]> git.proxmox.com Git - rustc.git/blob - src/librustc/traits/mod.rs
New upstream version 1.31.0~beta.4+dfsg1
[rustc.git] / src / librustc / traits / mod.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Trait Resolution. See [rustc guide] for more info on how this works.
12 //!
13 //! [rustc guide]: https://rust-lang-nursery.github.io/rustc-guide/traits/resolution.html
14
15 pub use self::SelectionError::*;
16 pub use self::FulfillmentErrorCode::*;
17 pub use self::Vtable::*;
18 pub use self::ObligationCauseCode::*;
19
20 use chalk_engine;
21 use hir;
22 use hir::def_id::DefId;
23 use infer::SuppressRegionErrors;
24 use infer::outlives::env::OutlivesEnvironment;
25 use middle::region;
26 use mir::interpret::ConstEvalErr;
27 use ty::subst::Substs;
28 use ty::{self, AdtKind, List, Ty, TyCtxt, GenericParamDefKind, ToPredicate};
29 use ty::error::{ExpectedFound, TypeError};
30 use ty::fold::{TypeFolder, TypeFoldable, TypeVisitor};
31 use infer::{InferCtxt};
32 use util::common::ErrorReported;
33
34 use rustc_data_structures::sync::Lrc;
35 use std::fmt::Debug;
36 use std::rc::Rc;
37 use syntax::ast;
38 use syntax_pos::{Span, DUMMY_SP};
39
40 pub use self::coherence::{orphan_check, overlapping_impls, OrphanCheckErr, OverlapResult};
41 pub use self::fulfill::{FulfillmentContext, PendingPredicateObligation};
42 pub use self::project::MismatchedProjectionTypes;
43 pub use self::project::{normalize, normalize_projection_type, poly_project_and_unify_type};
44 pub use self::project::{ProjectionCache, ProjectionCacheSnapshot, Reveal, Normalized};
45 pub use self::object_safety::ObjectSafetyViolation;
46 pub use self::object_safety::MethodViolationCode;
47 pub use self::on_unimplemented::{OnUnimplementedDirective, OnUnimplementedNote};
48 pub use self::select::{EvaluationCache, SelectionContext, SelectionCache};
49 pub use self::select::{EvaluationResult, IntercrateAmbiguityCause, OverflowError};
50 pub use self::specialize::{OverlapError, specialization_graph, translate_substs};
51 pub use self::specialize::find_associated_item;
52 pub use self::engine::{TraitEngine, TraitEngineExt};
53 pub use self::util::elaborate_predicates;
54 pub use self::util::supertraits;
55 pub use self::util::Supertraits;
56 pub use self::util::supertrait_def_ids;
57 pub use self::util::SupertraitDefIds;
58 pub use self::util::transitive_bounds;
59
60 #[allow(dead_code)]
61 pub mod auto_trait;
62 mod coherence;
63 pub mod error_reporting;
64 mod engine;
65 mod fulfill;
66 mod project;
67 mod object_safety;
68 mod on_unimplemented;
69 mod select;
70 mod specialize;
71 mod structural_impls;
72 pub mod codegen;
73 mod util;
74
75 pub mod query;
76
77 // Whether to enable bug compatibility with issue #43355
78 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
79 pub enum IntercrateMode {
80 Issue43355,
81 Fixed
82 }
83
84 // The mode that trait queries run in
85 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
86 pub enum TraitQueryMode {
87 // Standard/un-canonicalized queries get accurate
88 // spans etc. passed in and hence can do reasonable
89 // error reporting on their own.
90 Standard,
91 // Canonicalized queries get dummy spans and hence
92 // must generally propagate errors to
93 // pre-canonicalization callsites.
94 Canonical,
95 }
96
97 /// An `Obligation` represents some trait reference (e.g. `int:Eq`) for
98 /// which the vtable must be found. The process of finding a vtable is
99 /// called "resolving" the `Obligation`. This process consists of
100 /// either identifying an `impl` (e.g., `impl Eq for int`) that
101 /// provides the required vtable, or else finding a bound that is in
102 /// scope. The eventual result is usually a `Selection` (defined below).
103 #[derive(Clone, PartialEq, Eq, Hash)]
104 pub struct Obligation<'tcx, T> {
105 /// Why do we have to prove this thing?
106 pub cause: ObligationCause<'tcx>,
107
108 /// In which environment should we prove this thing?
109 pub param_env: ty::ParamEnv<'tcx>,
110
111 /// What are we trying to prove?
112 pub predicate: T,
113
114 /// If we started proving this as a result of trying to prove
115 /// something else, track the total depth to ensure termination.
116 /// If this goes over a certain threshold, we abort compilation --
117 /// in such cases, we can not say whether or not the predicate
118 /// holds for certain. Stupid halting problem. Such a drag.
119 pub recursion_depth: usize,
120 }
121
122 pub type PredicateObligation<'tcx> = Obligation<'tcx, ty::Predicate<'tcx>>;
123 pub type TraitObligation<'tcx> = Obligation<'tcx, ty::PolyTraitPredicate<'tcx>>;
124
125 /// Why did we incur this obligation? Used for error reporting.
126 #[derive(Clone, Debug, PartialEq, Eq, Hash)]
127 pub struct ObligationCause<'tcx> {
128 pub span: Span,
129
130 // The id of the fn body that triggered this obligation. This is
131 // used for region obligations to determine the precise
132 // environment in which the region obligation should be evaluated
133 // (in particular, closures can add new assumptions). See the
134 // field `region_obligations` of the `FulfillmentContext` for more
135 // information.
136 pub body_id: ast::NodeId,
137
138 pub code: ObligationCauseCode<'tcx>
139 }
140
141 impl<'tcx> ObligationCause<'tcx> {
142 pub fn span<'a, 'gcx>(&self, tcx: &TyCtxt<'a, 'gcx, 'tcx>) -> Span {
143 match self.code {
144 ObligationCauseCode::CompareImplMethodObligation { .. } |
145 ObligationCauseCode::MainFunctionType |
146 ObligationCauseCode::StartFunctionType => {
147 tcx.sess.source_map().def_span(self.span)
148 }
149 _ => self.span,
150 }
151 }
152 }
153
154 #[derive(Clone, Debug, PartialEq, Eq, Hash)]
155 pub enum ObligationCauseCode<'tcx> {
156 /// Not well classified or should be obvious from span.
157 MiscObligation,
158
159 /// A slice or array is WF only if `T: Sized`
160 SliceOrArrayElem,
161
162 /// A tuple is WF only if its middle elements are Sized
163 TupleElem,
164
165 /// This is the trait reference from the given projection
166 ProjectionWf(ty::ProjectionTy<'tcx>),
167
168 /// In an impl of trait X for type Y, type Y must
169 /// also implement all supertraits of X.
170 ItemObligation(DefId),
171
172 /// A type like `&'a T` is WF only if `T: 'a`.
173 ReferenceOutlivesReferent(Ty<'tcx>),
174
175 /// A type like `Box<Foo<'a> + 'b>` is WF only if `'b: 'a`.
176 ObjectTypeBound(Ty<'tcx>, ty::Region<'tcx>),
177
178 /// Obligation incurred due to an object cast.
179 ObjectCastObligation(/* Object type */ Ty<'tcx>),
180
181 // Various cases where expressions must be sized/copy/etc:
182 /// L = X implies that L is Sized
183 AssignmentLhsSized,
184 /// (x1, .., xn) must be Sized
185 TupleInitializerSized,
186 /// S { ... } must be Sized
187 StructInitializerSized,
188 /// Type of each variable must be Sized
189 VariableType(ast::NodeId),
190 /// Argument type must be Sized
191 SizedArgumentType,
192 /// Return type must be Sized
193 SizedReturnType,
194 /// Yield type must be Sized
195 SizedYieldType,
196 /// [T,..n] --> T must be Copy
197 RepeatVec,
198
199 /// Types of fields (other than the last, except for packed structs) in a struct must be sized.
200 FieldSized { adt_kind: AdtKind, last: bool },
201
202 /// Constant expressions must be sized.
203 ConstSized,
204
205 /// static items must have `Sync` type
206 SharedStatic,
207
208 BuiltinDerivedObligation(DerivedObligationCause<'tcx>),
209
210 ImplDerivedObligation(DerivedObligationCause<'tcx>),
211
212 /// error derived when matching traits/impls; see ObligationCause for more details
213 CompareImplMethodObligation {
214 item_name: ast::Name,
215 impl_item_def_id: DefId,
216 trait_item_def_id: DefId,
217 },
218
219 /// Checking that this expression can be assigned where it needs to be
220 // FIXME(eddyb) #11161 is the original Expr required?
221 ExprAssignable,
222
223 /// Computing common supertype in the arms of a match expression
224 MatchExpressionArm { arm_span: Span,
225 source: hir::MatchSource },
226
227 /// Computing common supertype in an if expression
228 IfExpression,
229
230 /// Computing common supertype of an if expression with no else counter-part
231 IfExpressionWithNoElse,
232
233 /// `main` has wrong type
234 MainFunctionType,
235
236 /// `start` has wrong type
237 StartFunctionType,
238
239 /// intrinsic has wrong type
240 IntrinsicType,
241
242 /// method receiver
243 MethodReceiver,
244
245 /// `return` with no expression
246 ReturnNoExpression,
247
248 /// `return` with an expression
249 ReturnType(ast::NodeId),
250
251 /// Block implicit return
252 BlockTailExpression(ast::NodeId),
253
254 /// #[feature(trivial_bounds)] is not enabled
255 TrivialBound,
256 }
257
258 #[derive(Clone, Debug, PartialEq, Eq, Hash)]
259 pub struct DerivedObligationCause<'tcx> {
260 /// The trait reference of the parent obligation that led to the
261 /// current obligation. Note that only trait obligations lead to
262 /// derived obligations, so we just store the trait reference here
263 /// directly.
264 parent_trait_ref: ty::PolyTraitRef<'tcx>,
265
266 /// The parent trait had this cause
267 parent_code: Rc<ObligationCauseCode<'tcx>>
268 }
269
270 pub type Obligations<'tcx, O> = Vec<Obligation<'tcx, O>>;
271 pub type PredicateObligations<'tcx> = Vec<PredicateObligation<'tcx>>;
272 pub type TraitObligations<'tcx> = Vec<TraitObligation<'tcx>>;
273
274 /// The following types:
275 /// * `WhereClause`
276 /// * `WellFormed`
277 /// * `FromEnv`
278 /// * `DomainGoal`
279 /// * `Goal`
280 /// * `Clause`
281 /// * `Environment`
282 /// * `InEnvironment`
283 /// are used for representing the trait system in the form of
284 /// logic programming clauses. They are part of the interface
285 /// for the chalk SLG solver.
286 #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
287 pub enum WhereClause<'tcx> {
288 Implemented(ty::TraitPredicate<'tcx>),
289 ProjectionEq(ty::ProjectionPredicate<'tcx>),
290 RegionOutlives(ty::RegionOutlivesPredicate<'tcx>),
291 TypeOutlives(ty::TypeOutlivesPredicate<'tcx>),
292 }
293
294 #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
295 pub enum WellFormed<'tcx> {
296 Trait(ty::TraitPredicate<'tcx>),
297 Ty(Ty<'tcx>),
298 }
299
300 #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
301 pub enum FromEnv<'tcx> {
302 Trait(ty::TraitPredicate<'tcx>),
303 Ty(Ty<'tcx>),
304 }
305
306 #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
307 pub enum DomainGoal<'tcx> {
308 Holds(WhereClause<'tcx>),
309 WellFormed(WellFormed<'tcx>),
310 FromEnv(FromEnv<'tcx>),
311 Normalize(ty::ProjectionPredicate<'tcx>),
312 }
313
314 pub type PolyDomainGoal<'tcx> = ty::Binder<DomainGoal<'tcx>>;
315
316 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
317 pub enum QuantifierKind {
318 Universal,
319 Existential,
320 }
321
322 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
323 pub enum GoalKind<'tcx> {
324 Implies(Clauses<'tcx>, Goal<'tcx>),
325 And(Goal<'tcx>, Goal<'tcx>),
326 Not(Goal<'tcx>),
327 DomainGoal(DomainGoal<'tcx>),
328 Quantified(QuantifierKind, ty::Binder<Goal<'tcx>>),
329 CannotProve,
330 }
331
332 pub type Goal<'tcx> = &'tcx GoalKind<'tcx>;
333
334 pub type Goals<'tcx> = &'tcx List<Goal<'tcx>>;
335
336 impl<'tcx> DomainGoal<'tcx> {
337 pub fn into_goal(self) -> GoalKind<'tcx> {
338 GoalKind::DomainGoal(self)
339 }
340
341 pub fn into_program_clause(self) -> ProgramClause<'tcx> {
342 ProgramClause {
343 goal: self,
344 hypotheses: ty::List::empty(),
345 category: ProgramClauseCategory::Other,
346 }
347 }
348 }
349
350 impl<'tcx> GoalKind<'tcx> {
351 pub fn from_poly_domain_goal<'a>(
352 domain_goal: PolyDomainGoal<'tcx>,
353 tcx: TyCtxt<'a, 'tcx, 'tcx>,
354 ) -> GoalKind<'tcx> {
355 match domain_goal.no_late_bound_regions() {
356 Some(p) => p.into_goal(),
357 None => GoalKind::Quantified(
358 QuantifierKind::Universal,
359 domain_goal.map_bound(|p| tcx.mk_goal(p.into_goal()))
360 ),
361 }
362 }
363 }
364
365 /// This matches the definition from Page 7 of "A Proof Procedure for the Logic of Hereditary
366 /// Harrop Formulas".
367 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
368 pub enum Clause<'tcx> {
369 Implies(ProgramClause<'tcx>),
370 ForAll(ty::Binder<ProgramClause<'tcx>>),
371 }
372
373 impl Clause<'tcx> {
374 pub fn category(self) -> ProgramClauseCategory {
375 match self {
376 Clause::Implies(clause) => clause.category,
377 Clause::ForAll(clause) => clause.skip_binder().category,
378 }
379 }
380 }
381
382 /// Multiple clauses.
383 pub type Clauses<'tcx> = &'tcx List<Clause<'tcx>>;
384
385 /// A "program clause" has the form `D :- G1, ..., Gn`. It is saying
386 /// that the domain goal `D` is true if `G1...Gn` are provable. This
387 /// is equivalent to the implication `G1..Gn => D`; we usually write
388 /// it with the reverse implication operator `:-` to emphasize the way
389 /// that programs are actually solved (via backchaining, which starts
390 /// with the goal to solve and proceeds from there).
391 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
392 pub struct ProgramClause<'tcx> {
393 /// This goal will be considered true...
394 pub goal: DomainGoal<'tcx>,
395
396 /// ...if we can prove these hypotheses (there may be no hypotheses at all):
397 pub hypotheses: Goals<'tcx>,
398
399 /// Useful for filtering clauses.
400 pub category: ProgramClauseCategory,
401 }
402
403 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
404 pub enum ProgramClauseCategory {
405 ImpliedBound,
406 WellFormed,
407 Other,
408 }
409
410 /// A set of clauses that we assume to be true.
411 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
412 pub struct Environment<'tcx> {
413 pub clauses: Clauses<'tcx>,
414 }
415
416 impl Environment<'tcx> {
417 pub fn with<G>(self, goal: G) -> InEnvironment<'tcx, G> {
418 InEnvironment {
419 environment: self,
420 goal,
421 }
422 }
423 }
424
425 /// Something (usually a goal), along with an environment.
426 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
427 pub struct InEnvironment<'tcx, G> {
428 pub environment: Environment<'tcx>,
429 pub goal: G,
430 }
431
432 pub type Selection<'tcx> = Vtable<'tcx, PredicateObligation<'tcx>>;
433
434 #[derive(Clone,Debug)]
435 pub enum SelectionError<'tcx> {
436 Unimplemented,
437 OutputTypeParameterMismatch(ty::PolyTraitRef<'tcx>,
438 ty::PolyTraitRef<'tcx>,
439 ty::error::TypeError<'tcx>),
440 TraitNotObjectSafe(DefId),
441 ConstEvalFailure(Lrc<ConstEvalErr<'tcx>>),
442 Overflow,
443 }
444
445 pub struct FulfillmentError<'tcx> {
446 pub obligation: PredicateObligation<'tcx>,
447 pub code: FulfillmentErrorCode<'tcx>
448 }
449
450 #[derive(Clone)]
451 pub enum FulfillmentErrorCode<'tcx> {
452 CodeSelectionError(SelectionError<'tcx>),
453 CodeProjectionError(MismatchedProjectionTypes<'tcx>),
454 CodeSubtypeError(ExpectedFound<Ty<'tcx>>,
455 TypeError<'tcx>), // always comes from a SubtypePredicate
456 CodeAmbiguity,
457 }
458
459 /// When performing resolution, it is typically the case that there
460 /// can be one of three outcomes:
461 ///
462 /// - `Ok(Some(r))`: success occurred with result `r`
463 /// - `Ok(None)`: could not definitely determine anything, usually due
464 /// to inconclusive type inference.
465 /// - `Err(e)`: error `e` occurred
466 pub type SelectionResult<'tcx, T> = Result<Option<T>, SelectionError<'tcx>>;
467
468 /// Given the successful resolution of an obligation, the `Vtable`
469 /// indicates where the vtable comes from. Note that while we call this
470 /// a "vtable", it does not necessarily indicate dynamic dispatch at
471 /// runtime. `Vtable` instances just tell the compiler where to find
472 /// methods, but in generic code those methods are typically statically
473 /// dispatched -- only when an object is constructed is a `Vtable`
474 /// instance reified into an actual vtable.
475 ///
476 /// For example, the vtable may be tied to a specific impl (case A),
477 /// or it may be relative to some bound that is in scope (case B).
478 ///
479 ///
480 /// ```
481 /// impl<T:Clone> Clone<T> for Option<T> { ... } // Impl_1
482 /// impl<T:Clone> Clone<T> for Box<T> { ... } // Impl_2
483 /// impl Clone for int { ... } // Impl_3
484 ///
485 /// fn foo<T:Clone>(concrete: Option<Box<int>>,
486 /// param: T,
487 /// mixed: Option<T>) {
488 ///
489 /// // Case A: Vtable points at a specific impl. Only possible when
490 /// // type is concretely known. If the impl itself has bounded
491 /// // type parameters, Vtable will carry resolutions for those as well:
492 /// concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])])
493 ///
494 /// // Case B: Vtable must be provided by caller. This applies when
495 /// // type is a type parameter.
496 /// param.clone(); // VtableParam
497 ///
498 /// // Case C: A mix of cases A and B.
499 /// mixed.clone(); // Vtable(Impl_1, [VtableParam])
500 /// }
501 /// ```
502 ///
503 /// ### The type parameter `N`
504 ///
505 /// See explanation on `VtableImplData`.
506 #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable)]
507 pub enum Vtable<'tcx, N> {
508 /// Vtable identifying a particular impl.
509 VtableImpl(VtableImplData<'tcx, N>),
510
511 /// Vtable for auto trait implementations
512 /// This carries the information and nested obligations with regards
513 /// to an auto implementation for a trait `Trait`. The nested obligations
514 /// ensure the trait implementation holds for all the constituent types.
515 VtableAutoImpl(VtableAutoImplData<N>),
516
517 /// Successful resolution to an obligation provided by the caller
518 /// for some type parameter. The `Vec<N>` represents the
519 /// obligations incurred from normalizing the where-clause (if
520 /// any).
521 VtableParam(Vec<N>),
522
523 /// Virtual calls through an object
524 VtableObject(VtableObjectData<'tcx, N>),
525
526 /// Successful resolution for a builtin trait.
527 VtableBuiltin(VtableBuiltinData<N>),
528
529 /// Vtable automatically generated for a closure. The def ID is the ID
530 /// of the closure expression. This is a `VtableImpl` in spirit, but the
531 /// impl is generated by the compiler and does not appear in the source.
532 VtableClosure(VtableClosureData<'tcx, N>),
533
534 /// Same as above, but for a fn pointer type with the given signature.
535 VtableFnPointer(VtableFnPointerData<'tcx, N>),
536
537 /// Vtable automatically generated for a generator
538 VtableGenerator(VtableGeneratorData<'tcx, N>),
539 }
540
541 /// Identifies a particular impl in the source, along with a set of
542 /// substitutions from the impl's type/lifetime parameters. The
543 /// `nested` vector corresponds to the nested obligations attached to
544 /// the impl's type parameters.
545 ///
546 /// The type parameter `N` indicates the type used for "nested
547 /// obligations" that are required by the impl. During type check, this
548 /// is `Obligation`, as one might expect. During codegen, however, this
549 /// is `()`, because codegen only requires a shallow resolution of an
550 /// impl, and nested obligations are satisfied later.
551 #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable)]
552 pub struct VtableImplData<'tcx, N> {
553 pub impl_def_id: DefId,
554 pub substs: &'tcx Substs<'tcx>,
555 pub nested: Vec<N>
556 }
557
558 #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable)]
559 pub struct VtableGeneratorData<'tcx, N> {
560 pub generator_def_id: DefId,
561 pub substs: ty::GeneratorSubsts<'tcx>,
562 /// Nested obligations. This can be non-empty if the generator
563 /// signature contains associated types.
564 pub nested: Vec<N>
565 }
566
567 #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable)]
568 pub struct VtableClosureData<'tcx, N> {
569 pub closure_def_id: DefId,
570 pub substs: ty::ClosureSubsts<'tcx>,
571 /// Nested obligations. This can be non-empty if the closure
572 /// signature contains associated types.
573 pub nested: Vec<N>
574 }
575
576 #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable)]
577 pub struct VtableAutoImplData<N> {
578 pub trait_def_id: DefId,
579 pub nested: Vec<N>
580 }
581
582 #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable)]
583 pub struct VtableBuiltinData<N> {
584 pub nested: Vec<N>
585 }
586
587 /// A vtable for some object-safe trait `Foo` automatically derived
588 /// for the object type `Foo`.
589 #[derive(PartialEq, Eq, Clone, RustcEncodable, RustcDecodable)]
590 pub struct VtableObjectData<'tcx, N> {
591 /// `Foo` upcast to the obligation trait. This will be some supertrait of `Foo`.
592 pub upcast_trait_ref: ty::PolyTraitRef<'tcx>,
593
594 /// The vtable is formed by concatenating together the method lists of
595 /// the base object trait and all supertraits; this is the start of
596 /// `upcast_trait_ref`'s methods in that vtable.
597 pub vtable_base: usize,
598
599 pub nested: Vec<N>,
600 }
601
602 #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable)]
603 pub struct VtableFnPointerData<'tcx, N> {
604 pub fn_ty: Ty<'tcx>,
605 pub nested: Vec<N>
606 }
607
608 /// Creates predicate obligations from the generic bounds.
609 pub fn predicates_for_generics<'tcx>(cause: ObligationCause<'tcx>,
610 param_env: ty::ParamEnv<'tcx>,
611 generic_bounds: &ty::InstantiatedPredicates<'tcx>)
612 -> PredicateObligations<'tcx>
613 {
614 util::predicates_for_generics(cause, 0, param_env, generic_bounds)
615 }
616
617 /// Determines whether the type `ty` is known to meet `bound` and
618 /// returns true if so. Returns false if `ty` either does not meet
619 /// `bound` or is not known to meet bound (note that this is
620 /// conservative towards *no impl*, which is the opposite of the
621 /// `evaluate` methods).
622 pub fn type_known_to_meet_bound<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
623 param_env: ty::ParamEnv<'tcx>,
624 ty: Ty<'tcx>,
625 def_id: DefId,
626 span: Span)
627 -> bool
628 {
629 debug!("type_known_to_meet_bound(ty={:?}, bound={:?})",
630 ty,
631 infcx.tcx.item_path_str(def_id));
632
633 let trait_ref = ty::TraitRef {
634 def_id,
635 substs: infcx.tcx.mk_substs_trait(ty, &[]),
636 };
637 let obligation = Obligation {
638 param_env,
639 cause: ObligationCause::misc(span, ast::DUMMY_NODE_ID),
640 recursion_depth: 0,
641 predicate: trait_ref.to_predicate(),
642 };
643
644 let result = infcx.predicate_must_hold(&obligation);
645 debug!("type_known_to_meet_ty={:?} bound={} => {:?}",
646 ty, infcx.tcx.item_path_str(def_id), result);
647
648 if result && (ty.has_infer_types() || ty.has_closure_types()) {
649 // Because of inference "guessing", selection can sometimes claim
650 // to succeed while the success requires a guess. To ensure
651 // this function's result remains infallible, we must confirm
652 // that guess. While imperfect, I believe this is sound.
653
654 // The handling of regions in this area of the code is terrible,
655 // see issue #29149. We should be able to improve on this with
656 // NLL.
657 let mut fulfill_cx = FulfillmentContext::new_ignoring_regions();
658
659 // We can use a dummy node-id here because we won't pay any mind
660 // to region obligations that arise (there shouldn't really be any
661 // anyhow).
662 let cause = ObligationCause::misc(span, ast::DUMMY_NODE_ID);
663
664 fulfill_cx.register_bound(infcx, param_env, ty, def_id, cause);
665
666 // Note: we only assume something is `Copy` if we can
667 // *definitively* show that it implements `Copy`. Otherwise,
668 // assume it is move; linear is always ok.
669 match fulfill_cx.select_all_or_error(infcx) {
670 Ok(()) => {
671 debug!("type_known_to_meet_bound: ty={:?} bound={} success",
672 ty,
673 infcx.tcx.item_path_str(def_id));
674 true
675 }
676 Err(e) => {
677 debug!("type_known_to_meet_bound: ty={:?} bound={} errors={:?}",
678 ty,
679 infcx.tcx.item_path_str(def_id),
680 e);
681 false
682 }
683 }
684 } else {
685 result
686 }
687 }
688
689 fn do_normalize_predicates<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
690 region_context: DefId,
691 cause: ObligationCause<'tcx>,
692 elaborated_env: ty::ParamEnv<'tcx>,
693 predicates: Vec<ty::Predicate<'tcx>>)
694 -> Result<Vec<ty::Predicate<'tcx>>, ErrorReported>
695 {
696 debug!("do_normalize_predicates({:?})", predicates);
697 let span = cause.span;
698 tcx.infer_ctxt().enter(|infcx| {
699 // FIXME. We should really... do something with these region
700 // obligations. But this call just continues the older
701 // behavior (i.e., doesn't cause any new bugs), and it would
702 // take some further refactoring to actually solve them. In
703 // particular, we would have to handle implied bounds
704 // properly, and that code is currently largely confined to
705 // regionck (though I made some efforts to extract it
706 // out). -nmatsakis
707 //
708 // @arielby: In any case, these obligations are checked
709 // by wfcheck anyway, so I'm not sure we have to check
710 // them here too, and we will remove this function when
711 // we move over to lazy normalization *anyway*.
712 let fulfill_cx = FulfillmentContext::new_ignoring_regions();
713 let predicates = match fully_normalize(
714 &infcx,
715 fulfill_cx,
716 cause,
717 elaborated_env,
718 &predicates,
719 ) {
720 Ok(predicates) => predicates,
721 Err(errors) => {
722 infcx.report_fulfillment_errors(&errors, None, false);
723 return Err(ErrorReported)
724 }
725 };
726
727 debug!("do_normalize_predictes: normalized predicates = {:?}", predicates);
728
729 let region_scope_tree = region::ScopeTree::default();
730
731 // We can use the `elaborated_env` here; the region code only
732 // cares about declarations like `'a: 'b`.
733 let outlives_env = OutlivesEnvironment::new(elaborated_env);
734
735 infcx.resolve_regions_and_report_errors(
736 region_context,
737 &region_scope_tree,
738 &outlives_env,
739 SuppressRegionErrors::default(),
740 );
741
742 let predicates = match infcx.fully_resolve(&predicates) {
743 Ok(predicates) => predicates,
744 Err(fixup_err) => {
745 // If we encounter a fixup error, it means that some type
746 // variable wound up unconstrained. I actually don't know
747 // if this can happen, and I certainly don't expect it to
748 // happen often, but if it did happen it probably
749 // represents a legitimate failure due to some kind of
750 // unconstrained variable, and it seems better not to ICE,
751 // all things considered.
752 tcx.sess.span_err(span, &fixup_err.to_string());
753 return Err(ErrorReported)
754 }
755 };
756
757 match tcx.lift_to_global(&predicates) {
758 Some(predicates) => Ok(predicates),
759 None => {
760 // FIXME: shouldn't we, you know, actually report an error here? or an ICE?
761 Err(ErrorReported)
762 }
763 }
764 })
765 }
766
767 // FIXME: this is gonna need to be removed ...
768 /// Normalizes the parameter environment, reporting errors if they occur.
769 pub fn normalize_param_env_or_error<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
770 region_context: DefId,
771 unnormalized_env: ty::ParamEnv<'tcx>,
772 cause: ObligationCause<'tcx>)
773 -> ty::ParamEnv<'tcx>
774 {
775 // I'm not wild about reporting errors here; I'd prefer to
776 // have the errors get reported at a defined place (e.g.,
777 // during typeck). Instead I have all parameter
778 // environments, in effect, going through this function
779 // and hence potentially reporting errors. This ensures of
780 // course that we never forget to normalize (the
781 // alternative seemed like it would involve a lot of
782 // manual invocations of this fn -- and then we'd have to
783 // deal with the errors at each of those sites).
784 //
785 // In any case, in practice, typeck constructs all the
786 // parameter environments once for every fn as it goes,
787 // and errors will get reported then; so after typeck we
788 // can be sure that no errors should occur.
789
790 debug!("normalize_param_env_or_error(region_context={:?}, unnormalized_env={:?}, cause={:?})",
791 region_context, unnormalized_env, cause);
792
793 let mut predicates: Vec<_> =
794 util::elaborate_predicates(tcx, unnormalized_env.caller_bounds.to_vec())
795 .collect();
796
797 debug!("normalize_param_env_or_error: elaborated-predicates={:?}",
798 predicates);
799
800 let elaborated_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
801 unnormalized_env.reveal);
802
803 // HACK: we are trying to normalize the param-env inside *itself*. The problem is that
804 // normalization expects its param-env to be already normalized, which means we have
805 // a circularity.
806 //
807 // The way we handle this is by normalizing the param-env inside an unnormalized version
808 // of the param-env, which means that if the param-env contains unnormalized projections,
809 // we'll have some normalization failures. This is unfortunate.
810 //
811 // Lazy normalization would basically handle this by treating just the
812 // normalizing-a-trait-ref-requires-itself cycles as evaluation failures.
813 //
814 // Inferred outlives bounds can create a lot of `TypeOutlives` predicates for associated
815 // types, so to make the situation less bad, we normalize all the predicates *but*
816 // the `TypeOutlives` predicates first inside the unnormalized parameter environment, and
817 // then we normalize the `TypeOutlives` bounds inside the normalized parameter environment.
818 //
819 // This works fairly well because trait matching does not actually care about param-env
820 // TypeOutlives predicates - these are normally used by regionck.
821 let outlives_predicates: Vec<_> = predicates.drain_filter(|predicate| {
822 match predicate {
823 ty::Predicate::TypeOutlives(..) => true,
824 _ => false
825 }
826 }).collect();
827
828 debug!("normalize_param_env_or_error: predicates=(non-outlives={:?}, outlives={:?})",
829 predicates, outlives_predicates);
830 let non_outlives_predicates =
831 match do_normalize_predicates(tcx, region_context, cause.clone(),
832 elaborated_env, predicates) {
833 Ok(predicates) => predicates,
834 // An unnormalized env is better than nothing.
835 Err(ErrorReported) => {
836 debug!("normalize_param_env_or_error: errored resolving non-outlives predicates");
837 return elaborated_env
838 }
839 };
840
841 debug!("normalize_param_env_or_error: non-outlives predicates={:?}", non_outlives_predicates);
842
843 // Not sure whether it is better to include the unnormalized TypeOutlives predicates
844 // here. I believe they should not matter, because we are ignoring TypeOutlives param-env
845 // predicates here anyway. Keeping them here anyway because it seems safer.
846 let outlives_env: Vec<_> =
847 non_outlives_predicates.iter().chain(&outlives_predicates).cloned().collect();
848 let outlives_env = ty::ParamEnv::new(tcx.intern_predicates(&outlives_env),
849 unnormalized_env.reveal);
850 let outlives_predicates =
851 match do_normalize_predicates(tcx, region_context, cause,
852 outlives_env, outlives_predicates) {
853 Ok(predicates) => predicates,
854 // An unnormalized env is better than nothing.
855 Err(ErrorReported) => {
856 debug!("normalize_param_env_or_error: errored resolving outlives predicates");
857 return elaborated_env
858 }
859 };
860 debug!("normalize_param_env_or_error: outlives predicates={:?}", outlives_predicates);
861
862 let mut predicates = non_outlives_predicates;
863 predicates.extend(outlives_predicates);
864 debug!("normalize_param_env_or_error: final predicates={:?}", predicates);
865 ty::ParamEnv::new(tcx.intern_predicates(&predicates), unnormalized_env.reveal)
866 }
867
868 pub fn fully_normalize<'a, 'gcx, 'tcx, T>(
869 infcx: &InferCtxt<'a, 'gcx, 'tcx>,
870 mut fulfill_cx: FulfillmentContext<'tcx>,
871 cause: ObligationCause<'tcx>,
872 param_env: ty::ParamEnv<'tcx>,
873 value: &T)
874 -> Result<T, Vec<FulfillmentError<'tcx>>>
875 where T : TypeFoldable<'tcx>
876 {
877 debug!("fully_normalize_with_fulfillcx(value={:?})", value);
878 let selcx = &mut SelectionContext::new(infcx);
879 let Normalized { value: normalized_value, obligations } =
880 project::normalize(selcx, param_env, cause, value);
881 debug!("fully_normalize: normalized_value={:?} obligations={:?}",
882 normalized_value,
883 obligations);
884 for obligation in obligations {
885 fulfill_cx.register_predicate_obligation(selcx.infcx(), obligation);
886 }
887
888 debug!("fully_normalize: select_all_or_error start");
889 fulfill_cx.select_all_or_error(infcx)?;
890 debug!("fully_normalize: select_all_or_error complete");
891 let resolved_value = infcx.resolve_type_vars_if_possible(&normalized_value);
892 debug!("fully_normalize: resolved_value={:?}", resolved_value);
893 Ok(resolved_value)
894 }
895
896 /// Normalizes the predicates and checks whether they hold in an empty
897 /// environment. If this returns false, then either normalize
898 /// encountered an error or one of the predicates did not hold. Used
899 /// when creating vtables to check for unsatisfiable methods.
900 fn normalize_and_test_predicates<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
901 predicates: Vec<ty::Predicate<'tcx>>)
902 -> bool
903 {
904 debug!("normalize_and_test_predicates(predicates={:?})",
905 predicates);
906
907 let result = tcx.infer_ctxt().enter(|infcx| {
908 let param_env = ty::ParamEnv::reveal_all();
909 let mut selcx = SelectionContext::new(&infcx);
910 let mut fulfill_cx = FulfillmentContext::new();
911 let cause = ObligationCause::dummy();
912 let Normalized { value: predicates, obligations } =
913 normalize(&mut selcx, param_env, cause.clone(), &predicates);
914 for obligation in obligations {
915 fulfill_cx.register_predicate_obligation(&infcx, obligation);
916 }
917 for predicate in predicates {
918 let obligation = Obligation::new(cause.clone(), param_env, predicate);
919 fulfill_cx.register_predicate_obligation(&infcx, obligation);
920 }
921
922 fulfill_cx.select_all_or_error(&infcx).is_ok()
923 });
924 debug!("normalize_and_test_predicates(predicates={:?}) = {:?}",
925 predicates, result);
926 result
927 }
928
929 fn substitute_normalize_and_test_predicates<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
930 key: (DefId, &'tcx Substs<'tcx>))
931 -> bool
932 {
933 debug!("substitute_normalize_and_test_predicates(key={:?})",
934 key);
935
936 let predicates = tcx.predicates_of(key.0).instantiate(tcx, key.1).predicates;
937 let result = normalize_and_test_predicates(tcx, predicates);
938
939 debug!("substitute_normalize_and_test_predicates(key={:?}) = {:?}",
940 key, result);
941 result
942 }
943
944 /// Given a trait `trait_ref`, iterates the vtable entries
945 /// that come from `trait_ref`, including its supertraits.
946 #[inline] // FIXME(#35870) Avoid closures being unexported due to impl Trait.
947 fn vtable_methods<'a, 'tcx>(
948 tcx: TyCtxt<'a, 'tcx, 'tcx>,
949 trait_ref: ty::PolyTraitRef<'tcx>)
950 -> Lrc<Vec<Option<(DefId, &'tcx Substs<'tcx>)>>>
951 {
952 debug!("vtable_methods({:?})", trait_ref);
953
954 Lrc::new(
955 supertraits(tcx, trait_ref).flat_map(move |trait_ref| {
956 let trait_methods = tcx.associated_items(trait_ref.def_id())
957 .filter(|item| item.kind == ty::AssociatedKind::Method);
958
959 // Now list each method's DefId and Substs (for within its trait).
960 // If the method can never be called from this object, produce None.
961 trait_methods.map(move |trait_method| {
962 debug!("vtable_methods: trait_method={:?}", trait_method);
963 let def_id = trait_method.def_id;
964
965 // Some methods cannot be called on an object; skip those.
966 if !tcx.is_vtable_safe_method(trait_ref.def_id(), &trait_method) {
967 debug!("vtable_methods: not vtable safe");
968 return None;
969 }
970
971 // the method may have some early-bound lifetimes, add
972 // regions for those
973 let substs = trait_ref.map_bound(|trait_ref|
974 Substs::for_item(tcx, def_id, |param, _|
975 match param.kind {
976 GenericParamDefKind::Lifetime => tcx.types.re_erased.into(),
977 GenericParamDefKind::Type {..} => {
978 trait_ref.substs[param.index as usize]
979 }
980 }
981 )
982 );
983
984 // the trait type may have higher-ranked lifetimes in it;
985 // so erase them if they appear, so that we get the type
986 // at some particular call site
987 let substs = tcx.normalize_erasing_late_bound_regions(
988 ty::ParamEnv::reveal_all(),
989 &substs
990 );
991
992 // It's possible that the method relies on where clauses that
993 // do not hold for this particular set of type parameters.
994 // Note that this method could then never be called, so we
995 // do not want to try and codegen it, in that case (see #23435).
996 let predicates = tcx.predicates_of(def_id).instantiate_own(tcx, substs);
997 if !normalize_and_test_predicates(tcx, predicates.predicates) {
998 debug!("vtable_methods: predicates do not hold");
999 return None;
1000 }
1001
1002 Some((def_id, substs))
1003 })
1004 }).collect()
1005 )
1006 }
1007
1008 impl<'tcx,O> Obligation<'tcx,O> {
1009 pub fn new(cause: ObligationCause<'tcx>,
1010 param_env: ty::ParamEnv<'tcx>,
1011 predicate: O)
1012 -> Obligation<'tcx, O>
1013 {
1014 Obligation { cause, param_env, recursion_depth: 0, predicate }
1015 }
1016
1017 fn with_depth(cause: ObligationCause<'tcx>,
1018 recursion_depth: usize,
1019 param_env: ty::ParamEnv<'tcx>,
1020 predicate: O)
1021 -> Obligation<'tcx, O>
1022 {
1023 Obligation { cause, param_env, recursion_depth, predicate }
1024 }
1025
1026 pub fn misc(span: Span,
1027 body_id: ast::NodeId,
1028 param_env: ty::ParamEnv<'tcx>,
1029 trait_ref: O)
1030 -> Obligation<'tcx, O> {
1031 Obligation::new(ObligationCause::misc(span, body_id), param_env, trait_ref)
1032 }
1033
1034 pub fn with<P>(&self, value: P) -> Obligation<'tcx,P> {
1035 Obligation { cause: self.cause.clone(),
1036 param_env: self.param_env,
1037 recursion_depth: self.recursion_depth,
1038 predicate: value }
1039 }
1040 }
1041
1042 impl<'tcx> ObligationCause<'tcx> {
1043 pub fn new(span: Span,
1044 body_id: ast::NodeId,
1045 code: ObligationCauseCode<'tcx>)
1046 -> ObligationCause<'tcx> {
1047 ObligationCause { span: span, body_id: body_id, code: code }
1048 }
1049
1050 pub fn misc(span: Span, body_id: ast::NodeId) -> ObligationCause<'tcx> {
1051 ObligationCause { span: span, body_id: body_id, code: MiscObligation }
1052 }
1053
1054 pub fn dummy() -> ObligationCause<'tcx> {
1055 ObligationCause { span: DUMMY_SP, body_id: ast::CRATE_NODE_ID, code: MiscObligation }
1056 }
1057 }
1058
1059 impl<'tcx, N> Vtable<'tcx, N> {
1060 pub fn nested_obligations(self) -> Vec<N> {
1061 match self {
1062 VtableImpl(i) => i.nested,
1063 VtableParam(n) => n,
1064 VtableBuiltin(i) => i.nested,
1065 VtableAutoImpl(d) => d.nested,
1066 VtableClosure(c) => c.nested,
1067 VtableGenerator(c) => c.nested,
1068 VtableObject(d) => d.nested,
1069 VtableFnPointer(d) => d.nested,
1070 }
1071 }
1072
1073 pub fn map<M, F>(self, f: F) -> Vtable<'tcx, M> where F: FnMut(N) -> M {
1074 match self {
1075 VtableImpl(i) => VtableImpl(VtableImplData {
1076 impl_def_id: i.impl_def_id,
1077 substs: i.substs,
1078 nested: i.nested.into_iter().map(f).collect(),
1079 }),
1080 VtableParam(n) => VtableParam(n.into_iter().map(f).collect()),
1081 VtableBuiltin(i) => VtableBuiltin(VtableBuiltinData {
1082 nested: i.nested.into_iter().map(f).collect(),
1083 }),
1084 VtableObject(o) => VtableObject(VtableObjectData {
1085 upcast_trait_ref: o.upcast_trait_ref,
1086 vtable_base: o.vtable_base,
1087 nested: o.nested.into_iter().map(f).collect(),
1088 }),
1089 VtableAutoImpl(d) => VtableAutoImpl(VtableAutoImplData {
1090 trait_def_id: d.trait_def_id,
1091 nested: d.nested.into_iter().map(f).collect(),
1092 }),
1093 VtableFnPointer(p) => VtableFnPointer(VtableFnPointerData {
1094 fn_ty: p.fn_ty,
1095 nested: p.nested.into_iter().map(f).collect(),
1096 }),
1097 VtableGenerator(c) => VtableGenerator(VtableGeneratorData {
1098 generator_def_id: c.generator_def_id,
1099 substs: c.substs,
1100 nested: c.nested.into_iter().map(f).collect(),
1101 }),
1102 VtableClosure(c) => VtableClosure(VtableClosureData {
1103 closure_def_id: c.closure_def_id,
1104 substs: c.substs,
1105 nested: c.nested.into_iter().map(f).collect(),
1106 })
1107 }
1108 }
1109 }
1110
1111 impl<'tcx> FulfillmentError<'tcx> {
1112 fn new(obligation: PredicateObligation<'tcx>,
1113 code: FulfillmentErrorCode<'tcx>)
1114 -> FulfillmentError<'tcx>
1115 {
1116 FulfillmentError { obligation: obligation, code: code }
1117 }
1118 }
1119
1120 impl<'tcx> TraitObligation<'tcx> {
1121 fn self_ty(&self) -> ty::Binder<Ty<'tcx>> {
1122 self.predicate.map_bound(|p| p.self_ty())
1123 }
1124 }
1125
1126 pub fn provide(providers: &mut ty::query::Providers<'_>) {
1127 *providers = ty::query::Providers {
1128 is_object_safe: object_safety::is_object_safe_provider,
1129 specialization_graph_of: specialize::specialization_graph_provider,
1130 specializes: specialize::specializes,
1131 codegen_fulfill_obligation: codegen::codegen_fulfill_obligation,
1132 vtable_methods,
1133 substitute_normalize_and_test_predicates,
1134 ..*providers
1135 };
1136 }
1137
1138 pub trait ExClauseFold<'tcx>
1139 where
1140 Self: chalk_engine::context::Context + Clone,
1141 {
1142 fn fold_ex_clause_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(
1143 ex_clause: &chalk_engine::ExClause<Self>,
1144 folder: &mut F,
1145 ) -> chalk_engine::ExClause<Self>;
1146
1147 fn visit_ex_clause_with<'gcx: 'tcx, V: TypeVisitor<'tcx>>(
1148 ex_clause: &chalk_engine::ExClause<Self>,
1149 visitor: &mut V,
1150 ) -> bool;
1151 }
1152
1153 pub trait ExClauseLift<'tcx>
1154 where
1155 Self: chalk_engine::context::Context + Clone,
1156 {
1157 type LiftedExClause: Debug + 'tcx;
1158
1159 fn lift_ex_clause_to_tcx<'a, 'gcx>(
1160 ex_clause: &chalk_engine::ExClause<Self>,
1161 tcx: TyCtxt<'a, 'gcx, 'tcx>,
1162 ) -> Option<Self::LiftedExClause>;
1163 }