]> git.proxmox.com Git - rustc.git/blob - src/librustc/ty/fold.rs
New upstream version 1.43.0+dfsg1
[rustc.git] / src / librustc / ty / fold.rs
1 //! Generalized type folding mechanism. The setup is a bit convoluted
2 //! but allows for convenient usage. Let T be an instance of some
3 //! "foldable type" (one which implements `TypeFoldable`) and F be an
4 //! instance of a "folder" (a type which implements `TypeFolder`). Then
5 //! the setup is intended to be:
6 //!
7 //! T.fold_with(F) --calls--> F.fold_T(T) --calls--> T.super_fold_with(F)
8 //!
9 //! This way, when you define a new folder F, you can override
10 //! `fold_T()` to customize the behavior, and invoke `T.super_fold_with()`
11 //! to get the original behavior. Meanwhile, to actually fold
12 //! something, you can just write `T.fold_with(F)`, which is
13 //! convenient. (Note that `fold_with` will also transparently handle
14 //! things like a `Vec<T>` where T is foldable and so on.)
15 //!
16 //! In this ideal setup, the only function that actually *does*
17 //! anything is `T.super_fold_with()`, which traverses the type `T`.
18 //! Moreover, `T.super_fold_with()` should only ever call `T.fold_with()`.
19 //!
20 //! In some cases, we follow a degenerate pattern where we do not have
21 //! a `fold_T` method. Instead, `T.fold_with` traverses the structure directly.
22 //! This is suboptimal because the behavior cannot be overridden, but it's
23 //! much less work to implement. If you ever *do* need an override that
24 //! doesn't exist, it's not hard to convert the degenerate pattern into the
25 //! proper thing.
26 //!
27 //! A `TypeFoldable` T can also be visited by a `TypeVisitor` V using similar setup:
28 //!
29 //! T.visit_with(V) --calls--> V.visit_T(T) --calls--> T.super_visit_with(V).
30 //!
31 //! These methods return true to indicate that the visitor has found what it is
32 //! looking for, and does not need to visit anything else.
33
34 use crate::ty::{self, flags::FlagComputation, Binder, Ty, TyCtxt, TypeFlags};
35 use rustc_hir as hir;
36 use rustc_hir::def_id::DefId;
37
38 use rustc_data_structures::fx::FxHashSet;
39 use std::collections::BTreeMap;
40 use std::fmt;
41
42 /// This trait is implemented for every type that can be folded.
43 /// Basically, every type that has a corresponding method in `TypeFolder`.
44 ///
45 /// To implement this conveniently, use the derive macro located in librustc_macros.
46 pub trait TypeFoldable<'tcx>: fmt::Debug + Clone {
47 fn super_fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Self;
48 fn fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Self {
49 self.super_fold_with(folder)
50 }
51
52 fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool;
53 fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
54 self.super_visit_with(visitor)
55 }
56
57 /// Returns `true` if `self` has any late-bound regions that are either
58 /// bound by `binder` or bound by some binder outside of `binder`.
59 /// If `binder` is `ty::INNERMOST`, this indicates whether
60 /// there are any late-bound regions that appear free.
61 fn has_vars_bound_at_or_above(&self, binder: ty::DebruijnIndex) -> bool {
62 self.visit_with(&mut HasEscapingVarsVisitor { outer_index: binder })
63 }
64
65 /// Returns `true` if this `self` has any regions that escape `binder` (and
66 /// hence are not bound by it).
67 fn has_vars_bound_above(&self, binder: ty::DebruijnIndex) -> bool {
68 self.has_vars_bound_at_or_above(binder.shifted_in(1))
69 }
70
71 fn has_escaping_bound_vars(&self) -> bool {
72 self.has_vars_bound_at_or_above(ty::INNERMOST)
73 }
74
75 fn has_type_flags(&self, flags: TypeFlags) -> bool {
76 self.visit_with(&mut HasTypeFlagsVisitor { flags })
77 }
78 fn has_projections(&self) -> bool {
79 self.has_type_flags(TypeFlags::HAS_PROJECTION)
80 }
81 fn has_opaque_types(&self) -> bool {
82 self.has_type_flags(TypeFlags::HAS_TY_OPAQUE)
83 }
84 fn references_error(&self) -> bool {
85 self.has_type_flags(TypeFlags::HAS_TY_ERR)
86 }
87 fn has_param_types(&self) -> bool {
88 self.has_type_flags(TypeFlags::HAS_TY_PARAM | TypeFlags::HAS_CT_PARAM)
89 }
90 fn has_infer_types(&self) -> bool {
91 self.has_type_flags(TypeFlags::HAS_TY_INFER)
92 }
93 fn has_infer_types_or_consts(&self) -> bool {
94 self.has_type_flags(TypeFlags::HAS_TY_INFER | TypeFlags::HAS_CT_INFER)
95 }
96 fn has_infer_consts(&self) -> bool {
97 self.has_type_flags(TypeFlags::HAS_CT_INFER)
98 }
99 fn has_local_value(&self) -> bool {
100 self.has_type_flags(TypeFlags::KEEP_IN_LOCAL_TCX)
101 }
102 fn needs_infer(&self) -> bool {
103 self.has_type_flags(TypeFlags::NEEDS_INFER)
104 }
105 fn has_placeholders(&self) -> bool {
106 self.has_type_flags(
107 TypeFlags::HAS_RE_PLACEHOLDER
108 | TypeFlags::HAS_TY_PLACEHOLDER
109 | TypeFlags::HAS_CT_PLACEHOLDER,
110 )
111 }
112 fn needs_subst(&self) -> bool {
113 self.has_type_flags(TypeFlags::NEEDS_SUBST)
114 }
115 fn has_re_placeholders(&self) -> bool {
116 self.has_type_flags(TypeFlags::HAS_RE_PLACEHOLDER)
117 }
118 /// "Free" regions in this context means that it has any region
119 /// that is not (a) erased or (b) late-bound.
120 fn has_free_regions(&self) -> bool {
121 self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
122 }
123
124 fn has_erased_regions(&self) -> bool {
125 self.has_type_flags(TypeFlags::HAS_RE_ERASED)
126 }
127
128 /// True if there are any un-erased free regions.
129 fn has_erasable_regions(&self) -> bool {
130 self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
131 }
132
133 /// Indicates whether this value references only 'global'
134 /// generic parameters that are the same regardless of what fn we are
135 /// in. This is used for caching.
136 fn is_global(&self) -> bool {
137 !self.has_type_flags(TypeFlags::HAS_FREE_LOCAL_NAMES)
138 }
139
140 /// True if there are any late-bound regions
141 fn has_late_bound_regions(&self) -> bool {
142 self.has_type_flags(TypeFlags::HAS_RE_LATE_BOUND)
143 }
144
145 /// A visitor that does not recurse into types, works like `fn walk_shallow` in `Ty`.
146 fn visit_tys_shallow(&self, visit: impl FnMut(Ty<'tcx>) -> bool) -> bool {
147 pub struct Visitor<F>(F);
148
149 impl<'tcx, F: FnMut(Ty<'tcx>) -> bool> TypeVisitor<'tcx> for Visitor<F> {
150 fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
151 self.0(ty)
152 }
153 }
154
155 self.visit_with(&mut Visitor(visit))
156 }
157 }
158
159 impl TypeFoldable<'tcx> for hir::Constness {
160 fn super_fold_with<F: TypeFolder<'tcx>>(&self, _: &mut F) -> Self {
161 *self
162 }
163 fn super_visit_with<V: TypeVisitor<'tcx>>(&self, _: &mut V) -> bool {
164 false
165 }
166 }
167
168 /// The `TypeFolder` trait defines the actual *folding*. There is a
169 /// method defined for every foldable type. Each of these has a
170 /// default implementation that does an "identity" fold. Within each
171 /// identity fold, it should invoke `foo.fold_with(self)` to fold each
172 /// sub-item.
173 pub trait TypeFolder<'tcx>: Sized {
174 fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
175
176 fn fold_binder<T>(&mut self, t: &Binder<T>) -> Binder<T>
177 where
178 T: TypeFoldable<'tcx>,
179 {
180 t.super_fold_with(self)
181 }
182
183 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
184 t.super_fold_with(self)
185 }
186
187 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
188 r.super_fold_with(self)
189 }
190
191 fn fold_const(&mut self, c: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
192 c.super_fold_with(self)
193 }
194 }
195
196 pub trait TypeVisitor<'tcx>: Sized {
197 fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
198 t.super_visit_with(self)
199 }
200
201 fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
202 t.super_visit_with(self)
203 }
204
205 fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
206 r.super_visit_with(self)
207 }
208
209 fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
210 c.super_visit_with(self)
211 }
212 }
213
214 ///////////////////////////////////////////////////////////////////////////
215 // Some sample folders
216
217 pub struct BottomUpFolder<'tcx, F, G, H>
218 where
219 F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
220 G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>,
221 H: FnMut(&'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx>,
222 {
223 pub tcx: TyCtxt<'tcx>,
224 pub ty_op: F,
225 pub lt_op: G,
226 pub ct_op: H,
227 }
228
229 impl<'tcx, F, G, H> TypeFolder<'tcx> for BottomUpFolder<'tcx, F, G, H>
230 where
231 F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
232 G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>,
233 H: FnMut(&'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx>,
234 {
235 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
236 self.tcx
237 }
238
239 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
240 let t = ty.super_fold_with(self);
241 (self.ty_op)(t)
242 }
243
244 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
245 let r = r.super_fold_with(self);
246 (self.lt_op)(r)
247 }
248
249 fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
250 let ct = ct.super_fold_with(self);
251 (self.ct_op)(ct)
252 }
253 }
254
255 ///////////////////////////////////////////////////////////////////////////
256 // Region folder
257
258 impl<'tcx> TyCtxt<'tcx> {
259 /// Collects the free and escaping regions in `value` into `region_set`. Returns
260 /// whether any late-bound regions were skipped
261 pub fn collect_regions<T>(self, value: &T, region_set: &mut FxHashSet<ty::Region<'tcx>>) -> bool
262 where
263 T: TypeFoldable<'tcx>,
264 {
265 let mut have_bound_regions = false;
266 self.fold_regions(value, &mut have_bound_regions, |r, d| {
267 region_set.insert(self.mk_region(r.shifted_out_to_binder(d)));
268 r
269 });
270 have_bound_regions
271 }
272
273 /// Folds the escaping and free regions in `value` using `f`, and
274 /// sets `skipped_regions` to true if any late-bound region was found
275 /// and skipped.
276 pub fn fold_regions<T>(
277 self,
278 value: &T,
279 skipped_regions: &mut bool,
280 mut f: impl FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>,
281 ) -> T
282 where
283 T: TypeFoldable<'tcx>,
284 {
285 value.fold_with(&mut RegionFolder::new(self, skipped_regions, &mut f))
286 }
287
288 /// Invoke `callback` on every region appearing free in `value`.
289 pub fn for_each_free_region(
290 self,
291 value: &impl TypeFoldable<'tcx>,
292 mut callback: impl FnMut(ty::Region<'tcx>),
293 ) {
294 self.any_free_region_meets(value, |r| {
295 callback(r);
296 false
297 });
298 }
299
300 /// Returns `true` if `callback` returns true for every region appearing free in `value`.
301 pub fn all_free_regions_meet(
302 self,
303 value: &impl TypeFoldable<'tcx>,
304 mut callback: impl FnMut(ty::Region<'tcx>) -> bool,
305 ) -> bool {
306 !self.any_free_region_meets(value, |r| !callback(r))
307 }
308
309 /// Returns `true` if `callback` returns true for some region appearing free in `value`.
310 pub fn any_free_region_meets(
311 self,
312 value: &impl TypeFoldable<'tcx>,
313 callback: impl FnMut(ty::Region<'tcx>) -> bool,
314 ) -> bool {
315 return value.visit_with(&mut RegionVisitor { outer_index: ty::INNERMOST, callback });
316
317 struct RegionVisitor<F> {
318 /// The index of a binder *just outside* the things we have
319 /// traversed. If we encounter a bound region bound by this
320 /// binder or one outer to it, it appears free. Example:
321 ///
322 /// ```
323 /// for<'a> fn(for<'b> fn(), T)
324 /// ^ ^ ^ ^
325 /// | | | | here, would be shifted in 1
326 /// | | | here, would be shifted in 2
327 /// | | here, would be `INNERMOST` shifted in by 1
328 /// | here, initially, binder would be `INNERMOST`
329 /// ```
330 ///
331 /// You see that, initially, *any* bound value is free,
332 /// because we've not traversed any binders. As we pass
333 /// through a binder, we shift the `outer_index` by 1 to
334 /// account for the new binder that encloses us.
335 outer_index: ty::DebruijnIndex,
336 callback: F,
337 }
338
339 impl<'tcx, F> TypeVisitor<'tcx> for RegionVisitor<F>
340 where
341 F: FnMut(ty::Region<'tcx>) -> bool,
342 {
343 fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
344 self.outer_index.shift_in(1);
345 let result = t.skip_binder().visit_with(self);
346 self.outer_index.shift_out(1);
347 result
348 }
349
350 fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
351 match *r {
352 ty::ReLateBound(debruijn, _) if debruijn < self.outer_index => {
353 false // ignore bound regions, keep visiting
354 }
355 _ => (self.callback)(r),
356 }
357 }
358
359 fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
360 // We're only interested in types involving regions
361 if ty.flags.intersects(TypeFlags::HAS_FREE_REGIONS) {
362 ty.super_visit_with(self)
363 } else {
364 false // keep visiting
365 }
366 }
367 }
368 }
369 }
370
371 /// Folds over the substructure of a type, visiting its component
372 /// types and all regions that occur *free* within it.
373 ///
374 /// That is, `Ty` can contain function or method types that bind
375 /// regions at the call site (`ReLateBound`), and occurrences of
376 /// regions (aka "lifetimes") that are bound within a type are not
377 /// visited by this folder; only regions that occur free will be
378 /// visited by `fld_r`.
379
380 pub struct RegionFolder<'a, 'tcx> {
381 tcx: TyCtxt<'tcx>,
382 skipped_regions: &'a mut bool,
383
384 /// Stores the index of a binder *just outside* the stuff we have
385 /// visited. So this begins as INNERMOST; when we pass through a
386 /// binder, it is incremented (via `shift_in`).
387 current_index: ty::DebruijnIndex,
388
389 /// Callback invokes for each free region. The `DebruijnIndex`
390 /// points to the binder *just outside* the ones we have passed
391 /// through.
392 fold_region_fn:
393 &'a mut (dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx> + 'a),
394 }
395
396 impl<'a, 'tcx> RegionFolder<'a, 'tcx> {
397 #[inline]
398 pub fn new(
399 tcx: TyCtxt<'tcx>,
400 skipped_regions: &'a mut bool,
401 fold_region_fn: &'a mut dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>,
402 ) -> RegionFolder<'a, 'tcx> {
403 RegionFolder { tcx, skipped_regions, current_index: ty::INNERMOST, fold_region_fn }
404 }
405 }
406
407 impl<'a, 'tcx> TypeFolder<'tcx> for RegionFolder<'a, 'tcx> {
408 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
409 self.tcx
410 }
411
412 fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
413 self.current_index.shift_in(1);
414 let t = t.super_fold_with(self);
415 self.current_index.shift_out(1);
416 t
417 }
418
419 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
420 match *r {
421 ty::ReLateBound(debruijn, _) if debruijn < self.current_index => {
422 debug!(
423 "RegionFolder.fold_region({:?}) skipped bound region (current index={:?})",
424 r, self.current_index
425 );
426 *self.skipped_regions = true;
427 r
428 }
429 _ => {
430 debug!(
431 "RegionFolder.fold_region({:?}) folding free region (current_index={:?})",
432 r, self.current_index
433 );
434 (self.fold_region_fn)(r, self.current_index)
435 }
436 }
437 }
438 }
439
440 ///////////////////////////////////////////////////////////////////////////
441 // Bound vars replacer
442
443 /// Replaces the escaping bound vars (late bound regions or bound types) in a type.
444 struct BoundVarReplacer<'a, 'tcx> {
445 tcx: TyCtxt<'tcx>,
446
447 /// As with `RegionFolder`, represents the index of a binder *just outside*
448 /// the ones we have visited.
449 current_index: ty::DebruijnIndex,
450
451 fld_r: &'a mut (dyn FnMut(ty::BoundRegion) -> ty::Region<'tcx> + 'a),
452 fld_t: &'a mut (dyn FnMut(ty::BoundTy) -> Ty<'tcx> + 'a),
453 fld_c: &'a mut (dyn FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx> + 'a),
454 }
455
456 impl<'a, 'tcx> BoundVarReplacer<'a, 'tcx> {
457 fn new<F, G, H>(tcx: TyCtxt<'tcx>, fld_r: &'a mut F, fld_t: &'a mut G, fld_c: &'a mut H) -> Self
458 where
459 F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
460 G: FnMut(ty::BoundTy) -> Ty<'tcx>,
461 H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
462 {
463 BoundVarReplacer { tcx, current_index: ty::INNERMOST, fld_r, fld_t, fld_c }
464 }
465 }
466
467 impl<'a, 'tcx> TypeFolder<'tcx> for BoundVarReplacer<'a, 'tcx> {
468 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
469 self.tcx
470 }
471
472 fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
473 self.current_index.shift_in(1);
474 let t = t.super_fold_with(self);
475 self.current_index.shift_out(1);
476 t
477 }
478
479 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
480 match t.kind {
481 ty::Bound(debruijn, bound_ty) => {
482 if debruijn == self.current_index {
483 let fld_t = &mut self.fld_t;
484 let ty = fld_t(bound_ty);
485 ty::fold::shift_vars(self.tcx, &ty, self.current_index.as_u32())
486 } else {
487 t
488 }
489 }
490 _ => {
491 if !t.has_vars_bound_at_or_above(self.current_index) {
492 // Nothing more to substitute.
493 t
494 } else {
495 t.super_fold_with(self)
496 }
497 }
498 }
499 }
500
501 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
502 match *r {
503 ty::ReLateBound(debruijn, br) if debruijn == self.current_index => {
504 let fld_r = &mut self.fld_r;
505 let region = fld_r(br);
506 if let ty::ReLateBound(debruijn1, br) = *region {
507 // If the callback returns a late-bound region,
508 // that region should always use the INNERMOST
509 // debruijn index. Then we adjust it to the
510 // correct depth.
511 assert_eq!(debruijn1, ty::INNERMOST);
512 self.tcx.mk_region(ty::ReLateBound(debruijn, br))
513 } else {
514 region
515 }
516 }
517 _ => r,
518 }
519 }
520
521 fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
522 if let ty::Const { val: ty::ConstKind::Bound(debruijn, bound_const), ty } = *ct {
523 if debruijn == self.current_index {
524 let fld_c = &mut self.fld_c;
525 let ct = fld_c(bound_const, ty);
526 ty::fold::shift_vars(self.tcx, &ct, self.current_index.as_u32())
527 } else {
528 ct
529 }
530 } else {
531 if !ct.has_vars_bound_at_or_above(self.current_index) {
532 // Nothing more to substitute.
533 ct
534 } else {
535 ct.super_fold_with(self)
536 }
537 }
538 }
539 }
540
541 impl<'tcx> TyCtxt<'tcx> {
542 /// Replaces all regions bound by the given `Binder` with the
543 /// results returned by the closure; the closure is expected to
544 /// return a free region (relative to this binder), and hence the
545 /// binder is removed in the return type. The closure is invoked
546 /// once for each unique `BoundRegion`; multiple references to the
547 /// same `BoundRegion` will reuse the previous result. A map is
548 /// returned at the end with each bound region and the free region
549 /// that replaced it.
550 ///
551 /// This method only replaces late bound regions and the result may still
552 /// contain escaping bound types.
553 pub fn replace_late_bound_regions<T, F>(
554 self,
555 value: &Binder<T>,
556 fld_r: F,
557 ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
558 where
559 F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
560 T: TypeFoldable<'tcx>,
561 {
562 // identity for bound types and consts
563 let fld_t = |bound_ty| self.mk_ty(ty::Bound(ty::INNERMOST, bound_ty));
564 let fld_c = |bound_ct, ty| {
565 self.mk_const(ty::Const { val: ty::ConstKind::Bound(ty::INNERMOST, bound_ct), ty })
566 };
567 self.replace_escaping_bound_vars(value.skip_binder(), fld_r, fld_t, fld_c)
568 }
569
570 /// Replaces all escaping bound vars. The `fld_r` closure replaces escaping
571 /// bound regions; the `fld_t` closure replaces escaping bound types and the `fld_c`
572 /// closure replaces escaping bound consts.
573 pub fn replace_escaping_bound_vars<T, F, G, H>(
574 self,
575 value: &T,
576 mut fld_r: F,
577 mut fld_t: G,
578 mut fld_c: H,
579 ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
580 where
581 F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
582 G: FnMut(ty::BoundTy) -> Ty<'tcx>,
583 H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
584 T: TypeFoldable<'tcx>,
585 {
586 use rustc_data_structures::fx::FxHashMap;
587
588 let mut region_map = BTreeMap::new();
589 let mut type_map = FxHashMap::default();
590 let mut const_map = FxHashMap::default();
591
592 if !value.has_escaping_bound_vars() {
593 (value.clone(), region_map)
594 } else {
595 let mut real_fld_r = |br| *region_map.entry(br).or_insert_with(|| fld_r(br));
596
597 let mut real_fld_t =
598 |bound_ty| *type_map.entry(bound_ty).or_insert_with(|| fld_t(bound_ty));
599
600 let mut real_fld_c =
601 |bound_ct, ty| *const_map.entry(bound_ct).or_insert_with(|| fld_c(bound_ct, ty));
602
603 let mut replacer =
604 BoundVarReplacer::new(self, &mut real_fld_r, &mut real_fld_t, &mut real_fld_c);
605 let result = value.fold_with(&mut replacer);
606 (result, region_map)
607 }
608 }
609
610 /// Replaces all types or regions bound by the given `Binder`. The `fld_r`
611 /// closure replaces bound regions while the `fld_t` closure replaces bound
612 /// types.
613 pub fn replace_bound_vars<T, F, G, H>(
614 self,
615 value: &Binder<T>,
616 fld_r: F,
617 fld_t: G,
618 fld_c: H,
619 ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
620 where
621 F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
622 G: FnMut(ty::BoundTy) -> Ty<'tcx>,
623 H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
624 T: TypeFoldable<'tcx>,
625 {
626 self.replace_escaping_bound_vars(value.skip_binder(), fld_r, fld_t, fld_c)
627 }
628
629 /// Replaces any late-bound regions bound in `value` with
630 /// free variants attached to `all_outlive_scope`.
631 pub fn liberate_late_bound_regions<T>(
632 &self,
633 all_outlive_scope: DefId,
634 value: &ty::Binder<T>,
635 ) -> T
636 where
637 T: TypeFoldable<'tcx>,
638 {
639 self.replace_late_bound_regions(value, |br| {
640 self.mk_region(ty::ReFree(ty::FreeRegion {
641 scope: all_outlive_scope,
642 bound_region: br,
643 }))
644 })
645 .0
646 }
647
648 /// Returns a set of all late-bound regions that are constrained
649 /// by `value`, meaning that if we instantiate those LBR with
650 /// variables and equate `value` with something else, those
651 /// variables will also be equated.
652 pub fn collect_constrained_late_bound_regions<T>(
653 &self,
654 value: &Binder<T>,
655 ) -> FxHashSet<ty::BoundRegion>
656 where
657 T: TypeFoldable<'tcx>,
658 {
659 self.collect_late_bound_regions(value, true)
660 }
661
662 /// Returns a set of all late-bound regions that appear in `value` anywhere.
663 pub fn collect_referenced_late_bound_regions<T>(
664 &self,
665 value: &Binder<T>,
666 ) -> FxHashSet<ty::BoundRegion>
667 where
668 T: TypeFoldable<'tcx>,
669 {
670 self.collect_late_bound_regions(value, false)
671 }
672
673 fn collect_late_bound_regions<T>(
674 &self,
675 value: &Binder<T>,
676 just_constraint: bool,
677 ) -> FxHashSet<ty::BoundRegion>
678 where
679 T: TypeFoldable<'tcx>,
680 {
681 let mut collector = LateBoundRegionsCollector::new(just_constraint);
682 let result = value.skip_binder().visit_with(&mut collector);
683 assert!(!result); // should never have stopped early
684 collector.regions
685 }
686
687 /// Replaces any late-bound regions bound in `value` with `'erased`. Useful in codegen but also
688 /// method lookup and a few other places where precise region relationships are not required.
689 pub fn erase_late_bound_regions<T>(self, value: &Binder<T>) -> T
690 where
691 T: TypeFoldable<'tcx>,
692 {
693 self.replace_late_bound_regions(value, |_| self.lifetimes.re_erased).0
694 }
695
696 /// Rewrite any late-bound regions so that they are anonymous. Region numbers are
697 /// assigned starting at 1 and increasing monotonically in the order traversed
698 /// by the fold operation.
699 ///
700 /// The chief purpose of this function is to canonicalize regions so that two
701 /// `FnSig`s or `TraitRef`s which are equivalent up to region naming will become
702 /// structurally identical. For example, `for<'a, 'b> fn(&'a isize, &'b isize)` and
703 /// `for<'a, 'b> fn(&'b isize, &'a isize)` will become identical after anonymization.
704 pub fn anonymize_late_bound_regions<T>(self, sig: &Binder<T>) -> Binder<T>
705 where
706 T: TypeFoldable<'tcx>,
707 {
708 let mut counter = 0;
709 Binder::bind(
710 self.replace_late_bound_regions(sig, |_| {
711 counter += 1;
712 self.mk_region(ty::ReLateBound(ty::INNERMOST, ty::BrAnon(counter)))
713 })
714 .0,
715 )
716 }
717 }
718
719 ///////////////////////////////////////////////////////////////////////////
720 // Shifter
721 //
722 // Shifts the De Bruijn indices on all escaping bound vars by a
723 // fixed amount. Useful in substitution or when otherwise introducing
724 // a binding level that is not intended to capture the existing bound
725 // vars. See comment on `shift_vars_through_binders` method in
726 // `subst.rs` for more details.
727
728 enum Direction {
729 In,
730 Out,
731 }
732
733 struct Shifter<'tcx> {
734 tcx: TyCtxt<'tcx>,
735 current_index: ty::DebruijnIndex,
736 amount: u32,
737 direction: Direction,
738 }
739
740 impl Shifter<'tcx> {
741 pub fn new(tcx: TyCtxt<'tcx>, amount: u32, direction: Direction) -> Self {
742 Shifter { tcx, current_index: ty::INNERMOST, amount, direction }
743 }
744 }
745
746 impl TypeFolder<'tcx> for Shifter<'tcx> {
747 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
748 self.tcx
749 }
750
751 fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
752 self.current_index.shift_in(1);
753 let t = t.super_fold_with(self);
754 self.current_index.shift_out(1);
755 t
756 }
757
758 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
759 match *r {
760 ty::ReLateBound(debruijn, br) => {
761 if self.amount == 0 || debruijn < self.current_index {
762 r
763 } else {
764 let debruijn = match self.direction {
765 Direction::In => debruijn.shifted_in(self.amount),
766 Direction::Out => {
767 assert!(debruijn.as_u32() >= self.amount);
768 debruijn.shifted_out(self.amount)
769 }
770 };
771 let shifted = ty::ReLateBound(debruijn, br);
772 self.tcx.mk_region(shifted)
773 }
774 }
775 _ => r,
776 }
777 }
778
779 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
780 match ty.kind {
781 ty::Bound(debruijn, bound_ty) => {
782 if self.amount == 0 || debruijn < self.current_index {
783 ty
784 } else {
785 let debruijn = match self.direction {
786 Direction::In => debruijn.shifted_in(self.amount),
787 Direction::Out => {
788 assert!(debruijn.as_u32() >= self.amount);
789 debruijn.shifted_out(self.amount)
790 }
791 };
792 self.tcx.mk_ty(ty::Bound(debruijn, bound_ty))
793 }
794 }
795
796 _ => ty.super_fold_with(self),
797 }
798 }
799
800 fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
801 if let ty::Const { val: ty::ConstKind::Bound(debruijn, bound_ct), ty } = *ct {
802 if self.amount == 0 || debruijn < self.current_index {
803 ct
804 } else {
805 let debruijn = match self.direction {
806 Direction::In => debruijn.shifted_in(self.amount),
807 Direction::Out => {
808 assert!(debruijn.as_u32() >= self.amount);
809 debruijn.shifted_out(self.amount)
810 }
811 };
812 self.tcx.mk_const(ty::Const { val: ty::ConstKind::Bound(debruijn, bound_ct), ty })
813 }
814 } else {
815 ct.super_fold_with(self)
816 }
817 }
818 }
819
820 pub fn shift_region<'tcx>(
821 tcx: TyCtxt<'tcx>,
822 region: ty::Region<'tcx>,
823 amount: u32,
824 ) -> ty::Region<'tcx> {
825 match region {
826 ty::ReLateBound(debruijn, br) if amount > 0 => {
827 tcx.mk_region(ty::ReLateBound(debruijn.shifted_in(amount), *br))
828 }
829 _ => region,
830 }
831 }
832
833 pub fn shift_vars<'tcx, T>(tcx: TyCtxt<'tcx>, value: &T, amount: u32) -> T
834 where
835 T: TypeFoldable<'tcx>,
836 {
837 debug!("shift_vars(value={:?}, amount={})", value, amount);
838
839 value.fold_with(&mut Shifter::new(tcx, amount, Direction::In))
840 }
841
842 pub fn shift_out_vars<'tcx, T>(tcx: TyCtxt<'tcx>, value: &T, amount: u32) -> T
843 where
844 T: TypeFoldable<'tcx>,
845 {
846 debug!("shift_out_vars(value={:?}, amount={})", value, amount);
847
848 value.fold_with(&mut Shifter::new(tcx, amount, Direction::Out))
849 }
850
851 /// An "escaping var" is a bound var whose binder is not part of `t`. A bound var can be a
852 /// bound region or a bound type.
853 ///
854 /// So, for example, consider a type like the following, which has two binders:
855 ///
856 /// for<'a> fn(x: for<'b> fn(&'a isize, &'b isize))
857 /// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ outer scope
858 /// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ inner scope
859 ///
860 /// This type has *bound regions* (`'a`, `'b`), but it does not have escaping regions, because the
861 /// binders of both `'a` and `'b` are part of the type itself. However, if we consider the *inner
862 /// fn type*, that type has an escaping region: `'a`.
863 ///
864 /// Note that what I'm calling an "escaping var" is often just called a "free var". However,
865 /// we already use the term "free var". It refers to the regions or types that we use to represent
866 /// bound regions or type params on a fn definition while we are type checking its body.
867 ///
868 /// To clarify, conceptually there is no particular difference between
869 /// an "escaping" var and a "free" var. However, there is a big
870 /// difference in practice. Basically, when "entering" a binding
871 /// level, one is generally required to do some sort of processing to
872 /// a bound var, such as replacing it with a fresh/placeholder
873 /// var, or making an entry in the environment to represent the
874 /// scope to which it is attached, etc. An escaping var represents
875 /// a bound var for which this processing has not yet been done.
876 struct HasEscapingVarsVisitor {
877 /// Anything bound by `outer_index` or "above" is escaping.
878 outer_index: ty::DebruijnIndex,
879 }
880
881 impl<'tcx> TypeVisitor<'tcx> for HasEscapingVarsVisitor {
882 fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
883 self.outer_index.shift_in(1);
884 let result = t.super_visit_with(self);
885 self.outer_index.shift_out(1);
886 result
887 }
888
889 fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
890 // If the outer-exclusive-binder is *strictly greater* than
891 // `outer_index`, that means that `t` contains some content
892 // bound at `outer_index` or above (because
893 // `outer_exclusive_binder` is always 1 higher than the
894 // content in `t`). Therefore, `t` has some escaping vars.
895 t.outer_exclusive_binder > self.outer_index
896 }
897
898 fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
899 // If the region is bound by `outer_index` or anything outside
900 // of outer index, then it escapes the binders we have
901 // visited.
902 r.bound_at_or_above_binder(self.outer_index)
903 }
904
905 fn visit_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> bool {
906 // we don't have a `visit_infer_const` callback, so we have to
907 // hook in here to catch this case (annoying...), but
908 // otherwise we do want to remember to visit the rest of the
909 // const, as it has types/regions embedded in a lot of other
910 // places.
911 match ct.val {
912 ty::ConstKind::Bound(debruijn, _) if debruijn >= self.outer_index => true,
913 _ => ct.super_visit_with(self),
914 }
915 }
916 }
917
918 // FIXME: Optimize for checking for infer flags
919 struct HasTypeFlagsVisitor {
920 flags: ty::TypeFlags,
921 }
922
923 impl<'tcx> TypeVisitor<'tcx> for HasTypeFlagsVisitor {
924 fn visit_ty(&mut self, t: Ty<'_>) -> bool {
925 debug!("HasTypeFlagsVisitor: t={:?} t.flags={:?} self.flags={:?}", t, t.flags, self.flags);
926 t.flags.intersects(self.flags)
927 }
928
929 fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
930 let flags = r.type_flags();
931 debug!("HasTypeFlagsVisitor: r={:?} r.flags={:?} self.flags={:?}", r, flags, self.flags);
932 flags.intersects(self.flags)
933 }
934
935 fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
936 let flags = FlagComputation::for_const(c);
937 debug!("HasTypeFlagsVisitor: c={:?} c.flags={:?} self.flags={:?}", c, flags, self.flags);
938 flags.intersects(self.flags)
939 }
940 }
941
942 /// Collects all the late-bound regions at the innermost binding level
943 /// into a hash set.
944 struct LateBoundRegionsCollector {
945 current_index: ty::DebruijnIndex,
946 regions: FxHashSet<ty::BoundRegion>,
947
948 /// `true` if we only want regions that are known to be
949 /// "constrained" when you equate this type with another type. In
950 /// particular, if you have e.g., `&'a u32` and `&'b u32`, equating
951 /// them constraints `'a == 'b`. But if you have `<&'a u32 as
952 /// Trait>::Foo` and `<&'b u32 as Trait>::Foo`, normalizing those
953 /// types may mean that `'a` and `'b` don't appear in the results,
954 /// so they are not considered *constrained*.
955 just_constrained: bool,
956 }
957
958 impl LateBoundRegionsCollector {
959 fn new(just_constrained: bool) -> Self {
960 LateBoundRegionsCollector {
961 current_index: ty::INNERMOST,
962 regions: Default::default(),
963 just_constrained,
964 }
965 }
966 }
967
968 impl<'tcx> TypeVisitor<'tcx> for LateBoundRegionsCollector {
969 fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
970 self.current_index.shift_in(1);
971 let result = t.super_visit_with(self);
972 self.current_index.shift_out(1);
973 result
974 }
975
976 fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
977 // if we are only looking for "constrained" region, we have to
978 // ignore the inputs to a projection, as they may not appear
979 // in the normalized form
980 if self.just_constrained {
981 match t.kind {
982 ty::Projection(..) | ty::Opaque(..) => {
983 return false;
984 }
985 _ => {}
986 }
987 }
988
989 t.super_visit_with(self)
990 }
991
992 fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
993 if let ty::ReLateBound(debruijn, br) = *r {
994 if debruijn == self.current_index {
995 self.regions.insert(br);
996 }
997 }
998 false
999 }
1000 }