]> git.proxmox.com Git - rustc.git/blob - src/librustc/traits/specialize/mod.rs
Imported Upstream version 1.9.0+dfsg1
[rustc.git] / src / librustc / traits / specialize / mod.rs
1 // Copyright 2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 // Logic and data structures related to impl specialization, explained in
12 // greater detail below.
13 //
14 // At the moment, this implementation support only the simple "chain" rule:
15 // If any two impls overlap, one must be a strict subset of the other.
16 //
17 // See traits/README.md for a bit more detail on how specialization
18 // fits together with the rest of the trait machinery.
19
20 use super::{SelectionContext, FulfillmentContext};
21 use super::util::{fresh_type_vars_for_impl, impl_trait_ref_and_oblig};
22
23 use middle::cstore::CrateStore;
24 use hir::def_id::DefId;
25 use infer::{self, InferCtxt, TypeOrigin};
26 use middle::region;
27 use ty::subst::{Subst, Substs};
28 use traits::{self, ProjectionMode, ObligationCause, Normalized};
29 use ty::{self, TyCtxt};
30 use syntax::codemap::DUMMY_SP;
31
32 pub mod specialization_graph;
33
34 /// Information pertinent to an overlapping impl error.
35 pub struct Overlap<'a, 'tcx: 'a> {
36 pub in_context: InferCtxt<'a, 'tcx>,
37 pub with_impl: DefId,
38 pub on_trait_ref: ty::TraitRef<'tcx>,
39 }
40
41 /// Given a subst for the requested impl, translate it to a subst
42 /// appropriate for the actual item definition (whether it be in that impl,
43 /// a parent impl, or the trait).
44 /// When we have selected one impl, but are actually using item definitions from
45 /// a parent impl providing a default, we need a way to translate between the
46 /// type parameters of the two impls. Here the `source_impl` is the one we've
47 /// selected, and `source_substs` is a substitution of its generics (and
48 /// possibly some relevant `FnSpace` variables as well). And `target_node` is
49 /// the impl/trait we're actually going to get the definition from. The resulting
50 /// substitution will map from `target_node`'s generics to `source_impl`'s
51 /// generics as instantiated by `source_subst`.
52 ///
53 /// For example, consider the following scenario:
54 ///
55 /// ```rust
56 /// trait Foo { ... }
57 /// impl<T, U> Foo for (T, U) { ... } // target impl
58 /// impl<V> Foo for (V, V) { ... } // source impl
59 /// ```
60 ///
61 /// Suppose we have selected "source impl" with `V` instantiated with `u32`.
62 /// This function will produce a substitution with `T` and `U` both mapping to `u32`.
63 ///
64 /// Where clauses add some trickiness here, because they can be used to "define"
65 /// an argument indirectly:
66 ///
67 /// ```rust
68 /// impl<'a, I, T: 'a> Iterator for Cloned<I>
69 /// where I: Iterator<Item=&'a T>, T: Clone
70 /// ```
71 ///
72 /// In a case like this, the substitution for `T` is determined indirectly,
73 /// through associated type projection. We deal with such cases by using
74 /// *fulfillment* to relate the two impls, requiring that all projections are
75 /// resolved.
76 pub fn translate_substs<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
77 source_impl: DefId,
78 source_substs: &'tcx Substs<'tcx>,
79 target_node: specialization_graph::Node)
80 -> &'tcx Substs<'tcx> {
81 let source_trait_ref = infcx.tcx
82 .impl_trait_ref(source_impl)
83 .unwrap()
84 .subst(infcx.tcx, &source_substs);
85
86 // translate the Self and TyParam parts of the substitution, since those
87 // vary across impls
88 let target_substs = match target_node {
89 specialization_graph::Node::Impl(target_impl) => {
90 // no need to translate if we're targetting the impl we started with
91 if source_impl == target_impl {
92 return source_substs;
93 }
94
95 fulfill_implication(infcx, source_trait_ref, target_impl).unwrap_or_else(|_| {
96 bug!("When translating substitutions for specialization, the expected \
97 specializaiton failed to hold")
98 })
99 }
100 specialization_graph::Node::Trait(..) => source_trait_ref.substs.clone(),
101 };
102
103 // directly inherent the method generics, since those do not vary across impls
104 infcx.tcx.mk_substs(target_substs.with_method_from_subst(source_substs))
105 }
106
107 /// Is impl1 a specialization of impl2?
108 ///
109 /// Specialization is determined by the sets of types to which the impls apply;
110 /// impl1 specializes impl2 if it applies to a subset of the types impl2 applies
111 /// to.
112 pub fn specializes(tcx: &TyCtxt, impl1_def_id: DefId, impl2_def_id: DefId) -> bool {
113 // The feature gate should prevent introducing new specializations, but not
114 // taking advantage of upstream ones.
115 if !tcx.sess.features.borrow().specialization &&
116 (impl1_def_id.is_local() || impl2_def_id.is_local()) {
117 return false;
118 }
119
120 // We determine whether there's a subset relationship by:
121 //
122 // - skolemizing impl1,
123 // - assuming the where clauses for impl1,
124 // - instantiating impl2 with fresh inference variables,
125 // - unifying,
126 // - attempting to prove the where clauses for impl2
127 //
128 // The last three steps are encapsulated in `fulfill_implication`.
129 //
130 // See RFC 1210 for more details and justification.
131
132 // Currently we do not allow e.g. a negative impl to specialize a positive one
133 if tcx.trait_impl_polarity(impl1_def_id) != tcx.trait_impl_polarity(impl2_def_id) {
134 return false;
135 }
136
137 let mut infcx = infer::normalizing_infer_ctxt(tcx, &tcx.tables, ProjectionMode::Topmost);
138
139 // create a parameter environment corresponding to a (skolemized) instantiation of impl1
140 let scheme = tcx.lookup_item_type(impl1_def_id);
141 let predicates = tcx.lookup_predicates(impl1_def_id);
142 let mut penv = tcx.construct_parameter_environment(DUMMY_SP,
143 &scheme.generics,
144 &predicates,
145 region::DUMMY_CODE_EXTENT);
146 let impl1_trait_ref = tcx.impl_trait_ref(impl1_def_id)
147 .unwrap()
148 .subst(tcx, &penv.free_substs);
149
150 // Normalize the trait reference, adding any obligations that arise into the impl1 assumptions
151 let Normalized { value: impl1_trait_ref, obligations: normalization_obligations } = {
152 let selcx = &mut SelectionContext::new(&infcx);
153 traits::normalize(selcx, ObligationCause::dummy(), &impl1_trait_ref)
154 };
155 penv.caller_bounds.extend(normalization_obligations.into_iter().map(|o| o.predicate));
156
157 // Install the parameter environment, taking the predicates of impl1 as assumptions:
158 infcx.parameter_environment = penv;
159
160 // Attempt to prove that impl2 applies, given all of the above.
161 fulfill_implication(&infcx, impl1_trait_ref, impl2_def_id).is_ok()
162 }
163
164 /// Attempt to fulfill all obligations of `target_impl` after unification with
165 /// `source_trait_ref`. If successful, returns a substitution for *all* the
166 /// generics of `target_impl`, including both those needed to unify with
167 /// `source_trait_ref` and those whose identity is determined via a where
168 /// clause in the impl.
169 fn fulfill_implication<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
170 source_trait_ref: ty::TraitRef<'tcx>,
171 target_impl: DefId)
172 -> Result<Substs<'tcx>, ()> {
173 infcx.commit_if_ok(|_| {
174 let selcx = &mut SelectionContext::new(&infcx);
175 let target_substs = fresh_type_vars_for_impl(&infcx, DUMMY_SP, target_impl);
176 let (target_trait_ref, obligations) = impl_trait_ref_and_oblig(selcx,
177 target_impl,
178 &target_substs);
179
180 // do the impls unify? If not, no specialization.
181 if let Err(_) = infer::mk_eq_trait_refs(&infcx,
182 true,
183 TypeOrigin::Misc(DUMMY_SP),
184 source_trait_ref,
185 target_trait_ref) {
186 debug!("fulfill_implication: {:?} does not unify with {:?}",
187 source_trait_ref,
188 target_trait_ref);
189 return Err(());
190 }
191
192 // attempt to prove all of the predicates for impl2 given those for impl1
193 // (which are packed up in penv)
194
195 let mut fulfill_cx = FulfillmentContext::new();
196 for oblig in obligations.into_iter() {
197 fulfill_cx.register_predicate_obligation(&infcx, oblig);
198 }
199
200 if let Err(errors) = infer::drain_fulfillment_cx(&infcx, &mut fulfill_cx, &()) {
201 // no dice!
202 debug!("fulfill_implication: for impls on {:?} and {:?}, could not fulfill: {:?} given \
203 {:?}",
204 source_trait_ref,
205 target_trait_ref,
206 errors,
207 infcx.parameter_environment.caller_bounds);
208 Err(())
209 } else {
210 debug!("fulfill_implication: an impl for {:?} specializes {:?}",
211 source_trait_ref,
212 target_trait_ref);
213
214 // Now resolve the *substitution* we built for the target earlier, replacing
215 // the inference variables inside with whatever we got from fulfillment.
216 Ok(infcx.resolve_type_vars_if_possible(&target_substs))
217 }
218 })
219 }