait {:?} is local to current crate",
243 trait_ref.def_id);
244 return Ok(());
245 }
246
247 orphan_check_trait_ref(tcx, trait_ref, InCrate::Local)
248 }
249
250 /// Check whether a trait-ref is potentially implementable by a crate.
251 ///
252 /// The current rule is that a trait-ref orphan checks in a crate C:
253 ///
254 /// 1. Order the parameters in the trait-ref in subst order - Self first,
255 /// others linearly (e.g. `<U as Foo<V, W>>` is U < V < W).
256 /// 2. Of these type parameters, there is at least one type parameter
257 /// in which, walking the type as a tree, you can reach a type local
258 /// to C where all types in-between are fundamental types. Call the
259 /// first such parameter the "local key parameter".
260 /// - e.g. `Box<LocalType>` is OK, because you can visit LocalType
261 /// going through `Box`, which is fundamental.
262 /// - similarly, `FundamentalPair<Vec<()>, Box<LocalType>>` is OK for
263 /// the same reason.
264 /// - but (knowing that `Vec<T>` is non-fundamental, and assuming it's
265 /// not local), `Vec<LocalType>` is bad, because `Vec<->` is between
266 /// the local type and the type parameter.
267 /// 3. Every type parameter before the local key parameter is fully known in C.
268 /// - e.g. `impl<T> T: Trait<LocalType>` is bad, because `T` might be
269 /// an unknown type.
270 /// - but `impl<T> LocalType: Trait<T>` is OK, because `LocalType`
271 /// occurs before `T`.
272 /// 4. Every type in the local key parameter not known in C, going
273 /// through the parameter's type tree, must appear only as a subtree of
274 /// a type local to C, with only fundamental types between the type
275 /// local to C and the local key parameter.
276 /// - e.g. `Vec<LocalType<T>>>` (or equivalently `Box<Vec<LocalType<T>>>`)
277 /// is bad, because the only local type with `T` as a subtree is
278 /// `LocalType<T>`, and `Vec<->` is between it and the type parameter.
279 /// - similarly, `FundamentalPair<LocalType<T>, T>` is bad, because
280 /// the second occurence of `T` is not a subtree of *any* local type.
281 /// - however, `LocalType<Vec<T>>` is OK, because `T` is a subtree of
282 /// `LocalType<Vec<T>>`, which is local and has no types between it and
283 /// the type parameter.
284 ///
285 /// The orphan rules actually serve several different purposes:
286 ///
287 /// 1. They enable link-safety - i.e. 2 mutually-unknowing crates (where
288 /// every type local to one crate is unknown in the other) can't implement
289 /// the same trait-ref. This follows because it can be seen that no such
290 /// type can orphan-check in 2 such crates.
291 ///
292 /// To check that a local impl follows the orphan rules, we check it in
293 /// InCrate::Local mode, using type parameters for the "generic" types.
294 ///
295 /// 2. They ground negative reasoning for coherence. If a user wants to
296 /// write both a conditional blanket impl and a specific impl, we need to
297 /// make sure they do not overlap. For example, if we write
298 /// ```
299 /// impl<T> IntoIterator for Vec<T>
300 /// impl<T: Iterator> IntoIterator for T
301 /// ```
302 /// We need to be able to prove that `Vec<$0>: !Iterator` for every type $0.
303 /// We can observe that this holds in the current crate, but we need to make
304 /// sure this will also hold in all unknown crates (both "independent" crates,
305 /// which we need for link-safety, and also child crates, because we don't want
306 /// child crates to get error for impl conflicts in a *dependency*).
307 ///
308 /// For that, we only allow negative reasoning if, for every assignment to the
309 /// inference variables, every unknown crate would get an orphan error if they
310 /// try to implement this trait-ref. To check for this, we use InCrate::Remote
311 /// mode. That is sound because we already know all the impls from known crates.
312 ///
313 /// 3. For non-#[fundamental] traits, they guarantee that parent crates can
314 /// add "non-blanket" impls without breaking negative reasoning in dependent
315 /// crates. This is the "rebalancing coherence" (RFC 1023) restriction.
316 ///
317 /// For that, we only a allow crate to perform negative reasoning on
318 /// non-local-non-#[fundamental] only if there's a local key parameter as per (2).
319 ///
320 /// Because we never perform negative reasoning generically (coherence does
321 /// not involve type parameters), this can be interpreted as doing the full
322 /// orphan check (using InCrate::Local mode), substituting non-local known
323 /// types for all inference variables.
324 ///
325 /// This allows for crates to future-compatibly add impls as long as they
326 /// can't apply to types with a key parameter in a child crate - applying
327 /// the rules, this basically means that every type parameter in the impl
328 /// must appear behind a non-fundamental type (because this is not a
329 /// type-system requirement, crate owners might also go for "semantic
330 /// future-compatibility" involving things such as sealed traits, but
331 /// the above requirement is sufficient, and is necessary in "open world"
332 /// cases).
333 ///
334 /// Note that this function is never called for types that have both type
335 /// parameters and inference variables.
336 fn orphan_check_trait_ref<'tcx>(tcx: TyCtxt,
337 trait_ref: ty::TraitRef<'tcx>,
338 in_crate: InCrate)
339 -> Result<(), OrphanCheckErr<'tcx>>
340 {
341 debug!("orphan_check_trait_ref(trait_ref={:?}, in_crate={:?})",
342 trait_ref, in_crate);
343
344 if trait_ref.needs_infer() && trait_ref.needs_subst() {
345 bug!("can't orphan check a trait ref with both params and inference variables {:?}",
346 trait_ref);
347 }
348
349 // First, create an ordered iterator over all the type parameters to the trait, with the self
350 // type appearing first.
351 // Find the first input type that either references a type parameter OR
352 // some local type.
353 for input_ty in trait_ref.input_types() {
354 if ty_is_local(tcx, input_ty, in_crate) {
355 debug!("orphan_check_trait_ref: ty_is_local `{:?}`", input_ty);
356
357 // First local input type. Check that there are no
358 // uncovered type parameters.
359 let uncovered_tys = uncovered_tys(tcx, input_ty, in_crate);
360 for uncovered_ty in uncovered_tys {
361 if let Some(param) = uncovered_ty.walk()
362 .find(|t| is_possibly_remote_type(t, in_crate))
363 {
364 debug!("orphan_check_trait_ref: uncovered type `{:?}`", param);
365 return Err(OrphanCheckErr::UncoveredTy(param));
366 }
367 }
368
369 // OK, found local type, all prior types upheld invariant.
370 return Ok(());
371 }
372
373 // Otherwise, enforce invariant that there are no type
374 // parameters reachable.
375 if let Some(param) = input_ty.walk()
376 .find(|t| is_possibly_remote_type(t, in_crate))
377 {
378 debug!("orphan_check_trait_ref: uncovered type `{:?}`", param);
379 return Err(OrphanCheckErr::UncoveredTy(param));
380 }
381 }
382
383 // If we exit above loop, never found a local type.
384 debug!("orphan_check_trait_ref: no local type");
385 return Err(OrphanCheckErr::NoLocalInputType);
386 }
387
388 fn uncovered_tys<'tcx>(tcx: TyCtxt, ty: Ty<'tcx>, in_crate: InCrate)
389 -> Vec<Ty<'tcx>> {
390 if ty_is_local_constructor(ty, in_crate) {
391 vec![]
392 } else if fundamental_ty(tcx, ty) {
393 ty.walk_shallow()
394 .flat_map(|t| uncovered_tys(tcx, t, in_crate))
395 .collect()
396 } else {
397 vec![ty]
398 }
399 }
400
401 fn is_possibly_remote_type(ty: Ty, _in_crate: InCrate) -> bool {
402 match ty.sty {
403 ty::TyProjection(..) | ty::TyParam(..) => true,
404 _ => false,
405 }
406 }
407
408 fn ty_is_local(tcx: TyCtxt, ty: Ty, in_crate: InCrate) -> bool {
409 ty_is_local_constructor(ty, in_crate) ||
410 fundamental_ty(tcx, ty) && ty.walk_shallow().any(|t| ty_is_local(tcx, t, in_crate))
411 }
412
413 fn fundamental_ty(tcx: TyCtxt, ty: Ty) -> bool {
414 match ty.sty {
415 ty::TyRef(..) => true,
416 ty::TyAdt(def, _) => def.is_fundamental(),
417 ty::TyDynamic(ref data, ..) => {
418 data.principal().map_or(false, |p| tcx.has_attr(p.def_id(), "fundamental"))
419 }
420 _ => false
421 }
422 }
423
424 fn def_id_is_local(def_id: DefId, in_crate: InCrate) -> bool {
425 match in_crate {
426 // The type is local to *this* crate - it will not be
427 // local in any other crate.
428 InCrate::Remote => false,
429 InCrate::Local => def_id.is_local()
430 }
431 }
432
433 fn ty_is_local_constructor(ty: Ty, in_crate: InCrate) -> bool {
434 debug!("ty_is_local_constructor({:?})", ty);
435
436 match ty.sty {
437 ty::TyBool |
438 ty::TyChar |
439 ty::TyInt(..) |
440 ty::TyUint(..) |
441 ty::TyFloat(..) |
442 ty::TyStr |
443 ty::TyFnDef(..) |
444 ty::TyFnPtr(_) |
445 ty::TyArray(..) |
446 ty::TySlice(..) |
447 ty::TyRawPtr(..) |
448 ty::TyRef(..) |
449 ty::TyNever |
450 ty::TyTuple(..) |
451 ty::TyParam(..) |
452 ty::TyProjection(..) => {
453 false
454 }
455
456 ty::TyInfer(..) => match in_crate {
457 InCrate::Local => false,
458 // The inference variable might be unified with a local
459 // type in that remote crate.
460 InCrate::Remote => true,
461 },
462
463 ty::TyAdt(def, _) => def_id_is_local(def.did, in_crate),
464 ty::TyForeign(did) => def_id_is_local(did, in_crate),
465
466 ty::TyDynamic(ref tt, ..) => {
467 tt.principal().map_or(false, |p| {
468 def_id_is_local(p.def_id(), in_crate)
469 })
470 }
471
472 ty::TyError => {
473 true
474 }
475
476 ty::TyClosure(..) |
477 ty::TyGenerator(..) |
478 ty::TyGeneratorWitness(..) |
479 ty::TyAnon(..) => {
480 bug!("ty_is_local invoked on unexpected type: {:?}", ty)
481 }
482 }
483 }