]> git.proxmox.com Git - rustc.git/blob - src/librustc/traits/select.rs
New upstream version 1.13.0+dfsg1
[rustc.git] / src / librustc / traits / select.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! See `README.md` for high-level documentation
12
13 pub use self::MethodMatchResult::*;
14 pub use self::MethodMatchedData::*;
15 use self::SelectionCandidate::*;
16 use self::EvaluationResult::*;
17
18 use super::coherence;
19 use super::DerivedObligationCause;
20 use super::project;
21 use super::project::{normalize_with_depth, Normalized};
22 use super::{PredicateObligation, TraitObligation, ObligationCause};
23 use super::{ObligationCauseCode, BuiltinDerivedObligation, ImplDerivedObligation};
24 use super::{SelectionError, Unimplemented, OutputTypeParameterMismatch};
25 use super::{ObjectCastObligation, Obligation};
26 use super::Reveal;
27 use super::TraitNotObjectSafe;
28 use super::Selection;
29 use super::SelectionResult;
30 use super::{VtableBuiltin, VtableImpl, VtableParam, VtableClosure,
31 VtableFnPointer, VtableObject, VtableDefaultImpl};
32 use super::{VtableImplData, VtableObjectData, VtableBuiltinData,
33 VtableClosureData, VtableDefaultImplData, VtableFnPointerData};
34 use super::util;
35
36 use hir::def_id::DefId;
37 use infer;
38 use infer::{InferCtxt, InferOk, TypeFreshener, TypeOrigin};
39 use ty::subst::{Kind, Subst, Substs};
40 use ty::{self, ToPredicate, ToPolyTraitRef, Ty, TyCtxt, TypeFoldable};
41 use traits;
42 use ty::fast_reject;
43 use ty::relate::TypeRelation;
44
45 use rustc_data_structures::bitvec::BitVector;
46 use rustc_data_structures::snapshot_vec::{SnapshotVecDelegate, SnapshotVec};
47 use std::cell::RefCell;
48 use std::fmt;
49 use std::marker::PhantomData;
50 use std::mem;
51 use std::rc::Rc;
52 use syntax::abi::Abi;
53 use hir;
54 use util::nodemap::FnvHashMap;
55
56 struct InferredObligationsSnapshotVecDelegate<'tcx> {
57 phantom: PhantomData<&'tcx i32>,
58 }
59 impl<'tcx> SnapshotVecDelegate for InferredObligationsSnapshotVecDelegate<'tcx> {
60 type Value = PredicateObligation<'tcx>;
61 type Undo = ();
62 fn reverse(_: &mut Vec<Self::Value>, _: Self::Undo) {}
63 }
64
65 pub struct SelectionContext<'cx, 'gcx: 'cx+'tcx, 'tcx: 'cx> {
66 infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
67
68 /// Freshener used specifically for skolemizing entries on the
69 /// obligation stack. This ensures that all entries on the stack
70 /// at one time will have the same set of skolemized entries,
71 /// which is important for checking for trait bounds that
72 /// recursively require themselves.
73 freshener: TypeFreshener<'cx, 'gcx, 'tcx>,
74
75 /// If true, indicates that the evaluation should be conservative
76 /// and consider the possibility of types outside this crate.
77 /// This comes up primarily when resolving ambiguity. Imagine
78 /// there is some trait reference `$0 : Bar` where `$0` is an
79 /// inference variable. If `intercrate` is true, then we can never
80 /// say for sure that this reference is not implemented, even if
81 /// there are *no impls at all for `Bar`*, because `$0` could be
82 /// bound to some type that in a downstream crate that implements
83 /// `Bar`. This is the suitable mode for coherence. Elsewhere,
84 /// though, we set this to false, because we are only interested
85 /// in types that the user could actually have written --- in
86 /// other words, we consider `$0 : Bar` to be unimplemented if
87 /// there is no type that the user could *actually name* that
88 /// would satisfy it. This avoids crippling inference, basically.
89 intercrate: bool,
90
91 inferred_obligations: SnapshotVec<InferredObligationsSnapshotVecDelegate<'tcx>>,
92 }
93
94 // A stack that walks back up the stack frame.
95 struct TraitObligationStack<'prev, 'tcx: 'prev> {
96 obligation: &'prev TraitObligation<'tcx>,
97
98 /// Trait ref from `obligation` but skolemized with the
99 /// selection-context's freshener. Used to check for recursion.
100 fresh_trait_ref: ty::PolyTraitRef<'tcx>,
101
102 previous: TraitObligationStackList<'prev, 'tcx>,
103 }
104
105 #[derive(Clone)]
106 pub struct SelectionCache<'tcx> {
107 hashmap: RefCell<FnvHashMap<ty::TraitRef<'tcx>,
108 SelectionResult<'tcx, SelectionCandidate<'tcx>>>>,
109 }
110
111 pub enum MethodMatchResult {
112 MethodMatched(MethodMatchedData),
113 MethodAmbiguous(/* list of impls that could apply */ Vec<DefId>),
114 MethodDidNotMatch,
115 }
116
117 #[derive(Copy, Clone, Debug)]
118 pub enum MethodMatchedData {
119 // In the case of a precise match, we don't really need to store
120 // how the match was found. So don't.
121 PreciseMethodMatch,
122
123 // In the case of a coercion, we need to know the precise impl so
124 // that we can determine the type to which things were coerced.
125 CoerciveMethodMatch(/* impl we matched */ DefId)
126 }
127
128 /// The selection process begins by considering all impls, where
129 /// clauses, and so forth that might resolve an obligation. Sometimes
130 /// we'll be able to say definitively that (e.g.) an impl does not
131 /// apply to the obligation: perhaps it is defined for `usize` but the
132 /// obligation is for `int`. In that case, we drop the impl out of the
133 /// list. But the other cases are considered *candidates*.
134 ///
135 /// For selection to succeed, there must be exactly one matching
136 /// candidate. If the obligation is fully known, this is guaranteed
137 /// by coherence. However, if the obligation contains type parameters
138 /// or variables, there may be multiple such impls.
139 ///
140 /// It is not a real problem if multiple matching impls exist because
141 /// of type variables - it just means the obligation isn't sufficiently
142 /// elaborated. In that case we report an ambiguity, and the caller can
143 /// try again after more type information has been gathered or report a
144 /// "type annotations required" error.
145 ///
146 /// However, with type parameters, this can be a real problem - type
147 /// parameters don't unify with regular types, but they *can* unify
148 /// with variables from blanket impls, and (unless we know its bounds
149 /// will always be satisfied) picking the blanket impl will be wrong
150 /// for at least *some* substitutions. To make this concrete, if we have
151 ///
152 /// trait AsDebug { type Out : fmt::Debug; fn debug(self) -> Self::Out; }
153 /// impl<T: fmt::Debug> AsDebug for T {
154 /// type Out = T;
155 /// fn debug(self) -> fmt::Debug { self }
156 /// }
157 /// fn foo<T: AsDebug>(t: T) { println!("{:?}", <T as AsDebug>::debug(t)); }
158 ///
159 /// we can't just use the impl to resolve the <T as AsDebug> obligation
160 /// - a type from another crate (that doesn't implement fmt::Debug) could
161 /// implement AsDebug.
162 ///
163 /// Because where-clauses match the type exactly, multiple clauses can
164 /// only match if there are unresolved variables, and we can mostly just
165 /// report this ambiguity in that case. This is still a problem - we can't
166 /// *do anything* with ambiguities that involve only regions. This is issue
167 /// #21974.
168 ///
169 /// If a single where-clause matches and there are no inference
170 /// variables left, then it definitely matches and we can just select
171 /// it.
172 ///
173 /// In fact, we even select the where-clause when the obligation contains
174 /// inference variables. The can lead to inference making "leaps of logic",
175 /// for example in this situation:
176 ///
177 /// pub trait Foo<T> { fn foo(&self) -> T; }
178 /// impl<T> Foo<()> for T { fn foo(&self) { } }
179 /// impl Foo<bool> for bool { fn foo(&self) -> bool { *self } }
180 ///
181 /// pub fn foo<T>(t: T) where T: Foo<bool> {
182 /// println!("{:?}", <T as Foo<_>>::foo(&t));
183 /// }
184 /// fn main() { foo(false); }
185 ///
186 /// Here the obligation <T as Foo<$0>> can be matched by both the blanket
187 /// impl and the where-clause. We select the where-clause and unify $0=bool,
188 /// so the program prints "false". However, if the where-clause is omitted,
189 /// the blanket impl is selected, we unify $0=(), and the program prints
190 /// "()".
191 ///
192 /// Exactly the same issues apply to projection and object candidates, except
193 /// that we can have both a projection candidate and a where-clause candidate
194 /// for the same obligation. In that case either would do (except that
195 /// different "leaps of logic" would occur if inference variables are
196 /// present), and we just pick the where-clause. This is, for example,
197 /// required for associated types to work in default impls, as the bounds
198 /// are visible both as projection bounds and as where-clauses from the
199 /// parameter environment.
200 #[derive(PartialEq,Eq,Debug,Clone)]
201 enum SelectionCandidate<'tcx> {
202 BuiltinCandidate { has_nested: bool },
203 ParamCandidate(ty::PolyTraitRef<'tcx>),
204 ImplCandidate(DefId),
205 DefaultImplCandidate(DefId),
206 DefaultImplObjectCandidate(DefId),
207
208 /// This is a trait matching with a projected type as `Self`, and
209 /// we found an applicable bound in the trait definition.
210 ProjectionCandidate,
211
212 /// Implementation of a `Fn`-family trait by one of the anonymous types
213 /// generated for a `||` expression. The ty::ClosureKind informs the
214 /// confirmation step what ClosureKind obligation to emit.
215 ClosureCandidate(/* closure */ DefId, ty::ClosureSubsts<'tcx>, ty::ClosureKind),
216
217 /// Implementation of a `Fn`-family trait by one of the anonymous
218 /// types generated for a fn pointer type (e.g., `fn(int)->int`)
219 FnPointerCandidate,
220
221 ObjectCandidate,
222
223 BuiltinObjectCandidate,
224
225 BuiltinUnsizeCandidate,
226 }
227
228 impl<'a, 'tcx> ty::Lift<'tcx> for SelectionCandidate<'a> {
229 type Lifted = SelectionCandidate<'tcx>;
230 fn lift_to_tcx<'b, 'gcx>(&self, tcx: TyCtxt<'b, 'gcx, 'tcx>) -> Option<Self::Lifted> {
231 Some(match *self {
232 BuiltinCandidate { has_nested } => {
233 BuiltinCandidate {
234 has_nested: has_nested
235 }
236 }
237 ImplCandidate(def_id) => ImplCandidate(def_id),
238 DefaultImplCandidate(def_id) => DefaultImplCandidate(def_id),
239 DefaultImplObjectCandidate(def_id) => {
240 DefaultImplObjectCandidate(def_id)
241 }
242 ProjectionCandidate => ProjectionCandidate,
243 FnPointerCandidate => FnPointerCandidate,
244 ObjectCandidate => ObjectCandidate,
245 BuiltinObjectCandidate => BuiltinObjectCandidate,
246 BuiltinUnsizeCandidate => BuiltinUnsizeCandidate,
247
248 ParamCandidate(ref trait_ref) => {
249 return tcx.lift(trait_ref).map(ParamCandidate);
250 }
251 ClosureCandidate(def_id, ref substs, kind) => {
252 return tcx.lift(substs).map(|substs| {
253 ClosureCandidate(def_id, substs, kind)
254 });
255 }
256 })
257 }
258 }
259
260 struct SelectionCandidateSet<'tcx> {
261 // a list of candidates that definitely apply to the current
262 // obligation (meaning: types unify).
263 vec: Vec<SelectionCandidate<'tcx>>,
264
265 // if this is true, then there were candidates that might or might
266 // not have applied, but we couldn't tell. This occurs when some
267 // of the input types are type variables, in which case there are
268 // various "builtin" rules that might or might not trigger.
269 ambiguous: bool,
270 }
271
272 #[derive(PartialEq,Eq,Debug,Clone)]
273 struct EvaluatedCandidate<'tcx> {
274 candidate: SelectionCandidate<'tcx>,
275 evaluation: EvaluationResult,
276 }
277
278 /// When does the builtin impl for `T: Trait` apply?
279 enum BuiltinImplConditions<'tcx> {
280 /// The impl is conditional on T1,T2,.. : Trait
281 Where(ty::Binder<Vec<Ty<'tcx>>>),
282 /// There is no built-in impl. There may be some other
283 /// candidate (a where-clause or user-defined impl).
284 None,
285 /// There is *no* impl for this, builtin or not. Ignore
286 /// all where-clauses.
287 Never,
288 /// It is unknown whether there is an impl.
289 Ambiguous
290 }
291
292 #[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq)]
293 /// The result of trait evaluation. The order is important
294 /// here as the evaluation of a list is the maximum of the
295 /// evaluations.
296 enum EvaluationResult {
297 /// Evaluation successful
298 EvaluatedToOk,
299 /// Evaluation failed because of recursion - treated as ambiguous
300 EvaluatedToUnknown,
301 /// Evaluation is known to be ambiguous
302 EvaluatedToAmbig,
303 /// Evaluation failed
304 EvaluatedToErr,
305 }
306
307 #[derive(Clone)]
308 pub struct EvaluationCache<'tcx> {
309 hashmap: RefCell<FnvHashMap<ty::PolyTraitRef<'tcx>, EvaluationResult>>
310 }
311
312 impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
313 pub fn new(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>) -> SelectionContext<'cx, 'gcx, 'tcx> {
314 SelectionContext {
315 infcx: infcx,
316 freshener: infcx.freshener(),
317 intercrate: false,
318 inferred_obligations: SnapshotVec::new(),
319 }
320 }
321
322 pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>) -> SelectionContext<'cx, 'gcx, 'tcx> {
323 SelectionContext {
324 infcx: infcx,
325 freshener: infcx.freshener(),
326 intercrate: true,
327 inferred_obligations: SnapshotVec::new(),
328 }
329 }
330
331 pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
332 self.infcx
333 }
334
335 pub fn tcx(&self) -> TyCtxt<'cx, 'gcx, 'tcx> {
336 self.infcx.tcx
337 }
338
339 pub fn param_env(&self) -> &'cx ty::ParameterEnvironment<'gcx> {
340 self.infcx.param_env()
341 }
342
343 pub fn closure_typer(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
344 self.infcx
345 }
346
347 pub fn projection_mode(&self) -> Reveal {
348 self.infcx.projection_mode()
349 }
350
351 /// Wraps the inference context's in_snapshot s.t. snapshot handling is only from the selection
352 /// context's self.
353 fn in_snapshot<R, F>(&mut self, f: F) -> R
354 where F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> R
355 {
356 // The irrefutable nature of the operation means we don't need to snapshot the
357 // inferred_obligations vector.
358 self.infcx.in_snapshot(|snapshot| f(self, snapshot))
359 }
360
361 /// Wraps a probe s.t. obligations collected during it are ignored and old obligations are
362 /// retained.
363 fn probe<R, F>(&mut self, f: F) -> R
364 where F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> R
365 {
366 let inferred_obligations_snapshot = self.inferred_obligations.start_snapshot();
367 let result = self.infcx.probe(|snapshot| f(self, snapshot));
368 self.inferred_obligations.rollback_to(inferred_obligations_snapshot);
369 result
370 }
371
372 /// Wraps a commit_if_ok s.t. obligations collected during it are not returned in selection if
373 /// the transaction fails and s.t. old obligations are retained.
374 fn commit_if_ok<T, E, F>(&mut self, f: F) -> Result<T, E> where
375 F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> Result<T, E>
376 {
377 let inferred_obligations_snapshot = self.inferred_obligations.start_snapshot();
378 match self.infcx.commit_if_ok(|snapshot| f(self, snapshot)) {
379 Ok(ok) => {
380 self.inferred_obligations.commit(inferred_obligations_snapshot);
381 Ok(ok)
382 },
383 Err(err) => {
384 self.inferred_obligations.rollback_to(inferred_obligations_snapshot);
385 Err(err)
386 }
387 }
388 }
389
390
391 ///////////////////////////////////////////////////////////////////////////
392 // Selection
393 //
394 // The selection phase tries to identify *how* an obligation will
395 // be resolved. For example, it will identify which impl or
396 // parameter bound is to be used. The process can be inconclusive
397 // if the self type in the obligation is not fully inferred. Selection
398 // can result in an error in one of two ways:
399 //
400 // 1. If no applicable impl or parameter bound can be found.
401 // 2. If the output type parameters in the obligation do not match
402 // those specified by the impl/bound. For example, if the obligation
403 // is `Vec<Foo>:Iterable<Bar>`, but the impl specifies
404 // `impl<T> Iterable<T> for Vec<T>`, than an error would result.
405
406 /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
407 /// type environment by performing unification.
408 pub fn select(&mut self, obligation: &TraitObligation<'tcx>)
409 -> SelectionResult<'tcx, Selection<'tcx>> {
410 debug!("select({:?})", obligation);
411 assert!(!obligation.predicate.has_escaping_regions());
412
413 let dep_node = obligation.predicate.dep_node();
414 let _task = self.tcx().dep_graph.in_task(dep_node);
415
416 let stack = self.push_stack(TraitObligationStackList::empty(), obligation);
417 match self.candidate_from_obligation(&stack)? {
418 None => Ok(None),
419 Some(candidate) => {
420 let mut candidate = self.confirm_candidate(obligation, candidate)?;
421 // FIXME(#32730) remove this assertion once inferred obligations are propagated
422 // from inference
423 assert!(self.inferred_obligations.len() == 0);
424 let inferred_obligations = (*self.inferred_obligations).into_iter().cloned();
425 candidate.nested_obligations_mut().extend(inferred_obligations);
426 Ok(Some(candidate))
427 },
428 }
429 }
430
431 ///////////////////////////////////////////////////////////////////////////
432 // EVALUATION
433 //
434 // Tests whether an obligation can be selected or whether an impl
435 // can be applied to particular types. It skips the "confirmation"
436 // step and hence completely ignores output type parameters.
437 //
438 // The result is "true" if the obligation *may* hold and "false" if
439 // we can be sure it does not.
440
441 /// Evaluates whether the obligation `obligation` can be satisfied (by any means).
442 pub fn evaluate_obligation(&mut self,
443 obligation: &PredicateObligation<'tcx>)
444 -> bool
445 {
446 debug!("evaluate_obligation({:?})",
447 obligation);
448
449 self.probe(|this, _| {
450 this.evaluate_predicate_recursively(TraitObligationStackList::empty(), obligation)
451 .may_apply()
452 })
453 }
454
455 /// Evaluates whether the obligation `obligation` can be satisfied,
456 /// and returns `false` if not certain. However, this is not entirely
457 /// accurate if inference variables are involved.
458 pub fn evaluate_obligation_conservatively(&mut self,
459 obligation: &PredicateObligation<'tcx>)
460 -> bool
461 {
462 debug!("evaluate_obligation_conservatively({:?})",
463 obligation);
464
465 self.probe(|this, _| {
466 this.evaluate_predicate_recursively(TraitObligationStackList::empty(), obligation)
467 == EvaluatedToOk
468 })
469 }
470
471 /// Evaluates the predicates in `predicates` recursively. Note that
472 /// this applies projections in the predicates, and therefore
473 /// is run within an inference probe.
474 fn evaluate_predicates_recursively<'a,'o,I>(&mut self,
475 stack: TraitObligationStackList<'o, 'tcx>,
476 predicates: I)
477 -> EvaluationResult
478 where I : Iterator<Item=&'a PredicateObligation<'tcx>>, 'tcx:'a
479 {
480 let mut result = EvaluatedToOk;
481 for obligation in predicates {
482 let eval = self.evaluate_predicate_recursively(stack, obligation);
483 debug!("evaluate_predicate_recursively({:?}) = {:?}",
484 obligation, eval);
485 match eval {
486 EvaluatedToErr => { return EvaluatedToErr; }
487 EvaluatedToAmbig => { result = EvaluatedToAmbig; }
488 EvaluatedToUnknown => {
489 if result < EvaluatedToUnknown {
490 result = EvaluatedToUnknown;
491 }
492 }
493 EvaluatedToOk => { }
494 }
495 }
496 result
497 }
498
499 fn evaluate_predicate_recursively<'o>(&mut self,
500 previous_stack: TraitObligationStackList<'o, 'tcx>,
501 obligation: &PredicateObligation<'tcx>)
502 -> EvaluationResult
503 {
504 debug!("evaluate_predicate_recursively({:?})",
505 obligation);
506
507 // Check the cache from the tcx of predicates that we know
508 // have been proven elsewhere. This cache only contains
509 // predicates that are global in scope and hence unaffected by
510 // the current environment.
511 if self.tcx().fulfilled_predicates.borrow().check_duplicate(&obligation.predicate) {
512 return EvaluatedToOk;
513 }
514
515 match obligation.predicate {
516 ty::Predicate::Trait(ref t) => {
517 assert!(!t.has_escaping_regions());
518 let obligation = obligation.with(t.clone());
519 self.evaluate_obligation_recursively(previous_stack, &obligation)
520 }
521
522 ty::Predicate::Equate(ref p) => {
523 // does this code ever run?
524 match self.infcx.equality_predicate(obligation.cause.span, p) {
525 Ok(InferOk { obligations, .. }) => {
526 self.inferred_obligations.extend(obligations);
527 EvaluatedToOk
528 },
529 Err(_) => EvaluatedToErr
530 }
531 }
532
533 ty::Predicate::WellFormed(ty) => {
534 match ty::wf::obligations(self.infcx, obligation.cause.body_id,
535 ty, obligation.cause.span) {
536 Some(obligations) =>
537 self.evaluate_predicates_recursively(previous_stack, obligations.iter()),
538 None =>
539 EvaluatedToAmbig,
540 }
541 }
542
543 ty::Predicate::TypeOutlives(..) | ty::Predicate::RegionOutlives(..) => {
544 // we do not consider region relationships when
545 // evaluating trait matches
546 EvaluatedToOk
547 }
548
549 ty::Predicate::ObjectSafe(trait_def_id) => {
550 if self.tcx().is_object_safe(trait_def_id) {
551 EvaluatedToOk
552 } else {
553 EvaluatedToErr
554 }
555 }
556
557 ty::Predicate::Projection(ref data) => {
558 let project_obligation = obligation.with(data.clone());
559 match project::poly_project_and_unify_type(self, &project_obligation) {
560 Ok(Some(subobligations)) => {
561 self.evaluate_predicates_recursively(previous_stack,
562 subobligations.iter())
563 }
564 Ok(None) => {
565 EvaluatedToAmbig
566 }
567 Err(_) => {
568 EvaluatedToErr
569 }
570 }
571 }
572
573 ty::Predicate::ClosureKind(closure_def_id, kind) => {
574 match self.infcx.closure_kind(closure_def_id) {
575 Some(closure_kind) => {
576 if closure_kind.extends(kind) {
577 EvaluatedToOk
578 } else {
579 EvaluatedToErr
580 }
581 }
582 None => {
583 EvaluatedToAmbig
584 }
585 }
586 }
587 }
588 }
589
590 fn evaluate_obligation_recursively<'o>(&mut self,
591 previous_stack: TraitObligationStackList<'o, 'tcx>,
592 obligation: &TraitObligation<'tcx>)
593 -> EvaluationResult
594 {
595 debug!("evaluate_obligation_recursively({:?})",
596 obligation);
597
598 let stack = self.push_stack(previous_stack, obligation);
599 let fresh_trait_ref = stack.fresh_trait_ref;
600 if let Some(result) = self.check_evaluation_cache(fresh_trait_ref) {
601 debug!("CACHE HIT: EVAL({:?})={:?}",
602 fresh_trait_ref,
603 result);
604 return result;
605 }
606
607 let result = self.evaluate_stack(&stack);
608
609 debug!("CACHE MISS: EVAL({:?})={:?}",
610 fresh_trait_ref,
611 result);
612 self.insert_evaluation_cache(fresh_trait_ref, result);
613
614 result
615 }
616
617 fn evaluate_stack<'o>(&mut self,
618 stack: &TraitObligationStack<'o, 'tcx>)
619 -> EvaluationResult
620 {
621 // In intercrate mode, whenever any of the types are unbound,
622 // there can always be an impl. Even if there are no impls in
623 // this crate, perhaps the type would be unified with
624 // something from another crate that does provide an impl.
625 //
626 // In intra mode, we must still be conservative. The reason is
627 // that we want to avoid cycles. Imagine an impl like:
628 //
629 // impl<T:Eq> Eq for Vec<T>
630 //
631 // and a trait reference like `$0 : Eq` where `$0` is an
632 // unbound variable. When we evaluate this trait-reference, we
633 // will unify `$0` with `Vec<$1>` (for some fresh variable
634 // `$1`), on the condition that `$1 : Eq`. We will then wind
635 // up with many candidates (since that are other `Eq` impls
636 // that apply) and try to winnow things down. This results in
637 // a recursive evaluation that `$1 : Eq` -- as you can
638 // imagine, this is just where we started. To avoid that, we
639 // check for unbound variables and return an ambiguous (hence possible)
640 // match if we've seen this trait before.
641 //
642 // This suffices to allow chains like `FnMut` implemented in
643 // terms of `Fn` etc, but we could probably make this more
644 // precise still.
645 let unbound_input_types = stack.fresh_trait_ref.input_types().any(|ty| ty.is_fresh());
646 if unbound_input_types && self.intercrate {
647 debug!("evaluate_stack({:?}) --> unbound argument, intercrate --> ambiguous",
648 stack.fresh_trait_ref);
649 return EvaluatedToAmbig;
650 }
651 if unbound_input_types &&
652 stack.iter().skip(1).any(
653 |prev| self.match_fresh_trait_refs(&stack.fresh_trait_ref,
654 &prev.fresh_trait_ref))
655 {
656 debug!("evaluate_stack({:?}) --> unbound argument, recursive --> giving up",
657 stack.fresh_trait_ref);
658 return EvaluatedToUnknown;
659 }
660
661 // If there is any previous entry on the stack that precisely
662 // matches this obligation, then we can assume that the
663 // obligation is satisfied for now (still all other conditions
664 // must be met of course). One obvious case this comes up is
665 // marker traits like `Send`. Think of a linked list:
666 //
667 // struct List<T> { data: T, next: Option<Box<List<T>>> {
668 //
669 // `Box<List<T>>` will be `Send` if `T` is `Send` and
670 // `Option<Box<List<T>>>` is `Send`, and in turn
671 // `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
672 // `Send`.
673 //
674 // Note that we do this comparison using the `fresh_trait_ref`
675 // fields. Because these have all been skolemized using
676 // `self.freshener`, we can be sure that (a) this will not
677 // affect the inferencer state and (b) that if we see two
678 // skolemized types with the same index, they refer to the
679 // same unbound type variable.
680 if
681 stack.iter()
682 .skip(1) // skip top-most frame
683 .any(|prev| stack.fresh_trait_ref == prev.fresh_trait_ref)
684 {
685 debug!("evaluate_stack({:?}) --> recursive",
686 stack.fresh_trait_ref);
687 return EvaluatedToOk;
688 }
689
690 match self.candidate_from_obligation(stack) {
691 Ok(Some(c)) => self.evaluate_candidate(stack, &c),
692 Ok(None) => EvaluatedToAmbig,
693 Err(..) => EvaluatedToErr
694 }
695 }
696
697 /// Further evaluate `candidate` to decide whether all type parameters match and whether nested
698 /// obligations are met. Returns true if `candidate` remains viable after this further
699 /// scrutiny.
700 fn evaluate_candidate<'o>(&mut self,
701 stack: &TraitObligationStack<'o, 'tcx>,
702 candidate: &SelectionCandidate<'tcx>)
703 -> EvaluationResult
704 {
705 debug!("evaluate_candidate: depth={} candidate={:?}",
706 stack.obligation.recursion_depth, candidate);
707 let result = self.probe(|this, _| {
708 let candidate = (*candidate).clone();
709 match this.confirm_candidate(stack.obligation, candidate) {
710 Ok(selection) => {
711 this.evaluate_predicates_recursively(
712 stack.list(),
713 selection.nested_obligations().iter())
714 }
715 Err(..) => EvaluatedToErr
716 }
717 });
718 debug!("evaluate_candidate: depth={} result={:?}",
719 stack.obligation.recursion_depth, result);
720 result
721 }
722
723 fn check_evaluation_cache(&self, trait_ref: ty::PolyTraitRef<'tcx>)
724 -> Option<EvaluationResult>
725 {
726 if self.can_use_global_caches() {
727 let cache = self.tcx().evaluation_cache.hashmap.borrow();
728 if let Some(cached) = cache.get(&trait_ref) {
729 return Some(cached.clone());
730 }
731 }
732 self.infcx.evaluation_cache.hashmap.borrow().get(&trait_ref).cloned()
733 }
734
735 fn insert_evaluation_cache(&mut self,
736 trait_ref: ty::PolyTraitRef<'tcx>,
737 result: EvaluationResult)
738 {
739 // Avoid caching results that depend on more than just the trait-ref:
740 // The stack can create EvaluatedToUnknown, and closure signatures
741 // being yet uninferred can create "spurious" EvaluatedToAmbig
742 // and EvaluatedToOk.
743 if result == EvaluatedToUnknown ||
744 ((result == EvaluatedToAmbig || result == EvaluatedToOk)
745 && trait_ref.has_closure_types())
746 {
747 return;
748 }
749
750 if self.can_use_global_caches() {
751 let mut cache = self.tcx().evaluation_cache.hashmap.borrow_mut();
752 if let Some(trait_ref) = self.tcx().lift_to_global(&trait_ref) {
753 cache.insert(trait_ref, result);
754 return;
755 }
756 }
757
758 self.infcx.evaluation_cache.hashmap.borrow_mut().insert(trait_ref, result);
759 }
760
761 ///////////////////////////////////////////////////////////////////////////
762 // CANDIDATE ASSEMBLY
763 //
764 // The selection process begins by examining all in-scope impls,
765 // caller obligations, and so forth and assembling a list of
766 // candidates. See `README.md` and the `Candidate` type for more
767 // details.
768
769 fn candidate_from_obligation<'o>(&mut self,
770 stack: &TraitObligationStack<'o, 'tcx>)
771 -> SelectionResult<'tcx, SelectionCandidate<'tcx>>
772 {
773 // Watch out for overflow. This intentionally bypasses (and does
774 // not update) the cache.
775 let recursion_limit = self.infcx.tcx.sess.recursion_limit.get();
776 if stack.obligation.recursion_depth >= recursion_limit {
777 self.infcx().report_overflow_error(&stack.obligation, true);
778 }
779
780 // Check the cache. Note that we skolemize the trait-ref
781 // separately rather than using `stack.fresh_trait_ref` -- this
782 // is because we want the unbound variables to be replaced
783 // with fresh skolemized types starting from index 0.
784 let cache_fresh_trait_pred =
785 self.infcx.freshen(stack.obligation.predicate.clone());
786 debug!("candidate_from_obligation(cache_fresh_trait_pred={:?}, obligation={:?})",
787 cache_fresh_trait_pred,
788 stack);
789 assert!(!stack.obligation.predicate.has_escaping_regions());
790
791 match self.check_candidate_cache(&cache_fresh_trait_pred) {
792 Some(c) => {
793 debug!("CACHE HIT: SELECT({:?})={:?}",
794 cache_fresh_trait_pred,
795 c);
796 return c;
797 }
798 None => { }
799 }
800
801 // If no match, compute result and insert into cache.
802 let candidate = self.candidate_from_obligation_no_cache(stack);
803
804 if self.should_update_candidate_cache(&cache_fresh_trait_pred, &candidate) {
805 debug!("CACHE MISS: SELECT({:?})={:?}",
806 cache_fresh_trait_pred, candidate);
807 self.insert_candidate_cache(cache_fresh_trait_pred, candidate.clone());
808 }
809
810 candidate
811 }
812
813 // Treat negative impls as unimplemented
814 fn filter_negative_impls(&self, candidate: SelectionCandidate<'tcx>)
815 -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
816 if let ImplCandidate(def_id) = candidate {
817 if self.tcx().trait_impl_polarity(def_id) == hir::ImplPolarity::Negative {
818 return Err(Unimplemented)
819 }
820 }
821 Ok(Some(candidate))
822 }
823
824 fn candidate_from_obligation_no_cache<'o>(&mut self,
825 stack: &TraitObligationStack<'o, 'tcx>)
826 -> SelectionResult<'tcx, SelectionCandidate<'tcx>>
827 {
828 if stack.obligation.predicate.references_error() {
829 // If we encounter a `TyError`, we generally prefer the
830 // most "optimistic" result in response -- that is, the
831 // one least likely to report downstream errors. But
832 // because this routine is shared by coherence and by
833 // trait selection, there isn't an obvious "right" choice
834 // here in that respect, so we opt to just return
835 // ambiguity and let the upstream clients sort it out.
836 return Ok(None);
837 }
838
839 if !self.is_knowable(stack) {
840 debug!("coherence stage: not knowable");
841 return Ok(None);
842 }
843
844 let candidate_set = self.assemble_candidates(stack)?;
845
846 if candidate_set.ambiguous {
847 debug!("candidate set contains ambig");
848 return Ok(None);
849 }
850
851 let mut candidates = candidate_set.vec;
852
853 debug!("assembled {} candidates for {:?}: {:?}",
854 candidates.len(),
855 stack,
856 candidates);
857
858 // At this point, we know that each of the entries in the
859 // candidate set is *individually* applicable. Now we have to
860 // figure out if they contain mutual incompatibilities. This
861 // frequently arises if we have an unconstrained input type --
862 // for example, we are looking for $0:Eq where $0 is some
863 // unconstrained type variable. In that case, we'll get a
864 // candidate which assumes $0 == int, one that assumes $0 ==
865 // usize, etc. This spells an ambiguity.
866
867 // If there is more than one candidate, first winnow them down
868 // by considering extra conditions (nested obligations and so
869 // forth). We don't winnow if there is exactly one
870 // candidate. This is a relatively minor distinction but it
871 // can lead to better inference and error-reporting. An
872 // example would be if there was an impl:
873 //
874 // impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
875 //
876 // and we were to see some code `foo.push_clone()` where `boo`
877 // is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
878 // we were to winnow, we'd wind up with zero candidates.
879 // Instead, we select the right impl now but report `Bar does
880 // not implement Clone`.
881 if candidates.len() == 1 {
882 return self.filter_negative_impls(candidates.pop().unwrap());
883 }
884
885 // Winnow, but record the exact outcome of evaluation, which
886 // is needed for specialization.
887 let mut candidates: Vec<_> = candidates.into_iter().filter_map(|c| {
888 let eval = self.evaluate_candidate(stack, &c);
889 if eval.may_apply() {
890 Some(EvaluatedCandidate {
891 candidate: c,
892 evaluation: eval,
893 })
894 } else {
895 None
896 }
897 }).collect();
898
899 // If there are STILL multiple candidate, we can further
900 // reduce the list by dropping duplicates -- including
901 // resolving specializations.
902 if candidates.len() > 1 {
903 let mut i = 0;
904 while i < candidates.len() {
905 let is_dup =
906 (0..candidates.len())
907 .filter(|&j| i != j)
908 .any(|j| self.candidate_should_be_dropped_in_favor_of(&candidates[i],
909 &candidates[j]));
910 if is_dup {
911 debug!("Dropping candidate #{}/{}: {:?}",
912 i, candidates.len(), candidates[i]);
913 candidates.swap_remove(i);
914 } else {
915 debug!("Retaining candidate #{}/{}: {:?}",
916 i, candidates.len(), candidates[i]);
917 i += 1;
918 }
919 }
920 }
921
922 // If there are *STILL* multiple candidates, give up and
923 // report ambiguity.
924 if candidates.len() > 1 {
925 debug!("multiple matches, ambig");
926 return Ok(None);
927 }
928
929 // If there are *NO* candidates, then there are no impls --
930 // that we know of, anyway. Note that in the case where there
931 // are unbound type variables within the obligation, it might
932 // be the case that you could still satisfy the obligation
933 // from another crate by instantiating the type variables with
934 // a type from another crate that does have an impl. This case
935 // is checked for in `evaluate_stack` (and hence users
936 // who might care about this case, like coherence, should use
937 // that function).
938 if candidates.is_empty() {
939 return Err(Unimplemented);
940 }
941
942 // Just one candidate left.
943 self.filter_negative_impls(candidates.pop().unwrap().candidate)
944 }
945
946 fn is_knowable<'o>(&mut self,
947 stack: &TraitObligationStack<'o, 'tcx>)
948 -> bool
949 {
950 debug!("is_knowable(intercrate={})", self.intercrate);
951
952 if !self.intercrate {
953 return true;
954 }
955
956 let obligation = &stack.obligation;
957 let predicate = self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
958
959 // ok to skip binder because of the nature of the
960 // trait-ref-is-knowable check, which does not care about
961 // bound regions
962 let trait_ref = &predicate.skip_binder().trait_ref;
963
964 coherence::trait_ref_is_knowable(self.tcx(), trait_ref)
965 }
966
967 /// Returns true if the global caches can be used.
968 /// Do note that if the type itself is not in the
969 /// global tcx, the local caches will be used.
970 fn can_use_global_caches(&self) -> bool {
971 // If there are any where-clauses in scope, then we always use
972 // a cache local to this particular scope. Otherwise, we
973 // switch to a global cache. We used to try and draw
974 // finer-grained distinctions, but that led to a serious of
975 // annoying and weird bugs like #22019 and #18290. This simple
976 // rule seems to be pretty clearly safe and also still retains
977 // a very high hit rate (~95% when compiling rustc).
978 if !self.param_env().caller_bounds.is_empty() {
979 return false;
980 }
981
982 // Avoid using the master cache during coherence and just rely
983 // on the local cache. This effectively disables caching
984 // during coherence. It is really just a simplification to
985 // avoid us having to fear that coherence results "pollute"
986 // the master cache. Since coherence executes pretty quickly,
987 // it's not worth going to more trouble to increase the
988 // hit-rate I don't think.
989 if self.intercrate {
990 return false;
991 }
992
993 // Otherwise, we can use the global cache.
994 true
995 }
996
997 fn check_candidate_cache(&mut self,
998 cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>)
999 -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>>
1000 {
1001 let trait_ref = &cache_fresh_trait_pred.0.trait_ref;
1002 if self.can_use_global_caches() {
1003 let cache = self.tcx().selection_cache.hashmap.borrow();
1004 if let Some(cached) = cache.get(&trait_ref) {
1005 return Some(cached.clone());
1006 }
1007 }
1008 self.infcx.selection_cache.hashmap.borrow().get(trait_ref).cloned()
1009 }
1010
1011 fn insert_candidate_cache(&mut self,
1012 cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1013 candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>)
1014 {
1015 let trait_ref = cache_fresh_trait_pred.0.trait_ref;
1016 if self.can_use_global_caches() {
1017 let mut cache = self.tcx().selection_cache.hashmap.borrow_mut();
1018 if let Some(trait_ref) = self.tcx().lift_to_global(&trait_ref) {
1019 if let Some(candidate) = self.tcx().lift_to_global(&candidate) {
1020 cache.insert(trait_ref, candidate);
1021 return;
1022 }
1023 }
1024 }
1025
1026 self.infcx.selection_cache.hashmap.borrow_mut().insert(trait_ref, candidate);
1027 }
1028
1029 fn should_update_candidate_cache(&mut self,
1030 cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>,
1031 candidate: &SelectionResult<'tcx, SelectionCandidate<'tcx>>)
1032 -> bool
1033 {
1034 // In general, it's a good idea to cache results, even
1035 // ambiguous ones, to save us some trouble later. But we have
1036 // to be careful not to cache results that could be
1037 // invalidated later by advances in inference. Normally, this
1038 // is not an issue, because any inference variables whose
1039 // types are not yet bound are "freshened" in the cache key,
1040 // which means that if we later get the same request once that
1041 // type variable IS bound, we'll have a different cache key.
1042 // For example, if we have `Vec<_#0t> : Foo`, and `_#0t` is
1043 // not yet known, we may cache the result as `None`. But if
1044 // later `_#0t` is bound to `Bar`, then when we freshen we'll
1045 // have `Vec<Bar> : Foo` as the cache key.
1046 //
1047 // HOWEVER, it CAN happen that we get an ambiguity result in
1048 // one particular case around closures where the cache key
1049 // would not change. That is when the precise types of the
1050 // upvars that a closure references have not yet been figured
1051 // out (i.e., because it is not yet known if they are captured
1052 // by ref, and if by ref, what kind of ref). In these cases,
1053 // when matching a builtin bound, we will yield back an
1054 // ambiguous result. But the *cache key* is just the closure type,
1055 // it doesn't capture the state of the upvar computation.
1056 //
1057 // To avoid this trap, just don't cache ambiguous results if
1058 // the self-type contains no inference byproducts (that really
1059 // shouldn't happen in other circumstances anyway, given
1060 // coherence).
1061
1062 match *candidate {
1063 Ok(Some(_)) | Err(_) => true,
1064 Ok(None) => cache_fresh_trait_pred.has_infer_types()
1065 }
1066 }
1067
1068 fn assemble_candidates<'o>(&mut self,
1069 stack: &TraitObligationStack<'o, 'tcx>)
1070 -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>>
1071 {
1072 let TraitObligationStack { obligation, .. } = *stack;
1073 let ref obligation = Obligation {
1074 cause: obligation.cause.clone(),
1075 recursion_depth: obligation.recursion_depth,
1076 predicate: self.infcx().resolve_type_vars_if_possible(&obligation.predicate)
1077 };
1078
1079 if obligation.predicate.skip_binder().self_ty().is_ty_var() {
1080 // FIXME(#20297): Self is a type variable (e.g. `_: AsRef<str>`).
1081 //
1082 // This is somewhat problematic, as the current scheme can't really
1083 // handle it turning to be a projection. This does end up as truly
1084 // ambiguous in most cases anyway.
1085 //
1086 // Until this is fixed, take the fast path out - this also improves
1087 // performance by preventing assemble_candidates_from_impls from
1088 // matching every impl for this trait.
1089 return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true });
1090 }
1091
1092 let mut candidates = SelectionCandidateSet {
1093 vec: Vec::new(),
1094 ambiguous: false
1095 };
1096
1097 // Other bounds. Consider both in-scope bounds from fn decl
1098 // and applicable impls. There is a certain set of precedence rules here.
1099
1100 match self.tcx().lang_items.to_builtin_kind(obligation.predicate.def_id()) {
1101 Some(ty::BoundCopy) => {
1102 debug!("obligation self ty is {:?}",
1103 obligation.predicate.0.self_ty());
1104
1105 // User-defined copy impls are permitted, but only for
1106 // structs and enums.
1107 self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1108
1109 // For other types, we'll use the builtin rules.
1110 let copy_conditions = self.copy_conditions(obligation);
1111 self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates)?;
1112 }
1113 Some(ty::BoundSized) => {
1114 // Sized is never implementable by end-users, it is
1115 // always automatically computed.
1116 let sized_conditions = self.sized_conditions(obligation);
1117 self.assemble_builtin_bound_candidates(sized_conditions,
1118 &mut candidates)?;
1119 }
1120
1121 None if self.tcx().lang_items.unsize_trait() ==
1122 Some(obligation.predicate.def_id()) => {
1123 self.assemble_candidates_for_unsizing(obligation, &mut candidates);
1124 }
1125
1126 Some(ty::BoundSend) |
1127 Some(ty::BoundSync) |
1128 None => {
1129 self.assemble_closure_candidates(obligation, &mut candidates)?;
1130 self.assemble_fn_pointer_candidates(obligation, &mut candidates)?;
1131 self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1132 self.assemble_candidates_from_object_ty(obligation, &mut candidates);
1133 }
1134 }
1135
1136 self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
1137 self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
1138 // Default implementations have lower priority, so we only
1139 // consider triggering a default if there is no other impl that can apply.
1140 if candidates.vec.is_empty() {
1141 self.assemble_candidates_from_default_impls(obligation, &mut candidates)?;
1142 }
1143 debug!("candidate list size: {}", candidates.vec.len());
1144 Ok(candidates)
1145 }
1146
1147 fn assemble_candidates_from_projected_tys(&mut self,
1148 obligation: &TraitObligation<'tcx>,
1149 candidates: &mut SelectionCandidateSet<'tcx>)
1150 {
1151 debug!("assemble_candidates_for_projected_tys({:?})", obligation);
1152
1153 // FIXME(#20297) -- just examining the self-type is very simplistic
1154
1155 // before we go into the whole skolemization thing, just
1156 // quickly check if the self-type is a projection at all.
1157 match obligation.predicate.0.trait_ref.self_ty().sty {
1158 ty::TyProjection(_) | ty::TyAnon(..) => {}
1159 ty::TyInfer(ty::TyVar(_)) => {
1160 span_bug!(obligation.cause.span,
1161 "Self=_ should have been handled by assemble_candidates");
1162 }
1163 _ => return
1164 }
1165
1166 let result = self.probe(|this, snapshot| {
1167 this.match_projection_obligation_against_definition_bounds(obligation,
1168 snapshot)
1169 });
1170
1171 if result {
1172 candidates.vec.push(ProjectionCandidate);
1173 }
1174 }
1175
1176 fn match_projection_obligation_against_definition_bounds(
1177 &mut self,
1178 obligation: &TraitObligation<'tcx>,
1179 snapshot: &infer::CombinedSnapshot)
1180 -> bool
1181 {
1182 let poly_trait_predicate =
1183 self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
1184 let (skol_trait_predicate, skol_map) =
1185 self.infcx().skolemize_late_bound_regions(&poly_trait_predicate, snapshot);
1186 debug!("match_projection_obligation_against_definition_bounds: \
1187 skol_trait_predicate={:?} skol_map={:?}",
1188 skol_trait_predicate,
1189 skol_map);
1190
1191 let (def_id, substs) = match skol_trait_predicate.trait_ref.self_ty().sty {
1192 ty::TyProjection(ref data) => (data.trait_ref.def_id, data.trait_ref.substs),
1193 ty::TyAnon(def_id, substs) => (def_id, substs),
1194 _ => {
1195 span_bug!(
1196 obligation.cause.span,
1197 "match_projection_obligation_against_definition_bounds() called \
1198 but self-ty not a projection: {:?}",
1199 skol_trait_predicate.trait_ref.self_ty());
1200 }
1201 };
1202 debug!("match_projection_obligation_against_definition_bounds: \
1203 def_id={:?}, substs={:?}",
1204 def_id, substs);
1205
1206 let item_predicates = self.tcx().lookup_predicates(def_id);
1207 let bounds = item_predicates.instantiate(self.tcx(), substs);
1208 debug!("match_projection_obligation_against_definition_bounds: \
1209 bounds={:?}",
1210 bounds);
1211
1212 let matching_bound =
1213 util::elaborate_predicates(self.tcx(), bounds.predicates)
1214 .filter_to_traits()
1215 .find(
1216 |bound| self.probe(
1217 |this, _| this.match_projection(obligation,
1218 bound.clone(),
1219 skol_trait_predicate.trait_ref.clone(),
1220 &skol_map,
1221 snapshot)));
1222
1223 debug!("match_projection_obligation_against_definition_bounds: \
1224 matching_bound={:?}",
1225 matching_bound);
1226 match matching_bound {
1227 None => false,
1228 Some(bound) => {
1229 // Repeat the successful match, if any, this time outside of a probe.
1230 let result = self.match_projection(obligation,
1231 bound,
1232 skol_trait_predicate.trait_ref.clone(),
1233 &skol_map,
1234 snapshot);
1235
1236 self.infcx.pop_skolemized(skol_map, snapshot);
1237
1238 assert!(result);
1239 true
1240 }
1241 }
1242 }
1243
1244 fn match_projection(&mut self,
1245 obligation: &TraitObligation<'tcx>,
1246 trait_bound: ty::PolyTraitRef<'tcx>,
1247 skol_trait_ref: ty::TraitRef<'tcx>,
1248 skol_map: &infer::SkolemizationMap<'tcx>,
1249 snapshot: &infer::CombinedSnapshot)
1250 -> bool
1251 {
1252 assert!(!skol_trait_ref.has_escaping_regions());
1253 let origin = TypeOrigin::RelateOutputImplTypes(obligation.cause.span);
1254 match self.infcx.sub_poly_trait_refs(false,
1255 origin,
1256 trait_bound.clone(),
1257 ty::Binder(skol_trait_ref.clone())) {
1258 Ok(InferOk { obligations, .. }) => {
1259 self.inferred_obligations.extend(obligations);
1260 }
1261 Err(_) => { return false; }
1262 }
1263
1264 self.infcx.leak_check(false, obligation.cause.span, skol_map, snapshot).is_ok()
1265 }
1266
1267 /// Given an obligation like `<SomeTrait for T>`, search the obligations that the caller
1268 /// supplied to find out whether it is listed among them.
1269 ///
1270 /// Never affects inference environment.
1271 fn assemble_candidates_from_caller_bounds<'o>(&mut self,
1272 stack: &TraitObligationStack<'o, 'tcx>,
1273 candidates: &mut SelectionCandidateSet<'tcx>)
1274 -> Result<(),SelectionError<'tcx>>
1275 {
1276 debug!("assemble_candidates_from_caller_bounds({:?})",
1277 stack.obligation);
1278
1279 let all_bounds =
1280 self.param_env().caller_bounds
1281 .iter()
1282 .filter_map(|o| o.to_opt_poly_trait_ref());
1283
1284 let matching_bounds =
1285 all_bounds.filter(
1286 |bound| self.evaluate_where_clause(stack, bound.clone()).may_apply());
1287
1288 let param_candidates =
1289 matching_bounds.map(|bound| ParamCandidate(bound));
1290
1291 candidates.vec.extend(param_candidates);
1292
1293 Ok(())
1294 }
1295
1296 fn evaluate_where_clause<'o>(&mut self,
1297 stack: &TraitObligationStack<'o, 'tcx>,
1298 where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
1299 -> EvaluationResult
1300 {
1301 self.probe(move |this, _| {
1302 match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1303 Ok(obligations) => {
1304 this.evaluate_predicates_recursively(stack.list(), obligations.iter())
1305 }
1306 Err(()) => EvaluatedToErr
1307 }
1308 })
1309 }
1310
1311 /// Check for the artificial impl that the compiler will create for an obligation like `X :
1312 /// FnMut<..>` where `X` is a closure type.
1313 ///
1314 /// Note: the type parameters on a closure candidate are modeled as *output* type
1315 /// parameters and hence do not affect whether this trait is a match or not. They will be
1316 /// unified during the confirmation step.
1317 fn assemble_closure_candidates(&mut self,
1318 obligation: &TraitObligation<'tcx>,
1319 candidates: &mut SelectionCandidateSet<'tcx>)
1320 -> Result<(),SelectionError<'tcx>>
1321 {
1322 let kind = match self.tcx().lang_items.fn_trait_kind(obligation.predicate.0.def_id()) {
1323 Some(k) => k,
1324 None => { return Ok(()); }
1325 };
1326
1327 // ok to skip binder because the substs on closure types never
1328 // touch bound regions, they just capture the in-scope
1329 // type/region parameters
1330 let self_ty = *obligation.self_ty().skip_binder();
1331 let (closure_def_id, substs) = match self_ty.sty {
1332 ty::TyClosure(id, substs) => (id, substs),
1333 ty::TyInfer(ty::TyVar(_)) => {
1334 debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
1335 candidates.ambiguous = true;
1336 return Ok(());
1337 }
1338 _ => { return Ok(()); }
1339 };
1340
1341 debug!("assemble_unboxed_candidates: self_ty={:?} kind={:?} obligation={:?}",
1342 self_ty,
1343 kind,
1344 obligation);
1345
1346 match self.infcx.closure_kind(closure_def_id) {
1347 Some(closure_kind) => {
1348 debug!("assemble_unboxed_candidates: closure_kind = {:?}", closure_kind);
1349 if closure_kind.extends(kind) {
1350 candidates.vec.push(ClosureCandidate(closure_def_id, substs, kind));
1351 }
1352 }
1353 None => {
1354 debug!("assemble_unboxed_candidates: closure_kind not yet known");
1355 candidates.vec.push(ClosureCandidate(closure_def_id, substs, kind));
1356 }
1357 }
1358
1359 Ok(())
1360 }
1361
1362 /// Implement one of the `Fn()` family for a fn pointer.
1363 fn assemble_fn_pointer_candidates(&mut self,
1364 obligation: &TraitObligation<'tcx>,
1365 candidates: &mut SelectionCandidateSet<'tcx>)
1366 -> Result<(),SelectionError<'tcx>>
1367 {
1368 // We provide impl of all fn traits for fn pointers.
1369 if self.tcx().lang_items.fn_trait_kind(obligation.predicate.def_id()).is_none() {
1370 return Ok(());
1371 }
1372
1373 // ok to skip binder because what we are inspecting doesn't involve bound regions
1374 let self_ty = *obligation.self_ty().skip_binder();
1375 match self_ty.sty {
1376 ty::TyInfer(ty::TyVar(_)) => {
1377 debug!("assemble_fn_pointer_candidates: ambiguous self-type");
1378 candidates.ambiguous = true; // could wind up being a fn() type
1379 }
1380
1381 // provide an impl, but only for suitable `fn` pointers
1382 ty::TyFnDef(.., &ty::BareFnTy {
1383 unsafety: hir::Unsafety::Normal,
1384 abi: Abi::Rust,
1385 sig: ty::Binder(ty::FnSig {
1386 inputs: _,
1387 output: _,
1388 variadic: false
1389 })
1390 }) |
1391 ty::TyFnPtr(&ty::BareFnTy {
1392 unsafety: hir::Unsafety::Normal,
1393 abi: Abi::Rust,
1394 sig: ty::Binder(ty::FnSig {
1395 inputs: _,
1396 output: _,
1397 variadic: false
1398 })
1399 }) => {
1400 candidates.vec.push(FnPointerCandidate);
1401 }
1402
1403 _ => { }
1404 }
1405
1406 Ok(())
1407 }
1408
1409 /// Search for impls that might apply to `obligation`.
1410 fn assemble_candidates_from_impls(&mut self,
1411 obligation: &TraitObligation<'tcx>,
1412 candidates: &mut SelectionCandidateSet<'tcx>)
1413 -> Result<(), SelectionError<'tcx>>
1414 {
1415 debug!("assemble_candidates_from_impls(obligation={:?})", obligation);
1416
1417 let def = self.tcx().lookup_trait_def(obligation.predicate.def_id());
1418
1419 def.for_each_relevant_impl(
1420 self.tcx(),
1421 obligation.predicate.0.trait_ref.self_ty(),
1422 |impl_def_id| {
1423 self.probe(|this, snapshot| { /* [1] */
1424 match this.match_impl(impl_def_id, obligation, snapshot) {
1425 Ok(skol_map) => {
1426 candidates.vec.push(ImplCandidate(impl_def_id));
1427
1428 // NB: we can safely drop the skol map
1429 // since we are in a probe [1]
1430 mem::drop(skol_map);
1431 }
1432 Err(_) => { }
1433 }
1434 });
1435 }
1436 );
1437
1438 Ok(())
1439 }
1440
1441 fn assemble_candidates_from_default_impls(&mut self,
1442 obligation: &TraitObligation<'tcx>,
1443 candidates: &mut SelectionCandidateSet<'tcx>)
1444 -> Result<(), SelectionError<'tcx>>
1445 {
1446 // OK to skip binder here because the tests we do below do not involve bound regions
1447 let self_ty = *obligation.self_ty().skip_binder();
1448 debug!("assemble_candidates_from_default_impls(self_ty={:?})", self_ty);
1449
1450 let def_id = obligation.predicate.def_id();
1451
1452 if self.tcx().trait_has_default_impl(def_id) {
1453 match self_ty.sty {
1454 ty::TyTrait(..) => {
1455 // For object types, we don't know what the closed
1456 // over types are. For most traits, this means we
1457 // conservatively say nothing; a candidate may be
1458 // added by `assemble_candidates_from_object_ty`.
1459 // However, for the kind of magic reflect trait,
1460 // we consider it to be implemented even for
1461 // object types, because it just lets you reflect
1462 // onto the object type, not into the object's
1463 // interior.
1464 if self.tcx().has_attr(def_id, "rustc_reflect_like") {
1465 candidates.vec.push(DefaultImplObjectCandidate(def_id));
1466 }
1467 }
1468 ty::TyParam(..) |
1469 ty::TyProjection(..) |
1470 ty::TyAnon(..) => {
1471 // In these cases, we don't know what the actual
1472 // type is. Therefore, we cannot break it down
1473 // into its constituent types. So we don't
1474 // consider the `..` impl but instead just add no
1475 // candidates: this means that typeck will only
1476 // succeed if there is another reason to believe
1477 // that this obligation holds. That could be a
1478 // where-clause or, in the case of an object type,
1479 // it could be that the object type lists the
1480 // trait (e.g. `Foo+Send : Send`). See
1481 // `compile-fail/typeck-default-trait-impl-send-param.rs`
1482 // for an example of a test case that exercises
1483 // this path.
1484 }
1485 ty::TyInfer(ty::TyVar(_)) => {
1486 // the defaulted impl might apply, we don't know
1487 candidates.ambiguous = true;
1488 }
1489 _ => {
1490 candidates.vec.push(DefaultImplCandidate(def_id.clone()))
1491 }
1492 }
1493 }
1494
1495 Ok(())
1496 }
1497
1498 /// Search for impls that might apply to `obligation`.
1499 fn assemble_candidates_from_object_ty(&mut self,
1500 obligation: &TraitObligation<'tcx>,
1501 candidates: &mut SelectionCandidateSet<'tcx>)
1502 {
1503 debug!("assemble_candidates_from_object_ty(self_ty={:?})",
1504 obligation.self_ty().skip_binder());
1505
1506 // Object-safety candidates are only applicable to object-safe
1507 // traits. Including this check is useful because it helps
1508 // inference in cases of traits like `BorrowFrom`, which are
1509 // not object-safe, and which rely on being able to infer the
1510 // self-type from one of the other inputs. Without this check,
1511 // these cases wind up being considered ambiguous due to a
1512 // (spurious) ambiguity introduced here.
1513 let predicate_trait_ref = obligation.predicate.to_poly_trait_ref();
1514 if !self.tcx().is_object_safe(predicate_trait_ref.def_id()) {
1515 return;
1516 }
1517
1518 self.probe(|this, _snapshot| {
1519 // the code below doesn't care about regions, and the
1520 // self-ty here doesn't escape this probe, so just erase
1521 // any LBR.
1522 let self_ty = this.tcx().erase_late_bound_regions(&obligation.self_ty());
1523 let poly_trait_ref = match self_ty.sty {
1524 ty::TyTrait(ref data) => {
1525 match this.tcx().lang_items.to_builtin_kind(obligation.predicate.def_id()) {
1526 Some(bound @ ty::BoundSend) | Some(bound @ ty::BoundSync) => {
1527 if data.builtin_bounds.contains(&bound) {
1528 debug!("assemble_candidates_from_object_ty: matched builtin bound, \
1529 pushing candidate");
1530 candidates.vec.push(BuiltinObjectCandidate);
1531 return;
1532 }
1533 }
1534 _ => {}
1535 }
1536
1537 data.principal.with_self_ty(this.tcx(), self_ty)
1538 }
1539 ty::TyInfer(ty::TyVar(_)) => {
1540 debug!("assemble_candidates_from_object_ty: ambiguous");
1541 candidates.ambiguous = true; // could wind up being an object type
1542 return;
1543 }
1544 _ => {
1545 return;
1546 }
1547 };
1548
1549 debug!("assemble_candidates_from_object_ty: poly_trait_ref={:?}",
1550 poly_trait_ref);
1551
1552 // Count only those upcast versions that match the trait-ref
1553 // we are looking for. Specifically, do not only check for the
1554 // correct trait, but also the correct type parameters.
1555 // For example, we may be trying to upcast `Foo` to `Bar<i32>`,
1556 // but `Foo` is declared as `trait Foo : Bar<u32>`.
1557 let upcast_trait_refs =
1558 util::supertraits(this.tcx(), poly_trait_ref)
1559 .filter(|upcast_trait_ref| {
1560 this.probe(|this, _| {
1561 let upcast_trait_ref = upcast_trait_ref.clone();
1562 this.match_poly_trait_ref(obligation, upcast_trait_ref).is_ok()
1563 })
1564 })
1565 .count();
1566
1567 if upcast_trait_refs > 1 {
1568 // can be upcast in many ways; need more type information
1569 candidates.ambiguous = true;
1570 } else if upcast_trait_refs == 1 {
1571 candidates.vec.push(ObjectCandidate);
1572 }
1573 })
1574 }
1575
1576 /// Search for unsizing that might apply to `obligation`.
1577 fn assemble_candidates_for_unsizing(&mut self,
1578 obligation: &TraitObligation<'tcx>,
1579 candidates: &mut SelectionCandidateSet<'tcx>) {
1580 // We currently never consider higher-ranked obligations e.g.
1581 // `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
1582 // because they are a priori invalid, and we could potentially add support
1583 // for them later, it's just that there isn't really a strong need for it.
1584 // A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
1585 // impl, and those are generally applied to concrete types.
1586 //
1587 // That said, one might try to write a fn with a where clause like
1588 // for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
1589 // where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
1590 // Still, you'd be more likely to write that where clause as
1591 // T: Trait
1592 // so it seems ok if we (conservatively) fail to accept that `Unsize`
1593 // obligation above. Should be possible to extend this in the future.
1594 let source = match self.tcx().no_late_bound_regions(&obligation.self_ty()) {
1595 Some(t) => t,
1596 None => {
1597 // Don't add any candidates if there are bound regions.
1598 return;
1599 }
1600 };
1601 let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
1602
1603 debug!("assemble_candidates_for_unsizing(source={:?}, target={:?})",
1604 source, target);
1605
1606 let may_apply = match (&source.sty, &target.sty) {
1607 // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
1608 (&ty::TyTrait(ref data_a), &ty::TyTrait(ref data_b)) => {
1609 // Upcasts permit two things:
1610 //
1611 // 1. Dropping builtin bounds, e.g. `Foo+Send` to `Foo`
1612 // 2. Tightening the region bound, e.g. `Foo+'a` to `Foo+'b` if `'a : 'b`
1613 //
1614 // Note that neither of these changes requires any
1615 // change at runtime. Eventually this will be
1616 // generalized.
1617 //
1618 // We always upcast when we can because of reason
1619 // #2 (region bounds).
1620 data_a.principal.def_id() == data_a.principal.def_id() &&
1621 data_a.builtin_bounds.is_superset(&data_b.builtin_bounds)
1622 }
1623
1624 // T -> Trait.
1625 (_, &ty::TyTrait(_)) => true,
1626
1627 // Ambiguous handling is below T -> Trait, because inference
1628 // variables can still implement Unsize<Trait> and nested
1629 // obligations will have the final say (likely deferred).
1630 (&ty::TyInfer(ty::TyVar(_)), _) |
1631 (_, &ty::TyInfer(ty::TyVar(_))) => {
1632 debug!("assemble_candidates_for_unsizing: ambiguous");
1633 candidates.ambiguous = true;
1634 false
1635 }
1636
1637 // [T; n] -> [T].
1638 (&ty::TyArray(..), &ty::TySlice(_)) => true,
1639
1640 // Struct<T> -> Struct<U>.
1641 (&ty::TyAdt(def_id_a, _), &ty::TyAdt(def_id_b, _)) if def_id_a.is_struct() => {
1642 def_id_a == def_id_b
1643 }
1644
1645 _ => false
1646 };
1647
1648 if may_apply {
1649 candidates.vec.push(BuiltinUnsizeCandidate);
1650 }
1651 }
1652
1653 ///////////////////////////////////////////////////////////////////////////
1654 // WINNOW
1655 //
1656 // Winnowing is the process of attempting to resolve ambiguity by
1657 // probing further. During the winnowing process, we unify all
1658 // type variables (ignoring skolemization) and then we also
1659 // attempt to evaluate recursive bounds to see if they are
1660 // satisfied.
1661
1662 /// Returns true if `candidate_i` should be dropped in favor of
1663 /// `candidate_j`. Generally speaking we will drop duplicate
1664 /// candidates and prefer where-clause candidates.
1665 /// Returns true if `victim` should be dropped in favor of
1666 /// `other`. Generally speaking we will drop duplicate
1667 /// candidates and prefer where-clause candidates.
1668 ///
1669 /// See the comment for "SelectionCandidate" for more details.
1670 fn candidate_should_be_dropped_in_favor_of<'o>(
1671 &mut self,
1672 victim: &EvaluatedCandidate<'tcx>,
1673 other: &EvaluatedCandidate<'tcx>)
1674 -> bool
1675 {
1676 if victim.candidate == other.candidate {
1677 return true;
1678 }
1679
1680 match other.candidate {
1681 ObjectCandidate |
1682 ParamCandidate(_) | ProjectionCandidate => match victim.candidate {
1683 DefaultImplCandidate(..) => {
1684 bug!(
1685 "default implementations shouldn't be recorded \
1686 when there are other valid candidates");
1687 }
1688 ImplCandidate(..) |
1689 ClosureCandidate(..) |
1690 FnPointerCandidate |
1691 BuiltinObjectCandidate |
1692 BuiltinUnsizeCandidate |
1693 DefaultImplObjectCandidate(..) |
1694 BuiltinCandidate { .. } => {
1695 // We have a where-clause so don't go around looking
1696 // for impls.
1697 true
1698 }
1699 ObjectCandidate |
1700 ProjectionCandidate => {
1701 // Arbitrarily give param candidates priority
1702 // over projection and object candidates.
1703 true
1704 },
1705 ParamCandidate(..) => false,
1706 },
1707 ImplCandidate(other_def) => {
1708 // See if we can toss out `victim` based on specialization.
1709 // This requires us to know *for sure* that the `other` impl applies
1710 // i.e. EvaluatedToOk:
1711 if other.evaluation == EvaluatedToOk {
1712 if let ImplCandidate(victim_def) = victim.candidate {
1713 let tcx = self.tcx().global_tcx();
1714 return traits::specializes(tcx, other_def, victim_def);
1715 }
1716 }
1717
1718 false
1719 },
1720 _ => false
1721 }
1722 }
1723
1724 ///////////////////////////////////////////////////////////////////////////
1725 // BUILTIN BOUNDS
1726 //
1727 // These cover the traits that are built-in to the language
1728 // itself. This includes `Copy` and `Sized` for sure. For the
1729 // moment, it also includes `Send` / `Sync` and a few others, but
1730 // those will hopefully change to library-defined traits in the
1731 // future.
1732
1733 // HACK: if this returns an error, selection exits without considering
1734 // other impls.
1735 fn assemble_builtin_bound_candidates<'o>(&mut self,
1736 conditions: BuiltinImplConditions<'tcx>,
1737 candidates: &mut SelectionCandidateSet<'tcx>)
1738 -> Result<(),SelectionError<'tcx>>
1739 {
1740 match conditions {
1741 BuiltinImplConditions::Where(nested) => {
1742 debug!("builtin_bound: nested={:?}", nested);
1743 candidates.vec.push(BuiltinCandidate {
1744 has_nested: nested.skip_binder().len() > 0
1745 });
1746 Ok(())
1747 }
1748 BuiltinImplConditions::None => { Ok(()) }
1749 BuiltinImplConditions::Ambiguous => {
1750 debug!("assemble_builtin_bound_candidates: ambiguous builtin");
1751 Ok(candidates.ambiguous = true)
1752 }
1753 BuiltinImplConditions::Never => { Err(Unimplemented) }
1754 }
1755 }
1756
1757 fn sized_conditions(&mut self, obligation: &TraitObligation<'tcx>)
1758 -> BuiltinImplConditions<'tcx>
1759 {
1760 use self::BuiltinImplConditions::{Ambiguous, None, Never, Where};
1761
1762 // NOTE: binder moved to (*)
1763 let self_ty = self.infcx.shallow_resolve(
1764 obligation.predicate.skip_binder().self_ty());
1765
1766 match self_ty.sty {
1767 ty::TyInfer(ty::IntVar(_)) | ty::TyInfer(ty::FloatVar(_)) |
1768 ty::TyUint(_) | ty::TyInt(_) | ty::TyBool | ty::TyFloat(_) |
1769 ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyRawPtr(..) |
1770 ty::TyChar | ty::TyBox(_) | ty::TyRef(..) |
1771 ty::TyArray(..) | ty::TyClosure(..) | ty::TyNever |
1772 ty::TyError => {
1773 // safe for everything
1774 Where(ty::Binder(Vec::new()))
1775 }
1776
1777 ty::TyStr | ty::TySlice(_) | ty::TyTrait(..) => Never,
1778
1779 ty::TyTuple(tys) => {
1780 Where(ty::Binder(tys.last().into_iter().cloned().collect()))
1781 }
1782
1783 ty::TyAdt(def, substs) => {
1784 let sized_crit = def.sized_constraint(self.tcx());
1785 // (*) binder moved here
1786 Where(ty::Binder(match sized_crit.sty {
1787 ty::TyTuple(tys) => tys.to_vec().subst(self.tcx(), substs),
1788 ty::TyBool => vec![],
1789 _ => vec![sized_crit.subst(self.tcx(), substs)]
1790 }))
1791 }
1792
1793 ty::TyProjection(_) | ty::TyParam(_) | ty::TyAnon(..) => None,
1794 ty::TyInfer(ty::TyVar(_)) => Ambiguous,
1795
1796 ty::TyInfer(ty::FreshTy(_))
1797 | ty::TyInfer(ty::FreshIntTy(_))
1798 | ty::TyInfer(ty::FreshFloatTy(_)) => {
1799 bug!("asked to assemble builtin bounds of unexpected type: {:?}",
1800 self_ty);
1801 }
1802 }
1803 }
1804
1805 fn copy_conditions(&mut self, obligation: &TraitObligation<'tcx>)
1806 -> BuiltinImplConditions<'tcx>
1807 {
1808 // NOTE: binder moved to (*)
1809 let self_ty = self.infcx.shallow_resolve(
1810 obligation.predicate.skip_binder().self_ty());
1811
1812 use self::BuiltinImplConditions::{Ambiguous, None, Never, Where};
1813
1814 match self_ty.sty {
1815 ty::TyInfer(ty::IntVar(_)) | ty::TyInfer(ty::FloatVar(_)) |
1816 ty::TyUint(_) | ty::TyInt(_) | ty::TyBool | ty::TyFloat(_) |
1817 ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyChar |
1818 ty::TyRawPtr(..) | ty::TyError | ty::TyNever |
1819 ty::TyRef(_, ty::TypeAndMut { ty: _, mutbl: hir::MutImmutable }) => {
1820 Where(ty::Binder(Vec::new()))
1821 }
1822
1823 ty::TyBox(_) | ty::TyTrait(..) | ty::TyStr | ty::TySlice(..) |
1824 ty::TyClosure(..) |
1825 ty::TyRef(_, ty::TypeAndMut { ty: _, mutbl: hir::MutMutable }) => {
1826 Never
1827 }
1828
1829 ty::TyArray(element_ty, _) => {
1830 // (*) binder moved here
1831 Where(ty::Binder(vec![element_ty]))
1832 }
1833
1834 ty::TyTuple(tys) => {
1835 // (*) binder moved here
1836 Where(ty::Binder(tys.to_vec()))
1837 }
1838
1839 ty::TyAdt(..) | ty::TyProjection(..) | ty::TyParam(..) | ty::TyAnon(..) => {
1840 // Fallback to whatever user-defined impls exist in this case.
1841 None
1842 }
1843
1844 ty::TyInfer(ty::TyVar(_)) => {
1845 // Unbound type variable. Might or might not have
1846 // applicable impls and so forth, depending on what
1847 // those type variables wind up being bound to.
1848 Ambiguous
1849 }
1850
1851 ty::TyInfer(ty::FreshTy(_))
1852 | ty::TyInfer(ty::FreshIntTy(_))
1853 | ty::TyInfer(ty::FreshFloatTy(_)) => {
1854 bug!("asked to assemble builtin bounds of unexpected type: {:?}",
1855 self_ty);
1856 }
1857 }
1858 }
1859
1860 /// For default impls, we need to break apart a type into its
1861 /// "constituent types" -- meaning, the types that it contains.
1862 ///
1863 /// Here are some (simple) examples:
1864 ///
1865 /// ```
1866 /// (i32, u32) -> [i32, u32]
1867 /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
1868 /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
1869 /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
1870 /// ```
1871 fn constituent_types_for_ty(&self, t: Ty<'tcx>) -> Vec<Ty<'tcx>> {
1872 match t.sty {
1873 ty::TyUint(_) |
1874 ty::TyInt(_) |
1875 ty::TyBool |
1876 ty::TyFloat(_) |
1877 ty::TyFnDef(..) |
1878 ty::TyFnPtr(_) |
1879 ty::TyStr |
1880 ty::TyError |
1881 ty::TyInfer(ty::IntVar(_)) |
1882 ty::TyInfer(ty::FloatVar(_)) |
1883 ty::TyNever |
1884 ty::TyChar => {
1885 Vec::new()
1886 }
1887
1888 ty::TyTrait(..) |
1889 ty::TyParam(..) |
1890 ty::TyProjection(..) |
1891 ty::TyAnon(..) |
1892 ty::TyInfer(ty::TyVar(_)) |
1893 ty::TyInfer(ty::FreshTy(_)) |
1894 ty::TyInfer(ty::FreshIntTy(_)) |
1895 ty::TyInfer(ty::FreshFloatTy(_)) => {
1896 bug!("asked to assemble constituent types of unexpected type: {:?}",
1897 t);
1898 }
1899
1900 ty::TyBox(referent_ty) => { // Box<T>
1901 vec![referent_ty]
1902 }
1903
1904 ty::TyRawPtr(ty::TypeAndMut { ty: element_ty, ..}) |
1905 ty::TyRef(_, ty::TypeAndMut { ty: element_ty, ..}) => {
1906 vec![element_ty]
1907 },
1908
1909 ty::TyArray(element_ty, _) | ty::TySlice(element_ty) => {
1910 vec![element_ty]
1911 }
1912
1913 ty::TyTuple(ref tys) => {
1914 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
1915 tys.to_vec()
1916 }
1917
1918 ty::TyClosure(_, ref substs) => {
1919 // FIXME(#27086). We are invariant w/r/t our
1920 // substs.func_substs, but we don't see them as
1921 // constituent types; this seems RIGHT but also like
1922 // something that a normal type couldn't simulate. Is
1923 // this just a gap with the way that PhantomData and
1924 // OIBIT interact? That is, there is no way to say
1925 // "make me invariant with respect to this TYPE, but
1926 // do not act as though I can reach it"
1927 substs.upvar_tys.to_vec()
1928 }
1929
1930 // for `PhantomData<T>`, we pass `T`
1931 ty::TyAdt(def, substs) if def.is_phantom_data() => {
1932 substs.types().collect()
1933 }
1934
1935 ty::TyAdt(def, substs) => {
1936 def.all_fields()
1937 .map(|f| f.ty(self.tcx(), substs))
1938 .collect()
1939 }
1940 }
1941 }
1942
1943 fn collect_predicates_for_types(&mut self,
1944 cause: ObligationCause<'tcx>,
1945 recursion_depth: usize,
1946 trait_def_id: DefId,
1947 types: ty::Binder<Vec<Ty<'tcx>>>)
1948 -> Vec<PredicateObligation<'tcx>>
1949 {
1950 // Because the types were potentially derived from
1951 // higher-ranked obligations they may reference late-bound
1952 // regions. For example, `for<'a> Foo<&'a int> : Copy` would
1953 // yield a type like `for<'a> &'a int`. In general, we
1954 // maintain the invariant that we never manipulate bound
1955 // regions, so we have to process these bound regions somehow.
1956 //
1957 // The strategy is to:
1958 //
1959 // 1. Instantiate those regions to skolemized regions (e.g.,
1960 // `for<'a> &'a int` becomes `&0 int`.
1961 // 2. Produce something like `&'0 int : Copy`
1962 // 3. Re-bind the regions back to `for<'a> &'a int : Copy`
1963
1964 types.skip_binder().into_iter().flat_map(|ty| { // binder moved -\
1965 let ty: ty::Binder<Ty<'tcx>> = ty::Binder(ty); // <----------/
1966
1967 self.in_snapshot(|this, snapshot| {
1968 let (skol_ty, skol_map) =
1969 this.infcx().skolemize_late_bound_regions(&ty, snapshot);
1970 let Normalized { value: normalized_ty, mut obligations } =
1971 project::normalize_with_depth(this,
1972 cause.clone(),
1973 recursion_depth,
1974 &skol_ty);
1975 let skol_obligation =
1976 this.tcx().predicate_for_trait_def(
1977 cause.clone(),
1978 trait_def_id,
1979 recursion_depth,
1980 normalized_ty,
1981 &[]);
1982 obligations.push(skol_obligation);
1983 this.infcx().plug_leaks(skol_map, snapshot, &obligations)
1984 })
1985 }).collect()
1986 }
1987
1988 ///////////////////////////////////////////////////////////////////////////
1989 // CONFIRMATION
1990 //
1991 // Confirmation unifies the output type parameters of the trait
1992 // with the values found in the obligation, possibly yielding a
1993 // type error. See `README.md` for more details.
1994
1995 fn confirm_candidate(&mut self,
1996 obligation: &TraitObligation<'tcx>,
1997 candidate: SelectionCandidate<'tcx>)
1998 -> Result<Selection<'tcx>,SelectionError<'tcx>>
1999 {
2000 debug!("confirm_candidate({:?}, {:?})",
2001 obligation,
2002 candidate);
2003
2004 match candidate {
2005 BuiltinCandidate { has_nested } => {
2006 Ok(VtableBuiltin(
2007 self.confirm_builtin_candidate(obligation, has_nested)))
2008 }
2009
2010 ParamCandidate(param) => {
2011 let obligations = self.confirm_param_candidate(obligation, param);
2012 Ok(VtableParam(obligations))
2013 }
2014
2015 DefaultImplCandidate(trait_def_id) => {
2016 let data = self.confirm_default_impl_candidate(obligation, trait_def_id);
2017 Ok(VtableDefaultImpl(data))
2018 }
2019
2020 DefaultImplObjectCandidate(trait_def_id) => {
2021 let data = self.confirm_default_impl_object_candidate(obligation, trait_def_id);
2022 Ok(VtableDefaultImpl(data))
2023 }
2024
2025 ImplCandidate(impl_def_id) => {
2026 Ok(VtableImpl(self.confirm_impl_candidate(obligation, impl_def_id)))
2027 }
2028
2029 ClosureCandidate(closure_def_id, substs, kind) => {
2030 let vtable_closure =
2031 self.confirm_closure_candidate(obligation, closure_def_id, substs, kind)?;
2032 Ok(VtableClosure(vtable_closure))
2033 }
2034
2035 BuiltinObjectCandidate => {
2036 // This indicates something like `(Trait+Send) :
2037 // Send`. In this case, we know that this holds
2038 // because that's what the object type is telling us,
2039 // and there's really no additional obligations to
2040 // prove and no types in particular to unify etc.
2041 Ok(VtableParam(Vec::new()))
2042 }
2043
2044 ObjectCandidate => {
2045 let data = self.confirm_object_candidate(obligation);
2046 Ok(VtableObject(data))
2047 }
2048
2049 FnPointerCandidate => {
2050 let data =
2051 self.confirm_fn_pointer_candidate(obligation)?;
2052 Ok(VtableFnPointer(data))
2053 }
2054
2055 ProjectionCandidate => {
2056 self.confirm_projection_candidate(obligation);
2057 Ok(VtableParam(Vec::new()))
2058 }
2059
2060 BuiltinUnsizeCandidate => {
2061 let data = self.confirm_builtin_unsize_candidate(obligation)?;
2062 Ok(VtableBuiltin(data))
2063 }
2064 }
2065 }
2066
2067 fn confirm_projection_candidate(&mut self,
2068 obligation: &TraitObligation<'tcx>)
2069 {
2070 self.in_snapshot(|this, snapshot| {
2071 let result =
2072 this.match_projection_obligation_against_definition_bounds(obligation,
2073 snapshot);
2074 assert!(result);
2075 })
2076 }
2077
2078 fn confirm_param_candidate(&mut self,
2079 obligation: &TraitObligation<'tcx>,
2080 param: ty::PolyTraitRef<'tcx>)
2081 -> Vec<PredicateObligation<'tcx>>
2082 {
2083 debug!("confirm_param_candidate({:?},{:?})",
2084 obligation,
2085 param);
2086
2087 // During evaluation, we already checked that this
2088 // where-clause trait-ref could be unified with the obligation
2089 // trait-ref. Repeat that unification now without any
2090 // transactional boundary; it should not fail.
2091 match self.match_where_clause_trait_ref(obligation, param.clone()) {
2092 Ok(obligations) => obligations,
2093 Err(()) => {
2094 bug!("Where clause `{:?}` was applicable to `{:?}` but now is not",
2095 param,
2096 obligation);
2097 }
2098 }
2099 }
2100
2101 fn confirm_builtin_candidate(&mut self,
2102 obligation: &TraitObligation<'tcx>,
2103 has_nested: bool)
2104 -> VtableBuiltinData<PredicateObligation<'tcx>>
2105 {
2106 debug!("confirm_builtin_candidate({:?}, {:?})",
2107 obligation, has_nested);
2108
2109 let obligations = if has_nested {
2110 let trait_def = obligation.predicate.def_id();
2111 let conditions = match trait_def {
2112 _ if Some(trait_def) == self.tcx().lang_items.sized_trait() => {
2113 self.sized_conditions(obligation)
2114 }
2115 _ if Some(trait_def) == self.tcx().lang_items.copy_trait() => {
2116 self.copy_conditions(obligation)
2117 }
2118 _ => bug!("unexpected builtin trait {:?}", trait_def)
2119 };
2120 let nested = match conditions {
2121 BuiltinImplConditions::Where(nested) => nested,
2122 _ => bug!("obligation {:?} had matched a builtin impl but now doesn't",
2123 obligation)
2124 };
2125
2126 let cause = obligation.derived_cause(BuiltinDerivedObligation);
2127 self.collect_predicates_for_types(cause,
2128 obligation.recursion_depth+1,
2129 trait_def,
2130 nested)
2131 } else {
2132 vec![]
2133 };
2134
2135 debug!("confirm_builtin_candidate: obligations={:?}",
2136 obligations);
2137 VtableBuiltinData { nested: obligations }
2138 }
2139
2140 /// This handles the case where a `impl Foo for ..` impl is being used.
2141 /// The idea is that the impl applies to `X : Foo` if the following conditions are met:
2142 ///
2143 /// 1. For each constituent type `Y` in `X`, `Y : Foo` holds
2144 /// 2. For each where-clause `C` declared on `Foo`, `[Self => X] C` holds.
2145 fn confirm_default_impl_candidate(&mut self,
2146 obligation: &TraitObligation<'tcx>,
2147 trait_def_id: DefId)
2148 -> VtableDefaultImplData<PredicateObligation<'tcx>>
2149 {
2150 debug!("confirm_default_impl_candidate({:?}, {:?})",
2151 obligation,
2152 trait_def_id);
2153
2154 // binder is moved below
2155 let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
2156 let types = self.constituent_types_for_ty(self_ty);
2157 self.vtable_default_impl(obligation, trait_def_id, ty::Binder(types))
2158 }
2159
2160 fn confirm_default_impl_object_candidate(&mut self,
2161 obligation: &TraitObligation<'tcx>,
2162 trait_def_id: DefId)
2163 -> VtableDefaultImplData<PredicateObligation<'tcx>>
2164 {
2165 debug!("confirm_default_impl_object_candidate({:?}, {:?})",
2166 obligation,
2167 trait_def_id);
2168
2169 assert!(self.tcx().has_attr(trait_def_id, "rustc_reflect_like"));
2170
2171 // OK to skip binder, it is reintroduced below
2172 let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
2173 match self_ty.sty {
2174 ty::TyTrait(ref data) => {
2175 // OK to skip the binder, it is reintroduced below
2176 let input_types = data.principal.input_types();
2177 let assoc_types = data.projection_bounds.iter()
2178 .map(|pb| pb.skip_binder().ty);
2179 let all_types: Vec<_> = input_types.chain(assoc_types)
2180 .collect();
2181
2182 // reintroduce the two binding levels we skipped, then flatten into one
2183 let all_types = ty::Binder(ty::Binder(all_types));
2184 let all_types = self.tcx().flatten_late_bound_regions(&all_types);
2185
2186 self.vtable_default_impl(obligation, trait_def_id, all_types)
2187 }
2188 _ => {
2189 bug!("asked to confirm default object implementation for non-object type: {:?}",
2190 self_ty);
2191 }
2192 }
2193 }
2194
2195 /// See `confirm_default_impl_candidate`
2196 fn vtable_default_impl(&mut self,
2197 obligation: &TraitObligation<'tcx>,
2198 trait_def_id: DefId,
2199 nested: ty::Binder<Vec<Ty<'tcx>>>)
2200 -> VtableDefaultImplData<PredicateObligation<'tcx>>
2201 {
2202 debug!("vtable_default_impl: nested={:?}", nested);
2203
2204 let cause = obligation.derived_cause(BuiltinDerivedObligation);
2205 let mut obligations = self.collect_predicates_for_types(
2206 cause,
2207 obligation.recursion_depth+1,
2208 trait_def_id,
2209 nested);
2210
2211 let trait_obligations = self.in_snapshot(|this, snapshot| {
2212 let poly_trait_ref = obligation.predicate.to_poly_trait_ref();
2213 let (trait_ref, skol_map) =
2214 this.infcx().skolemize_late_bound_regions(&poly_trait_ref, snapshot);
2215 let cause = obligation.derived_cause(ImplDerivedObligation);
2216 this.impl_or_trait_obligations(cause,
2217 obligation.recursion_depth + 1,
2218 trait_def_id,
2219 &trait_ref.substs,
2220 skol_map,
2221 snapshot)
2222 });
2223
2224 obligations.extend(trait_obligations);
2225
2226 debug!("vtable_default_impl: obligations={:?}", obligations);
2227
2228 VtableDefaultImplData {
2229 trait_def_id: trait_def_id,
2230 nested: obligations
2231 }
2232 }
2233
2234 fn confirm_impl_candidate(&mut self,
2235 obligation: &TraitObligation<'tcx>,
2236 impl_def_id: DefId)
2237 -> VtableImplData<'tcx, PredicateObligation<'tcx>>
2238 {
2239 debug!("confirm_impl_candidate({:?},{:?})",
2240 obligation,
2241 impl_def_id);
2242
2243 // First, create the substitutions by matching the impl again,
2244 // this time not in a probe.
2245 self.in_snapshot(|this, snapshot| {
2246 let (substs, skol_map) =
2247 this.rematch_impl(impl_def_id, obligation,
2248 snapshot);
2249 debug!("confirm_impl_candidate substs={:?}", substs);
2250 let cause = obligation.derived_cause(ImplDerivedObligation);
2251 this.vtable_impl(impl_def_id, substs, cause,
2252 obligation.recursion_depth + 1,
2253 skol_map, snapshot)
2254 })
2255 }
2256
2257 fn vtable_impl(&mut self,
2258 impl_def_id: DefId,
2259 mut substs: Normalized<'tcx, &'tcx Substs<'tcx>>,
2260 cause: ObligationCause<'tcx>,
2261 recursion_depth: usize,
2262 skol_map: infer::SkolemizationMap<'tcx>,
2263 snapshot: &infer::CombinedSnapshot)
2264 -> VtableImplData<'tcx, PredicateObligation<'tcx>>
2265 {
2266 debug!("vtable_impl(impl_def_id={:?}, substs={:?}, recursion_depth={}, skol_map={:?})",
2267 impl_def_id,
2268 substs,
2269 recursion_depth,
2270 skol_map);
2271
2272 let mut impl_obligations =
2273 self.impl_or_trait_obligations(cause,
2274 recursion_depth,
2275 impl_def_id,
2276 &substs.value,
2277 skol_map,
2278 snapshot);
2279
2280 debug!("vtable_impl: impl_def_id={:?} impl_obligations={:?}",
2281 impl_def_id,
2282 impl_obligations);
2283
2284 // Because of RFC447, the impl-trait-ref and obligations
2285 // are sufficient to determine the impl substs, without
2286 // relying on projections in the impl-trait-ref.
2287 //
2288 // e.g. `impl<U: Tr, V: Iterator<Item=U>> Foo<<U as Tr>::T> for V`
2289 impl_obligations.append(&mut substs.obligations);
2290
2291 VtableImplData { impl_def_id: impl_def_id,
2292 substs: substs.value,
2293 nested: impl_obligations }
2294 }
2295
2296 fn confirm_object_candidate(&mut self,
2297 obligation: &TraitObligation<'tcx>)
2298 -> VtableObjectData<'tcx, PredicateObligation<'tcx>>
2299 {
2300 debug!("confirm_object_candidate({:?})",
2301 obligation);
2302
2303 // FIXME skipping binder here seems wrong -- we should
2304 // probably flatten the binder from the obligation and the
2305 // binder from the object. Have to try to make a broken test
2306 // case that results. -nmatsakis
2307 let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
2308 let poly_trait_ref = match self_ty.sty {
2309 ty::TyTrait(ref data) => {
2310 data.principal.with_self_ty(self.tcx(), self_ty)
2311 }
2312 _ => {
2313 span_bug!(obligation.cause.span,
2314 "object candidate with non-object");
2315 }
2316 };
2317
2318 let mut upcast_trait_ref = None;
2319 let vtable_base;
2320
2321 {
2322 let tcx = self.tcx();
2323
2324 // We want to find the first supertrait in the list of
2325 // supertraits that we can unify with, and do that
2326 // unification. We know that there is exactly one in the list
2327 // where we can unify because otherwise select would have
2328 // reported an ambiguity. (When we do find a match, also
2329 // record it for later.)
2330 let nonmatching =
2331 util::supertraits(tcx, poly_trait_ref)
2332 .take_while(|&t| {
2333 match
2334 self.commit_if_ok(
2335 |this, _| this.match_poly_trait_ref(obligation, t))
2336 {
2337 Ok(_) => { upcast_trait_ref = Some(t); false }
2338 Err(_) => { true }
2339 }
2340 });
2341
2342 // Additionally, for each of the nonmatching predicates that
2343 // we pass over, we sum up the set of number of vtable
2344 // entries, so that we can compute the offset for the selected
2345 // trait.
2346 vtable_base =
2347 nonmatching.map(|t| tcx.count_own_vtable_entries(t))
2348 .sum();
2349
2350 }
2351
2352 VtableObjectData {
2353 upcast_trait_ref: upcast_trait_ref.unwrap(),
2354 vtable_base: vtable_base,
2355 nested: vec![]
2356 }
2357 }
2358
2359 fn confirm_fn_pointer_candidate(&mut self, obligation: &TraitObligation<'tcx>)
2360 -> Result<VtableFnPointerData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>>
2361 {
2362 debug!("confirm_fn_pointer_candidate({:?})",
2363 obligation);
2364
2365 // ok to skip binder; it is reintroduced below
2366 let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
2367 let sig = self_ty.fn_sig();
2368 let trait_ref =
2369 self.tcx().closure_trait_ref_and_return_type(obligation.predicate.def_id(),
2370 self_ty,
2371 sig,
2372 util::TupleArgumentsFlag::Yes)
2373 .map_bound(|(trait_ref, _)| trait_ref);
2374
2375 self.confirm_poly_trait_refs(obligation.cause.clone(),
2376 obligation.predicate.to_poly_trait_ref(),
2377 trait_ref)?;
2378 Ok(VtableFnPointerData { fn_ty: self_ty, nested: vec![] })
2379 }
2380
2381 fn confirm_closure_candidate(&mut self,
2382 obligation: &TraitObligation<'tcx>,
2383 closure_def_id: DefId,
2384 substs: ty::ClosureSubsts<'tcx>,
2385 kind: ty::ClosureKind)
2386 -> Result<VtableClosureData<'tcx, PredicateObligation<'tcx>>,
2387 SelectionError<'tcx>>
2388 {
2389 debug!("confirm_closure_candidate({:?},{:?},{:?})",
2390 obligation,
2391 closure_def_id,
2392 substs);
2393
2394 let Normalized {
2395 value: trait_ref,
2396 mut obligations
2397 } = self.closure_trait_ref(obligation, closure_def_id, substs);
2398
2399 debug!("confirm_closure_candidate(closure_def_id={:?}, trait_ref={:?}, obligations={:?})",
2400 closure_def_id,
2401 trait_ref,
2402 obligations);
2403
2404 self.confirm_poly_trait_refs(obligation.cause.clone(),
2405 obligation.predicate.to_poly_trait_ref(),
2406 trait_ref)?;
2407
2408 obligations.push(Obligation::new(
2409 obligation.cause.clone(),
2410 ty::Predicate::ClosureKind(closure_def_id, kind)));
2411
2412 Ok(VtableClosureData {
2413 closure_def_id: closure_def_id,
2414 substs: substs.clone(),
2415 nested: obligations
2416 })
2417 }
2418
2419 /// In the case of closure types and fn pointers,
2420 /// we currently treat the input type parameters on the trait as
2421 /// outputs. This means that when we have a match we have only
2422 /// considered the self type, so we have to go back and make sure
2423 /// to relate the argument types too. This is kind of wrong, but
2424 /// since we control the full set of impls, also not that wrong,
2425 /// and it DOES yield better error messages (since we don't report
2426 /// errors as if there is no applicable impl, but rather report
2427 /// errors are about mismatched argument types.
2428 ///
2429 /// Here is an example. Imagine we have a closure expression
2430 /// and we desugared it so that the type of the expression is
2431 /// `Closure`, and `Closure` expects an int as argument. Then it
2432 /// is "as if" the compiler generated this impl:
2433 ///
2434 /// impl Fn(int) for Closure { ... }
2435 ///
2436 /// Now imagine our obligation is `Fn(usize) for Closure`. So far
2437 /// we have matched the self-type `Closure`. At this point we'll
2438 /// compare the `int` to `usize` and generate an error.
2439 ///
2440 /// Note that this checking occurs *after* the impl has selected,
2441 /// because these output type parameters should not affect the
2442 /// selection of the impl. Therefore, if there is a mismatch, we
2443 /// report an error to the user.
2444 fn confirm_poly_trait_refs(&mut self,
2445 obligation_cause: ObligationCause,
2446 obligation_trait_ref: ty::PolyTraitRef<'tcx>,
2447 expected_trait_ref: ty::PolyTraitRef<'tcx>)
2448 -> Result<(), SelectionError<'tcx>>
2449 {
2450 let origin = TypeOrigin::RelateOutputImplTypes(obligation_cause.span);
2451
2452 let obligation_trait_ref = obligation_trait_ref.clone();
2453 self.infcx.sub_poly_trait_refs(false,
2454 origin,
2455 expected_trait_ref.clone(),
2456 obligation_trait_ref.clone())
2457 .map(|InferOk { obligations, .. }| self.inferred_obligations.extend(obligations))
2458 .map_err(|e| OutputTypeParameterMismatch(expected_trait_ref, obligation_trait_ref, e))
2459 }
2460
2461 fn confirm_builtin_unsize_candidate(&mut self,
2462 obligation: &TraitObligation<'tcx>,)
2463 -> Result<VtableBuiltinData<PredicateObligation<'tcx>>,
2464 SelectionError<'tcx>> {
2465 let tcx = self.tcx();
2466
2467 // assemble_candidates_for_unsizing should ensure there are no late bound
2468 // regions here. See the comment there for more details.
2469 let source = self.infcx.shallow_resolve(
2470 tcx.no_late_bound_regions(&obligation.self_ty()).unwrap());
2471 let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
2472 let target = self.infcx.shallow_resolve(target);
2473
2474 debug!("confirm_builtin_unsize_candidate(source={:?}, target={:?})",
2475 source, target);
2476
2477 let mut nested = vec![];
2478 match (&source.sty, &target.sty) {
2479 // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
2480 (&ty::TyTrait(ref data_a), &ty::TyTrait(ref data_b)) => {
2481 // See assemble_candidates_for_unsizing for more info.
2482 let new_trait = tcx.mk_trait(ty::TraitObject {
2483 principal: data_a.principal,
2484 region_bound: data_b.region_bound,
2485 builtin_bounds: data_b.builtin_bounds,
2486 projection_bounds: data_a.projection_bounds.clone(),
2487 });
2488 let origin = TypeOrigin::Misc(obligation.cause.span);
2489 let InferOk { obligations, .. } =
2490 self.infcx.sub_types(false, origin, new_trait, target)
2491 .map_err(|_| Unimplemented)?;
2492 self.inferred_obligations.extend(obligations);
2493
2494 // Register one obligation for 'a: 'b.
2495 let cause = ObligationCause::new(obligation.cause.span,
2496 obligation.cause.body_id,
2497 ObjectCastObligation(target));
2498 let outlives = ty::OutlivesPredicate(data_a.region_bound,
2499 data_b.region_bound);
2500 nested.push(Obligation::with_depth(cause,
2501 obligation.recursion_depth + 1,
2502 ty::Binder(outlives).to_predicate()));
2503 }
2504
2505 // T -> Trait.
2506 (_, &ty::TyTrait(ref data)) => {
2507 let mut object_dids =
2508 data.builtin_bounds.iter().flat_map(|bound| {
2509 tcx.lang_items.from_builtin_kind(bound).ok()
2510 })
2511 .chain(Some(data.principal.def_id()));
2512 if let Some(did) = object_dids.find(|did| {
2513 !tcx.is_object_safe(*did)
2514 }) {
2515 return Err(TraitNotObjectSafe(did))
2516 }
2517
2518 let cause = ObligationCause::new(obligation.cause.span,
2519 obligation.cause.body_id,
2520 ObjectCastObligation(target));
2521 let mut push = |predicate| {
2522 nested.push(Obligation::with_depth(cause.clone(),
2523 obligation.recursion_depth + 1,
2524 predicate));
2525 };
2526
2527 // Create the obligation for casting from T to Trait.
2528 push(data.principal.with_self_ty(tcx, source).to_predicate());
2529
2530 // We can only make objects from sized types.
2531 let mut builtin_bounds = data.builtin_bounds;
2532 builtin_bounds.insert(ty::BoundSized);
2533
2534 // Create additional obligations for all the various builtin
2535 // bounds attached to the object cast. (In other words, if the
2536 // object type is Foo+Send, this would create an obligation
2537 // for the Send check.)
2538 for bound in &builtin_bounds {
2539 if let Ok(tr) = tcx.trait_ref_for_builtin_bound(bound, source) {
2540 push(tr.to_predicate());
2541 } else {
2542 return Err(Unimplemented);
2543 }
2544 }
2545
2546 // Create obligations for the projection predicates.
2547 for bound in &data.projection_bounds {
2548 push(bound.with_self_ty(tcx, source).to_predicate());
2549 }
2550
2551 // If the type is `Foo+'a`, ensures that the type
2552 // being cast to `Foo+'a` outlives `'a`:
2553 let outlives = ty::OutlivesPredicate(source, data.region_bound);
2554 push(ty::Binder(outlives).to_predicate());
2555 }
2556
2557 // [T; n] -> [T].
2558 (&ty::TyArray(a, _), &ty::TySlice(b)) => {
2559 let origin = TypeOrigin::Misc(obligation.cause.span);
2560 let InferOk { obligations, .. } =
2561 self.infcx.sub_types(false, origin, a, b)
2562 .map_err(|_| Unimplemented)?;
2563 self.inferred_obligations.extend(obligations);
2564 }
2565
2566 // Struct<T> -> Struct<U>.
2567 (&ty::TyAdt(def, substs_a), &ty::TyAdt(_, substs_b)) => {
2568 let fields = def
2569 .all_fields()
2570 .map(|f| f.unsubst_ty())
2571 .collect::<Vec<_>>();
2572
2573 // The last field of the structure has to exist and contain type parameters.
2574 let field = if let Some(&field) = fields.last() {
2575 field
2576 } else {
2577 return Err(Unimplemented);
2578 };
2579 let mut ty_params = BitVector::new(substs_a.types().count());
2580 let mut found = false;
2581 for ty in field.walk() {
2582 if let ty::TyParam(p) = ty.sty {
2583 ty_params.insert(p.idx as usize);
2584 found = true;
2585 }
2586 }
2587 if !found {
2588 return Err(Unimplemented);
2589 }
2590
2591 // Replace type parameters used in unsizing with
2592 // TyError and ensure they do not affect any other fields.
2593 // This could be checked after type collection for any struct
2594 // with a potentially unsized trailing field.
2595 let params = substs_a.params().iter().enumerate().map(|(i, &k)| {
2596 if ty_params.contains(i) {
2597 Kind::from(tcx.types.err)
2598 } else {
2599 k
2600 }
2601 });
2602 let substs = Substs::new(tcx, params);
2603 for &ty in fields.split_last().unwrap().1 {
2604 if ty.subst(tcx, substs).references_error() {
2605 return Err(Unimplemented);
2606 }
2607 }
2608
2609 // Extract Field<T> and Field<U> from Struct<T> and Struct<U>.
2610 let inner_source = field.subst(tcx, substs_a);
2611 let inner_target = field.subst(tcx, substs_b);
2612
2613 // Check that the source structure with the target's
2614 // type parameters is a subtype of the target.
2615 let params = substs_a.params().iter().enumerate().map(|(i, &k)| {
2616 if ty_params.contains(i) {
2617 Kind::from(substs_b.type_at(i))
2618 } else {
2619 k
2620 }
2621 });
2622 let new_struct = tcx.mk_adt(def, Substs::new(tcx, params));
2623 let origin = TypeOrigin::Misc(obligation.cause.span);
2624 let InferOk { obligations, .. } =
2625 self.infcx.sub_types(false, origin, new_struct, target)
2626 .map_err(|_| Unimplemented)?;
2627 self.inferred_obligations.extend(obligations);
2628
2629 // Construct the nested Field<T>: Unsize<Field<U>> predicate.
2630 nested.push(tcx.predicate_for_trait_def(
2631 obligation.cause.clone(),
2632 obligation.predicate.def_id(),
2633 obligation.recursion_depth + 1,
2634 inner_source,
2635 &[inner_target]));
2636 }
2637
2638 _ => bug!()
2639 };
2640
2641 Ok(VtableBuiltinData { nested: nested })
2642 }
2643
2644 ///////////////////////////////////////////////////////////////////////////
2645 // Matching
2646 //
2647 // Matching is a common path used for both evaluation and
2648 // confirmation. It basically unifies types that appear in impls
2649 // and traits. This does affect the surrounding environment;
2650 // therefore, when used during evaluation, match routines must be
2651 // run inside of a `probe()` so that their side-effects are
2652 // contained.
2653
2654 fn rematch_impl(&mut self,
2655 impl_def_id: DefId,
2656 obligation: &TraitObligation<'tcx>,
2657 snapshot: &infer::CombinedSnapshot)
2658 -> (Normalized<'tcx, &'tcx Substs<'tcx>>,
2659 infer::SkolemizationMap<'tcx>)
2660 {
2661 match self.match_impl(impl_def_id, obligation, snapshot) {
2662 Ok((substs, skol_map)) => (substs, skol_map),
2663 Err(()) => {
2664 bug!("Impl {:?} was matchable against {:?} but now is not",
2665 impl_def_id,
2666 obligation);
2667 }
2668 }
2669 }
2670
2671 fn match_impl(&mut self,
2672 impl_def_id: DefId,
2673 obligation: &TraitObligation<'tcx>,
2674 snapshot: &infer::CombinedSnapshot)
2675 -> Result<(Normalized<'tcx, &'tcx Substs<'tcx>>,
2676 infer::SkolemizationMap<'tcx>), ()>
2677 {
2678 let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
2679
2680 // Before we create the substitutions and everything, first
2681 // consider a "quick reject". This avoids creating more types
2682 // and so forth that we need to.
2683 if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
2684 return Err(());
2685 }
2686
2687 let (skol_obligation, skol_map) = self.infcx().skolemize_late_bound_regions(
2688 &obligation.predicate,
2689 snapshot);
2690 let skol_obligation_trait_ref = skol_obligation.trait_ref;
2691
2692 let impl_substs = self.infcx.fresh_substs_for_item(obligation.cause.span,
2693 impl_def_id);
2694
2695 let impl_trait_ref = impl_trait_ref.subst(self.tcx(),
2696 impl_substs);
2697
2698 let impl_trait_ref =
2699 project::normalize_with_depth(self,
2700 obligation.cause.clone(),
2701 obligation.recursion_depth + 1,
2702 &impl_trait_ref);
2703
2704 debug!("match_impl(impl_def_id={:?}, obligation={:?}, \
2705 impl_trait_ref={:?}, skol_obligation_trait_ref={:?})",
2706 impl_def_id,
2707 obligation,
2708 impl_trait_ref,
2709 skol_obligation_trait_ref);
2710
2711 let origin = TypeOrigin::RelateOutputImplTypes(obligation.cause.span);
2712 let InferOk { obligations, .. } =
2713 self.infcx.eq_trait_refs(false,
2714 origin,
2715 impl_trait_ref.value.clone(),
2716 skol_obligation_trait_ref)
2717 .map_err(|e| {
2718 debug!("match_impl: failed eq_trait_refs due to `{}`", e);
2719 ()
2720 })?;
2721 self.inferred_obligations.extend(obligations);
2722
2723 if let Err(e) = self.infcx.leak_check(false,
2724 obligation.cause.span,
2725 &skol_map,
2726 snapshot) {
2727 debug!("match_impl: failed leak check due to `{}`", e);
2728 return Err(());
2729 }
2730
2731 debug!("match_impl: success impl_substs={:?}", impl_substs);
2732 Ok((Normalized {
2733 value: impl_substs,
2734 obligations: impl_trait_ref.obligations
2735 }, skol_map))
2736 }
2737
2738 fn fast_reject_trait_refs(&mut self,
2739 obligation: &TraitObligation,
2740 impl_trait_ref: &ty::TraitRef)
2741 -> bool
2742 {
2743 // We can avoid creating type variables and doing the full
2744 // substitution if we find that any of the input types, when
2745 // simplified, do not match.
2746
2747 obligation.predicate.skip_binder().input_types()
2748 .zip(impl_trait_ref.input_types())
2749 .any(|(obligation_ty, impl_ty)| {
2750 let simplified_obligation_ty =
2751 fast_reject::simplify_type(self.tcx(), obligation_ty, true);
2752 let simplified_impl_ty =
2753 fast_reject::simplify_type(self.tcx(), impl_ty, false);
2754
2755 simplified_obligation_ty.is_some() &&
2756 simplified_impl_ty.is_some() &&
2757 simplified_obligation_ty != simplified_impl_ty
2758 })
2759 }
2760
2761 /// Normalize `where_clause_trait_ref` and try to match it against
2762 /// `obligation`. If successful, return any predicates that
2763 /// result from the normalization. Normalization is necessary
2764 /// because where-clauses are stored in the parameter environment
2765 /// unnormalized.
2766 fn match_where_clause_trait_ref(&mut self,
2767 obligation: &TraitObligation<'tcx>,
2768 where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
2769 -> Result<Vec<PredicateObligation<'tcx>>,()>
2770 {
2771 self.match_poly_trait_ref(obligation, where_clause_trait_ref)?;
2772 Ok(Vec::new())
2773 }
2774
2775 /// Returns `Ok` if `poly_trait_ref` being true implies that the
2776 /// obligation is satisfied.
2777 fn match_poly_trait_ref(&mut self,
2778 obligation: &TraitObligation<'tcx>,
2779 poly_trait_ref: ty::PolyTraitRef<'tcx>)
2780 -> Result<(),()>
2781 {
2782 debug!("match_poly_trait_ref: obligation={:?} poly_trait_ref={:?}",
2783 obligation,
2784 poly_trait_ref);
2785
2786 let origin = TypeOrigin::RelateOutputImplTypes(obligation.cause.span);
2787 self.infcx.sub_poly_trait_refs(false,
2788 origin,
2789 poly_trait_ref,
2790 obligation.predicate.to_poly_trait_ref())
2791 .map(|InferOk { obligations, .. }| self.inferred_obligations.extend(obligations))
2792 .map_err(|_| ())
2793 }
2794
2795 ///////////////////////////////////////////////////////////////////////////
2796 // Miscellany
2797
2798 fn match_fresh_trait_refs(&self,
2799 previous: &ty::PolyTraitRef<'tcx>,
2800 current: &ty::PolyTraitRef<'tcx>)
2801 -> bool
2802 {
2803 let mut matcher = ty::_match::Match::new(self.tcx());
2804 matcher.relate(previous, current).is_ok()
2805 }
2806
2807 fn push_stack<'o,'s:'o>(&mut self,
2808 previous_stack: TraitObligationStackList<'s, 'tcx>,
2809 obligation: &'o TraitObligation<'tcx>)
2810 -> TraitObligationStack<'o, 'tcx>
2811 {
2812 let fresh_trait_ref =
2813 obligation.predicate.to_poly_trait_ref().fold_with(&mut self.freshener);
2814
2815 TraitObligationStack {
2816 obligation: obligation,
2817 fresh_trait_ref: fresh_trait_ref,
2818 previous: previous_stack,
2819 }
2820 }
2821
2822 fn closure_trait_ref_unnormalized(&mut self,
2823 obligation: &TraitObligation<'tcx>,
2824 closure_def_id: DefId,
2825 substs: ty::ClosureSubsts<'tcx>)
2826 -> ty::PolyTraitRef<'tcx>
2827 {
2828 let closure_type = self.infcx.closure_type(closure_def_id, substs);
2829 let ty::Binder((trait_ref, _)) =
2830 self.tcx().closure_trait_ref_and_return_type(obligation.predicate.def_id(),
2831 obligation.predicate.0.self_ty(), // (1)
2832 &closure_type.sig,
2833 util::TupleArgumentsFlag::No);
2834 // (1) Feels icky to skip the binder here, but OTOH we know
2835 // that the self-type is an unboxed closure type and hence is
2836 // in fact unparameterized (or at least does not reference any
2837 // regions bound in the obligation). Still probably some
2838 // refactoring could make this nicer.
2839
2840 ty::Binder(trait_ref)
2841 }
2842
2843 fn closure_trait_ref(&mut self,
2844 obligation: &TraitObligation<'tcx>,
2845 closure_def_id: DefId,
2846 substs: ty::ClosureSubsts<'tcx>)
2847 -> Normalized<'tcx, ty::PolyTraitRef<'tcx>>
2848 {
2849 let trait_ref = self.closure_trait_ref_unnormalized(
2850 obligation, closure_def_id, substs);
2851
2852 // A closure signature can contain associated types which
2853 // must be normalized.
2854 normalize_with_depth(self,
2855 obligation.cause.clone(),
2856 obligation.recursion_depth+1,
2857 &trait_ref)
2858 }
2859
2860 /// Returns the obligations that are implied by instantiating an
2861 /// impl or trait. The obligations are substituted and fully
2862 /// normalized. This is used when confirming an impl or default
2863 /// impl.
2864 fn impl_or_trait_obligations(&mut self,
2865 cause: ObligationCause<'tcx>,
2866 recursion_depth: usize,
2867 def_id: DefId, // of impl or trait
2868 substs: &Substs<'tcx>, // for impl or trait
2869 skol_map: infer::SkolemizationMap<'tcx>,
2870 snapshot: &infer::CombinedSnapshot)
2871 -> Vec<PredicateObligation<'tcx>>
2872 {
2873 debug!("impl_or_trait_obligations(def_id={:?})", def_id);
2874 let tcx = self.tcx();
2875
2876 // To allow for one-pass evaluation of the nested obligation,
2877 // each predicate must be preceded by the obligations required
2878 // to normalize it.
2879 // for example, if we have:
2880 // impl<U: Iterator, V: Iterator<Item=U>> Foo for V where U::Item: Copy
2881 // the impl will have the following predicates:
2882 // <V as Iterator>::Item = U,
2883 // U: Iterator, U: Sized,
2884 // V: Iterator, V: Sized,
2885 // <U as Iterator>::Item: Copy
2886 // When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
2887 // obligation will normalize to `<$0 as Iterator>::Item = $1` and
2888 // `$1: Copy`, so we must ensure the obligations are emitted in
2889 // that order.
2890 let predicates = tcx.lookup_predicates(def_id);
2891 assert_eq!(predicates.parent, None);
2892 let predicates = predicates.predicates.iter().flat_map(|predicate| {
2893 let predicate = normalize_with_depth(self, cause.clone(), recursion_depth,
2894 &predicate.subst(tcx, substs));
2895 predicate.obligations.into_iter().chain(
2896 Some(Obligation {
2897 cause: cause.clone(),
2898 recursion_depth: recursion_depth,
2899 predicate: predicate.value
2900 }))
2901 }).collect();
2902 self.infcx().plug_leaks(skol_map, snapshot, &predicates)
2903 }
2904 }
2905
2906 impl<'tcx> TraitObligation<'tcx> {
2907 #[allow(unused_comparisons)]
2908 pub fn derived_cause(&self,
2909 variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>)
2910 -> ObligationCause<'tcx>
2911 {
2912 /*!
2913 * Creates a cause for obligations that are derived from
2914 * `obligation` by a recursive search (e.g., for a builtin
2915 * bound, or eventually a `impl Foo for ..`). If `obligation`
2916 * is itself a derived obligation, this is just a clone, but
2917 * otherwise we create a "derived obligation" cause so as to
2918 * keep track of the original root obligation for error
2919 * reporting.
2920 */
2921
2922 let obligation = self;
2923
2924 // NOTE(flaper87): As of now, it keeps track of the whole error
2925 // chain. Ideally, we should have a way to configure this either
2926 // by using -Z verbose or just a CLI argument.
2927 if obligation.recursion_depth >= 0 {
2928 let derived_cause = DerivedObligationCause {
2929 parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
2930 parent_code: Rc::new(obligation.cause.code.clone())
2931 };
2932 let derived_code = variant(derived_cause);
2933 ObligationCause::new(obligation.cause.span, obligation.cause.body_id, derived_code)
2934 } else {
2935 obligation.cause.clone()
2936 }
2937 }
2938 }
2939
2940 impl<'tcx> SelectionCache<'tcx> {
2941 pub fn new() -> SelectionCache<'tcx> {
2942 SelectionCache {
2943 hashmap: RefCell::new(FnvHashMap())
2944 }
2945 }
2946 }
2947
2948 impl<'tcx> EvaluationCache<'tcx> {
2949 pub fn new() -> EvaluationCache<'tcx> {
2950 EvaluationCache {
2951 hashmap: RefCell::new(FnvHashMap())
2952 }
2953 }
2954 }
2955
2956 impl<'o,'tcx> TraitObligationStack<'o,'tcx> {
2957 fn list(&'o self) -> TraitObligationStackList<'o,'tcx> {
2958 TraitObligationStackList::with(self)
2959 }
2960
2961 fn iter(&'o self) -> TraitObligationStackList<'o,'tcx> {
2962 self.list()
2963 }
2964 }
2965
2966 #[derive(Copy, Clone)]
2967 struct TraitObligationStackList<'o,'tcx:'o> {
2968 head: Option<&'o TraitObligationStack<'o,'tcx>>
2969 }
2970
2971 impl<'o,'tcx> TraitObligationStackList<'o,'tcx> {
2972 fn empty() -> TraitObligationStackList<'o,'tcx> {
2973 TraitObligationStackList { head: None }
2974 }
2975
2976 fn with(r: &'o TraitObligationStack<'o,'tcx>) -> TraitObligationStackList<'o,'tcx> {
2977 TraitObligationStackList { head: Some(r) }
2978 }
2979 }
2980
2981 impl<'o,'tcx> Iterator for TraitObligationStackList<'o,'tcx>{
2982 type Item = &'o TraitObligationStack<'o,'tcx>;
2983
2984 fn next(&mut self) -> Option<&'o TraitObligationStack<'o,'tcx>> {
2985 match self.head {
2986 Some(o) => {
2987 *self = o.previous;
2988 Some(o)
2989 }
2990 None => None
2991 }
2992 }
2993 }
2994
2995 impl<'o,'tcx> fmt::Debug for TraitObligationStack<'o,'tcx> {
2996 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
2997 write!(f, "TraitObligationStack({:?})", self.obligation)
2998 }
2999 }
3000
3001 impl EvaluationResult {
3002 fn may_apply(&self) -> bool {
3003 match *self {
3004 EvaluatedToOk |
3005 EvaluatedToAmbig |
3006 EvaluatedToUnknown => true,
3007
3008 EvaluatedToErr => false
3009 }
3010 }
3011 }
3012
3013 impl MethodMatchResult {
3014 pub fn may_apply(&self) -> bool {
3015 match *self {
3016 MethodMatched(_) => true,
3017 MethodAmbiguous(_) => true,
3018 MethodDidNotMatch => false,
3019 }
3020 }
3021 }