]> git.proxmox.com Git - rustc.git/blob - src/librustc/traits/select.rs
New upstream version 1.12.0+dfsg1
[rustc.git] / src / librustc / traits / select.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! See `README.md` for high-level documentation
12
13 pub use self::MethodMatchResult::*;
14 pub use self::MethodMatchedData::*;
15 use self::SelectionCandidate::*;
16 use self::EvaluationResult::*;
17
18 use super::coherence;
19 use super::DerivedObligationCause;
20 use super::project;
21 use super::project::{normalize_with_depth, Normalized};
22 use super::{PredicateObligation, TraitObligation, ObligationCause};
23 use super::{ObligationCauseCode, BuiltinDerivedObligation, ImplDerivedObligation};
24 use super::{SelectionError, Unimplemented, OutputTypeParameterMismatch};
25 use super::{ObjectCastObligation, Obligation};
26 use super::Reveal;
27 use super::TraitNotObjectSafe;
28 use super::Selection;
29 use super::SelectionResult;
30 use super::{VtableBuiltin, VtableImpl, VtableParam, VtableClosure,
31 VtableFnPointer, VtableObject, VtableDefaultImpl};
32 use super::{VtableImplData, VtableObjectData, VtableBuiltinData,
33 VtableClosureData, VtableDefaultImplData, VtableFnPointerData};
34 use super::util;
35
36 use hir::def_id::DefId;
37 use infer;
38 use infer::{InferCtxt, InferOk, TypeFreshener, TypeOrigin};
39 use ty::subst::{Subst, Substs, TypeSpace};
40 use ty::{self, ToPredicate, ToPolyTraitRef, Ty, TyCtxt, TypeFoldable};
41 use traits;
42 use ty::fast_reject;
43 use ty::relate::TypeRelation;
44
45 use rustc_data_structures::snapshot_vec::{SnapshotVecDelegate, SnapshotVec};
46 use std::cell::RefCell;
47 use std::fmt;
48 use std::marker::PhantomData;
49 use std::mem;
50 use std::rc::Rc;
51 use syntax::abi::Abi;
52 use hir;
53 use util::nodemap::FnvHashMap;
54
55 struct InferredObligationsSnapshotVecDelegate<'tcx> {
56 phantom: PhantomData<&'tcx i32>,
57 }
58 impl<'tcx> SnapshotVecDelegate for InferredObligationsSnapshotVecDelegate<'tcx> {
59 type Value = PredicateObligation<'tcx>;
60 type Undo = ();
61 fn reverse(_: &mut Vec<Self::Value>, _: Self::Undo) {}
62 }
63
64 pub struct SelectionContext<'cx, 'gcx: 'cx+'tcx, 'tcx: 'cx> {
65 infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
66
67 /// Freshener used specifically for skolemizing entries on the
68 /// obligation stack. This ensures that all entries on the stack
69 /// at one time will have the same set of skolemized entries,
70 /// which is important for checking for trait bounds that
71 /// recursively require themselves.
72 freshener: TypeFreshener<'cx, 'gcx, 'tcx>,
73
74 /// If true, indicates that the evaluation should be conservative
75 /// and consider the possibility of types outside this crate.
76 /// This comes up primarily when resolving ambiguity. Imagine
77 /// there is some trait reference `$0 : Bar` where `$0` is an
78 /// inference variable. If `intercrate` is true, then we can never
79 /// say for sure that this reference is not implemented, even if
80 /// there are *no impls at all for `Bar`*, because `$0` could be
81 /// bound to some type that in a downstream crate that implements
82 /// `Bar`. This is the suitable mode for coherence. Elsewhere,
83 /// though, we set this to false, because we are only interested
84 /// in types that the user could actually have written --- in
85 /// other words, we consider `$0 : Bar` to be unimplemented if
86 /// there is no type that the user could *actually name* that
87 /// would satisfy it. This avoids crippling inference, basically.
88 intercrate: bool,
89
90 inferred_obligations: SnapshotVec<InferredObligationsSnapshotVecDelegate<'tcx>>,
91 }
92
93 // A stack that walks back up the stack frame.
94 struct TraitObligationStack<'prev, 'tcx: 'prev> {
95 obligation: &'prev TraitObligation<'tcx>,
96
97 /// Trait ref from `obligation` but skolemized with the
98 /// selection-context's freshener. Used to check for recursion.
99 fresh_trait_ref: ty::PolyTraitRef<'tcx>,
100
101 previous: TraitObligationStackList<'prev, 'tcx>,
102 }
103
104 #[derive(Clone)]
105 pub struct SelectionCache<'tcx> {
106 hashmap: RefCell<FnvHashMap<ty::TraitRef<'tcx>,
107 SelectionResult<'tcx, SelectionCandidate<'tcx>>>>,
108 }
109
110 pub enum MethodMatchResult {
111 MethodMatched(MethodMatchedData),
112 MethodAmbiguous(/* list of impls that could apply */ Vec<DefId>),
113 MethodDidNotMatch,
114 }
115
116 #[derive(Copy, Clone, Debug)]
117 pub enum MethodMatchedData {
118 // In the case of a precise match, we don't really need to store
119 // how the match was found. So don't.
120 PreciseMethodMatch,
121
122 // In the case of a coercion, we need to know the precise impl so
123 // that we can determine the type to which things were coerced.
124 CoerciveMethodMatch(/* impl we matched */ DefId)
125 }
126
127 /// The selection process begins by considering all impls, where
128 /// clauses, and so forth that might resolve an obligation. Sometimes
129 /// we'll be able to say definitively that (e.g.) an impl does not
130 /// apply to the obligation: perhaps it is defined for `usize` but the
131 /// obligation is for `int`. In that case, we drop the impl out of the
132 /// list. But the other cases are considered *candidates*.
133 ///
134 /// For selection to succeed, there must be exactly one matching
135 /// candidate. If the obligation is fully known, this is guaranteed
136 /// by coherence. However, if the obligation contains type parameters
137 /// or variables, there may be multiple such impls.
138 ///
139 /// It is not a real problem if multiple matching impls exist because
140 /// of type variables - it just means the obligation isn't sufficiently
141 /// elaborated. In that case we report an ambiguity, and the caller can
142 /// try again after more type information has been gathered or report a
143 /// "type annotations required" error.
144 ///
145 /// However, with type parameters, this can be a real problem - type
146 /// parameters don't unify with regular types, but they *can* unify
147 /// with variables from blanket impls, and (unless we know its bounds
148 /// will always be satisfied) picking the blanket impl will be wrong
149 /// for at least *some* substitutions. To make this concrete, if we have
150 ///
151 /// trait AsDebug { type Out : fmt::Debug; fn debug(self) -> Self::Out; }
152 /// impl<T: fmt::Debug> AsDebug for T {
153 /// type Out = T;
154 /// fn debug(self) -> fmt::Debug { self }
155 /// }
156 /// fn foo<T: AsDebug>(t: T) { println!("{:?}", <T as AsDebug>::debug(t)); }
157 ///
158 /// we can't just use the impl to resolve the <T as AsDebug> obligation
159 /// - a type from another crate (that doesn't implement fmt::Debug) could
160 /// implement AsDebug.
161 ///
162 /// Because where-clauses match the type exactly, multiple clauses can
163 /// only match if there are unresolved variables, and we can mostly just
164 /// report this ambiguity in that case. This is still a problem - we can't
165 /// *do anything* with ambiguities that involve only regions. This is issue
166 /// #21974.
167 ///
168 /// If a single where-clause matches and there are no inference
169 /// variables left, then it definitely matches and we can just select
170 /// it.
171 ///
172 /// In fact, we even select the where-clause when the obligation contains
173 /// inference variables. The can lead to inference making "leaps of logic",
174 /// for example in this situation:
175 ///
176 /// pub trait Foo<T> { fn foo(&self) -> T; }
177 /// impl<T> Foo<()> for T { fn foo(&self) { } }
178 /// impl Foo<bool> for bool { fn foo(&self) -> bool { *self } }
179 ///
180 /// pub fn foo<T>(t: T) where T: Foo<bool> {
181 /// println!("{:?}", <T as Foo<_>>::foo(&t));
182 /// }
183 /// fn main() { foo(false); }
184 ///
185 /// Here the obligation <T as Foo<$0>> can be matched by both the blanket
186 /// impl and the where-clause. We select the where-clause and unify $0=bool,
187 /// so the program prints "false". However, if the where-clause is omitted,
188 /// the blanket impl is selected, we unify $0=(), and the program prints
189 /// "()".
190 ///
191 /// Exactly the same issues apply to projection and object candidates, except
192 /// that we can have both a projection candidate and a where-clause candidate
193 /// for the same obligation. In that case either would do (except that
194 /// different "leaps of logic" would occur if inference variables are
195 /// present), and we just pick the where-clause. This is, for example,
196 /// required for associated types to work in default impls, as the bounds
197 /// are visible both as projection bounds and as where-clauses from the
198 /// parameter environment.
199 #[derive(PartialEq,Eq,Debug,Clone)]
200 enum SelectionCandidate<'tcx> {
201 BuiltinCandidate { has_nested: bool },
202 ParamCandidate(ty::PolyTraitRef<'tcx>),
203 ImplCandidate(DefId),
204 DefaultImplCandidate(DefId),
205 DefaultImplObjectCandidate(DefId),
206
207 /// This is a trait matching with a projected type as `Self`, and
208 /// we found an applicable bound in the trait definition.
209 ProjectionCandidate,
210
211 /// Implementation of a `Fn`-family trait by one of the anonymous types
212 /// generated for a `||` expression. The ty::ClosureKind informs the
213 /// confirmation step what ClosureKind obligation to emit.
214 ClosureCandidate(/* closure */ DefId, ty::ClosureSubsts<'tcx>, ty::ClosureKind),
215
216 /// Implementation of a `Fn`-family trait by one of the anonymous
217 /// types generated for a fn pointer type (e.g., `fn(int)->int`)
218 FnPointerCandidate,
219
220 ObjectCandidate,
221
222 BuiltinObjectCandidate,
223
224 BuiltinUnsizeCandidate,
225 }
226
227 impl<'a, 'tcx> ty::Lift<'tcx> for SelectionCandidate<'a> {
228 type Lifted = SelectionCandidate<'tcx>;
229 fn lift_to_tcx<'b, 'gcx>(&self, tcx: TyCtxt<'b, 'gcx, 'tcx>) -> Option<Self::Lifted> {
230 Some(match *self {
231 BuiltinCandidate { has_nested } => {
232 BuiltinCandidate {
233 has_nested: has_nested
234 }
235 }
236 ImplCandidate(def_id) => ImplCandidate(def_id),
237 DefaultImplCandidate(def_id) => DefaultImplCandidate(def_id),
238 DefaultImplObjectCandidate(def_id) => {
239 DefaultImplObjectCandidate(def_id)
240 }
241 ProjectionCandidate => ProjectionCandidate,
242 FnPointerCandidate => FnPointerCandidate,
243 ObjectCandidate => ObjectCandidate,
244 BuiltinObjectCandidate => BuiltinObjectCandidate,
245 BuiltinUnsizeCandidate => BuiltinUnsizeCandidate,
246
247 ParamCandidate(ref trait_ref) => {
248 return tcx.lift(trait_ref).map(ParamCandidate);
249 }
250 ClosureCandidate(def_id, ref substs, kind) => {
251 return tcx.lift(substs).map(|substs| {
252 ClosureCandidate(def_id, substs, kind)
253 });
254 }
255 })
256 }
257 }
258
259 struct SelectionCandidateSet<'tcx> {
260 // a list of candidates that definitely apply to the current
261 // obligation (meaning: types unify).
262 vec: Vec<SelectionCandidate<'tcx>>,
263
264 // if this is true, then there were candidates that might or might
265 // not have applied, but we couldn't tell. This occurs when some
266 // of the input types are type variables, in which case there are
267 // various "builtin" rules that might or might not trigger.
268 ambiguous: bool,
269 }
270
271 #[derive(PartialEq,Eq,Debug,Clone)]
272 struct EvaluatedCandidate<'tcx> {
273 candidate: SelectionCandidate<'tcx>,
274 evaluation: EvaluationResult,
275 }
276
277 /// When does the builtin impl for `T: Trait` apply?
278 enum BuiltinImplConditions<'tcx> {
279 /// The impl is conditional on T1,T2,.. : Trait
280 Where(ty::Binder<Vec<Ty<'tcx>>>),
281 /// There is no built-in impl. There may be some other
282 /// candidate (a where-clause or user-defined impl).
283 None,
284 /// There is *no* impl for this, builtin or not. Ignore
285 /// all where-clauses.
286 Never,
287 /// It is unknown whether there is an impl.
288 Ambiguous
289 }
290
291 #[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq)]
292 /// The result of trait evaluation. The order is important
293 /// here as the evaluation of a list is the maximum of the
294 /// evaluations.
295 enum EvaluationResult {
296 /// Evaluation successful
297 EvaluatedToOk,
298 /// Evaluation failed because of recursion - treated as ambiguous
299 EvaluatedToUnknown,
300 /// Evaluation is known to be ambiguous
301 EvaluatedToAmbig,
302 /// Evaluation failed
303 EvaluatedToErr,
304 }
305
306 #[derive(Clone)]
307 pub struct EvaluationCache<'tcx> {
308 hashmap: RefCell<FnvHashMap<ty::PolyTraitRef<'tcx>, EvaluationResult>>
309 }
310
311 impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
312 pub fn new(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>) -> SelectionContext<'cx, 'gcx, 'tcx> {
313 SelectionContext {
314 infcx: infcx,
315 freshener: infcx.freshener(),
316 intercrate: false,
317 inferred_obligations: SnapshotVec::new(),
318 }
319 }
320
321 pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>) -> SelectionContext<'cx, 'gcx, 'tcx> {
322 SelectionContext {
323 infcx: infcx,
324 freshener: infcx.freshener(),
325 intercrate: true,
326 inferred_obligations: SnapshotVec::new(),
327 }
328 }
329
330 pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
331 self.infcx
332 }
333
334 pub fn tcx(&self) -> TyCtxt<'cx, 'gcx, 'tcx> {
335 self.infcx.tcx
336 }
337
338 pub fn param_env(&self) -> &'cx ty::ParameterEnvironment<'tcx> {
339 self.infcx.param_env()
340 }
341
342 pub fn closure_typer(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
343 self.infcx
344 }
345
346 pub fn projection_mode(&self) -> Reveal {
347 self.infcx.projection_mode()
348 }
349
350 /// Wraps the inference context's in_snapshot s.t. snapshot handling is only from the selection
351 /// context's self.
352 fn in_snapshot<R, F>(&mut self, f: F) -> R
353 where F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> R
354 {
355 // The irrefutable nature of the operation means we don't need to snapshot the
356 // inferred_obligations vector.
357 self.infcx.in_snapshot(|snapshot| f(self, snapshot))
358 }
359
360 /// Wraps a probe s.t. obligations collected during it are ignored and old obligations are
361 /// retained.
362 fn probe<R, F>(&mut self, f: F) -> R
363 where F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> R
364 {
365 let inferred_obligations_snapshot = self.inferred_obligations.start_snapshot();
366 let result = self.infcx.probe(|snapshot| f(self, snapshot));
367 self.inferred_obligations.rollback_to(inferred_obligations_snapshot);
368 result
369 }
370
371 /// Wraps a commit_if_ok s.t. obligations collected during it are not returned in selection if
372 /// the transaction fails and s.t. old obligations are retained.
373 fn commit_if_ok<T, E, F>(&mut self, f: F) -> Result<T, E> where
374 F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> Result<T, E>
375 {
376 let inferred_obligations_snapshot = self.inferred_obligations.start_snapshot();
377 match self.infcx.commit_if_ok(|snapshot| f(self, snapshot)) {
378 Ok(ok) => {
379 self.inferred_obligations.commit(inferred_obligations_snapshot);
380 Ok(ok)
381 },
382 Err(err) => {
383 self.inferred_obligations.rollback_to(inferred_obligations_snapshot);
384 Err(err)
385 }
386 }
387 }
388
389
390 ///////////////////////////////////////////////////////////////////////////
391 // Selection
392 //
393 // The selection phase tries to identify *how* an obligation will
394 // be resolved. For example, it will identify which impl or
395 // parameter bound is to be used. The process can be inconclusive
396 // if the self type in the obligation is not fully inferred. Selection
397 // can result in an error in one of two ways:
398 //
399 // 1. If no applicable impl or parameter bound can be found.
400 // 2. If the output type parameters in the obligation do not match
401 // those specified by the impl/bound. For example, if the obligation
402 // is `Vec<Foo>:Iterable<Bar>`, but the impl specifies
403 // `impl<T> Iterable<T> for Vec<T>`, than an error would result.
404
405 /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
406 /// type environment by performing unification.
407 pub fn select(&mut self, obligation: &TraitObligation<'tcx>)
408 -> SelectionResult<'tcx, Selection<'tcx>> {
409 debug!("select({:?})", obligation);
410 assert!(!obligation.predicate.has_escaping_regions());
411
412 let dep_node = obligation.predicate.dep_node();
413 let _task = self.tcx().dep_graph.in_task(dep_node);
414
415 let stack = self.push_stack(TraitObligationStackList::empty(), obligation);
416 match self.candidate_from_obligation(&stack)? {
417 None => Ok(None),
418 Some(candidate) => {
419 let mut candidate = self.confirm_candidate(obligation, candidate)?;
420 // FIXME(#32730) remove this assertion once inferred obligations are propagated
421 // from inference
422 assert!(self.inferred_obligations.len() == 0);
423 let inferred_obligations = (*self.inferred_obligations).into_iter().cloned();
424 candidate.nested_obligations_mut().extend(inferred_obligations);
425 Ok(Some(candidate))
426 },
427 }
428 }
429
430 ///////////////////////////////////////////////////////////////////////////
431 // EVALUATION
432 //
433 // Tests whether an obligation can be selected or whether an impl
434 // can be applied to particular types. It skips the "confirmation"
435 // step and hence completely ignores output type parameters.
436 //
437 // The result is "true" if the obligation *may* hold and "false" if
438 // we can be sure it does not.
439
440 /// Evaluates whether the obligation `obligation` can be satisfied (by any means).
441 pub fn evaluate_obligation(&mut self,
442 obligation: &PredicateObligation<'tcx>)
443 -> bool
444 {
445 debug!("evaluate_obligation({:?})",
446 obligation);
447
448 self.probe(|this, _| {
449 this.evaluate_predicate_recursively(TraitObligationStackList::empty(), obligation)
450 .may_apply()
451 })
452 }
453
454 /// Evaluates whether the obligation `obligation` can be satisfied,
455 /// and returns `false` if not certain. However, this is not entirely
456 /// accurate if inference variables are involved.
457 pub fn evaluate_obligation_conservatively(&mut self,
458 obligation: &PredicateObligation<'tcx>)
459 -> bool
460 {
461 debug!("evaluate_obligation_conservatively({:?})",
462 obligation);
463
464 self.probe(|this, _| {
465 this.evaluate_predicate_recursively(TraitObligationStackList::empty(), obligation)
466 == EvaluatedToOk
467 })
468 }
469
470 /// Evaluates the predicates in `predicates` recursively. Note that
471 /// this applies projections in the predicates, and therefore
472 /// is run within an inference probe.
473 fn evaluate_predicates_recursively<'a,'o,I>(&mut self,
474 stack: TraitObligationStackList<'o, 'tcx>,
475 predicates: I)
476 -> EvaluationResult
477 where I : Iterator<Item=&'a PredicateObligation<'tcx>>, 'tcx:'a
478 {
479 let mut result = EvaluatedToOk;
480 for obligation in predicates {
481 let eval = self.evaluate_predicate_recursively(stack, obligation);
482 debug!("evaluate_predicate_recursively({:?}) = {:?}",
483 obligation, eval);
484 match eval {
485 EvaluatedToErr => { return EvaluatedToErr; }
486 EvaluatedToAmbig => { result = EvaluatedToAmbig; }
487 EvaluatedToUnknown => {
488 if result < EvaluatedToUnknown {
489 result = EvaluatedToUnknown;
490 }
491 }
492 EvaluatedToOk => { }
493 }
494 }
495 result
496 }
497
498 fn evaluate_predicate_recursively<'o>(&mut self,
499 previous_stack: TraitObligationStackList<'o, 'tcx>,
500 obligation: &PredicateObligation<'tcx>)
501 -> EvaluationResult
502 {
503 debug!("evaluate_predicate_recursively({:?})",
504 obligation);
505
506 // Check the cache from the tcx of predicates that we know
507 // have been proven elsewhere. This cache only contains
508 // predicates that are global in scope and hence unaffected by
509 // the current environment.
510 if self.tcx().fulfilled_predicates.borrow().check_duplicate(&obligation.predicate) {
511 return EvaluatedToOk;
512 }
513
514 match obligation.predicate {
515 ty::Predicate::Rfc1592(..) => EvaluatedToOk,
516
517 ty::Predicate::Trait(ref t) => {
518 assert!(!t.has_escaping_regions());
519 let obligation = obligation.with(t.clone());
520 self.evaluate_obligation_recursively(previous_stack, &obligation)
521 }
522
523 ty::Predicate::Equate(ref p) => {
524 // does this code ever run?
525 match self.infcx.equality_predicate(obligation.cause.span, p) {
526 Ok(InferOk { obligations, .. }) => {
527 self.inferred_obligations.extend(obligations);
528 EvaluatedToOk
529 },
530 Err(_) => EvaluatedToErr
531 }
532 }
533
534 ty::Predicate::WellFormed(ty) => {
535 match ty::wf::obligations(self.infcx, obligation.cause.body_id,
536 ty, obligation.cause.span) {
537 Some(obligations) =>
538 self.evaluate_predicates_recursively(previous_stack, obligations.iter()),
539 None =>
540 EvaluatedToAmbig,
541 }
542 }
543
544 ty::Predicate::TypeOutlives(..) | ty::Predicate::RegionOutlives(..) => {
545 // we do not consider region relationships when
546 // evaluating trait matches
547 EvaluatedToOk
548 }
549
550 ty::Predicate::ObjectSafe(trait_def_id) => {
551 if self.tcx().is_object_safe(trait_def_id) {
552 EvaluatedToOk
553 } else {
554 EvaluatedToErr
555 }
556 }
557
558 ty::Predicate::Projection(ref data) => {
559 let project_obligation = obligation.with(data.clone());
560 match project::poly_project_and_unify_type(self, &project_obligation) {
561 Ok(Some(subobligations)) => {
562 self.evaluate_predicates_recursively(previous_stack,
563 subobligations.iter())
564 }
565 Ok(None) => {
566 EvaluatedToAmbig
567 }
568 Err(_) => {
569 EvaluatedToErr
570 }
571 }
572 }
573
574 ty::Predicate::ClosureKind(closure_def_id, kind) => {
575 match self.infcx.closure_kind(closure_def_id) {
576 Some(closure_kind) => {
577 if closure_kind.extends(kind) {
578 EvaluatedToOk
579 } else {
580 EvaluatedToErr
581 }
582 }
583 None => {
584 EvaluatedToAmbig
585 }
586 }
587 }
588 }
589 }
590
591 fn evaluate_obligation_recursively<'o>(&mut self,
592 previous_stack: TraitObligationStackList<'o, 'tcx>,
593 obligation: &TraitObligation<'tcx>)
594 -> EvaluationResult
595 {
596 debug!("evaluate_obligation_recursively({:?})",
597 obligation);
598
599 let stack = self.push_stack(previous_stack, obligation);
600 let fresh_trait_ref = stack.fresh_trait_ref;
601 if let Some(result) = self.check_evaluation_cache(fresh_trait_ref) {
602 debug!("CACHE HIT: EVAL({:?})={:?}",
603 fresh_trait_ref,
604 result);
605 return result;
606 }
607
608 let result = self.evaluate_stack(&stack);
609
610 debug!("CACHE MISS: EVAL({:?})={:?}",
611 fresh_trait_ref,
612 result);
613 self.insert_evaluation_cache(fresh_trait_ref, result);
614
615 result
616 }
617
618 fn evaluate_stack<'o>(&mut self,
619 stack: &TraitObligationStack<'o, 'tcx>)
620 -> EvaluationResult
621 {
622 // In intercrate mode, whenever any of the types are unbound,
623 // there can always be an impl. Even if there are no impls in
624 // this crate, perhaps the type would be unified with
625 // something from another crate that does provide an impl.
626 //
627 // In intra mode, we must still be conservative. The reason is
628 // that we want to avoid cycles. Imagine an impl like:
629 //
630 // impl<T:Eq> Eq for Vec<T>
631 //
632 // and a trait reference like `$0 : Eq` where `$0` is an
633 // unbound variable. When we evaluate this trait-reference, we
634 // will unify `$0` with `Vec<$1>` (for some fresh variable
635 // `$1`), on the condition that `$1 : Eq`. We will then wind
636 // up with many candidates (since that are other `Eq` impls
637 // that apply) and try to winnow things down. This results in
638 // a recursive evaluation that `$1 : Eq` -- as you can
639 // imagine, this is just where we started. To avoid that, we
640 // check for unbound variables and return an ambiguous (hence possible)
641 // match if we've seen this trait before.
642 //
643 // This suffices to allow chains like `FnMut` implemented in
644 // terms of `Fn` etc, but we could probably make this more
645 // precise still.
646 let input_types = stack.fresh_trait_ref.0.input_types();
647 let unbound_input_types = input_types.iter().any(|ty| ty.is_fresh());
648 if unbound_input_types && self.intercrate {
649 debug!("evaluate_stack({:?}) --> unbound argument, intercrate --> ambiguous",
650 stack.fresh_trait_ref);
651 return EvaluatedToAmbig;
652 }
653 if unbound_input_types &&
654 stack.iter().skip(1).any(
655 |prev| self.match_fresh_trait_refs(&stack.fresh_trait_ref,
656 &prev.fresh_trait_ref))
657 {
658 debug!("evaluate_stack({:?}) --> unbound argument, recursive --> giving up",
659 stack.fresh_trait_ref);
660 return EvaluatedToUnknown;
661 }
662
663 // If there is any previous entry on the stack that precisely
664 // matches this obligation, then we can assume that the
665 // obligation is satisfied for now (still all other conditions
666 // must be met of course). One obvious case this comes up is
667 // marker traits like `Send`. Think of a linked list:
668 //
669 // struct List<T> { data: T, next: Option<Box<List<T>>> {
670 //
671 // `Box<List<T>>` will be `Send` if `T` is `Send` and
672 // `Option<Box<List<T>>>` is `Send`, and in turn
673 // `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
674 // `Send`.
675 //
676 // Note that we do this comparison using the `fresh_trait_ref`
677 // fields. Because these have all been skolemized using
678 // `self.freshener`, we can be sure that (a) this will not
679 // affect the inferencer state and (b) that if we see two
680 // skolemized types with the same index, they refer to the
681 // same unbound type variable.
682 if
683 stack.iter()
684 .skip(1) // skip top-most frame
685 .any(|prev| stack.fresh_trait_ref == prev.fresh_trait_ref)
686 {
687 debug!("evaluate_stack({:?}) --> recursive",
688 stack.fresh_trait_ref);
689 return EvaluatedToOk;
690 }
691
692 match self.candidate_from_obligation(stack) {
693 Ok(Some(c)) => self.evaluate_candidate(stack, &c),
694 Ok(None) => EvaluatedToAmbig,
695 Err(..) => EvaluatedToErr
696 }
697 }
698
699 /// Further evaluate `candidate` to decide whether all type parameters match and whether nested
700 /// obligations are met. Returns true if `candidate` remains viable after this further
701 /// scrutiny.
702 fn evaluate_candidate<'o>(&mut self,
703 stack: &TraitObligationStack<'o, 'tcx>,
704 candidate: &SelectionCandidate<'tcx>)
705 -> EvaluationResult
706 {
707 debug!("evaluate_candidate: depth={} candidate={:?}",
708 stack.obligation.recursion_depth, candidate);
709 let result = self.probe(|this, _| {
710 let candidate = (*candidate).clone();
711 match this.confirm_candidate(stack.obligation, candidate) {
712 Ok(selection) => {
713 this.evaluate_predicates_recursively(
714 stack.list(),
715 selection.nested_obligations().iter())
716 }
717 Err(..) => EvaluatedToErr
718 }
719 });
720 debug!("evaluate_candidate: depth={} result={:?}",
721 stack.obligation.recursion_depth, result);
722 result
723 }
724
725 fn check_evaluation_cache(&self, trait_ref: ty::PolyTraitRef<'tcx>)
726 -> Option<EvaluationResult>
727 {
728 if self.can_use_global_caches() {
729 let cache = self.tcx().evaluation_cache.hashmap.borrow();
730 if let Some(cached) = cache.get(&trait_ref) {
731 return Some(cached.clone());
732 }
733 }
734 self.infcx.evaluation_cache.hashmap.borrow().get(&trait_ref).cloned()
735 }
736
737 fn insert_evaluation_cache(&mut self,
738 trait_ref: ty::PolyTraitRef<'tcx>,
739 result: EvaluationResult)
740 {
741 // Avoid caching results that depend on more than just the trait-ref:
742 // The stack can create EvaluatedToUnknown, and closure signatures
743 // being yet uninferred can create "spurious" EvaluatedToAmbig
744 // and EvaluatedToOk.
745 if result == EvaluatedToUnknown ||
746 ((result == EvaluatedToAmbig || result == EvaluatedToOk)
747 && trait_ref.has_closure_types())
748 {
749 return;
750 }
751
752 if self.can_use_global_caches() {
753 let mut cache = self.tcx().evaluation_cache.hashmap.borrow_mut();
754 if let Some(trait_ref) = self.tcx().lift_to_global(&trait_ref) {
755 cache.insert(trait_ref, result);
756 return;
757 }
758 }
759
760 self.infcx.evaluation_cache.hashmap.borrow_mut().insert(trait_ref, result);
761 }
762
763 ///////////////////////////////////////////////////////////////////////////
764 // CANDIDATE ASSEMBLY
765 //
766 // The selection process begins by examining all in-scope impls,
767 // caller obligations, and so forth and assembling a list of
768 // candidates. See `README.md` and the `Candidate` type for more
769 // details.
770
771 fn candidate_from_obligation<'o>(&mut self,
772 stack: &TraitObligationStack<'o, 'tcx>)
773 -> SelectionResult<'tcx, SelectionCandidate<'tcx>>
774 {
775 // Watch out for overflow. This intentionally bypasses (and does
776 // not update) the cache.
777 let recursion_limit = self.infcx.tcx.sess.recursion_limit.get();
778 if stack.obligation.recursion_depth >= recursion_limit {
779 self.infcx().report_overflow_error(&stack.obligation, true);
780 }
781
782 // Check the cache. Note that we skolemize the trait-ref
783 // separately rather than using `stack.fresh_trait_ref` -- this
784 // is because we want the unbound variables to be replaced
785 // with fresh skolemized types starting from index 0.
786 let cache_fresh_trait_pred =
787 self.infcx.freshen(stack.obligation.predicate.clone());
788 debug!("candidate_from_obligation(cache_fresh_trait_pred={:?}, obligation={:?})",
789 cache_fresh_trait_pred,
790 stack);
791 assert!(!stack.obligation.predicate.has_escaping_regions());
792
793 match self.check_candidate_cache(&cache_fresh_trait_pred) {
794 Some(c) => {
795 debug!("CACHE HIT: SELECT({:?})={:?}",
796 cache_fresh_trait_pred,
797 c);
798 return c;
799 }
800 None => { }
801 }
802
803 // If no match, compute result and insert into cache.
804 let candidate = self.candidate_from_obligation_no_cache(stack);
805
806 if self.should_update_candidate_cache(&cache_fresh_trait_pred, &candidate) {
807 debug!("CACHE MISS: SELECT({:?})={:?}",
808 cache_fresh_trait_pred, candidate);
809 self.insert_candidate_cache(cache_fresh_trait_pred, candidate.clone());
810 }
811
812 candidate
813 }
814
815 // Treat negative impls as unimplemented
816 fn filter_negative_impls(&self, candidate: SelectionCandidate<'tcx>)
817 -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
818 if let ImplCandidate(def_id) = candidate {
819 if self.tcx().trait_impl_polarity(def_id) == Some(hir::ImplPolarity::Negative) {
820 return Err(Unimplemented)
821 }
822 }
823 Ok(Some(candidate))
824 }
825
826 fn candidate_from_obligation_no_cache<'o>(&mut self,
827 stack: &TraitObligationStack<'o, 'tcx>)
828 -> SelectionResult<'tcx, SelectionCandidate<'tcx>>
829 {
830 if stack.obligation.predicate.references_error() {
831 // If we encounter a `TyError`, we generally prefer the
832 // most "optimistic" result in response -- that is, the
833 // one least likely to report downstream errors. But
834 // because this routine is shared by coherence and by
835 // trait selection, there isn't an obvious "right" choice
836 // here in that respect, so we opt to just return
837 // ambiguity and let the upstream clients sort it out.
838 return Ok(None);
839 }
840
841 if !self.is_knowable(stack) {
842 debug!("coherence stage: not knowable");
843 return Ok(None);
844 }
845
846 let candidate_set = self.assemble_candidates(stack)?;
847
848 if candidate_set.ambiguous {
849 debug!("candidate set contains ambig");
850 return Ok(None);
851 }
852
853 let mut candidates = candidate_set.vec;
854
855 debug!("assembled {} candidates for {:?}: {:?}",
856 candidates.len(),
857 stack,
858 candidates);
859
860 // At this point, we know that each of the entries in the
861 // candidate set is *individually* applicable. Now we have to
862 // figure out if they contain mutual incompatibilities. This
863 // frequently arises if we have an unconstrained input type --
864 // for example, we are looking for $0:Eq where $0 is some
865 // unconstrained type variable. In that case, we'll get a
866 // candidate which assumes $0 == int, one that assumes $0 ==
867 // usize, etc. This spells an ambiguity.
868
869 // If there is more than one candidate, first winnow them down
870 // by considering extra conditions (nested obligations and so
871 // forth). We don't winnow if there is exactly one
872 // candidate. This is a relatively minor distinction but it
873 // can lead to better inference and error-reporting. An
874 // example would be if there was an impl:
875 //
876 // impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
877 //
878 // and we were to see some code `foo.push_clone()` where `boo`
879 // is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
880 // we were to winnow, we'd wind up with zero candidates.
881 // Instead, we select the right impl now but report `Bar does
882 // not implement Clone`.
883 if candidates.len() == 1 {
884 return self.filter_negative_impls(candidates.pop().unwrap());
885 }
886
887 // Winnow, but record the exact outcome of evaluation, which
888 // is needed for specialization.
889 let mut candidates: Vec<_> = candidates.into_iter().filter_map(|c| {
890 let eval = self.evaluate_candidate(stack, &c);
891 if eval.may_apply() {
892 Some(EvaluatedCandidate {
893 candidate: c,
894 evaluation: eval,
895 })
896 } else {
897 None
898 }
899 }).collect();
900
901 // If there are STILL multiple candidate, we can further
902 // reduce the list by dropping duplicates -- including
903 // resolving specializations.
904 if candidates.len() > 1 {
905 let mut i = 0;
906 while i < candidates.len() {
907 let is_dup =
908 (0..candidates.len())
909 .filter(|&j| i != j)
910 .any(|j| self.candidate_should_be_dropped_in_favor_of(&candidates[i],
911 &candidates[j]));
912 if is_dup {
913 debug!("Dropping candidate #{}/{}: {:?}",
914 i, candidates.len(), candidates[i]);
915 candidates.swap_remove(i);
916 } else {
917 debug!("Retaining candidate #{}/{}: {:?}",
918 i, candidates.len(), candidates[i]);
919 i += 1;
920 }
921 }
922 }
923
924 // If there are *STILL* multiple candidates, give up and
925 // report ambiguity.
926 if candidates.len() > 1 {
927 debug!("multiple matches, ambig");
928 return Ok(None);
929 }
930
931 // If there are *NO* candidates, then there are no impls --
932 // that we know of, anyway. Note that in the case where there
933 // are unbound type variables within the obligation, it might
934 // be the case that you could still satisfy the obligation
935 // from another crate by instantiating the type variables with
936 // a type from another crate that does have an impl. This case
937 // is checked for in `evaluate_stack` (and hence users
938 // who might care about this case, like coherence, should use
939 // that function).
940 if candidates.is_empty() {
941 return Err(Unimplemented);
942 }
943
944 // Just one candidate left.
945 self.filter_negative_impls(candidates.pop().unwrap().candidate)
946 }
947
948 fn is_knowable<'o>(&mut self,
949 stack: &TraitObligationStack<'o, 'tcx>)
950 -> bool
951 {
952 debug!("is_knowable(intercrate={})", self.intercrate);
953
954 if !self.intercrate {
955 return true;
956 }
957
958 let obligation = &stack.obligation;
959 let predicate = self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
960
961 // ok to skip binder because of the nature of the
962 // trait-ref-is-knowable check, which does not care about
963 // bound regions
964 let trait_ref = &predicate.skip_binder().trait_ref;
965
966 coherence::trait_ref_is_knowable(self.tcx(), trait_ref)
967 }
968
969 /// Returns true if the global caches can be used.
970 /// Do note that if the type itself is not in the
971 /// global tcx, the local caches will be used.
972 fn can_use_global_caches(&self) -> bool {
973 // If there are any where-clauses in scope, then we always use
974 // a cache local to this particular scope. Otherwise, we
975 // switch to a global cache. We used to try and draw
976 // finer-grained distinctions, but that led to a serious of
977 // annoying and weird bugs like #22019 and #18290. This simple
978 // rule seems to be pretty clearly safe and also still retains
979 // a very high hit rate (~95% when compiling rustc).
980 if !self.param_env().caller_bounds.is_empty() {
981 return false;
982 }
983
984 // Avoid using the master cache during coherence and just rely
985 // on the local cache. This effectively disables caching
986 // during coherence. It is really just a simplification to
987 // avoid us having to fear that coherence results "pollute"
988 // the master cache. Since coherence executes pretty quickly,
989 // it's not worth going to more trouble to increase the
990 // hit-rate I don't think.
991 if self.intercrate {
992 return false;
993 }
994
995 // Otherwise, we can use the global cache.
996 true
997 }
998
999 fn check_candidate_cache(&mut self,
1000 cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>)
1001 -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>>
1002 {
1003 let trait_ref = &cache_fresh_trait_pred.0.trait_ref;
1004 if self.can_use_global_caches() {
1005 let cache = self.tcx().selection_cache.hashmap.borrow();
1006 if let Some(cached) = cache.get(&trait_ref) {
1007 return Some(cached.clone());
1008 }
1009 }
1010 self.infcx.selection_cache.hashmap.borrow().get(trait_ref).cloned()
1011 }
1012
1013 fn insert_candidate_cache(&mut self,
1014 cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1015 candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>)
1016 {
1017 let trait_ref = cache_fresh_trait_pred.0.trait_ref;
1018 if self.can_use_global_caches() {
1019 let mut cache = self.tcx().selection_cache.hashmap.borrow_mut();
1020 if let Some(trait_ref) = self.tcx().lift_to_global(&trait_ref) {
1021 if let Some(candidate) = self.tcx().lift_to_global(&candidate) {
1022 cache.insert(trait_ref, candidate);
1023 return;
1024 }
1025 }
1026 }
1027
1028 self.infcx.selection_cache.hashmap.borrow_mut().insert(trait_ref, candidate);
1029 }
1030
1031 fn should_update_candidate_cache(&mut self,
1032 cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>,
1033 candidate: &SelectionResult<'tcx, SelectionCandidate<'tcx>>)
1034 -> bool
1035 {
1036 // In general, it's a good idea to cache results, even
1037 // ambiguous ones, to save us some trouble later. But we have
1038 // to be careful not to cache results that could be
1039 // invalidated later by advances in inference. Normally, this
1040 // is not an issue, because any inference variables whose
1041 // types are not yet bound are "freshened" in the cache key,
1042 // which means that if we later get the same request once that
1043 // type variable IS bound, we'll have a different cache key.
1044 // For example, if we have `Vec<_#0t> : Foo`, and `_#0t` is
1045 // not yet known, we may cache the result as `None`. But if
1046 // later `_#0t` is bound to `Bar`, then when we freshen we'll
1047 // have `Vec<Bar> : Foo` as the cache key.
1048 //
1049 // HOWEVER, it CAN happen that we get an ambiguity result in
1050 // one particular case around closures where the cache key
1051 // would not change. That is when the precise types of the
1052 // upvars that a closure references have not yet been figured
1053 // out (i.e., because it is not yet known if they are captured
1054 // by ref, and if by ref, what kind of ref). In these cases,
1055 // when matching a builtin bound, we will yield back an
1056 // ambiguous result. But the *cache key* is just the closure type,
1057 // it doesn't capture the state of the upvar computation.
1058 //
1059 // To avoid this trap, just don't cache ambiguous results if
1060 // the self-type contains no inference byproducts (that really
1061 // shouldn't happen in other circumstances anyway, given
1062 // coherence).
1063
1064 match *candidate {
1065 Ok(Some(_)) | Err(_) => true,
1066 Ok(None) => {
1067 cache_fresh_trait_pred.0.trait_ref.substs.types.has_infer_types()
1068 }
1069 }
1070 }
1071
1072 fn assemble_candidates<'o>(&mut self,
1073 stack: &TraitObligationStack<'o, 'tcx>)
1074 -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>>
1075 {
1076 let TraitObligationStack { obligation, .. } = *stack;
1077 let ref obligation = Obligation {
1078 cause: obligation.cause.clone(),
1079 recursion_depth: obligation.recursion_depth,
1080 predicate: self.infcx().resolve_type_vars_if_possible(&obligation.predicate)
1081 };
1082
1083 if obligation.predicate.skip_binder().self_ty().is_ty_var() {
1084 // FIXME(#20297): Self is a type variable (e.g. `_: AsRef<str>`).
1085 //
1086 // This is somewhat problematic, as the current scheme can't really
1087 // handle it turning to be a projection. This does end up as truly
1088 // ambiguous in most cases anyway.
1089 //
1090 // Until this is fixed, take the fast path out - this also improves
1091 // performance by preventing assemble_candidates_from_impls from
1092 // matching every impl for this trait.
1093 return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true });
1094 }
1095
1096 let mut candidates = SelectionCandidateSet {
1097 vec: Vec::new(),
1098 ambiguous: false
1099 };
1100
1101 // Other bounds. Consider both in-scope bounds from fn decl
1102 // and applicable impls. There is a certain set of precedence rules here.
1103
1104 match self.tcx().lang_items.to_builtin_kind(obligation.predicate.def_id()) {
1105 Some(ty::BoundCopy) => {
1106 debug!("obligation self ty is {:?}",
1107 obligation.predicate.0.self_ty());
1108
1109 // User-defined copy impls are permitted, but only for
1110 // structs and enums.
1111 self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1112
1113 // For other types, we'll use the builtin rules.
1114 let copy_conditions = self.copy_conditions(obligation);
1115 self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates)?;
1116 }
1117 Some(ty::BoundSized) => {
1118 // Sized is never implementable by end-users, it is
1119 // always automatically computed.
1120 let sized_conditions = self.sized_conditions(obligation);
1121 self.assemble_builtin_bound_candidates(sized_conditions,
1122 &mut candidates)?;
1123 }
1124
1125 None if self.tcx().lang_items.unsize_trait() ==
1126 Some(obligation.predicate.def_id()) => {
1127 self.assemble_candidates_for_unsizing(obligation, &mut candidates);
1128 }
1129
1130 Some(ty::BoundSend) |
1131 Some(ty::BoundSync) |
1132 None => {
1133 self.assemble_closure_candidates(obligation, &mut candidates)?;
1134 self.assemble_fn_pointer_candidates(obligation, &mut candidates)?;
1135 self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1136 self.assemble_candidates_from_object_ty(obligation, &mut candidates);
1137 }
1138 }
1139
1140 self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
1141 self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
1142 // Default implementations have lower priority, so we only
1143 // consider triggering a default if there is no other impl that can apply.
1144 if candidates.vec.is_empty() {
1145 self.assemble_candidates_from_default_impls(obligation, &mut candidates)?;
1146 }
1147 debug!("candidate list size: {}", candidates.vec.len());
1148 Ok(candidates)
1149 }
1150
1151 fn assemble_candidates_from_projected_tys(&mut self,
1152 obligation: &TraitObligation<'tcx>,
1153 candidates: &mut SelectionCandidateSet<'tcx>)
1154 {
1155 debug!("assemble_candidates_for_projected_tys({:?})", obligation);
1156
1157 // FIXME(#20297) -- just examining the self-type is very simplistic
1158
1159 // before we go into the whole skolemization thing, just
1160 // quickly check if the self-type is a projection at all.
1161 match obligation.predicate.0.trait_ref.self_ty().sty {
1162 ty::TyProjection(_) | ty::TyAnon(..) => {}
1163 ty::TyInfer(ty::TyVar(_)) => {
1164 span_bug!(obligation.cause.span,
1165 "Self=_ should have been handled by assemble_candidates");
1166 }
1167 _ => return
1168 }
1169
1170 let result = self.probe(|this, snapshot| {
1171 this.match_projection_obligation_against_definition_bounds(obligation,
1172 snapshot)
1173 });
1174
1175 if result {
1176 candidates.vec.push(ProjectionCandidate);
1177 }
1178 }
1179
1180 fn match_projection_obligation_against_definition_bounds(
1181 &mut self,
1182 obligation: &TraitObligation<'tcx>,
1183 snapshot: &infer::CombinedSnapshot)
1184 -> bool
1185 {
1186 let poly_trait_predicate =
1187 self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
1188 let (skol_trait_predicate, skol_map) =
1189 self.infcx().skolemize_late_bound_regions(&poly_trait_predicate, snapshot);
1190 debug!("match_projection_obligation_against_definition_bounds: \
1191 skol_trait_predicate={:?} skol_map={:?}",
1192 skol_trait_predicate,
1193 skol_map);
1194
1195 let (def_id, substs) = match skol_trait_predicate.trait_ref.self_ty().sty {
1196 ty::TyProjection(ref data) => (data.trait_ref.def_id, data.trait_ref.substs),
1197 ty::TyAnon(def_id, substs) => (def_id, substs),
1198 _ => {
1199 span_bug!(
1200 obligation.cause.span,
1201 "match_projection_obligation_against_definition_bounds() called \
1202 but self-ty not a projection: {:?}",
1203 skol_trait_predicate.trait_ref.self_ty());
1204 }
1205 };
1206 debug!("match_projection_obligation_against_definition_bounds: \
1207 def_id={:?}, substs={:?}",
1208 def_id, substs);
1209
1210 let item_predicates = self.tcx().lookup_predicates(def_id);
1211 let bounds = item_predicates.instantiate(self.tcx(), substs);
1212 debug!("match_projection_obligation_against_definition_bounds: \
1213 bounds={:?}",
1214 bounds);
1215
1216 let matching_bound =
1217 util::elaborate_predicates(self.tcx(), bounds.predicates.into_vec())
1218 .filter_to_traits()
1219 .find(
1220 |bound| self.probe(
1221 |this, _| this.match_projection(obligation,
1222 bound.clone(),
1223 skol_trait_predicate.trait_ref.clone(),
1224 &skol_map,
1225 snapshot)));
1226
1227 debug!("match_projection_obligation_against_definition_bounds: \
1228 matching_bound={:?}",
1229 matching_bound);
1230 match matching_bound {
1231 None => false,
1232 Some(bound) => {
1233 // Repeat the successful match, if any, this time outside of a probe.
1234 let result = self.match_projection(obligation,
1235 bound,
1236 skol_trait_predicate.trait_ref.clone(),
1237 &skol_map,
1238 snapshot);
1239
1240 self.infcx.pop_skolemized(skol_map, snapshot);
1241
1242 assert!(result);
1243 true
1244 }
1245 }
1246 }
1247
1248 fn match_projection(&mut self,
1249 obligation: &TraitObligation<'tcx>,
1250 trait_bound: ty::PolyTraitRef<'tcx>,
1251 skol_trait_ref: ty::TraitRef<'tcx>,
1252 skol_map: &infer::SkolemizationMap,
1253 snapshot: &infer::CombinedSnapshot)
1254 -> bool
1255 {
1256 assert!(!skol_trait_ref.has_escaping_regions());
1257 let origin = TypeOrigin::RelateOutputImplTypes(obligation.cause.span);
1258 match self.infcx.sub_poly_trait_refs(false,
1259 origin,
1260 trait_bound.clone(),
1261 ty::Binder(skol_trait_ref.clone())) {
1262 Ok(InferOk { obligations, .. }) => {
1263 self.inferred_obligations.extend(obligations);
1264 }
1265 Err(_) => { return false; }
1266 }
1267
1268 self.infcx.leak_check(false, obligation.cause.span, skol_map, snapshot).is_ok()
1269 }
1270
1271 /// Given an obligation like `<SomeTrait for T>`, search the obligations that the caller
1272 /// supplied to find out whether it is listed among them.
1273 ///
1274 /// Never affects inference environment.
1275 fn assemble_candidates_from_caller_bounds<'o>(&mut self,
1276 stack: &TraitObligationStack<'o, 'tcx>,
1277 candidates: &mut SelectionCandidateSet<'tcx>)
1278 -> Result<(),SelectionError<'tcx>>
1279 {
1280 debug!("assemble_candidates_from_caller_bounds({:?})",
1281 stack.obligation);
1282
1283 let all_bounds =
1284 self.param_env().caller_bounds
1285 .iter()
1286 .filter_map(|o| o.to_opt_poly_trait_ref());
1287
1288 let matching_bounds =
1289 all_bounds.filter(
1290 |bound| self.evaluate_where_clause(stack, bound.clone()).may_apply());
1291
1292 let param_candidates =
1293 matching_bounds.map(|bound| ParamCandidate(bound));
1294
1295 candidates.vec.extend(param_candidates);
1296
1297 Ok(())
1298 }
1299
1300 fn evaluate_where_clause<'o>(&mut self,
1301 stack: &TraitObligationStack<'o, 'tcx>,
1302 where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
1303 -> EvaluationResult
1304 {
1305 self.probe(move |this, _| {
1306 match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1307 Ok(obligations) => {
1308 this.evaluate_predicates_recursively(stack.list(), obligations.iter())
1309 }
1310 Err(()) => EvaluatedToErr
1311 }
1312 })
1313 }
1314
1315 /// Check for the artificial impl that the compiler will create for an obligation like `X :
1316 /// FnMut<..>` where `X` is a closure type.
1317 ///
1318 /// Note: the type parameters on a closure candidate are modeled as *output* type
1319 /// parameters and hence do not affect whether this trait is a match or not. They will be
1320 /// unified during the confirmation step.
1321 fn assemble_closure_candidates(&mut self,
1322 obligation: &TraitObligation<'tcx>,
1323 candidates: &mut SelectionCandidateSet<'tcx>)
1324 -> Result<(),SelectionError<'tcx>>
1325 {
1326 let kind = match self.tcx().lang_items.fn_trait_kind(obligation.predicate.0.def_id()) {
1327 Some(k) => k,
1328 None => { return Ok(()); }
1329 };
1330
1331 // ok to skip binder because the substs on closure types never
1332 // touch bound regions, they just capture the in-scope
1333 // type/region parameters
1334 let self_ty = *obligation.self_ty().skip_binder();
1335 let (closure_def_id, substs) = match self_ty.sty {
1336 ty::TyClosure(id, substs) => (id, substs),
1337 ty::TyInfer(ty::TyVar(_)) => {
1338 debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
1339 candidates.ambiguous = true;
1340 return Ok(());
1341 }
1342 _ => { return Ok(()); }
1343 };
1344
1345 debug!("assemble_unboxed_candidates: self_ty={:?} kind={:?} obligation={:?}",
1346 self_ty,
1347 kind,
1348 obligation);
1349
1350 match self.infcx.closure_kind(closure_def_id) {
1351 Some(closure_kind) => {
1352 debug!("assemble_unboxed_candidates: closure_kind = {:?}", closure_kind);
1353 if closure_kind.extends(kind) {
1354 candidates.vec.push(ClosureCandidate(closure_def_id, substs, kind));
1355 }
1356 }
1357 None => {
1358 debug!("assemble_unboxed_candidates: closure_kind not yet known");
1359 candidates.vec.push(ClosureCandidate(closure_def_id, substs, kind));
1360 }
1361 }
1362
1363 Ok(())
1364 }
1365
1366 /// Implement one of the `Fn()` family for a fn pointer.
1367 fn assemble_fn_pointer_candidates(&mut self,
1368 obligation: &TraitObligation<'tcx>,
1369 candidates: &mut SelectionCandidateSet<'tcx>)
1370 -> Result<(),SelectionError<'tcx>>
1371 {
1372 // We provide impl of all fn traits for fn pointers.
1373 if self.tcx().lang_items.fn_trait_kind(obligation.predicate.def_id()).is_none() {
1374 return Ok(());
1375 }
1376
1377 // ok to skip binder because what we are inspecting doesn't involve bound regions
1378 let self_ty = *obligation.self_ty().skip_binder();
1379 match self_ty.sty {
1380 ty::TyInfer(ty::TyVar(_)) => {
1381 debug!("assemble_fn_pointer_candidates: ambiguous self-type");
1382 candidates.ambiguous = true; // could wind up being a fn() type
1383 }
1384
1385 // provide an impl, but only for suitable `fn` pointers
1386 ty::TyFnDef(_, _, &ty::BareFnTy {
1387 unsafety: hir::Unsafety::Normal,
1388 abi: Abi::Rust,
1389 sig: ty::Binder(ty::FnSig {
1390 inputs: _,
1391 output: _,
1392 variadic: false
1393 })
1394 }) |
1395 ty::TyFnPtr(&ty::BareFnTy {
1396 unsafety: hir::Unsafety::Normal,
1397 abi: Abi::Rust,
1398 sig: ty::Binder(ty::FnSig {
1399 inputs: _,
1400 output: _,
1401 variadic: false
1402 })
1403 }) => {
1404 candidates.vec.push(FnPointerCandidate);
1405 }
1406
1407 _ => { }
1408 }
1409
1410 Ok(())
1411 }
1412
1413 /// Search for impls that might apply to `obligation`.
1414 fn assemble_candidates_from_impls(&mut self,
1415 obligation: &TraitObligation<'tcx>,
1416 candidates: &mut SelectionCandidateSet<'tcx>)
1417 -> Result<(), SelectionError<'tcx>>
1418 {
1419 debug!("assemble_candidates_from_impls(obligation={:?})", obligation);
1420
1421 let def = self.tcx().lookup_trait_def(obligation.predicate.def_id());
1422
1423 def.for_each_relevant_impl(
1424 self.tcx(),
1425 obligation.predicate.0.trait_ref.self_ty(),
1426 |impl_def_id| {
1427 self.probe(|this, snapshot| { /* [1] */
1428 match this.match_impl(impl_def_id, obligation, snapshot) {
1429 Ok(skol_map) => {
1430 candidates.vec.push(ImplCandidate(impl_def_id));
1431
1432 // NB: we can safely drop the skol map
1433 // since we are in a probe [1]
1434 mem::drop(skol_map);
1435 }
1436 Err(_) => { }
1437 }
1438 });
1439 }
1440 );
1441
1442 Ok(())
1443 }
1444
1445 fn assemble_candidates_from_default_impls(&mut self,
1446 obligation: &TraitObligation<'tcx>,
1447 candidates: &mut SelectionCandidateSet<'tcx>)
1448 -> Result<(), SelectionError<'tcx>>
1449 {
1450 // OK to skip binder here because the tests we do below do not involve bound regions
1451 let self_ty = *obligation.self_ty().skip_binder();
1452 debug!("assemble_candidates_from_default_impls(self_ty={:?})", self_ty);
1453
1454 let def_id = obligation.predicate.def_id();
1455
1456 if self.tcx().trait_has_default_impl(def_id) {
1457 match self_ty.sty {
1458 ty::TyTrait(..) => {
1459 // For object types, we don't know what the closed
1460 // over types are. For most traits, this means we
1461 // conservatively say nothing; a candidate may be
1462 // added by `assemble_candidates_from_object_ty`.
1463 // However, for the kind of magic reflect trait,
1464 // we consider it to be implemented even for
1465 // object types, because it just lets you reflect
1466 // onto the object type, not into the object's
1467 // interior.
1468 if self.tcx().has_attr(def_id, "rustc_reflect_like") {
1469 candidates.vec.push(DefaultImplObjectCandidate(def_id));
1470 }
1471 }
1472 ty::TyParam(..) |
1473 ty::TyProjection(..) |
1474 ty::TyAnon(..) => {
1475 // In these cases, we don't know what the actual
1476 // type is. Therefore, we cannot break it down
1477 // into its constituent types. So we don't
1478 // consider the `..` impl but instead just add no
1479 // candidates: this means that typeck will only
1480 // succeed if there is another reason to believe
1481 // that this obligation holds. That could be a
1482 // where-clause or, in the case of an object type,
1483 // it could be that the object type lists the
1484 // trait (e.g. `Foo+Send : Send`). See
1485 // `compile-fail/typeck-default-trait-impl-send-param.rs`
1486 // for an example of a test case that exercises
1487 // this path.
1488 }
1489 ty::TyInfer(ty::TyVar(_)) => {
1490 // the defaulted impl might apply, we don't know
1491 candidates.ambiguous = true;
1492 }
1493 _ => {
1494 candidates.vec.push(DefaultImplCandidate(def_id.clone()))
1495 }
1496 }
1497 }
1498
1499 Ok(())
1500 }
1501
1502 /// Search for impls that might apply to `obligation`.
1503 fn assemble_candidates_from_object_ty(&mut self,
1504 obligation: &TraitObligation<'tcx>,
1505 candidates: &mut SelectionCandidateSet<'tcx>)
1506 {
1507 debug!("assemble_candidates_from_object_ty(self_ty={:?})",
1508 obligation.self_ty().skip_binder());
1509
1510 // Object-safety candidates are only applicable to object-safe
1511 // traits. Including this check is useful because it helps
1512 // inference in cases of traits like `BorrowFrom`, which are
1513 // not object-safe, and which rely on being able to infer the
1514 // self-type from one of the other inputs. Without this check,
1515 // these cases wind up being considered ambiguous due to a
1516 // (spurious) ambiguity introduced here.
1517 let predicate_trait_ref = obligation.predicate.to_poly_trait_ref();
1518 if !self.tcx().is_object_safe(predicate_trait_ref.def_id()) {
1519 return;
1520 }
1521
1522 self.probe(|this, _snapshot| {
1523 // the code below doesn't care about regions, and the
1524 // self-ty here doesn't escape this probe, so just erase
1525 // any LBR.
1526 let self_ty = this.tcx().erase_late_bound_regions(&obligation.self_ty());
1527 let poly_trait_ref = match self_ty.sty {
1528 ty::TyTrait(ref data) => {
1529 match this.tcx().lang_items.to_builtin_kind(obligation.predicate.def_id()) {
1530 Some(bound @ ty::BoundSend) | Some(bound @ ty::BoundSync) => {
1531 if data.bounds.builtin_bounds.contains(&bound) {
1532 debug!("assemble_candidates_from_object_ty: matched builtin bound, \
1533 pushing candidate");
1534 candidates.vec.push(BuiltinObjectCandidate);
1535 return;
1536 }
1537 }
1538 _ => {}
1539 }
1540
1541 data.principal_trait_ref_with_self_ty(this.tcx(), self_ty)
1542 }
1543 ty::TyInfer(ty::TyVar(_)) => {
1544 debug!("assemble_candidates_from_object_ty: ambiguous");
1545 candidates.ambiguous = true; // could wind up being an object type
1546 return;
1547 }
1548 _ => {
1549 return;
1550 }
1551 };
1552
1553 debug!("assemble_candidates_from_object_ty: poly_trait_ref={:?}",
1554 poly_trait_ref);
1555
1556 // Count only those upcast versions that match the trait-ref
1557 // we are looking for. Specifically, do not only check for the
1558 // correct trait, but also the correct type parameters.
1559 // For example, we may be trying to upcast `Foo` to `Bar<i32>`,
1560 // but `Foo` is declared as `trait Foo : Bar<u32>`.
1561 let upcast_trait_refs =
1562 util::supertraits(this.tcx(), poly_trait_ref)
1563 .filter(|upcast_trait_ref| {
1564 this.probe(|this, _| {
1565 let upcast_trait_ref = upcast_trait_ref.clone();
1566 this.match_poly_trait_ref(obligation, upcast_trait_ref).is_ok()
1567 })
1568 })
1569 .count();
1570
1571 if upcast_trait_refs > 1 {
1572 // can be upcast in many ways; need more type information
1573 candidates.ambiguous = true;
1574 } else if upcast_trait_refs == 1 {
1575 candidates.vec.push(ObjectCandidate);
1576 }
1577 })
1578 }
1579
1580 /// Search for unsizing that might apply to `obligation`.
1581 fn assemble_candidates_for_unsizing(&mut self,
1582 obligation: &TraitObligation<'tcx>,
1583 candidates: &mut SelectionCandidateSet<'tcx>) {
1584 // We currently never consider higher-ranked obligations e.g.
1585 // `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
1586 // because they are a priori invalid, and we could potentially add support
1587 // for them later, it's just that there isn't really a strong need for it.
1588 // A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
1589 // impl, and those are generally applied to concrete types.
1590 //
1591 // That said, one might try to write a fn with a where clause like
1592 // for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
1593 // where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
1594 // Still, you'd be more likely to write that where clause as
1595 // T: Trait
1596 // so it seems ok if we (conservatively) fail to accept that `Unsize`
1597 // obligation above. Should be possible to extend this in the future.
1598 let source = match self.tcx().no_late_bound_regions(&obligation.self_ty()) {
1599 Some(t) => t,
1600 None => {
1601 // Don't add any candidates if there are bound regions.
1602 return;
1603 }
1604 };
1605 let target = obligation.predicate.0.input_types()[0];
1606
1607 debug!("assemble_candidates_for_unsizing(source={:?}, target={:?})",
1608 source, target);
1609
1610 let may_apply = match (&source.sty, &target.sty) {
1611 // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
1612 (&ty::TyTrait(ref data_a), &ty::TyTrait(ref data_b)) => {
1613 // Upcasts permit two things:
1614 //
1615 // 1. Dropping builtin bounds, e.g. `Foo+Send` to `Foo`
1616 // 2. Tightening the region bound, e.g. `Foo+'a` to `Foo+'b` if `'a : 'b`
1617 //
1618 // Note that neither of these changes requires any
1619 // change at runtime. Eventually this will be
1620 // generalized.
1621 //
1622 // We always upcast when we can because of reason
1623 // #2 (region bounds).
1624 data_a.principal.def_id() == data_a.principal.def_id() &&
1625 data_a.bounds.builtin_bounds.is_superset(&data_b.bounds.builtin_bounds)
1626 }
1627
1628 // T -> Trait.
1629 (_, &ty::TyTrait(_)) => true,
1630
1631 // Ambiguous handling is below T -> Trait, because inference
1632 // variables can still implement Unsize<Trait> and nested
1633 // obligations will have the final say (likely deferred).
1634 (&ty::TyInfer(ty::TyVar(_)), _) |
1635 (_, &ty::TyInfer(ty::TyVar(_))) => {
1636 debug!("assemble_candidates_for_unsizing: ambiguous");
1637 candidates.ambiguous = true;
1638 false
1639 }
1640
1641 // [T; n] -> [T].
1642 (&ty::TyArray(_, _), &ty::TySlice(_)) => true,
1643
1644 // Struct<T> -> Struct<U>.
1645 (&ty::TyStruct(def_id_a, _), &ty::TyStruct(def_id_b, _)) => {
1646 def_id_a == def_id_b
1647 }
1648
1649 _ => false
1650 };
1651
1652 if may_apply {
1653 candidates.vec.push(BuiltinUnsizeCandidate);
1654 }
1655 }
1656
1657 ///////////////////////////////////////////////////////////////////////////
1658 // WINNOW
1659 //
1660 // Winnowing is the process of attempting to resolve ambiguity by
1661 // probing further. During the winnowing process, we unify all
1662 // type variables (ignoring skolemization) and then we also
1663 // attempt to evaluate recursive bounds to see if they are
1664 // satisfied.
1665
1666 /// Returns true if `candidate_i` should be dropped in favor of
1667 /// `candidate_j`. Generally speaking we will drop duplicate
1668 /// candidates and prefer where-clause candidates.
1669 /// Returns true if `victim` should be dropped in favor of
1670 /// `other`. Generally speaking we will drop duplicate
1671 /// candidates and prefer where-clause candidates.
1672 ///
1673 /// See the comment for "SelectionCandidate" for more details.
1674 fn candidate_should_be_dropped_in_favor_of<'o>(
1675 &mut self,
1676 victim: &EvaluatedCandidate<'tcx>,
1677 other: &EvaluatedCandidate<'tcx>)
1678 -> bool
1679 {
1680 if victim.candidate == other.candidate {
1681 return true;
1682 }
1683
1684 match other.candidate {
1685 ObjectCandidate |
1686 ParamCandidate(_) | ProjectionCandidate => match victim.candidate {
1687 DefaultImplCandidate(..) => {
1688 bug!(
1689 "default implementations shouldn't be recorded \
1690 when there are other valid candidates");
1691 }
1692 ImplCandidate(..) |
1693 ClosureCandidate(..) |
1694 FnPointerCandidate |
1695 BuiltinObjectCandidate |
1696 BuiltinUnsizeCandidate |
1697 DefaultImplObjectCandidate(..) |
1698 BuiltinCandidate { .. } => {
1699 // We have a where-clause so don't go around looking
1700 // for impls.
1701 true
1702 }
1703 ObjectCandidate |
1704 ProjectionCandidate => {
1705 // Arbitrarily give param candidates priority
1706 // over projection and object candidates.
1707 true
1708 },
1709 ParamCandidate(..) => false,
1710 },
1711 ImplCandidate(other_def) => {
1712 // See if we can toss out `victim` based on specialization.
1713 // This requires us to know *for sure* that the `other` impl applies
1714 // i.e. EvaluatedToOk:
1715 if other.evaluation == EvaluatedToOk {
1716 if let ImplCandidate(victim_def) = victim.candidate {
1717 let tcx = self.tcx().global_tcx();
1718 return traits::specializes(tcx, other_def, victim_def);
1719 }
1720 }
1721
1722 false
1723 },
1724 _ => false
1725 }
1726 }
1727
1728 ///////////////////////////////////////////////////////////////////////////
1729 // BUILTIN BOUNDS
1730 //
1731 // These cover the traits that are built-in to the language
1732 // itself. This includes `Copy` and `Sized` for sure. For the
1733 // moment, it also includes `Send` / `Sync` and a few others, but
1734 // those will hopefully change to library-defined traits in the
1735 // future.
1736
1737 // HACK: if this returns an error, selection exits without considering
1738 // other impls.
1739 fn assemble_builtin_bound_candidates<'o>(&mut self,
1740 conditions: BuiltinImplConditions<'tcx>,
1741 candidates: &mut SelectionCandidateSet<'tcx>)
1742 -> Result<(),SelectionError<'tcx>>
1743 {
1744 match conditions {
1745 BuiltinImplConditions::Where(nested) => {
1746 debug!("builtin_bound: nested={:?}", nested);
1747 candidates.vec.push(BuiltinCandidate {
1748 has_nested: nested.skip_binder().len() > 0
1749 });
1750 Ok(())
1751 }
1752 BuiltinImplConditions::None => { Ok(()) }
1753 BuiltinImplConditions::Ambiguous => {
1754 debug!("assemble_builtin_bound_candidates: ambiguous builtin");
1755 Ok(candidates.ambiguous = true)
1756 }
1757 BuiltinImplConditions::Never => { Err(Unimplemented) }
1758 }
1759 }
1760
1761 fn sized_conditions(&mut self, obligation: &TraitObligation<'tcx>)
1762 -> BuiltinImplConditions<'tcx>
1763 {
1764 use self::BuiltinImplConditions::{Ambiguous, None, Never, Where};
1765
1766 // NOTE: binder moved to (*)
1767 let self_ty = self.infcx.shallow_resolve(
1768 obligation.predicate.skip_binder().self_ty());
1769
1770 match self_ty.sty {
1771 ty::TyInfer(ty::IntVar(_)) | ty::TyInfer(ty::FloatVar(_)) |
1772 ty::TyUint(_) | ty::TyInt(_) | ty::TyBool | ty::TyFloat(_) |
1773 ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyRawPtr(..) |
1774 ty::TyChar | ty::TyBox(_) | ty::TyRef(..) |
1775 ty::TyArray(..) | ty::TyClosure(..) | ty::TyNever |
1776 ty::TyError => {
1777 // safe for everything
1778 Where(ty::Binder(Vec::new()))
1779 }
1780
1781 ty::TyStr | ty::TySlice(_) | ty::TyTrait(..) => Never,
1782
1783 ty::TyTuple(tys) => {
1784 // FIXME(#33242) we only need to constrain the last field
1785 Where(ty::Binder(tys.to_vec()))
1786 }
1787
1788 ty::TyStruct(def, substs) | ty::TyEnum(def, substs) => {
1789 let sized_crit = def.sized_constraint(self.tcx());
1790 // (*) binder moved here
1791 Where(ty::Binder(match sized_crit.sty {
1792 ty::TyTuple(tys) => tys.to_vec().subst(self.tcx(), substs),
1793 ty::TyBool => vec![],
1794 _ => vec![sized_crit.subst(self.tcx(), substs)]
1795 }))
1796 }
1797
1798 ty::TyProjection(_) | ty::TyParam(_) | ty::TyAnon(..) => None,
1799 ty::TyInfer(ty::TyVar(_)) => Ambiguous,
1800
1801 ty::TyInfer(ty::FreshTy(_))
1802 | ty::TyInfer(ty::FreshIntTy(_))
1803 | ty::TyInfer(ty::FreshFloatTy(_)) => {
1804 bug!("asked to assemble builtin bounds of unexpected type: {:?}",
1805 self_ty);
1806 }
1807 }
1808 }
1809
1810 fn copy_conditions(&mut self, obligation: &TraitObligation<'tcx>)
1811 -> BuiltinImplConditions<'tcx>
1812 {
1813 // NOTE: binder moved to (*)
1814 let self_ty = self.infcx.shallow_resolve(
1815 obligation.predicate.skip_binder().self_ty());
1816
1817 use self::BuiltinImplConditions::{Ambiguous, None, Never, Where};
1818
1819 match self_ty.sty {
1820 ty::TyInfer(ty::IntVar(_)) | ty::TyInfer(ty::FloatVar(_)) |
1821 ty::TyUint(_) | ty::TyInt(_) | ty::TyBool | ty::TyFloat(_) |
1822 ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyChar |
1823 ty::TyRawPtr(..) | ty::TyError | ty::TyNever |
1824 ty::TyRef(_, ty::TypeAndMut { ty: _, mutbl: hir::MutImmutable }) => {
1825 Where(ty::Binder(Vec::new()))
1826 }
1827
1828 ty::TyBox(_) | ty::TyTrait(..) | ty::TyStr | ty::TySlice(..) |
1829 ty::TyClosure(..) |
1830 ty::TyRef(_, ty::TypeAndMut { ty: _, mutbl: hir::MutMutable }) => {
1831 Never
1832 }
1833
1834 ty::TyArray(element_ty, _) => {
1835 // (*) binder moved here
1836 Where(ty::Binder(vec![element_ty]))
1837 }
1838
1839 ty::TyTuple(tys) => {
1840 // (*) binder moved here
1841 Where(ty::Binder(tys.to_vec()))
1842 }
1843
1844 ty::TyStruct(..) | ty::TyEnum(..) |
1845 ty::TyProjection(..) | ty::TyParam(..) | ty::TyAnon(..) => {
1846 // Fallback to whatever user-defined impls exist in this case.
1847 None
1848 }
1849
1850 ty::TyInfer(ty::TyVar(_)) => {
1851 // Unbound type variable. Might or might not have
1852 // applicable impls and so forth, depending on what
1853 // those type variables wind up being bound to.
1854 Ambiguous
1855 }
1856
1857 ty::TyInfer(ty::FreshTy(_))
1858 | ty::TyInfer(ty::FreshIntTy(_))
1859 | ty::TyInfer(ty::FreshFloatTy(_)) => {
1860 bug!("asked to assemble builtin bounds of unexpected type: {:?}",
1861 self_ty);
1862 }
1863 }
1864 }
1865
1866 /// For default impls, we need to break apart a type into its
1867 /// "constituent types" -- meaning, the types that it contains.
1868 ///
1869 /// Here are some (simple) examples:
1870 ///
1871 /// ```
1872 /// (i32, u32) -> [i32, u32]
1873 /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
1874 /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
1875 /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
1876 /// ```
1877 fn constituent_types_for_ty(&self, t: Ty<'tcx>) -> Vec<Ty<'tcx>> {
1878 match t.sty {
1879 ty::TyUint(_) |
1880 ty::TyInt(_) |
1881 ty::TyBool |
1882 ty::TyFloat(_) |
1883 ty::TyFnDef(..) |
1884 ty::TyFnPtr(_) |
1885 ty::TyStr |
1886 ty::TyError |
1887 ty::TyInfer(ty::IntVar(_)) |
1888 ty::TyInfer(ty::FloatVar(_)) |
1889 ty::TyNever |
1890 ty::TyChar => {
1891 Vec::new()
1892 }
1893
1894 ty::TyTrait(..) |
1895 ty::TyParam(..) |
1896 ty::TyProjection(..) |
1897 ty::TyAnon(..) |
1898 ty::TyInfer(ty::TyVar(_)) |
1899 ty::TyInfer(ty::FreshTy(_)) |
1900 ty::TyInfer(ty::FreshIntTy(_)) |
1901 ty::TyInfer(ty::FreshFloatTy(_)) => {
1902 bug!("asked to assemble constituent types of unexpected type: {:?}",
1903 t);
1904 }
1905
1906 ty::TyBox(referent_ty) => { // Box<T>
1907 vec![referent_ty]
1908 }
1909
1910 ty::TyRawPtr(ty::TypeAndMut { ty: element_ty, ..}) |
1911 ty::TyRef(_, ty::TypeAndMut { ty: element_ty, ..}) => {
1912 vec![element_ty]
1913 },
1914
1915 ty::TyArray(element_ty, _) | ty::TySlice(element_ty) => {
1916 vec![element_ty]
1917 }
1918
1919 ty::TyTuple(ref tys) => {
1920 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
1921 tys.to_vec()
1922 }
1923
1924 ty::TyClosure(_, ref substs) => {
1925 // FIXME(#27086). We are invariant w/r/t our
1926 // substs.func_substs, but we don't see them as
1927 // constituent types; this seems RIGHT but also like
1928 // something that a normal type couldn't simulate. Is
1929 // this just a gap with the way that PhantomData and
1930 // OIBIT interact? That is, there is no way to say
1931 // "make me invariant with respect to this TYPE, but
1932 // do not act as though I can reach it"
1933 substs.upvar_tys.to_vec()
1934 }
1935
1936 // for `PhantomData<T>`, we pass `T`
1937 ty::TyStruct(def, substs) if def.is_phantom_data() => {
1938 substs.types.get_slice(TypeSpace).to_vec()
1939 }
1940
1941 ty::TyStruct(def, substs) | ty::TyEnum(def, substs) => {
1942 def.all_fields()
1943 .map(|f| f.ty(self.tcx(), substs))
1944 .collect()
1945 }
1946 }
1947 }
1948
1949 fn collect_predicates_for_types(&mut self,
1950 cause: ObligationCause<'tcx>,
1951 recursion_depth: usize,
1952 trait_def_id: DefId,
1953 types: ty::Binder<Vec<Ty<'tcx>>>)
1954 -> Vec<PredicateObligation<'tcx>>
1955 {
1956 // Because the types were potentially derived from
1957 // higher-ranked obligations they may reference late-bound
1958 // regions. For example, `for<'a> Foo<&'a int> : Copy` would
1959 // yield a type like `for<'a> &'a int`. In general, we
1960 // maintain the invariant that we never manipulate bound
1961 // regions, so we have to process these bound regions somehow.
1962 //
1963 // The strategy is to:
1964 //
1965 // 1. Instantiate those regions to skolemized regions (e.g.,
1966 // `for<'a> &'a int` becomes `&0 int`.
1967 // 2. Produce something like `&'0 int : Copy`
1968 // 3. Re-bind the regions back to `for<'a> &'a int : Copy`
1969
1970 types.skip_binder().into_iter().flat_map(|ty| { // binder moved -\
1971 let ty: ty::Binder<Ty<'tcx>> = ty::Binder(ty); // <----------/
1972
1973 self.in_snapshot(|this, snapshot| {
1974 let (skol_ty, skol_map) =
1975 this.infcx().skolemize_late_bound_regions(&ty, snapshot);
1976 let Normalized { value: normalized_ty, mut obligations } =
1977 project::normalize_with_depth(this,
1978 cause.clone(),
1979 recursion_depth,
1980 &skol_ty);
1981 let skol_obligation =
1982 this.tcx().predicate_for_trait_def(
1983 cause.clone(),
1984 trait_def_id,
1985 recursion_depth,
1986 normalized_ty,
1987 vec![]);
1988 obligations.push(skol_obligation);
1989 this.infcx().plug_leaks(skol_map, snapshot, &obligations)
1990 })
1991 }).collect()
1992 }
1993
1994 ///////////////////////////////////////////////////////////////////////////
1995 // CONFIRMATION
1996 //
1997 // Confirmation unifies the output type parameters of the trait
1998 // with the values found in the obligation, possibly yielding a
1999 // type error. See `README.md` for more details.
2000
2001 fn confirm_candidate(&mut self,
2002 obligation: &TraitObligation<'tcx>,
2003 candidate: SelectionCandidate<'tcx>)
2004 -> Result<Selection<'tcx>,SelectionError<'tcx>>
2005 {
2006 debug!("confirm_candidate({:?}, {:?})",
2007 obligation,
2008 candidate);
2009
2010 match candidate {
2011 BuiltinCandidate { has_nested } => {
2012 Ok(VtableBuiltin(
2013 self.confirm_builtin_candidate(obligation, has_nested)))
2014 }
2015
2016 ParamCandidate(param) => {
2017 let obligations = self.confirm_param_candidate(obligation, param);
2018 Ok(VtableParam(obligations))
2019 }
2020
2021 DefaultImplCandidate(trait_def_id) => {
2022 let data = self.confirm_default_impl_candidate(obligation, trait_def_id);
2023 Ok(VtableDefaultImpl(data))
2024 }
2025
2026 DefaultImplObjectCandidate(trait_def_id) => {
2027 let data = self.confirm_default_impl_object_candidate(obligation, trait_def_id);
2028 Ok(VtableDefaultImpl(data))
2029 }
2030
2031 ImplCandidate(impl_def_id) => {
2032 Ok(VtableImpl(self.confirm_impl_candidate(obligation, impl_def_id)))
2033 }
2034
2035 ClosureCandidate(closure_def_id, substs, kind) => {
2036 let vtable_closure =
2037 self.confirm_closure_candidate(obligation, closure_def_id, substs, kind)?;
2038 Ok(VtableClosure(vtable_closure))
2039 }
2040
2041 BuiltinObjectCandidate => {
2042 // This indicates something like `(Trait+Send) :
2043 // Send`. In this case, we know that this holds
2044 // because that's what the object type is telling us,
2045 // and there's really no additional obligations to
2046 // prove and no types in particular to unify etc.
2047 Ok(VtableParam(Vec::new()))
2048 }
2049
2050 ObjectCandidate => {
2051 let data = self.confirm_object_candidate(obligation);
2052 Ok(VtableObject(data))
2053 }
2054
2055 FnPointerCandidate => {
2056 let data =
2057 self.confirm_fn_pointer_candidate(obligation)?;
2058 Ok(VtableFnPointer(data))
2059 }
2060
2061 ProjectionCandidate => {
2062 self.confirm_projection_candidate(obligation);
2063 Ok(VtableParam(Vec::new()))
2064 }
2065
2066 BuiltinUnsizeCandidate => {
2067 let data = self.confirm_builtin_unsize_candidate(obligation)?;
2068 Ok(VtableBuiltin(data))
2069 }
2070 }
2071 }
2072
2073 fn confirm_projection_candidate(&mut self,
2074 obligation: &TraitObligation<'tcx>)
2075 {
2076 self.in_snapshot(|this, snapshot| {
2077 let result =
2078 this.match_projection_obligation_against_definition_bounds(obligation,
2079 snapshot);
2080 assert!(result);
2081 })
2082 }
2083
2084 fn confirm_param_candidate(&mut self,
2085 obligation: &TraitObligation<'tcx>,
2086 param: ty::PolyTraitRef<'tcx>)
2087 -> Vec<PredicateObligation<'tcx>>
2088 {
2089 debug!("confirm_param_candidate({:?},{:?})",
2090 obligation,
2091 param);
2092
2093 // During evaluation, we already checked that this
2094 // where-clause trait-ref could be unified with the obligation
2095 // trait-ref. Repeat that unification now without any
2096 // transactional boundary; it should not fail.
2097 match self.match_where_clause_trait_ref(obligation, param.clone()) {
2098 Ok(obligations) => obligations,
2099 Err(()) => {
2100 bug!("Where clause `{:?}` was applicable to `{:?}` but now is not",
2101 param,
2102 obligation);
2103 }
2104 }
2105 }
2106
2107 fn confirm_builtin_candidate(&mut self,
2108 obligation: &TraitObligation<'tcx>,
2109 has_nested: bool)
2110 -> VtableBuiltinData<PredicateObligation<'tcx>>
2111 {
2112 debug!("confirm_builtin_candidate({:?}, {:?})",
2113 obligation, has_nested);
2114
2115 let obligations = if has_nested {
2116 let trait_def = obligation.predicate.def_id();
2117 let conditions = match trait_def {
2118 _ if Some(trait_def) == self.tcx().lang_items.sized_trait() => {
2119 self.sized_conditions(obligation)
2120 }
2121 _ if Some(trait_def) == self.tcx().lang_items.copy_trait() => {
2122 self.copy_conditions(obligation)
2123 }
2124 _ => bug!("unexpected builtin trait {:?}", trait_def)
2125 };
2126 let nested = match conditions {
2127 BuiltinImplConditions::Where(nested) => nested,
2128 _ => bug!("obligation {:?} had matched a builtin impl but now doesn't",
2129 obligation)
2130 };
2131
2132 let cause = obligation.derived_cause(BuiltinDerivedObligation);
2133 self.collect_predicates_for_types(cause,
2134 obligation.recursion_depth+1,
2135 trait_def,
2136 nested)
2137 } else {
2138 vec![]
2139 };
2140
2141 debug!("confirm_builtin_candidate: obligations={:?}",
2142 obligations);
2143 VtableBuiltinData { nested: obligations }
2144 }
2145
2146 /// This handles the case where a `impl Foo for ..` impl is being used.
2147 /// The idea is that the impl applies to `X : Foo` if the following conditions are met:
2148 ///
2149 /// 1. For each constituent type `Y` in `X`, `Y : Foo` holds
2150 /// 2. For each where-clause `C` declared on `Foo`, `[Self => X] C` holds.
2151 fn confirm_default_impl_candidate(&mut self,
2152 obligation: &TraitObligation<'tcx>,
2153 trait_def_id: DefId)
2154 -> VtableDefaultImplData<PredicateObligation<'tcx>>
2155 {
2156 debug!("confirm_default_impl_candidate({:?}, {:?})",
2157 obligation,
2158 trait_def_id);
2159
2160 // binder is moved below
2161 let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
2162 let types = self.constituent_types_for_ty(self_ty);
2163 self.vtable_default_impl(obligation, trait_def_id, ty::Binder(types))
2164 }
2165
2166 fn confirm_default_impl_object_candidate(&mut self,
2167 obligation: &TraitObligation<'tcx>,
2168 trait_def_id: DefId)
2169 -> VtableDefaultImplData<PredicateObligation<'tcx>>
2170 {
2171 debug!("confirm_default_impl_object_candidate({:?}, {:?})",
2172 obligation,
2173 trait_def_id);
2174
2175 assert!(self.tcx().has_attr(trait_def_id, "rustc_reflect_like"));
2176
2177 // OK to skip binder, it is reintroduced below
2178 let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
2179 match self_ty.sty {
2180 ty::TyTrait(ref data) => {
2181 // OK to skip the binder, it is reintroduced below
2182 let input_types = data.principal.skip_binder().substs.types.get_slice(TypeSpace);
2183 let assoc_types = data.bounds.projection_bounds
2184 .iter()
2185 .map(|pb| pb.skip_binder().ty);
2186 let all_types: Vec<_> = input_types.iter().cloned()
2187 .chain(assoc_types)
2188 .collect();
2189
2190 // reintroduce the two binding levels we skipped, then flatten into one
2191 let all_types = ty::Binder(ty::Binder(all_types));
2192 let all_types = self.tcx().flatten_late_bound_regions(&all_types);
2193
2194 self.vtable_default_impl(obligation, trait_def_id, all_types)
2195 }
2196 _ => {
2197 bug!("asked to confirm default object implementation for non-object type: {:?}",
2198 self_ty);
2199 }
2200 }
2201 }
2202
2203 /// See `confirm_default_impl_candidate`
2204 fn vtable_default_impl(&mut self,
2205 obligation: &TraitObligation<'tcx>,
2206 trait_def_id: DefId,
2207 nested: ty::Binder<Vec<Ty<'tcx>>>)
2208 -> VtableDefaultImplData<PredicateObligation<'tcx>>
2209 {
2210 debug!("vtable_default_impl: nested={:?}", nested);
2211
2212 let cause = obligation.derived_cause(BuiltinDerivedObligation);
2213 let mut obligations = self.collect_predicates_for_types(
2214 cause,
2215 obligation.recursion_depth+1,
2216 trait_def_id,
2217 nested);
2218
2219 let trait_obligations = self.in_snapshot(|this, snapshot| {
2220 let poly_trait_ref = obligation.predicate.to_poly_trait_ref();
2221 let (trait_ref, skol_map) =
2222 this.infcx().skolemize_late_bound_regions(&poly_trait_ref, snapshot);
2223 let cause = obligation.derived_cause(ImplDerivedObligation);
2224 this.impl_or_trait_obligations(cause,
2225 obligation.recursion_depth + 1,
2226 trait_def_id,
2227 &trait_ref.substs,
2228 skol_map,
2229 snapshot)
2230 });
2231
2232 obligations.extend(trait_obligations);
2233
2234 debug!("vtable_default_impl: obligations={:?}", obligations);
2235
2236 VtableDefaultImplData {
2237 trait_def_id: trait_def_id,
2238 nested: obligations
2239 }
2240 }
2241
2242 fn confirm_impl_candidate(&mut self,
2243 obligation: &TraitObligation<'tcx>,
2244 impl_def_id: DefId)
2245 -> VtableImplData<'tcx, PredicateObligation<'tcx>>
2246 {
2247 debug!("confirm_impl_candidate({:?},{:?})",
2248 obligation,
2249 impl_def_id);
2250
2251 // First, create the substitutions by matching the impl again,
2252 // this time not in a probe.
2253 self.in_snapshot(|this, snapshot| {
2254 let (substs, skol_map) =
2255 this.rematch_impl(impl_def_id, obligation,
2256 snapshot);
2257 debug!("confirm_impl_candidate substs={:?}", substs);
2258 let cause = obligation.derived_cause(ImplDerivedObligation);
2259 this.vtable_impl(impl_def_id, substs, cause,
2260 obligation.recursion_depth + 1,
2261 skol_map, snapshot)
2262 })
2263 }
2264
2265 fn vtable_impl(&mut self,
2266 impl_def_id: DefId,
2267 mut substs: Normalized<'tcx, &'tcx Substs<'tcx>>,
2268 cause: ObligationCause<'tcx>,
2269 recursion_depth: usize,
2270 skol_map: infer::SkolemizationMap,
2271 snapshot: &infer::CombinedSnapshot)
2272 -> VtableImplData<'tcx, PredicateObligation<'tcx>>
2273 {
2274 debug!("vtable_impl(impl_def_id={:?}, substs={:?}, recursion_depth={}, skol_map={:?})",
2275 impl_def_id,
2276 substs,
2277 recursion_depth,
2278 skol_map);
2279
2280 let mut impl_obligations =
2281 self.impl_or_trait_obligations(cause,
2282 recursion_depth,
2283 impl_def_id,
2284 &substs.value,
2285 skol_map,
2286 snapshot);
2287
2288 debug!("vtable_impl: impl_def_id={:?} impl_obligations={:?}",
2289 impl_def_id,
2290 impl_obligations);
2291
2292 // Because of RFC447, the impl-trait-ref and obligations
2293 // are sufficient to determine the impl substs, without
2294 // relying on projections in the impl-trait-ref.
2295 //
2296 // e.g. `impl<U: Tr, V: Iterator<Item=U>> Foo<<U as Tr>::T> for V`
2297 impl_obligations.append(&mut substs.obligations);
2298
2299 VtableImplData { impl_def_id: impl_def_id,
2300 substs: substs.value,
2301 nested: impl_obligations }
2302 }
2303
2304 fn confirm_object_candidate(&mut self,
2305 obligation: &TraitObligation<'tcx>)
2306 -> VtableObjectData<'tcx, PredicateObligation<'tcx>>
2307 {
2308 debug!("confirm_object_candidate({:?})",
2309 obligation);
2310
2311 // FIXME skipping binder here seems wrong -- we should
2312 // probably flatten the binder from the obligation and the
2313 // binder from the object. Have to try to make a broken test
2314 // case that results. -nmatsakis
2315 let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
2316 let poly_trait_ref = match self_ty.sty {
2317 ty::TyTrait(ref data) => {
2318 data.principal_trait_ref_with_self_ty(self.tcx(), self_ty)
2319 }
2320 _ => {
2321 span_bug!(obligation.cause.span,
2322 "object candidate with non-object");
2323 }
2324 };
2325
2326 let mut upcast_trait_ref = None;
2327 let vtable_base;
2328
2329 {
2330 let tcx = self.tcx();
2331
2332 // We want to find the first supertrait in the list of
2333 // supertraits that we can unify with, and do that
2334 // unification. We know that there is exactly one in the list
2335 // where we can unify because otherwise select would have
2336 // reported an ambiguity. (When we do find a match, also
2337 // record it for later.)
2338 let nonmatching =
2339 util::supertraits(tcx, poly_trait_ref)
2340 .take_while(|&t| {
2341 match
2342 self.commit_if_ok(
2343 |this, _| this.match_poly_trait_ref(obligation, t))
2344 {
2345 Ok(_) => { upcast_trait_ref = Some(t); false }
2346 Err(_) => { true }
2347 }
2348 });
2349
2350 // Additionally, for each of the nonmatching predicates that
2351 // we pass over, we sum up the set of number of vtable
2352 // entries, so that we can compute the offset for the selected
2353 // trait.
2354 vtable_base =
2355 nonmatching.map(|t| tcx.count_own_vtable_entries(t))
2356 .sum();
2357
2358 }
2359
2360 VtableObjectData {
2361 upcast_trait_ref: upcast_trait_ref.unwrap(),
2362 vtable_base: vtable_base,
2363 nested: vec![]
2364 }
2365 }
2366
2367 fn confirm_fn_pointer_candidate(&mut self, obligation: &TraitObligation<'tcx>)
2368 -> Result<VtableFnPointerData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>>
2369 {
2370 debug!("confirm_fn_pointer_candidate({:?})",
2371 obligation);
2372
2373 // ok to skip binder; it is reintroduced below
2374 let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
2375 let sig = self_ty.fn_sig();
2376 let trait_ref =
2377 self.tcx().closure_trait_ref_and_return_type(obligation.predicate.def_id(),
2378 self_ty,
2379 sig,
2380 util::TupleArgumentsFlag::Yes)
2381 .map_bound(|(trait_ref, _)| trait_ref);
2382
2383 self.confirm_poly_trait_refs(obligation.cause.clone(),
2384 obligation.predicate.to_poly_trait_ref(),
2385 trait_ref)?;
2386 Ok(VtableFnPointerData { fn_ty: self_ty, nested: vec![] })
2387 }
2388
2389 fn confirm_closure_candidate(&mut self,
2390 obligation: &TraitObligation<'tcx>,
2391 closure_def_id: DefId,
2392 substs: ty::ClosureSubsts<'tcx>,
2393 kind: ty::ClosureKind)
2394 -> Result<VtableClosureData<'tcx, PredicateObligation<'tcx>>,
2395 SelectionError<'tcx>>
2396 {
2397 debug!("confirm_closure_candidate({:?},{:?},{:?})",
2398 obligation,
2399 closure_def_id,
2400 substs);
2401
2402 let Normalized {
2403 value: trait_ref,
2404 mut obligations
2405 } = self.closure_trait_ref(obligation, closure_def_id, substs);
2406
2407 debug!("confirm_closure_candidate(closure_def_id={:?}, trait_ref={:?}, obligations={:?})",
2408 closure_def_id,
2409 trait_ref,
2410 obligations);
2411
2412 self.confirm_poly_trait_refs(obligation.cause.clone(),
2413 obligation.predicate.to_poly_trait_ref(),
2414 trait_ref)?;
2415
2416 obligations.push(Obligation::new(
2417 obligation.cause.clone(),
2418 ty::Predicate::ClosureKind(closure_def_id, kind)));
2419
2420 Ok(VtableClosureData {
2421 closure_def_id: closure_def_id,
2422 substs: substs.clone(),
2423 nested: obligations
2424 })
2425 }
2426
2427 /// In the case of closure types and fn pointers,
2428 /// we currently treat the input type parameters on the trait as
2429 /// outputs. This means that when we have a match we have only
2430 /// considered the self type, so we have to go back and make sure
2431 /// to relate the argument types too. This is kind of wrong, but
2432 /// since we control the full set of impls, also not that wrong,
2433 /// and it DOES yield better error messages (since we don't report
2434 /// errors as if there is no applicable impl, but rather report
2435 /// errors are about mismatched argument types.
2436 ///
2437 /// Here is an example. Imagine we have a closure expression
2438 /// and we desugared it so that the type of the expression is
2439 /// `Closure`, and `Closure` expects an int as argument. Then it
2440 /// is "as if" the compiler generated this impl:
2441 ///
2442 /// impl Fn(int) for Closure { ... }
2443 ///
2444 /// Now imagine our obligation is `Fn(usize) for Closure`. So far
2445 /// we have matched the self-type `Closure`. At this point we'll
2446 /// compare the `int` to `usize` and generate an error.
2447 ///
2448 /// Note that this checking occurs *after* the impl has selected,
2449 /// because these output type parameters should not affect the
2450 /// selection of the impl. Therefore, if there is a mismatch, we
2451 /// report an error to the user.
2452 fn confirm_poly_trait_refs(&mut self,
2453 obligation_cause: ObligationCause,
2454 obligation_trait_ref: ty::PolyTraitRef<'tcx>,
2455 expected_trait_ref: ty::PolyTraitRef<'tcx>)
2456 -> Result<(), SelectionError<'tcx>>
2457 {
2458 let origin = TypeOrigin::RelateOutputImplTypes(obligation_cause.span);
2459
2460 let obligation_trait_ref = obligation_trait_ref.clone();
2461 self.infcx.sub_poly_trait_refs(false,
2462 origin,
2463 expected_trait_ref.clone(),
2464 obligation_trait_ref.clone())
2465 .map(|InferOk { obligations, .. }| self.inferred_obligations.extend(obligations))
2466 .map_err(|e| OutputTypeParameterMismatch(expected_trait_ref, obligation_trait_ref, e))
2467 }
2468
2469 fn confirm_builtin_unsize_candidate(&mut self,
2470 obligation: &TraitObligation<'tcx>,)
2471 -> Result<VtableBuiltinData<PredicateObligation<'tcx>>,
2472 SelectionError<'tcx>> {
2473 let tcx = self.tcx();
2474
2475 // assemble_candidates_for_unsizing should ensure there are no late bound
2476 // regions here. See the comment there for more details.
2477 let source = self.infcx.shallow_resolve(
2478 tcx.no_late_bound_regions(&obligation.self_ty()).unwrap());
2479 let target = self.infcx.shallow_resolve(obligation.predicate.0.input_types()[0]);
2480
2481 debug!("confirm_builtin_unsize_candidate(source={:?}, target={:?})",
2482 source, target);
2483
2484 let mut nested = vec![];
2485 match (&source.sty, &target.sty) {
2486 // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
2487 (&ty::TyTrait(ref data_a), &ty::TyTrait(ref data_b)) => {
2488 // See assemble_candidates_for_unsizing for more info.
2489 let bounds = ty::ExistentialBounds {
2490 region_bound: data_b.bounds.region_bound,
2491 builtin_bounds: data_b.bounds.builtin_bounds,
2492 projection_bounds: data_a.bounds.projection_bounds.clone(),
2493 };
2494
2495 let new_trait = tcx.mk_trait(data_a.principal.clone(), bounds);
2496 let origin = TypeOrigin::Misc(obligation.cause.span);
2497 let InferOk { obligations, .. } =
2498 self.infcx.sub_types(false, origin, new_trait, target)
2499 .map_err(|_| Unimplemented)?;
2500 self.inferred_obligations.extend(obligations);
2501
2502 // Register one obligation for 'a: 'b.
2503 let cause = ObligationCause::new(obligation.cause.span,
2504 obligation.cause.body_id,
2505 ObjectCastObligation(target));
2506 let outlives = ty::OutlivesPredicate(data_a.bounds.region_bound,
2507 data_b.bounds.region_bound);
2508 nested.push(Obligation::with_depth(cause,
2509 obligation.recursion_depth + 1,
2510 ty::Binder(outlives).to_predicate()));
2511 }
2512
2513 // T -> Trait.
2514 (_, &ty::TyTrait(ref data)) => {
2515 let mut object_dids = Some(data.principal_def_id()).into_iter();
2516 // FIXME(#33243)
2517 // data.bounds.builtin_bounds.iter().flat_map(|bound| {
2518 // tcx.lang_items.from_builtin_kind(bound).ok()
2519 // })
2520 // .chain(Some(data.principal_def_id()));
2521 if let Some(did) = object_dids.find(|did| {
2522 !tcx.is_object_safe(*did)
2523 }) {
2524 return Err(TraitNotObjectSafe(did))
2525 }
2526
2527 let cause = ObligationCause::new(obligation.cause.span,
2528 obligation.cause.body_id,
2529 ObjectCastObligation(target));
2530 let mut push = |predicate| {
2531 nested.push(Obligation::with_depth(cause.clone(),
2532 obligation.recursion_depth + 1,
2533 predicate));
2534 };
2535
2536 // Create the obligation for casting from T to Trait.
2537 push(data.principal_trait_ref_with_self_ty(tcx, source).to_predicate());
2538
2539 // We can only make objects from sized types.
2540 let mut builtin_bounds = data.bounds.builtin_bounds;
2541 builtin_bounds.insert(ty::BoundSized);
2542
2543 // Create additional obligations for all the various builtin
2544 // bounds attached to the object cast. (In other words, if the
2545 // object type is Foo+Send, this would create an obligation
2546 // for the Send check.)
2547 for bound in &builtin_bounds {
2548 if let Ok(tr) = tcx.trait_ref_for_builtin_bound(bound, source) {
2549 push(tr.to_predicate());
2550 } else {
2551 return Err(Unimplemented);
2552 }
2553 }
2554
2555 // Create obligations for the projection predicates.
2556 for bound in data.projection_bounds_with_self_ty(tcx, source) {
2557 push(bound.to_predicate());
2558 }
2559
2560 // If the type is `Foo+'a`, ensures that the type
2561 // being cast to `Foo+'a` outlives `'a`:
2562 let outlives = ty::OutlivesPredicate(source,
2563 data.bounds.region_bound);
2564 push(ty::Binder(outlives).to_predicate());
2565 }
2566
2567 // [T; n] -> [T].
2568 (&ty::TyArray(a, _), &ty::TySlice(b)) => {
2569 let origin = TypeOrigin::Misc(obligation.cause.span);
2570 let InferOk { obligations, .. } =
2571 self.infcx.sub_types(false, origin, a, b)
2572 .map_err(|_| Unimplemented)?;
2573 self.inferred_obligations.extend(obligations);
2574 }
2575
2576 // Struct<T> -> Struct<U>.
2577 (&ty::TyStruct(def, substs_a), &ty::TyStruct(_, substs_b)) => {
2578 let fields = def
2579 .all_fields()
2580 .map(|f| f.unsubst_ty())
2581 .collect::<Vec<_>>();
2582
2583 // The last field of the structure has to exist and contain type parameters.
2584 let field = if let Some(&field) = fields.last() {
2585 field
2586 } else {
2587 return Err(Unimplemented);
2588 };
2589 let mut ty_params = vec![];
2590 for ty in field.walk() {
2591 if let ty::TyParam(p) = ty.sty {
2592 assert!(p.space == TypeSpace);
2593 let idx = p.idx as usize;
2594 if !ty_params.contains(&idx) {
2595 ty_params.push(idx);
2596 }
2597 }
2598 }
2599 if ty_params.is_empty() {
2600 return Err(Unimplemented);
2601 }
2602
2603 // Replace type parameters used in unsizing with
2604 // TyError and ensure they do not affect any other fields.
2605 // This could be checked after type collection for any struct
2606 // with a potentially unsized trailing field.
2607 let mut new_substs = substs_a.clone();
2608 for &i in &ty_params {
2609 new_substs.types.get_mut_slice(TypeSpace)[i] = tcx.types.err;
2610 }
2611 for &ty in fields.split_last().unwrap().1 {
2612 if ty.subst(tcx, &new_substs).references_error() {
2613 return Err(Unimplemented);
2614 }
2615 }
2616
2617 // Extract Field<T> and Field<U> from Struct<T> and Struct<U>.
2618 let inner_source = field.subst(tcx, substs_a);
2619 let inner_target = field.subst(tcx, substs_b);
2620
2621 // Check that the source structure with the target's
2622 // type parameters is a subtype of the target.
2623 for &i in &ty_params {
2624 let param_b = *substs_b.types.get(TypeSpace, i);
2625 new_substs.types.get_mut_slice(TypeSpace)[i] = param_b;
2626 }
2627 let new_struct = tcx.mk_struct(def, tcx.mk_substs(new_substs));
2628 let origin = TypeOrigin::Misc(obligation.cause.span);
2629 let InferOk { obligations, .. } =
2630 self.infcx.sub_types(false, origin, new_struct, target)
2631 .map_err(|_| Unimplemented)?;
2632 self.inferred_obligations.extend(obligations);
2633
2634 // Construct the nested Field<T>: Unsize<Field<U>> predicate.
2635 nested.push(tcx.predicate_for_trait_def(
2636 obligation.cause.clone(),
2637 obligation.predicate.def_id(),
2638 obligation.recursion_depth + 1,
2639 inner_source,
2640 vec![inner_target]));
2641 }
2642
2643 _ => bug!()
2644 };
2645
2646 Ok(VtableBuiltinData { nested: nested })
2647 }
2648
2649 ///////////////////////////////////////////////////////////////////////////
2650 // Matching
2651 //
2652 // Matching is a common path used for both evaluation and
2653 // confirmation. It basically unifies types that appear in impls
2654 // and traits. This does affect the surrounding environment;
2655 // therefore, when used during evaluation, match routines must be
2656 // run inside of a `probe()` so that their side-effects are
2657 // contained.
2658
2659 fn rematch_impl(&mut self,
2660 impl_def_id: DefId,
2661 obligation: &TraitObligation<'tcx>,
2662 snapshot: &infer::CombinedSnapshot)
2663 -> (Normalized<'tcx, &'tcx Substs<'tcx>>, infer::SkolemizationMap)
2664 {
2665 match self.match_impl(impl_def_id, obligation, snapshot) {
2666 Ok((substs, skol_map)) => (substs, skol_map),
2667 Err(()) => {
2668 bug!("Impl {:?} was matchable against {:?} but now is not",
2669 impl_def_id,
2670 obligation);
2671 }
2672 }
2673 }
2674
2675 fn match_impl(&mut self,
2676 impl_def_id: DefId,
2677 obligation: &TraitObligation<'tcx>,
2678 snapshot: &infer::CombinedSnapshot)
2679 -> Result<(Normalized<'tcx, &'tcx Substs<'tcx>>,
2680 infer::SkolemizationMap), ()>
2681 {
2682 let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
2683
2684 // Before we create the substitutions and everything, first
2685 // consider a "quick reject". This avoids creating more types
2686 // and so forth that we need to.
2687 if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
2688 return Err(());
2689 }
2690
2691 let (skol_obligation, skol_map) = self.infcx().skolemize_late_bound_regions(
2692 &obligation.predicate,
2693 snapshot);
2694 let skol_obligation_trait_ref = skol_obligation.trait_ref;
2695
2696 let impl_substs = util::fresh_type_vars_for_impl(self.infcx,
2697 obligation.cause.span,
2698 impl_def_id);
2699
2700 let impl_trait_ref = impl_trait_ref.subst(self.tcx(),
2701 &impl_substs);
2702
2703 let impl_trait_ref =
2704 project::normalize_with_depth(self,
2705 obligation.cause.clone(),
2706 obligation.recursion_depth + 1,
2707 &impl_trait_ref);
2708
2709 debug!("match_impl(impl_def_id={:?}, obligation={:?}, \
2710 impl_trait_ref={:?}, skol_obligation_trait_ref={:?})",
2711 impl_def_id,
2712 obligation,
2713 impl_trait_ref,
2714 skol_obligation_trait_ref);
2715
2716 let origin = TypeOrigin::RelateOutputImplTypes(obligation.cause.span);
2717 let InferOk { obligations, .. } =
2718 self.infcx.eq_trait_refs(false,
2719 origin,
2720 impl_trait_ref.value.clone(),
2721 skol_obligation_trait_ref)
2722 .map_err(|e| {
2723 debug!("match_impl: failed eq_trait_refs due to `{}`", e);
2724 ()
2725 })?;
2726 self.inferred_obligations.extend(obligations);
2727
2728 if let Err(e) = self.infcx.leak_check(false,
2729 obligation.cause.span,
2730 &skol_map,
2731 snapshot) {
2732 debug!("match_impl: failed leak check due to `{}`", e);
2733 return Err(());
2734 }
2735
2736 debug!("match_impl: success impl_substs={:?}", impl_substs);
2737 Ok((Normalized {
2738 value: impl_substs,
2739 obligations: impl_trait_ref.obligations
2740 }, skol_map))
2741 }
2742
2743 fn fast_reject_trait_refs(&mut self,
2744 obligation: &TraitObligation,
2745 impl_trait_ref: &ty::TraitRef)
2746 -> bool
2747 {
2748 // We can avoid creating type variables and doing the full
2749 // substitution if we find that any of the input types, when
2750 // simplified, do not match.
2751
2752 obligation.predicate.0.input_types().iter()
2753 .zip(impl_trait_ref.input_types())
2754 .any(|(&obligation_ty, &impl_ty)| {
2755 let simplified_obligation_ty =
2756 fast_reject::simplify_type(self.tcx(), obligation_ty, true);
2757 let simplified_impl_ty =
2758 fast_reject::simplify_type(self.tcx(), impl_ty, false);
2759
2760 simplified_obligation_ty.is_some() &&
2761 simplified_impl_ty.is_some() &&
2762 simplified_obligation_ty != simplified_impl_ty
2763 })
2764 }
2765
2766 /// Normalize `where_clause_trait_ref` and try to match it against
2767 /// `obligation`. If successful, return any predicates that
2768 /// result from the normalization. Normalization is necessary
2769 /// because where-clauses are stored in the parameter environment
2770 /// unnormalized.
2771 fn match_where_clause_trait_ref(&mut self,
2772 obligation: &TraitObligation<'tcx>,
2773 where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
2774 -> Result<Vec<PredicateObligation<'tcx>>,()>
2775 {
2776 self.match_poly_trait_ref(obligation, where_clause_trait_ref)?;
2777 Ok(Vec::new())
2778 }
2779
2780 /// Returns `Ok` if `poly_trait_ref` being true implies that the
2781 /// obligation is satisfied.
2782 fn match_poly_trait_ref(&mut self,
2783 obligation: &TraitObligation<'tcx>,
2784 poly_trait_ref: ty::PolyTraitRef<'tcx>)
2785 -> Result<(),()>
2786 {
2787 debug!("match_poly_trait_ref: obligation={:?} poly_trait_ref={:?}",
2788 obligation,
2789 poly_trait_ref);
2790
2791 let origin = TypeOrigin::RelateOutputImplTypes(obligation.cause.span);
2792 self.infcx.sub_poly_trait_refs(false,
2793 origin,
2794 poly_trait_ref,
2795 obligation.predicate.to_poly_trait_ref())
2796 .map(|InferOk { obligations, .. }| self.inferred_obligations.extend(obligations))
2797 .map_err(|_| ())
2798 }
2799
2800 ///////////////////////////////////////////////////////////////////////////
2801 // Miscellany
2802
2803 fn match_fresh_trait_refs(&self,
2804 previous: &ty::PolyTraitRef<'tcx>,
2805 current: &ty::PolyTraitRef<'tcx>)
2806 -> bool
2807 {
2808 let mut matcher = ty::_match::Match::new(self.tcx());
2809 matcher.relate(previous, current).is_ok()
2810 }
2811
2812 fn push_stack<'o,'s:'o>(&mut self,
2813 previous_stack: TraitObligationStackList<'s, 'tcx>,
2814 obligation: &'o TraitObligation<'tcx>)
2815 -> TraitObligationStack<'o, 'tcx>
2816 {
2817 let fresh_trait_ref =
2818 obligation.predicate.to_poly_trait_ref().fold_with(&mut self.freshener);
2819
2820 TraitObligationStack {
2821 obligation: obligation,
2822 fresh_trait_ref: fresh_trait_ref,
2823 previous: previous_stack,
2824 }
2825 }
2826
2827 fn closure_trait_ref_unnormalized(&mut self,
2828 obligation: &TraitObligation<'tcx>,
2829 closure_def_id: DefId,
2830 substs: ty::ClosureSubsts<'tcx>)
2831 -> ty::PolyTraitRef<'tcx>
2832 {
2833 let closure_type = self.infcx.closure_type(closure_def_id, substs);
2834 let ty::Binder((trait_ref, _)) =
2835 self.tcx().closure_trait_ref_and_return_type(obligation.predicate.def_id(),
2836 obligation.predicate.0.self_ty(), // (1)
2837 &closure_type.sig,
2838 util::TupleArgumentsFlag::No);
2839 // (1) Feels icky to skip the binder here, but OTOH we know
2840 // that the self-type is an unboxed closure type and hence is
2841 // in fact unparameterized (or at least does not reference any
2842 // regions bound in the obligation). Still probably some
2843 // refactoring could make this nicer.
2844
2845 ty::Binder(trait_ref)
2846 }
2847
2848 fn closure_trait_ref(&mut self,
2849 obligation: &TraitObligation<'tcx>,
2850 closure_def_id: DefId,
2851 substs: ty::ClosureSubsts<'tcx>)
2852 -> Normalized<'tcx, ty::PolyTraitRef<'tcx>>
2853 {
2854 let trait_ref = self.closure_trait_ref_unnormalized(
2855 obligation, closure_def_id, substs);
2856
2857 // A closure signature can contain associated types which
2858 // must be normalized.
2859 normalize_with_depth(self,
2860 obligation.cause.clone(),
2861 obligation.recursion_depth+1,
2862 &trait_ref)
2863 }
2864
2865 /// Returns the obligations that are implied by instantiating an
2866 /// impl or trait. The obligations are substituted and fully
2867 /// normalized. This is used when confirming an impl or default
2868 /// impl.
2869 fn impl_or_trait_obligations(&mut self,
2870 cause: ObligationCause<'tcx>,
2871 recursion_depth: usize,
2872 def_id: DefId, // of impl or trait
2873 substs: &Substs<'tcx>, // for impl or trait
2874 skol_map: infer::SkolemizationMap,
2875 snapshot: &infer::CombinedSnapshot)
2876 -> Vec<PredicateObligation<'tcx>>
2877 {
2878 debug!("impl_or_trait_obligations(def_id={:?})", def_id);
2879 let tcx = self.tcx();
2880
2881 // To allow for one-pass evaluation of the nested obligation,
2882 // each predicate must be preceded by the obligations required
2883 // to normalize it.
2884 // for example, if we have:
2885 // impl<U: Iterator, V: Iterator<Item=U>> Foo for V where U::Item: Copy
2886 // the impl will have the following predicates:
2887 // <V as Iterator>::Item = U,
2888 // U: Iterator, U: Sized,
2889 // V: Iterator, V: Sized,
2890 // <U as Iterator>::Item: Copy
2891 // When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
2892 // obligation will normalize to `<$0 as Iterator>::Item = $1` and
2893 // `$1: Copy`, so we must ensure the obligations are emitted in
2894 // that order.
2895 let predicates = tcx
2896 .lookup_predicates(def_id)
2897 .predicates.iter()
2898 .flat_map(|predicate| {
2899 let predicate =
2900 normalize_with_depth(self, cause.clone(), recursion_depth,
2901 &predicate.subst(tcx, substs));
2902 predicate.obligations.into_iter().chain(
2903 Some(Obligation {
2904 cause: cause.clone(),
2905 recursion_depth: recursion_depth,
2906 predicate: predicate.value
2907 }))
2908 }).collect();
2909 self.infcx().plug_leaks(skol_map, snapshot, &predicates)
2910 }
2911 }
2912
2913 impl<'tcx> TraitObligation<'tcx> {
2914 #[allow(unused_comparisons)]
2915 pub fn derived_cause(&self,
2916 variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>)
2917 -> ObligationCause<'tcx>
2918 {
2919 /*!
2920 * Creates a cause for obligations that are derived from
2921 * `obligation` by a recursive search (e.g., for a builtin
2922 * bound, or eventually a `impl Foo for ..`). If `obligation`
2923 * is itself a derived obligation, this is just a clone, but
2924 * otherwise we create a "derived obligation" cause so as to
2925 * keep track of the original root obligation for error
2926 * reporting.
2927 */
2928
2929 let obligation = self;
2930
2931 // NOTE(flaper87): As of now, it keeps track of the whole error
2932 // chain. Ideally, we should have a way to configure this either
2933 // by using -Z verbose or just a CLI argument.
2934 if obligation.recursion_depth >= 0 {
2935 let derived_cause = DerivedObligationCause {
2936 parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
2937 parent_code: Rc::new(obligation.cause.code.clone())
2938 };
2939 let derived_code = variant(derived_cause);
2940 ObligationCause::new(obligation.cause.span, obligation.cause.body_id, derived_code)
2941 } else {
2942 obligation.cause.clone()
2943 }
2944 }
2945 }
2946
2947 impl<'tcx> SelectionCache<'tcx> {
2948 pub fn new() -> SelectionCache<'tcx> {
2949 SelectionCache {
2950 hashmap: RefCell::new(FnvHashMap())
2951 }
2952 }
2953 }
2954
2955 impl<'tcx> EvaluationCache<'tcx> {
2956 pub fn new() -> EvaluationCache<'tcx> {
2957 EvaluationCache {
2958 hashmap: RefCell::new(FnvHashMap())
2959 }
2960 }
2961 }
2962
2963 impl<'o,'tcx> TraitObligationStack<'o,'tcx> {
2964 fn list(&'o self) -> TraitObligationStackList<'o,'tcx> {
2965 TraitObligationStackList::with(self)
2966 }
2967
2968 fn iter(&'o self) -> TraitObligationStackList<'o,'tcx> {
2969 self.list()
2970 }
2971 }
2972
2973 #[derive(Copy, Clone)]
2974 struct TraitObligationStackList<'o,'tcx:'o> {
2975 head: Option<&'o TraitObligationStack<'o,'tcx>>
2976 }
2977
2978 impl<'o,'tcx> TraitObligationStackList<'o,'tcx> {
2979 fn empty() -> TraitObligationStackList<'o,'tcx> {
2980 TraitObligationStackList { head: None }
2981 }
2982
2983 fn with(r: &'o TraitObligationStack<'o,'tcx>) -> TraitObligationStackList<'o,'tcx> {
2984 TraitObligationStackList { head: Some(r) }
2985 }
2986 }
2987
2988 impl<'o,'tcx> Iterator for TraitObligationStackList<'o,'tcx>{
2989 type Item = &'o TraitObligationStack<'o,'tcx>;
2990
2991 fn next(&mut self) -> Option<&'o TraitObligationStack<'o,'tcx>> {
2992 match self.head {
2993 Some(o) => {
2994 *self = o.previous;
2995 Some(o)
2996 }
2997 None => None
2998 }
2999 }
3000 }
3001
3002 impl<'o,'tcx> fmt::Debug for TraitObligationStack<'o,'tcx> {
3003 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
3004 write!(f, "TraitObligationStack({:?})", self.obligation)
3005 }
3006 }
3007
3008 impl EvaluationResult {
3009 fn may_apply(&self) -> bool {
3010 match *self {
3011 EvaluatedToOk |
3012 EvaluatedToAmbig |
3013 EvaluatedToUnknown => true,
3014
3015 EvaluatedToErr => false
3016 }
3017 }
3018 }
3019
3020 impl MethodMatchResult {
3021 pub fn may_apply(&self) -> bool {
3022 match *self {
3023 MethodMatched(_) => true,
3024 MethodAmbiguous(_) => true,
3025 MethodDidNotMatch => false,
3026 }
3027 }
3028 }